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Time Course and Hazard Function:
A Distributional Analysis of Fixation
Duration in Reading

Gary Feng
Duke University & RIKEN Brain Science Institute

Reading processes affect not only the mean of @ratluration but also its distribution
function. This paper introduces a set of hypotheles link the timing and strength of a
reading process to the hazard function of a fixatlaration distribution. Analyses based on
large corpora of reading eye movements show aisurgly robust hazard function across
languages, age, individual differences, and a nunabeprocessing variables. The data
suggest that eye movements are generated stoctilgstiased on a stereotyped time course
that is independent of reading variables. Highlleeading processes, however, modulate
eye movement programming by increasing or decrgdhij momentary saccade rate during
a narrow time window. Implications to theories athlyses of reading eye movement are
discussed.
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is based on the dichotomy between fixations andashes
in reading.

Introduction o
Fixations, Processes, and Popcorn

For over a century eye movements have been used to . .
y ey During reading the eyes alternate between two state

study the time course of readlng_processes (H. L _ fixations and saccades. Fixations are periodara in
Rayner, 1998, 2009). The time course is Oﬂenwhich the eyes are relatively stationary and thae
conceptualized (e.g., Engbert, Nuthmann, Richter, & y y y

il 2005 i, Polatsel, & Raynr, 2006wd [1o0° © 3, Foatone e marupte v e
visualized (e.g., Dambacher & Kliegl, 2007; Sereho ' g

) . : different words. This is, of course, an idealizati@he
Rayner, 2003) — as a timeline, on which key pararset . . " . L .
. distinction between fixations and saccades is often
such as the onset, offset, and duration of a psoaes

marked. Estimating the time course is critical forblurer by eye movements during fixations (Carpente
s g . . 1988; Engbert & Kliegl, 2003; Inhoff & Radach, 1998
understanding reading, but making reverse inference . S . ) ;
. i nd equipment limitations (Duchowski, 2003; McCanki

from eye movements to reading processes is n&t . oo

. . . 981). These issues, however, do not diminish the
straightforward. This paper introduces a new apgrda ) . .

. . importance of the fixation-saccade dichotomy indieg
estimate the time course of a process based on t?gsearch (Rayner, 1998)
distribution of fixation duration. | will begin by yner, '
formalizing the metaphor of a time course, whichtuirn, Linking fixation duration and reading process&se
present study focuses exclusively on the duratibn o
fixations, which is shown in numerous studies tient
on-going reading processes (for reviews, see @lifto
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numerous factors influencing reading processes anthis is implied in a fixed-effect model where thieet
reading eye movement planning (Rayner, 1998). size is a constant. It is also guaranteed by ithe.
. . . _,._assumption in random-effect and mixed-effect madels
Questions arise, however, when mean fixation . S .

) . . An onset time, however, implies that the effect is
durations are used to estimate the time course of ‘a . . .

. . nonexistent prior tat; and non-zero after it. In other
process. In the simplest case, suppose a readicggsx . . .
. . : words, the size of the effect is now a functiontioé

starts at time; and ends ab, and its effect is to lengthen . .

o . - . random error, in which case the ANOVA model falls
the fixation duration byl milliseconds. Because reading . . . .
o . . apart. By forcing conventional linear models orafign
fixation duration varies from less than 100mseavedl duration data. we make a compromise — we give ke
over 800msec, it is almost certain that some foxetiare ’ P give 4p

terminated before;, some betweety andt,, and others ggZEZEtSe Ltfatshi; Tense:)v\zr;?mogjft ozfsiljll pr_oces;, n
aftert,. ConsequentlX has no influence in the first case, 9 pie, p ' P y b€

partial influence on the second, and full impact the scenarios discussed above) estimator of the efieeT.

last. The outcome distribution becomes a mixturéhef The question is whether this tradeoff gets us close
three distributions. The mean fixation durationjekhis a an understanding of the time course of readinggu®es.
weighted average of the three, bears no simplé appears the dominant linear statistical modais a
relationship with unknown parametets and t, and fundamentally unequipped to estimate key elemehts o
cannot be used to estimate either. What is misisimn  time course, and thus leave a large gap betweenatat
explicit linking hypothesis about how events in man theory. There are ways to get around this probleme
processes are mapped to empirical distributionahpproach is to identify the time course using altve
parameters. methodologies such as the ERP (see Dambacher &
Kliegl, 2007; Sereno & Rayner, 2003). Another is to
impose theoretical constraints on the timing andhtion

o . - . of processes, a successful example of which isEtize
of distributions that is generally difficulty to stintangle Reader model (Reichle, Rayner, & Pollatsek, 2003:

ithout k ing the distributi d dt, in the first . .
without knowing the distributions df andt, in the firs Reichle, Warren, & McConnell, 2009). This paper

place. Estimating even the central tendency of ethes id third alt i hich estimates thaet
parameters is not a trivial problem under this acen provides a third afternafive, which estimates ©

. . . course from the distribution function of eye moveise
The proposal of this paper is to look at an altivea . .
%n analogy may help to illustrate the gist of thegosal

The problem is further complicated tf andt, are
allowed to vary randomly. The jittering creates iatare

representation of the model — based on the haza

function — that will allow us to estimate the onsetd ere.

offset of a mental process from the distributiondiion Popcorn Suppose we have two popcorn makers, an
of empirical fixation duration. old one that heats at a constant rate and a newhamne

Before introducing the hazard function basedIOOaStS a time-varying heating program — i.e., ds/qr

approach, let us first look at how conventionaledin output changes at predestinated times — buavesage

statistical models such as the ANOVA deal with thewattage output is identical between the two machine

aforementioned mixture problem. In a typical fixeiflect With only an unlimited supply of popcorn, how cae w

model, an observed fixation duration is the sunthoée \C/:%rrl;y ;?ii ttlrr:a e;ila:arr)(/;ng cgsllri?ls E:ntehian?\r/]or?hailrfhmtazo
part — a grand mean (also known as the intercépd), paring 9 9 Y g

. . whether or when the heating function changes oler t
unknown constant effect siZeé and an error term that is iime course. But listening to the pobping noise ma
zero mean and independent, identically distribiied!.) » i 9 Popping y

o Intuitively, the rate at which popcorn pops shobkl a
from one fixation to the next. The constahtcan be function of thenstantaneousvattage outout
estimated by comparing conditions that does and doée g put.
involve the psychological process of interest. higs Though promising, the idea has a number of issues t
from this model, however, are parametérsand t,.  resolve. First, the intensity of the popping naisgy have
Indeed, notions of the onset and offset of an éffiawe  a nonlinear relationship with the heating functibmthis
no place in ANOVA-type models. The reason is simplecase one can compare the two machines: where the
in order to neatly partition variance (or the surmh ointensity is higher, there must be more heat. Bss|
squares), the “effect” and “errors” must be indefmt. noise does not always imply less heat. If the neghime
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cooks faster than the old one, at some point ifppy  the saccadic intensity functidift) is time-shifted by to
noise will become sparse, simply because thereois nremoved it from the formula. The desired intensity
much unpopped corn left. A fair comparison requiges function now has the form

relative intensity index, one that scales the noise by how X

much corn is still unpopped in the machine. Relatiid A)=A1), O<tst

method becomes be less reliable as time goes oen wh A #AM), t <t<t, (2
popping noises will be few and far between. Thes# a .

other methodological issues will be addressed is th AM =40, t>t

Paper. If such a4 function does exist, estimating the time

In this example, the intensity of popping noises iscourse ofX is straightforward. The onset and offsetof
analogous to the rate at which saccades are gederatcorrespond to the region whetg) andA’(t) differ. The
and the variable heating program stands for thexomk  time-varying strength oX is a function of the amount of
time course of some underlying reading processnlbn- changes in the saccadic intensity; this could basmed
going reading process influences the instantaneiasof by p(t) = A(t) - A (t) (the "additive hazards model," see
saccade generation, intuitively one should be dble _ . " ;
estimate the onset, duration, and strength of tbegss Aalen, 1989, 19?3)y(t) =AM/A (@) (the propo'rtlor'1al
by examining the distribution function of fixation hazards modgl, Cox, 1972)', or some combination of
duration. This intuition is formalized in the nesdction. both (see Martinussen & Scheike, 2006).

