632 research outputs found

    Nikkelimangaanioksidien atomitasokasvatus

    Get PDF
    Ternary metal oxides are among the most researched areas in inorganic chemistry. They are interesting because they offer a wide range of functionalities and their properties can be controlled with correct fabrication methods. One such method is atomic layer deposition (ALD) which, in theory, makes it possible to control the structure of the material down to the level of atom layers. In general, the atomic layer deposition of ternary oxides is challenging but the problems can be overcome with careful design of the ALD reactor and its parameters. One of the interesting materials in ternary oxides is the nickel manganese oxides which have three different structures: Spinel structure (NiMn2O4), ilmenite structure (NiMnO3) and murdochite structure (Ni6MnO8). The spinel structured NiMn2O4 has been the most interesting one and shown good results in practical applications such as an electrode material for lithium ion batteries. The other structures have been researched as potential catalysts for oxygen evolution and reduction reactions for devices like fuel cells. Nickel manganese oxide thin films have been fabricated before but not with ALD. In this work, ALD is used to fabricate nickel manganese oxide thin films and their crystal structures are determined with grazing angle incidence x-ray diffraction (GIXRD). Mn(thd)3, Ni(thd)2 and ozone are used as precursor materials. Different ratios of nickel and manganese are deposited in various temperatures to see if this causes any difference to the structure. In addition, the thin films are heat-treated and their crystal structures are examined afterwards. Some magnetic and optical measurements are also taken.TernÀÀriset metallioksidit ovat tutkituimpia alueita epÀorgaanisessa kemiassa. Ne ovat erityisen kiinnostavia funktionaalisuuksiensa takia ja siksi, ettÀ niiden ominaisuudet ovat sÀÀdeltÀvissÀ oikeilla valmistustekniikoilla. ErÀs tÀllainen valmistustapa on atomitasokasvatus (ALD), jonka avulla on teoriassa mahdollista kontrolloida materiaalin rakennetta jopa atomitasoille asti. Yleisesti ottaen ternÀÀristen metallioksidien atomitasokasvatus on haastavaa, mutta sen ongelmat voidaan usein ratkaista muuttamalla ALD-reaktorin kokoonpanoa tai sen parametreja. Yksi kiinnostava osa ternÀÀrisiÀ metallioksideja on nikkelimangaanioksidit, joille on kolme eri rakennetta: spinellirakenne (NiMn2O4), ilmenite-rakenne (NiMnO3) ja murdochite-rakenne (Ni6MnO8). Spinellirakenteinen NiMn2O4 on rakenteista tutkituin ja osoittanut hyvÀÀ suorituskykyÀ kÀytÀnnön sovelluksissa kuten elektrolyyttimateriaalina litiumioniakuissa. Muita rakenteita on tutkittu potentiaalisina katalysaattoreina hapen kehitys- ja pelkistysreaktioille esimerkiksi polttokennoihin. Nikkelimangaanioksidi ohutkalvoja on valmistettu ennen, mutta ei kÀyttÀen atomitasokasvatusta. TÀssÀ työssÀ nikkelimangaanioksidi ohutkalvoja valmistetaan atomitasokasvatuksella ja niiden kiderakenne mÀÀritetÀÀn röntgenkristallografialla. Mn(thd)3, Ni(thd)2 ja otsoni toimivat lÀhtöaineina. Nikkelin ja mangaanin mÀÀrÀÀ sekÀ kasvatuslÀmpötilaa vaihdellaan, jotta nÀhdÀÀn nÀiden vaikutus rakenteeseen. LisÀksi ohutkalvoja lÀmpökÀsitellÀÀn ja niiden kiderakenteet tutkitaan tÀmÀn jÀlkeen. Joitain magneettisia ja optisia ominaisuuksia myös mitataan

    Sensor-based machine olfaction with neuromorphic models of the olfactory system

    Get PDF
    Electronic noses combine an array of cross-selective gas sensors with a pattern recognition engine to identify odors. Pattern recognition of multivariate gas sensor response is usually performed using existing statistical and chemometric techniques. An alternative solution involves developing novel algorithms inspired by information processing in the biological olfactory system. The objective of this dissertation is to develop a neuromorphic architecture for pattern recognition for a chemosensor array inspired by key signal processing mechanisms in the olfactory system. Our approach can be summarized as follows. First, a high-dimensional odor signal is generated from a chemical sensor array. Three approaches have been proposed to generate this combinatorial and high dimensional odor signal: temperature-modulation of a metal-oxide chemoresistor, a large population of optical microbead sensors, and infrared spectroscopy. The resulting high-dimensional odor signals are subject to dimensionality reduction using a self-organizing model of chemotopic convergence. This convergence transforms the initial combinatorial high-dimensional code into an organized spatial pattern (i.e., an odor image), which decouples odor identity from intensity. Two lateral inhibitory circuits subsequently process the highly overlapping odor images obtained after convergence. The first shunting lateral inhibition circuits perform gain control enabling identification of the odorant across a wide range of concentration. This shunting lateral inhibition is followed by an additive lateral inhibition circuit with center-surround connections. These circuits improve contrast between odor images leading to more sparse and orthogonal patterns than the one available at the input. The sharpened odor image is stored in a neurodynamic model of a cortex. Finally, anti-Hebbian/ Hebbian inhibitory feedback from the cortical circuits to the contrast enhancement circuits performs mixture segmentation and weaker odor/background suppression, respectively. We validate the models using experimental datasets and show our results are consistent with recent neurobiological findings

    Variational image fusion