Assuming al function satisfying (2) exists, the new
linking hypothesis allows us to estimate (aXihas any
effect, (b) when its effect starts and ends, apdgav its

The gist of the linking hypothesis is straightfordia strength varies with time. If the assumption of
if a reading processs, is engaged betwednandt,, one conventional linear models holds, i.e., when theeband
should observe changes in the intensity of saccadedfset times span the full range of the distribnfithe 1
betweent, + sandt, + §, and the variation in intensity functions will differ throughout the whole range of

should correspond to the time-varying effectXofThe fixation duration, too, in which case there are no
symbol is the inherent delay of the oculomotor systemMeaningfult; andt, to be identified. A key difference
which for the moment is assumed to be an empirica@etween the new proposal and traditional linear etei$
constant and will be revisited in Discussion. Teent [N the assumption of the amount of jitteringtpndt, —
intensity of saccadess left vague here intentionally the 1 function works when distributions @f andt, are

because it is the key to the present model. | dgfine it Narrow compared to the distribution of fixation dtion.
after laying out the basic notations. This is consistent with predictions of major thesriof

reading eye movements (e.g., Engbert, et al., 2005;
A symbolic sketchLet A(t) be a baseline saccadic Rgijchle, Rayner, & Pollatsek, 1999; Reichle, et2003;

intensity function, wheret[(0,0) is the fixation Yang & McConkie, 2001) and is supported by
duration, andi’(t) be the saccadic intensity when the electrophysiological evidence (see Dambacher & dfjie
processX is engaged. For the sake of identifying the time2007; Sereno & Rayner, 2003).
course of X, we wish to have a simple relationship
betweenX and4, such thatl is affected when — and only
when —X is engaged. In other words,

A Distributional Model of the Time Course of
Reading Eye Movements

Choosing thel(t) function. The intensity of saccades
is measured by the probability of saccade per ahit
time. | will compare two candidate functions — the
At+d)=A(t+9), 0<ts< t, probability density functiongdf) and the hazard function
— and present an empirical example to illustrageglos

A+ 2At+9), t<t<t, @ and cons of the two options.
A(t+0)=At+9), t> L Thepdf, often denoted bi(x), is defined as
To simplify the notion, let us re- . Prit< X <t+At)
defineA(t) — A(t +J) for the rest of this paper, i.e., F09 = thrpo At 3
3
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The pdf should not be confused with the sample
histogram function: while the latter is a probaiitnd is
always smaller than 1, thedf may be larger than 1. By
definition, the area under thedf curve must always be

0

one, i.e.,jf(x)dle. This turns out to be a serious
0
limitation for the present application: it impli¢isat if X
increases the saccadidf prior to t,, the pdf thereafter
must be lower, just like the more efficient popcaraker
eventually makefessnoise because most corn is already
popped. Unfortunately, this violates the third dition
in (2), where A(t) = A (t) for t>t,; in other words, we
cannot estimate the offset of the prockssom thepdf.
Another problem stems from the same constraint
because the@df approaches zero for very long fixations,
comparing the right tails of distributions becomes
difficult (see Chechile, 2003; Luce, 1986; Van Zgnd
2000; Van Zandt & Ratcliff, 1995). For these reastre
pdf does not have the properties we sought in (2).

Thehazardfunction also known as the hazard rate, is
a conditional index of intensity. It is defined e pdf
divided by the proportion of fixations that havet ryet
been terminated,

L Pris X <t+At|X=t) _ f(1) 4
AM) = Jim, At 50 @
where f(t) is the pdf and

t
S(t) =Pr(X =t) = 1_J' f (x)dx Is thesurvival function
0
of X. The hazard ratgt) can be seen df) with its right
tail magnified by a factor of $(t) The two functions are
closely connected:

f(t) = A(t) E@xp(—j/](x)dx) (5)

Nevertheless, there are important differences betwe
them. Unlike thepdf, there are no inherent constraints on
the shape of the hazard function,

thatT/i(t)dt:oo (i.e., the “lifetime” risk of saccade is
0
infinity, to avoid “eternal fixations”). Figure lhews the

pdfs and hazard functions of three familiar distribos
— the normal distribution, gamma distribution, and

Feng (2009)
Time Course and Hazard Function

used as models of reading fixation duration (FEQ§6;
Reichle, Pollatsek, Fisher, & Rayner, 1998; Reifly
O'Regan, 1998). Despite similar shapes of the ptlis
hazard functions show distinct trajectories, esgbciat

the right tail.
0.05 - .
Mean= 190 /
SD. =603 I/\H)rmal

0.04 -

003 -

Gamma

Lognormal

002 -

001

500

Figure 1. Hazard Functions of Normal, Lognormaldan
Gamma Distributions with the Same Means and Standard
Deviations

The hazard functioi(t) is an ideal candidate for (2).
It measures the instantaneous risk of an event, (a.g
saccade) at time, given that it has not yet occurred
(Chechile, 2003; Hosmer & Lemeshow, 1999; Lawless,
1982). Thus the hazard function is conditionally
independent from the history prior to This “memory-
less” property of the hazard function satisfies: (2]t)
goes back to the baselinetaas soon as the effect ¥f
goes away. The hazard function also allows us to
compare the right tails of fixation duration dibtrtions:
it is easy to see that(t) > f(t) becauseS(txl. The
magnification is greater for longer fixations, &Xt)
approaches zero.

Researchers of response time distributions havg lon
recognized the advantages of the hazard functien e
pdf (Chechile, 2003; Luce, 1986; Van Zandt, 2000; Van
Zandt & Ratcliff, 1995). Its primary drawback isathit
requires a large sample size, particularly forneating

providedthe right tail. Fortunately, large eye movementpcoa

are not difficult to obtain, and some are publigall
available to researchers (e.g., Kennedy & Pynt6520

An empirical exampleFFigure 2 shows a typicaldf
(bottom curves) and the corresponding hazard fancti
(top curves) of a reading fixation duration distition.

lognormal distribution — with the same means andlhe data came from the Dundee Corpus (Kennedy &

standard deviations. All three distributions haveeip
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over 400,000 fixations collected from 10 adult Hsigl
readers reading newspaper stories. More detailthef
data and estimation methods can be found in thénddist
section.

0.015 0.020 0.025 0.030

Hazard rate/Prob. density

0.005 0.010

-0.005  0.000
¢

300 400 500 600

Fixation Duration

Figure 2. Hazard Function and the Probability Dewgsi
Function: The Dundee Corpus

A number of observations are noteworthy in Figure 2

Numerically, the hazard function is always lardeart the
pdf, and the two functions become

increasingly

Feng (2009)
Time Course and Hazard Function

the entire function (shown as the green line iruFég?).

In contrast, the hazard function is not subjedh® same
constraint. The piecewise linear regression in gl is
estimated with artifacts simply removed. The lesgpd
black line is a smoothed version (using the 3RS3R
algorithm; see Tukey, 1977) of the cleaned-up rhzar
rate, demonstrating the fit of the linear function.

Relation with Other Distributional Models

To summarize, the distribution of fixation duration
carries rich information about underlying reading
processes that can be recovered using the hazactichu
analysis. Here | focus on its relation with exigtin
mathematical models of fixation duration distriloms,
and address other relevant issues in Discussiofis It
important to remember, however, that diverse ststiha
processes may result in the same distribution ,(e.g.
Johnson, Kotz, & Balakrishnan, 1994). Thus a swsfoés
distributional model cannot identify the underlying
mechanism. Nevertheless, it helps us narrow dowen th
search for the true model, by rejecting processinglels
that make wrong distributional predictions.

Early attempts to model thedf of fixation duration
(Harris, Hainline, Abramov, Lemerise, & Camenzuli,
1988; Suppes, 1990; Suppes, 1994; Suppes, M. Cé&nen,

disassociated: whereas théf approaches zero after 300-
400 msec, the hazard function remains substantiall
above zero and shows an unambiguous trend

Laddaga, Anliker, & Floyd, 1983) were met with lbeul
guccess, in part because the choices of mathetnatica
models were hardly informed by empirical distrilouis.

The hazard function in Figure 2 is a unimodalMore recently, Engbert and Kliegl (2001) proposed a
function, with a peak at approximately 250msegs llso  semi-Markov model in which the hazard function for
well captured by a piecewise linear regression rhaite ~ saccade generation varies with time. They noneibele
three changepoints at approximately 130, 180, anlimited the hazard rate to a linear function (i&e\Weibull
250msec. These parameters turn out to be commalistribution; see Johnson, et al., 1994), which
characteristics of most hazard functions examimethis  inconsistent with empirical data (see Figure 2).
paper. The second half of this paper investigates t
shape and parameters of this function.

is

A few recent models took advantage of empirical
hazard functions. McConkie and colleagues (McConkie
Finally, Figure 2 shows peculiar spikes every 41 o& Dyre, 2000; McConkie, Kerr, & Dyre, 1994) obsedve
42msec (or approximately 24Hz). The magnitude ef ththat the hazard function of reading fixation duati
spikes is nearly twice of the expected hazard ratdypically show three phases — a slow rising stagel u

suggesting a possible rounding artifact wherebgtidns
in nearby bins were combined. These artifacts rbest
removed, but the consequence of artifact removiédrdi
for the pdf and the hazard function. With tipelf, simply

removing the spikes would result?oj‘w (x)dx <1, because
0

approximately 100msec, and a fast rising stage to
approximately 180msec, followed by a relativelyt fil.
The three phrases could be modeled by a pieceimisar|
function. This motivated McConkie et al to derive a
number of mathematical models, all of which fit an
empirical distribution well. However, these modetay

not be able to account for the falling right tafl the

some probability mass is discarded. To ensure pepro hazard function observed in Figure 2, because they

pdf, one must re-norm the function, which will elevate
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assume a serial processing model that includes it waognitive processes from distribution functionsc&el,
time distribution independent of other processesmore flexible mathematical tools are needed to wapt
Mathematically, this translates to a convolution ofthe diversity in empirical distributions. The sugtien
distributions with increasing hazard functions, ethivill  here is that the hazard function can serve as @géri
always result in a rising hazard function (Barlow,between empirical distribution functions and the¢icegd
Marshall, & Proschan, 1963; Marshall & Olkin, 200lf)  construes such as the time course of a cognitivegss.
search for a more flexible model, Feng (2006) reggbr Whether or not this particular proposal is sucadssf
that a mixture of three lognormal distributions canthere is clearly a need for a more informative skt
achieve good fit to divers@df’'s of adult and child linking hypotheses.

readers. Figure 1 and 2 illustrate the qualitasiveilarity .

between the hazard function of the lognormal distion The Empirical Study

and that of the empirical distribution. Both of ske The empirical part of the paper has two aims. Titsé f
aforementioned models estimate i, which becomes is to illustrate the feasibility of the proposedzaad
less informative as it approaches zero at the right function analysis. More importantly, | will estineaivays
Few studies have directly modeled empirical hazargh which the hazard function is influenced by aietyr of
functions, with the noticeable exception of thereading-related factors, including language, agel a
Competition/Interaction theory (Yang, 2006; Yang & number of processing variables. Since all of theaeh
McConkie, 2001). proven to have significant and differential inflees on

One of the most influential distributional modelsthe_ mean  fixation dgra.non (Rayner,. 1998), a
today, LATER (Linear Approach to Threshold with st_ralghtforvyard hypothe3|s is that these diverseofa
Ergodic Rate; Carpenter & Williams, 1995; Carpe,nterWIII show different time courses.

1999, 2000; Carpenter & McDonald, 2007; McDonald, ~An accurate estimation of the hazard function,
Carpenter, & Shillcock, 2005; Reddi, Asrress, &particularly at the right tail, requires a largemgde of
Carpenter, 2003) conceptualizes saccade generasi@n fixations. The present study includes large eye enmant
linear accumulation of information toward a fixed corpora from adult readers of four different langes
threshold. Assuming the speed of increase is ndymal (English, Chinese, Japanese, and Korean) and qenglo
distributed, the fixation duration follows a reamal readers from two countries (US and China). Altogeth
distribution (Carpenter & Williams, 1995; Rober9ll), more than one million eye movements were colleated
which generally fits the cumulative distributionnfition  four different labs around the world, using thréfedent

of reading eye movements (Carpenter & McDonaldmodels of eye trackers. The size and the diversitthe
2007; McDonald, et al., 2005, with an additionaldata reduce the chance of random fluctuations and
component for short fixations). The reci-normal methodological artifacts.

distribution is a special case of tigeneralized inverse

normal distribution (see Johnson, et al., 1994; Robert,

1991). Except for some pathological cases, its floaza Methods

function is unimodal, with a fast rising phase dated by

a slow descent, similar to Figure 2. Nonetheless, iCorpora of Reading Eye Movements

appears that the reci-normal hazard function is not The eye movement data used in this study came from
flexible enough to simultaneously account for bdie 262 readers from three age groups and five cowsntrie
fast rising and the slow falling phases of the efal  pata were collected in four different labs aroure t
hazard function; it typically requires two funct®io fit  \orld using three different eye tracking systemabl& 1

the whole distribution. Recent extensions of theTER  symmarizes key features of the databases. It ighwor
model (Moscoso Del Prado Martin, submitted; Nakahar noting that there was no data censoring, i.e.,ixatibns
Nakamura, & Hikosaka, 2006) may help to improve itSyere discarded because it is too short or too IFhis is

fit. crucial for distributional analyses because the mom

This brief survey underscores two observationstfir Practice of excluding long fixations — a form aght

there is little consensus on how to infer the taoarse of ~ ensoring (Le, 1997) — can dramatically inflate the
hazard function.
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Table 1

Summary of characteristics of the datasets usdiarstudy.

Language N Participants Materials Eye-tracker Fixations
Dundee Corpus

English-speaking 20 News articles, approximately 2800 words
English 10  adults from UK each. Dr. Bouis 407356

Cross-linguistic Adult Reading Corpora

University Short stories (7,500 words): "The Ransom of
students from the Red Chief' by O. Henry, and "Shooting an
English 25 NC, US Elephant" by G. Orwell EyeLink A 168790
Short stories (16,000 words, or 25,000
University characters): “Kamuikotan-no Hagoromo” by
students in Bin Konno, and “Kagonuke” by Motohiko
Japanese 26  Tokyo, Japan Fuma EyelLink Il 182824
University Short stories (9,833 characters): "Bu Shuo
students in Huang de Ren" by Lao She, and "Ri Gui" by
Chinese 23  Beijing, China Wang Zenqi EyeLink Il 66927
International
students and Short story (3,339 words, 10,066 hangul
Korean 19 spouses in the US characters)"Hang Yer Yeong" by Yang Gwija EyeLirk 59652

Cross-linguistic Developmental Reading Corpbra
3rd Grade (9.1

English 23 yrs) Short Stories (3rd Grade) EyeLink | 45995
5th Grade (11.2

English 30 yrs) Short Stories (5th Grade) EyeLink | 57015

English 26 Adults Short Stories (3rd & 5th Grade) EyeLink | 40478

3rd Grade (9.4

Chinese 25 yrs) Short Stories (3rd Grade) EyeLink | 40136
5th Grade (11.4
Chinese 25 yrs) Short Stories (5th Grade) EyeLink | 34943
Chinese 30 Adults Short Stories (3rd & 5th Grade) yelhink | 43767
Total 262 1147883

Notes:

1. Dr. Bouis System: sampling rate at 1000Hz, withita bar; approximate accuracy of 1 character; &t calibration every 3
screens; custom clustering algorithm for saccaded®n (Kennedy & Pynte, 2005).

2. EyeLink II: sampling rate at500Hz; accuracy apgmately 1 character; 9-point carlibration at theginning of the session and
repeated as necessary; saccade detection was basaduw acceleration threshold of 9500°/s2 and acig} threshold of 30°/s.

3. EyelLink I: same as EyelLink Il but at 250Hz
4. For more details see (Feng, Miller, Shu, & Zhakg09)

The Dundee English Corpushe Dundee corpus is a McDonald, 2007; Kennedy & Pynte, 2005; Pynte &
publicly available dataset that has been studieKennedy, 2006). Eye movements were recorded using a
extensively by various research groups (Carpenter &r. Bouis system with a sampling rate of 1000Hz.
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Fixations were detected using a custom-developethcluded stories targeting the specific culture agading
algorithm that clusters and merges samples of gazevel of the children. They were chosen from popula
locations into fixations (see Kennedy & Pynte, 2005 third- and fifth-grade extracurricular reading seri
The algorithm differs from those in the EyeLink ®&ms, published in each country. The other set, refetoeds
and as we will see it may have caused some sydstemathe “anchor stories,” included two stories with gibel
differences in the rate of brief fixations. Furtherversions in each language and allowed direct
information about the corpus can be found in Kegnedcomparisons between languages. Feng et al. (20d9) d
and Pynte (2005; see also Pynte & Kennedy, 2008)! I not find significant differences between the twassef
focus on this dataset in a number of analyses Isec#si stories, and data were pooled together in thispape

size, quality, and availability. i
Data Analysis
Cross-linguistic Story Reading StudieBhe cross- _ .
linguistic reading corpora include data from four A Series of analyses examine the effects of languag

languages: English, Chinese, Japanese, and Koredife: individual differences, word frequency, woeddth,
Native-speaking adults were asked to read authentfnd type of subsequent_ saccades. In each Stwamhp_
novels in their own languages and answer multiplehazard rates are estimated. Because most empirical

choice questions after each story. Eye-movements wehazard functions follow the same fast-rising-slafifig

recorded with either the EyeLink | (the Korean sfudr profile, a flexiple piecewis_e_ linear regression mbds
the EyeLink Il (all other studies) eye tracking teys, a used to quantify the empirical curves. Key paramsete

head-mounted infrared system with typically accyrat such as the'c.:hangepomts and slopes'are then c'empar
0.5 visual degrees. A chin rest was used in comijomc across conditions. Parameters of the piecewisesegm

with the built-in  head movement compensatioandeIWi” be summarized in the final analysis.

mechanism. Data from the right eye were used whemev  Estimation of the hazard functiohe hazard rate
available. was estimated in one of two ways, depending on the

The studies also involved a gaze-contingentsamp"ng frequency of the. data. When only the DenFJe
manipulation irrelevant to the present purpose.ti#d corpus (1000Hz) was involved, the Kaplan-Meier

onset of every 812" saccade, texts on the screen Wereproduct-limit estimator (Le, 1997) was used. Thednd
shifted to the left or the right by approximately31 rate and the standard error were estimated usieg th
character spaces. The shifts were designed to deem kphazfunction in themuhazpackage (v1.2.3; Hess &
naturally occurring oculomotor noises; effects béde Gentleman, 2008) of the R language (v. 2.7.2; R

screen shifts will be reported elsewhere. Here owug Develppment Core Team, 200_8)' Due_ to their lower
on the majority of fixations that were not affectey the sampling rates, data recorded with EyeLink | (25pbiz

occasional screen shifts. Most of the screen shiftH (SOOHZ) §ystems were effectively grouPed intor24
(94.5%) were imperceptible because the change@sec bms, in which cases the actuarial methodmae .
occurred during saccades or within 8msec aftertifina appropnate_ (Le, 1997). The SURYNAL command in
onset; visual perception is suppressed during phisod SPSS version 15.0 was used for this purpose. A @0ms

(Matin, 1974; Rayner, 1998; Wolverton & Zola, 1983) Pin Width was chosen so that there were generdllpi3
Fixations immediately after screen shifts were alsd"ore ‘surviving” f|xat|qns_; in each bin. FOIlOW'nw'F
excluded from analyses, even though they were n(ﬂrocedure, the upper I|m|t of the anaIyS|s was agfty
significantly  affected by the manipulation. 400 to 600msec, depending on the size of the corpus
Approximately 4-12% fixations were excluded for she A stable estimation of the empirical hazard fungtio
reasons for each reader. particularly at the right tail, requires a largengde size.
Cross-linguistic Developmental Reading Studigse With except.ions of Igrge corpora such as the Dundee
next six sets of studies were designed to invemigacorpus' t¥p|cal rea.dllng gye movement studies .do not
developmental changes and orthographic effects iI:—p‘ford reliable individualized hazard rate estinsate

reading (Feng, et al., 2009). Participants weredttand bgyond thrt_ae hundred miIIisecpnds or so. Indiyidual
fifth-grade students and adult readers in the U8 andifferences in the hazard rate will be examinechwfte

China. They read two sets of short stories. One S(Qundee database, whereas in other cases data @leslpo
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across individuals. Using group data can potentiall linear regression appears to be a straightforward
introduce biases, however (Ratcliff, 1979; Van Zand descriptive tool. It is noteworthy, however, thathan-
2000). While this concern cannot be fully resolsedhis  linear model is required to capture a hazard fomctith
study, there are reasons to believe the currerrbapp is a falling tail, because the falling linear regressiine
useful. Mathematically speaking, the pooled dat @r will eventually cross the x-axis and becomes negati
mixture of individuals’ distributions. The hazardte of Nevertheless, the piecewise linear regression sédems
the pooled distribution is a complex weighted ageraf  suffice as a descriptive model for most of the psed
hazard rates of individual distributions at a matdr presented here.

time. In principle, the right tail of the group lzad rate
could be dominated by a few slow readers who haVﬁ.'e
drastically different hazard rates from the resttioé¢
group. The concern may be lessened, though n
eliminated, by results reported below: readers he t

Dunc.zlee cor.pus d.o not \{ary substantially in the @Za 180, and 250msec (see Figure 2). Taking the initial
rate in the right tail; evenBgrade students do not differ . . . :
values, the algorithm iteratively estimates the

much from adult readers in the right tail of thezdual chanaenoints using a re-parameterized linear reimmes
function. The robustness of the hazard function is gep g P ore

interesting in itself — see Discussion — and itgasys the model (Muggeo, 2003).' .The solution dependls more on
. N the data than on the initial values, although oiccedly
bias of group-data-based hazard rate estimatidikaky . Do
. . A the model can fail to converge due to poor initial
to be small. This issue will be revisited in Dissios, and

. specifications. The most common cause of failums t
readers should keep potential problems of the phoee b . .
i mind converge was that more changepoints were spedcifead

the algorithm could find in the data. In this cabe

Estimating changepointrior research has shown model was initialized to a 2-changepoint model.(€1§0
that the empirical hazard function of reading fieat and 250msec only).

duration has a number of distinct phases and can be

approximated by a piecewise linear function (McQenk

& Dyre, 2000; Yang & McConkie, 2001). Tlkegmented

package for R (v 0.2-4; Muggeo, 2008) was usedtta f

piecewise linear regression model to empirical fhza bias in estimating a changepoint in the hazardtfoncA

:Zti;ﬁ)gnmrigf:!fsirfhgto? regel:]i(raerf beflf:r:v!:: linear piecewise-Weibull distribution was derived, whicasha
9 N g ‘segmented” linear hazard function with one known

be connected at changepoints (Muggeo, 2008). Thi

L . Changepoint at 1.0. One thousand random samplgigef
constraint is important because we assume the ynagr o
. . 5,000 were drawn from the distribution, and the
hazard rate of saccade generation is continuous.

“segmented” algorithm (Muggeo, 2008) was applied to
The piecewise linear regression is only a heurtsii¢ ~ estimate the changepoint. To be conservative, that®/
for estimating the changepoints and slopes of dogbir Carlo sample size 5,000 is smaller than sampled imse
hazard functions, so that hazard rates can be amahpa the empirical studies. Based on the 1000 samples, t
across populations and conditions. It does notyntipht mean estimated changepoint is at 0.9970, with 95%
the underlying biological mechanism has a lineazahéd  confidence interval between 0.9317 and 1.0742. 8 eer
rate or goes through discrete phases during aidixat little evidence of bias in this example.
Models bas'ed. on Contmuous. hazard functions provide Appendix B investigates the potential bias of the
more sophisticated explanations (e.g., Feng, 20062
. eported SE. Ten thousand random samples of sifi95,
though often at the cost of more assumptions about .
; .. were drawn (with replacement) from the dataset for
reading and oculomotor processes. A decision wadema _. . . .
. . . Figure 7, which includes approximately 1,000,000
to stay closely to the data in this study and avoid. ~ .
. . ixations by adult readers. For each sample, thearth
unnecessary theoretical assumptions. For the perrpbs

comparing two empirical hazard functions, tegmented function was estimated and the segmented regressien
parng P ' performed with the initial changepoints set at 1080,

It is currently not possible to automatically detére
optimal number of segments (Muggeo, 2008). The
cc;;\Igorithm requires a manual specification the nundfe
cthangepoints and initial guesses of where they are.
Unless otherwise stated, the initial values wetes&00,

Because the segmented regression model has not been
used for empirical hazard functions, two Monte Garl
studies were conducted to illustrate statisticalperties

of this procedure. Appendix A examines the poténtia
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and 250msec. The procedure was identical to thétén differences in saccade detection algorithms inedéft
empirical studies. Data suggest that the SE estimat eye trackers.

reported by th&segmentedlgorithm is biased, but it erre
on the conservative side. That is, the true SE hef
changepoint estimation is likely to be smaller th o Duee
reported by th&egmentedlgorithm.

0.020

0.015
I

+ Chinese
Japanese
Korean

0.010
I

Results

Hazard rate

0.005
!

The analyses to be reported fall into three grotips.
first compares hazard functions among differentiees,
including (1) skilled readers of different languagé?2)
children and adult readers, (3) individual readeeing
the same materials. The second set of analysesresp > L ‘ , , ‘ ,
how fixation duration is modulated by perceptu: 0 100 200 300 400 500 600
cognitive, and other processing variables. To ¢mg we Firationduation
will look at effects of (4) word frequency, (5) vebr
length, and (6) types of subsequent saccades (fdrwa
regression, or refixation). The final analyses wgtimate Despite the stable timing of the changepoints, the
the hazard function from all adult data and summeari hazard function varies by language. There is nedhti
estimated slopes and changepoints from previogsste little language difference in the initial phase ftve
100msec) or in the decline phase (after approxipate
250ms). Differences emerge during the short time

Language. The data for this analysis include thewindow between approximately 100 and 180msec. The
Dundee corpus and the cross-linguistic studiegliiyg  two English datasets show similarly steep slopes,
adult speakers of English, Chinese, Japanese, arehK compared to the three East Asian languages.
reading authentic texts in their native languadg¢eszard Interestingly, by the time when most hazard funtio
rates were estimated using the actuarial methoddbas take a downturn at around 250msec, the hazard odites
20msec bins and are shown in Figure 3. In additeon, all studies have converged to close to 0.015.
piecewise linear regression analysis was conduftied
each language using thsegmentedpackage for R
(Muggeo, 2008); see Figure 3. The line segmentsthea
bottom of the figure mark the 95% confidence in&iof
the estimated changepoints, centered at the estimat
values (the dots).

0.000

0.005

Figure 3. Hazard Functions by Language

Language, Age, and Individual Differences

Agelreading expertis&igure 4 compares® and 5
grade children and adult readers from the US andaCh
reading authentic children's stories in their own
languages. Despite the ease of reading materidigtsa
hazard functions are similar to those in Figuréi8zard
functions of developing readers also show three

The hazard functions follow a stereotyped timedistinctive stages. This is confirmed by the segexn
course: it rises to a peak at approximately 250maed  regression analysis. Estimated changepoints are
then gradually falls. Compared to the near lineaconsistent across ages and languages. The pivoitasp
decrease, the slope of the rising curve is unellaeises are, again, approximately 100, 180, and 250msec.
slowly before approximately 100msec. Between 10@mse
and 180msec, the rate increases drastically. Froreo
180msec, the hazard function rises at a slowerdspet!
reaching its peak near 250msec. The locations 03
estimated changepoints are consistent across lgagua
In most cases the estimates are within confidenc
intervals of each other, with the exception of first
changepoint of the Dundee data. This is likely doe

Developmental differences are equally salient.
mpared to adults, children have lower hazard rate
efore 100msec, although there does not appeae @ b
ifference between' and %-grade students in either
country. However, the three age groups diverge &etw
%00 and 250msec, where after 180msec hazard fusctio
of adult readers continue to increase but thosehibdren

are virtually flat. After 250msec, hazard ratesdhildren
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decrease at a much slower pace than those of adultezard function between 180 and 250msec. The first

Having lower hazard rate in the

right tail meangdcan

make more long fixations than adults, a findingsistent

with Feng (2006).

0.020

A ChineseG3
ChineseG5
o ChineseAdult o
EnglishG3
o EnglishG5
EnglishAdult

0.015

0.010

0.005

0.000

-0.005

300

Fixation duration

400 500 600

Figure 4. Developmental Comparison of Hazard Fioni

Individual

differences. Using group data

in

distributional analyses raises two concerns. Inhlisl

readers may have idiosyncratic
masked in group analyses.

distribution could be dominated
they make more fixations. To

distributions thayrbe
In addition, the grc
by slow readersabise
address these conce

Figure 5 shows estimated hazard functions of all
readers in the Dundee corpus. Each reader madedbet
29,000 and 47,000 fixations. The mean fixation tdara
ranges from 173 to 230msec. For all readers thalini
parameters for the piecewise regression were s&®@o
180, and 250 msec. Theegmentedalgorithm failed to
converge for 3 readersd se andsj), because it could
not detect a changepoint at around 180msec. Inthese
readers’ data suggest a linear increase from 100 to
250msec. In these cases their regression lines lvased
on initial values of 100 and 250msec. The thickigtnt

line segments represent
regressions, and the thin jagged

lines are smodtisdg

the 3RS3R algorithm; see Tukey, 1977) empiricabhdz

rates.

The timing of changepoints is largely consistent
across readers, at approximately 130, 180, and 260m

Without exceptions, the hazard function begins wvath

slow rising phase, followed by a fast rising phase

Hazard rate

the estimated piecewise

changepoint is 30msec later than estimates froneroth
datasets; this is likely attributable to how diéfat eye
trackers handle brief fixations. Estimates of the
changepoint at around 250msec tend to have large
confidence intervals, reflecting increased noisele in

the right tail.

Individual differences exist in all phases of tlezrd
function. For example readee made a large number of
express saccades (shorter than 130msec), but daseerw
showed a typical hazard function. Readehad virtually
no express saccades but the steepest rise bet@8end
180msec, and therefore had the shortest averagtofix
duration overall. Readersb and sh, on the other hand,
show hazard functions resembling those of childiren
Figure 4. Nonetheless, the differences are mostlihé
rate of changes in the hazard function, not wheanghs
happen. Another important finding is that indivithia
hazard functions tend to converge toward the tigiht At
around 400msec the hazard rates are generally betwe
0.010 and 0.015, consistent with the estimate ftben
pooled data (see Figure 3).

-0.005 0.000 0.005 0.010 0.015 0.020 0.025 0.030
L

250 300 350 400

Fixation Duration

Figure 5. Individual Differences in Hazard FunctidkO Adult
Readers from the Dundee Corpus

Modulation of Hazard Function by Processing
Variables

The next three analyses focus on variables that are
known to influence moment-to-moment reading
processes. They are based on the Dundee corpush whi
has the largest sample size among all corpora.

Word frequency.The Dundee corpus includes as a

between 130 and 250msec, and a slow decline phasariable the frequency of occurrence of each wards
afterwards. Most readers also show a decelerafidheo
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classes according to the natural
frequency. Only words that occurred between 3 69,
times were included in this analysis; very rare dgoand
extremely frequent words (such as “the” and “of'¢rey
excluded. In addition, to lessen the correlatiobween

word frequency and word length, the data were &urth

constrained to only words 4 to 7 letters long. Ottig
first fixation on a word was used in this analysihe
sample size varied across frequency categoriegjimgn

Feng (2009)
Time Course and Hazard Function

logarithm of thehase. Familiar words results in fast rising hazard

functions between 140 and 190msec, and the diftexen
remains until approximately 250msec. The largefacef

of word frequency is observed at about 190msecsi@eit
the window between 140 and 250msec, word frequency
appears to have little effect on saccade generation
particular, if a fixation on a low frequency wors mot
terminated by 250msec, its risk of it being ternchis

the same as a fixation on a high frequency word.

from over 49,000 fixations (frequency 8-20) to 48P
fixations (for frequency 1000-3000). As expectelde t
mean fixation duration show a linear decrease fr

0.020
L

202msec in the lowest frequency category to 189r1se

the highest frequency category. The focus of t
analysis, however, is on distributional propertibst
underlie the frequency effect.

1

37
8-20

21-50
51-150
151-400

v 401-1000
1000-3000

1

X+ D> o

-0.005 0.000 0.005 0.010 0.015 0.020 0.025

50 200 250 300 350 400

Fixation Duration

Figure 6. Effects of Word Frequency on Hazard Fiamcof
Fixation Duration (Dundee corpus)

Hazard rate

0.015

©  3letters
A 4letters
5 letters
X 6 letters
7 letters
v 8letters

0.010
1

0.005
L

0.000

-0.005
L

100 150 200 250 300 350 400

Fixation Duration

Figure 7. Effect of Word Length (Dundee corpus)

Word length.The length of a word may be perceived
during the preceding fixation, and therefore it may
potentially have a different time course from thatvord
frequency. Figure 7 shows hazard functions offitse
fixations on words between 3 and 8 letters longer&h
were between approximately 34,000 and 62,000 first
fixations in each word length category. The meast fi
fixation duration ranged from 191msec (3-lettergon

Figure 6 shows the estimated hazard function fohea words) to 202msec (8-letter-long words). The estima
frequency_ category. When the initial values ofchangepoints are generally consistent across word
changepoints were set to 100, 180, and 250msee., tfengths, and are comparable to those in previoalyses.
segmentedregression failed to converge for the twogjmilar to that of word frequency, the effect of nao
highest frequency categories because of the lack of |ength is again limited to the fast rising phaséween

changepoint around 250msec. Instead, initial valL@3

140 and 250msec, with the strongest effect at

and 180msec were used for these two categories. Thgproximately 190msec. Word length appears to share

thick lines on Figure 6 represent estimates of gpiése

similar time course as word frequency.

linear regressions, whereas the corresponding ¢hgge o
lines are empirical hazard rates, smoothed usirgg th 1YP€ ©Of subsequent saccadeRefixations and

3RS3R algorithm (Tukey, 1977).

regressions are sometimes assumed to be triggered b
different mechanisms from forward saccades (e.g.,

Across the board, there is no evidence that thenm Reichle, et al., 2006). In this analysis, fixatioase

of the changepoints is systematically influencedalmyd

classified into three categories based on the tarfgthe

frequency. On the other hand, word frequency has gypsequent eye movements — forward (to a word down

strong impact on the hazard function of fixatioration,
though its effect is limited to the slope of thetfaising
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305,334, 67,564, and 27,925 and the mean fixatiothough, is an overall shorter average fixation. tleub
durations were 203, 175, and 187msec. The estimatidistributional differences like these can not beoxered
was the same as previous analyses, with the s@nddsy comparing the means.

initial parameters of 100, 180, and 250msec. )
Pooled Hazard Functions

0.020
1

Although the segmented linear regression is a usefu
descriptive tool, the hazard function cannot deseest a
linear rate forever because it would at some poétibme
negative. Eventually the hazard function will cua® it
approaches its asymptote at 0. A large sample édet
to demonstrate this. Fortunately, Figures 3 andghsst
that there is little language difference in thehtiggail of
the hazard function. Thus, data from all 164 acedders
were pooled together in this analysis, which yidldeer

0.015
L

©  Forward
4 Refixation
Regression

0.010
L

0.005

0.000

g e — one million fixations. Similarly, English- and Cleige-
100 200 a00 400 speaking children’s data were combined within eagé
Fixaton Duration level, which resulted in over 110,000 fixations @eye

group. These combined datasets allow relativelyusob

Figure 8. Hazard Functions for Fixations to be Folled by a estimations of the hazard function at up to 2,068ms

Forward, Refixation, and Regressive Saccade.
Figure 9 shows estimated hazard rates for &lad
5".grade students and adult readers. Estimated hazard
rates are marked with solid dots, and the corredipgn
Standard errors are shown in vertical bars. Thed bol
curves, a smoothed version of the hazard functiarss,
constructed using a simple moving average techninoe
smoothlng between 0 to 400msec, 3-sample averages
'between 400- 600msec, 5-sample averages between 600
substantially by types of saccades. The third chpaipt and 1000msec, and 7-sample windows thereafter).

appears to be later for refixation and regresS'onilthough other estimation techniques exist (Le, 799

cgmparefd o dfortwakt)rd_ teye tm(;Jve_trEentst_ bu;h thIﬁ_uce, 1986), this simple method works well for the
observation needs 1o be Interpreted with cautivergihe present purpose. The thin lines represent the

large confidence intervals. correspondingpdf’s of fixation duration. Three vertical
Despite similarities in the timing of the changeysj lines mark the three recurring changepoints atl@D,
the hazard functions for different types of fixatsodiffer ~ and 250msec.
markedly. Unlike previous analyses, hazard funaion
diverge in the initial slow rising phase, whereixafions
and regressions are triggered at rates more thahleo
that of forward saccades. The largest differencergm
the three conditions appears at the first changepat
approximately 140msec. The higher saccade rates fg
refixations and regressions remain until approxatyat
180msec, after which point they are surpassed twyaial
saccades. Refixations also differ from regressiorthat
by the third changepoint (about 280msec) the harated
for refixation is substantially lower than that of  Figure 9 also shows how thmlfs are related to the
regressions. A higher initial hazard rate meansssige hazard functions. Coincidentally, alpdfs peak at
short fixations, whereas a low hazard rate leaves &80msec, where the rise of the hazard functioneplyr
relatively heavy right tail in thepdf The net result, slows down. The reason for this deceleration isnomk.

The estimated hazard functions are shown in Fi§ure
Due to smaller sample sizes, the hazard rate dstinfiar
refixations and regressions are noisier, and the
corresponding confidence intervals for changepoants
larger than those of forward fixations. Nonetheless
locations of the first two changepoints are agai
consistent with previous values, and do not differ,

As predicted, the rate of decline gradually decets
for all three hazard functions. Overall, Figureu@gests
that the hazard function of reading fixation duati
involves four phases — (a) 0-100mse, slow risiby100-
180msec, fast rising, (c) 180-250msec, decelendsewy,
%nd (d) >250msec, slow decaying. Although the first
three phases can be approximated with segmentear lin
functions, the last phase will ultimately requirenan-
linear function.
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Moreover, there appears to be a “bump” at approtélya estimated locations of changepoints from 11 inddpaeh
250msec in alpdf’'s, which corresponds to the dramatic samples (see Figures 3 and 4); data are jittereddaty.
turn of the hazard function at the same time. The error bars represent standard errors of estimat
) ) reported by thesegmenteclgorithm. The 3-changepoint
Summary of Changepoints and Regression SIOpe%odel provides excellent fit to the data, and thtneated
Figures 10 and 11 summarize the changepoints arl@cations of changepoints are consistent acrostestu
slopes from Figures 3 to 7. Figure 10A plots the

0.015
——Grade 3
——Grade 5
——Adults
Hazard Rates
(moving avg.)
0.010
0.005 * T
1 b ANES : . \
+ ._""\ ‘. ]
. * .’. 'ﬂ'\ - -
TR 3
0.000 i — e e R |

800 1000 1200 1400 1600 1800 2000
Fixation Duration (in msec.)

Figure 9. Hazard functions and pdf's of readingfinn duration based on pooled reading data for-3add 5th-grade children and
adults. Moving averaging is used to smooth the fthzanction after 400msec.

The first changepoint is at approximately 100msec, The same cannot be said for the slope parameter.
though the Dundee corpus always comes out highes. T Figure 11A and B illustrate the magnitude of thepsl! for
second changepoint is consistently between 150 arehch segment in previous figures. Error bars reptes
180msec, averaging about 170msec. The last chamgepostandard errors of the slope parameters. Figure 11A
shows more variability because hazard rate estsrate shows substantial variation in the second and #iodes,
much noisier in the tails. But nonetheless the eslu i.e., slopes between 100 and 180msec and betwe@n 18
consistently center around 250msec. Figure 10B showand 250msec. Figure 11B clearly demonstrates that a
effects of individual differences, word frequenand word frequency increases, the slope of th&s2gment
word length (see Figures 5-7), all of which aredoben (the fast rising phase between 100-180msec) ineseas
the Dundee corpus. Despite individual differencesgorrespondingly. Similarly, the slope decreasesvasls
estimates cluster together, with no overlap acrosbecome longer. There is also an interesting negativ
changepoints. Moreover, the estimated changepais correlation (= -0.80 and -0.55 for word length and word
not associated with word frequency or word length. frequency analyses, respectively) between slopeshio
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2" segment and the 3segment (between 180 an!lA.
250msec). The reason for this negative relationssif
unknown, but the net result is that the peak harate at 0.00025
250msec is kept in the neighborhood of 0.015 t@@.0

0.00020

10A.
350 0.00015 {
2 t
800 & 0.00010
+ @

250 4
g 0.00005
g 200 * + % +
- 0.00000 s
=
H #, # ¢ H
g 150
s ¢ -0.00005 Language Differences Developmental/Language
5 Adults (Figure 3) Differences (Figure 4)

100 ¢ \

t
+ ¥ 1 2 3 4 1 2 3 4
50 Language Differences Developmental Differences Line Segmen[ Line Segmenl
(Figure 3) (Figure 4)
0 11B.
1 2 3 1 2 3
0.00050
Change points Change points
0.00040 {
10B.

300
0.00030

J m [ +
20 & 0.00020 ++
+ | f '
€ 200
] 0.00010
B o 4 i
: ' i - -
E 150 Ll
3 o 0.00000 |
a |®
Y M i \' <%
§
5 100 Individual Diff. Word Frequency Word Length
-0.00010 (Figure 5) (Figure 6) (Figure 7)
50 Individual Diff. Word Frequency Word Length 1 2 3 4 1 2 3 4 1 2 3 4
(Figure 5) (Figure 6) (Figure 7)
Line Segment Line Segment Line Segment
0
1 2 3 1 2 3 1 2 3

A Figure 11A-B. Summary of Estimated Slopes of Seghen
Change points Change points Change points Linear Regression. Data in Panel A are from indejse
corpora. Data in Panel B are from the Dundee corpus

Figure 10A-B. Summary of Estimated Changepoint tiocs.
Panel A includes estimates based on different é&das\ll
estimates in Panel B are based on the Dundee corpus

Not all slopes are subject to systematic influences
though. The slope between 0 to 100msec is low but
consistent across datasets, so are the negatipesshaf
the declining phase after 250msec. These stabpes|o
along with the consistent timing of the changepmint
strongly constrain the overall shape of the hazard
function of reading fixation duration.
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Discussion example, scrambles temporal information abXutvith

] that of Y. When the variance of is small, the scrambling
The present paper was motivated by the lack of @y jittering is localized. But with large variande Y,

general linking hypothesis that allows a directreation signals of X are diffused over a wide time window
of the time course of reading processes from ew@iri htentially the entire distribution of fixation dion, in

fixation duration data. | argue that this goal isynich case recovering the time cours&as difficult.
unattainable within the traditional linear statiafi _ _ o
framework. A set of new linking hypothesis is deyd In short, theinstantaneity assumptiois a powerful

based on the assumption that a change in a readifgSumption and should not be made lightly. But if
process should affect the intensity of eye movemént deemed appropriate, it promises a pathway to retaye
real-time. This leads to a focus on the empiricatand the time course of reading processes from theiloligion
function of fixation duration distributions. Usinthis  Of fixation duration. Even when the assumption does

logic, the present study confirms a stereotypicatand hold strictly, the consequence may be moderate and
function of reading fixations (see Figure 9) that i tolerable when the intervening random variablenmsls

generally consistent with previous reports (Fer@0& M.ore 'sophisticated mpdels may be developed to deal
McConkie & Dyre, 2000; McConkie, et al., 1994; Yang with md_ependent noises, for example, through de-
2006; Yang & McConkie, 2001). In addition, | illugted ~ convolution.

how rea}ding eye movements are ianuenged by various The oculomotor delayin this paperg represents the
processing and individual differences variablest iou hypothetical “dead time” in which reading processage

ways that are not predicted by current theoriesiill  ng influence on saccadic decisions. Importantlys ihot
discuss the logic for the model and its implicasidor  the time to “program” an eye movement: the present
theories of reading eye movements. model does not assume independence between

oculomotor programming and high-level reading
processes. As long as saccadic programming is tpen
the moderation by reading processes, the effedthail

A key to the current model is the assumption thet t reflected on the hazard function and thereforeoispart
effect of a reading process is reflected immedyjatel the  of 5. In the derivation of the present modgis assumed
hazard function (see next section about the oculomo a constant, which is obviously an idealizatiorisltikely
delay). This does not imply that a change in airepd to be a random variable, but its mean and variamee
process deterministically triggers a saccade; ratthe®  expected to be small (e.g., Cutsuridis, Smyrnis,
immediate impact is on the instantaneous likelihob@ Evdokimidis, & Perantonis, 2007, used 20msec as an
saccade. Thenstantaneity assumptiois consistent with  estimate of the time from burst neurons to eye tegsg
contemporary models of reading eye movements, asch and thus unlikely to be a serious threat to the

SWIFT (Engbert, et al., 2005; Richter, Engbert, 8el§l,  instantaneity assumption. Future research is need t
2006) and the Competition/Interaction model (Yang,nvestigate this effect.

2006), in which reading processes modulates the _
probability of saccades in real time. Toward a Model of Reading Eye Movement

_ ) ) _ Control
The instantaneity assumption is nevertheless not

compatible with models where there is no consistent 1he paper began with a generic linking hypothejs (
temporal mapping between reading processes arRetween the hazard function of fixation duration dne
saccadic events. This happens in a strictly senadlel, time course of a reading process. Empirical damm.n.fr
where a reading procedshas no effect on the fixation large eye movement corpora uncovered additional
duration untii a subsequent random process is regularizes in the data that allow further refinaitseof
completed. In this case the fixation duration ivesi the the theoretical model. Two observations stand tg:
sum of the two processing delays. Mathematicatg, t robustness of the hazard function and the way iichvh
distribution of the sum of two random variablestlie  higher-order processes influence the fixation donat
convolution of the two component distributions. distribution. | will recap these results before gmeting a
Convolution, of which the moving-average is anrevised model and discuss its implications.

Linking Distributions to Processes: The
Instantaneity Assumption
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Fixed time course, flexible slopeBerhaps the most incorporates empirical constraints observed in shisly.
unexpected finding of this study is the consistéming  The model is intentionally inductive and restrietiv
of the changepoints of hazard functions. This i€ nowhich complements more sophisticated modeling
attributable to the linking hypothesis — it does restrict  approaches (Feng, 2003, 2006, 2009). It makedi&ddk
the shape of the hazard function. Given the laegepe  predictions about how the saccadic rate is moddlate
sizes and diverse datasets involved in this sttidgse reading processes that can be easily tested irrefutu
findings are unlikely to be due to chance or stiads research.
artifacts. On the other hand, the hazard rate afling
fixation duration is systematically influenced biytar-
and intro-individual variables. As shown in FiguresA

A Proportional-Hazard model. An interesting
consequence of having segmented linear regressiiins
fixed changepoints is that cognitive/linguisticesffs may

and .1.18’ the ‘modulation effect concentra.tes on tw%e estimated using the proportional hazard modek,(C
specific parameters, namely the slopes during #st- f 1972: Martinussen & Scheike, 2006)

rising phase of the hazard function, between 100-
180msec and 180-250msec. It is also interestingthiea Using the nation of (2), let(t) be the baseline hazard
hazard rate remains a piecewise-linear functioringur function for reading fixation duration and(t) be the
these time windows, which implies that the modolati hazard function under the influence of a procésk the
effect is sustained and near constant betweercalriti present studyAi(t) is well approximated by a 3-
changepoints. changepoinsegmentedinear regressioni(t) =b, [ +C,,

The interesting question is what caused these (mangwherebi andC; are the slopes and intercepts for the four
in the saccadic rate. Traditionally, reading eyelin€ar functions defined by the three changepoints,,
movements are thought to be triggered by eventsidrit and t3; the timing of the changepoints is constant, at
of the oculomotor system, for example by the cotite ~ @pproximately 100, 180, and 250msec, and is
of certain stage of lexical processing (e.g., Msumi, independent of all the factors examined here. @hale,
1984; Reichle, et al., 1998). According to this mipdhe  the present study suggests that the risk of saasadierX
locations of changepoints should depend on thés Proportional to that in the baseline condition,
distr_i_bution of lexical processing time, e.g., imrlfc_)r X®)=p @AM =p b 3+C (6)
familiar words and later for low frequency word$ig is
no what was observed (see Figure 6). Moreover, one wherep; (i 0[1,4]) are constant relative risks for the
wquld expect different changepoints for beginnir@a four phases. Obviouslyp, >1 when X increases the
skilled readers because children take more time tQ..ard function during this period, and vise versa.
recognize words (McConkie, et al., 1991; RayneB86)9
This is again not the case (Figure 4). None offéuors Moreover, Figure 11 suggests that (6) can be furthe
examined here — language, age, individual diffeespnc Constrained: with a few exceptions=1 andp,~1, i.e.,
word frequency, word length, or the previous saecad high-level processes do not modulate the hazarctifum
seems to systematically influence the changepointse ~ during the initial slow rising period or the finalow
hazard function. Future studies should, for exampledecline period. Also, it is reasonable to ass@ye), and
investigate the effect of word frequency for eachthanks to constraints of treegmentedegression model,
individual reading at each word length. But givdme t other C; are determined by the endpoint of the previous
robustness of the changepoints shown here, we tanr@gment and are not free parameters. Thus, for most
ignore the possibility that the basic shape of hagard higher-order reading processes, their effects oa th
function, including the changepoints, is charastariof ~ intensity of saccades can be characterized by
the oculomotor system rather than the exogenousrfac FO)=AM)=b0, O0<t<t

examined here. )
A@)=p, )= p, b, E+C,, t <t<t,

Under this backdrop, it is interesting to consitdew
O+C,, t,<tst,

high-level reading processes modulate and contro A (1) = ps CA() = ps b,
reading eye movements. In the final section | wiltline A)=At)=b,d+C,, t>t,

. . 7

an extension of the segmented regression model that (7)
17

DOI 10.16910/jemr.3.2.3 Thisarticleislicensed under a ISSN 1995-8692

Creative Commons Attribution 4.0 International license.



Journal of Eye Movement Research Feng (2009)
3(2):3, 1-23 Time Course and Hazard Function

The model (7) is restricted: given a baseline hhzar2000; Findlay & Walker, 1999; Munoz, 2002). Whiket
function A(t)=b @+C,, there are only two free superior colliculus is not the sole source of sdica
commands, it may be the primary channel of control

parameters,p, and ps;, to be estimated. Developing ) 4
during natural reading.

statistical tests fot; and p; is beyond the scope of the
present paper, but since (7) is a straightforwatdresion Second, the temporal profile of A is also intemegti

of the proportional hazards model in survival assly ijts activation level is a step function, jumpingtieen
(Cox, 1972), similar techniques in survival analysan  stable states. If node A is kicked into differeeas by

be used here (see Martinussen & Scheike, 2006}puyt from various brain regions, then the presentlel
Additionally, the pdf and moments (e.g., the mean andpredicts that these control signals arrive at et fixed
variance) of the fixation duration distribution cde delays after the onset of a fixation. Supportivederce
derived — symbolically or numerically — using (3t comes from Yang and McConkie (2001), who found the
theory the last segment>{;) must be replaced by a saccade hazard rate was strongly inhibited betvi®&a
nonlinear function in order to be a valid hazardction,  175msec when texts were masked by non-text likeusii

but the notion of a proportional hazard model isa&y  such as unspaced X-strings and blank pages, ane:®et
applicable. 175-250msec in conditions where words were replaced

On the Underlying MechanismWhat does the with nonwords. This suggests .the phase _changes at
proportional-hazard model (7) tell us about thel20msec and 180msec are triggered by input from
underlying  psychological  and neurophysiologicalpercept”al and lexical processes, respectivelytsHifso

processes? To this end we note that (7) depicts tHf®@™Me from the current study. For example, the pefak

evolution of the hazard function over time: word frequency effect is also at around 190msec;
developmentally, children’s hazard functions becdiae

04 =at)=p, +b 8 between 180-250msec, which could be associated with
ot Pih the lack of automaticity in word recognition. Indatibn,

: . saccades are mostly suppressed prior to100mseeptexc
wherea(t)is a step function that changes values at the y supp P P

. _ . ; when voluntary saccadic strategies such as regressir
pre-defined changepoints Alternatively, if we assume . . . .
RN . refixations are to be carried out, in which casks t
time is discrete rather than continuous, we have

hazard rate is substantially raised. The idea s$igtals
A+ =A(t)+at) =A(t)+p +b 9) from different processes arrive by a fixed schedule
requires further research.

In words, the risk of making a saccade at one mémen . ) . .
is the sum of the risk at the previous moment and a Finally, the model (9) implies that effects of high

moderation term that is mostly constant except gharat  °rder reading processes are also mediated by Ausec
critical times. This suggests a very simple controIbOt_h p and b are b°“”9‘ by the same time windows
mechanism, whereby reading eye movements ar%efmed by the changepoints of the' hazard functizeta
generated by a random process, where its key péeame also.sugges.t that.the modulatlon.ls generally sizadl
the moment-to-moment saccadic risk (i.e., the IThzarreIa’uver brief during normal reading. Nonethelesisch

rate), is moderated by the activation leaé) of an input querate_moderatloh IS more_tha_n enough to ggnerate
node, A, for lack of a better name. Note that ugthis reliable differences in mean fixation durations and

point the mechanism is general enough to describg'smbunon functions.

virtually any hazard function, but findings fromigtstudy The hazard function model presented here is fingt a
reveal some peculiar properties of A. foremost a descriptive model for the distributioh o
reading eye movements. The segmented linear régness
is arguably the simplest tool to capture these ghanbut

é’t needs not to imply that the underlying mechanism
discontinuous or linear. The important messagbasthe
empirical hazard function takes predictable turrts a
predictable times. So far no mechanistic modekafiing
eye movements can fully explain the timing and

First, the empirical hazard function, as depicted®)
or (9), is simple enough to suggest that A acthasnain
conduit between the random saccade generation ggoc
and other processes. A potential candidate isupergor
colliculus, which hosts théxate andmovecenters and is
connected to a wide network of brain regions (Catgre
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directions of these changes. A statistical modekyé

Feng (2009)
Time Course and Hazard Function

Dambacher, M., & Kliegl, R. (2007). Synchronizing

movements, no matter how precise, cannot positively timelines: Relatjons betwgen fixation duratigns
identify the underlying stochastic mechanism withou and N400 amplitudes during sentence reading.
additional processing assumptions. The linking Brain Research, 115347-162.

hypothesis and the processing model outlined afmae Duchowski, A. T. (2003)Eye Tracking Methodology:

step toward this direction.
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Appendix A.
A Monte Carlo Study of Potential Biases of
the Segmented Algorithm

Segmented(Muggeo, 2008) is a general purpose
regression model and has not been applied to dstigna
changepoints in the hazard function. This studyreras
its ability to recover changepoints from a disttibn
with segmented linear hazard functions.

We begin by specifying a two-piece segmented linear
function as the hazard rate model.
2a’x ,x<d
2a’d + 2b*(x-d) ,x=>d
whered is the location of the changepoint, amand

b are parameters controlling the slopes. Using {59,
corresponding probability density function is
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distribution appears to be symmetrical arouddl.
) Indeed, the mean estimated changepoint is at 0,9970
2a%d + 2b? (x —d) e¥ @I D 5> ¢ with 95% confidence interval between 0.9317 and
1.0742. Based on this example, there is little end for
which is a piecewise Weibull distribution (Johnset, piases in the procedure used to estimate the erapiri
al., 1994). See Figure Al. Its cumulative distribot pa,ard function and to estimate the changepoint.
function (CDF) is Although this far from a systematic examinationtio¢
algorithm, which is beyond the scope of the current
paper, the current example adds to the confidemdbe

2,2
2a’x e ¥ x<d

2,2
1-e% x<d

1- eazd(d—2x)—b2(x—d)2 x>d methodology.
A random sample can be generated from this Histogram of x
distribution by first generating a uniform randomnmmber S _
between 0 and 1, and plug it in the inverse fumctibthe B
CDF. 1 .
§ B
20 . g 4 [ ]
Hazard rat fosl
15
g -
. CDF
1C I & 4
: N — o 4 =
r \/ ) T T T T T T T 1
05 // AN 0.85 0.90 0.95 1.00 1.05 1.10 1.15 1.20
— PDF x
0 1 2 8 4 5> Figure A2. The distribution of estimated changepbased on

1000 Monte Carlo samples.
Figure Al. The hazard function, PDF, and CDF of the
piecewise Weibull distribution used in Appendix A.

The Monte Carlo study was done in R (v2.7), and the Appendix B. _ _
source code is available upon request. In this plame A Bootstrap Study of Potential Biases of the
seta=0.5,b=1, andd=1. As a result, the slope of the first Reported SE

segment is ¥ of the slope of the second segmenilasi The S algorithm (M 2008
to what is observed in the empirical data. A total,000 i e Segmentealgorithm (Muggeo, ) reports an_
estimated standard error (SE) of the changepoint

Monte Carlo samples were drawn, each of which

included 5,000 random numbers generated from thSSt'mat'on' The.SE can be useq .to construct ca.m:ele
aforementioned distribution. With each Monte Carlomtervals and to illustrate the stability of theadgepoints.

sample, the hazard rate was first estimated us tIt is unclear whether the estimated SEs are re&dpna
kphazroutine, with a bin size of 0.01. Treegmented close to the true SE. If large discrepancies anadothey

routine was then employed to estimate the changepoi can cast. doubt on the conclusion that the changepoi
the hazard function. We initialized the model tsirmgle are relatively stable.

random changepoint between 0.75 and 1.25. This In this bootstrap study, random samples of siz€®,0
procedure was repeated 1,000 times. were repeatedly drawn (with replacement) from the
dataset for Figure 7, which includes approximately

The frequency distribution of the estimated locatio o
1,000,000 fixations by adult readers. Each samipda t

of the changepoint is shown in Figure A2. The
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went through the analytical procedure describedhin By repeatedly sampling from real data, the bogpstra
Method section, i.e., the empirical hazard functiwas study suggests that tgegmentedlgorithm (Muggeo,
first estimated and then modeled using Begmented 2008) is generally conservative in estimating taedard
routine. The procedure was repeated 10,000 timks. T error of a changepoint. The true confidence intisria
study was implemented in R (v2.7), and the souomec Figure 10 and 11 may be even smaller than meetytbe

is available upon request.
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Figure B. Distributions of estimated SE for theetiichange
points.

The bootstrap means of the changepoints were 111,
178, 240msec for change points 1, 2, and 3, reispdct
Based on the 10,000 bootstrap samples, the
corresponding SEs were 4.5, 6.0, and 14.2msec,
respectively.  Figure B shows the distributions of
algorithm-estimated SEs across the 10,000 samples.
mean SEs were 16.5, 18.8, and 17.9, respectivaiythé
three changepoints. These figures are higher than t
corresponding bootstrap estimates, marked by ttoavar
in the figures.
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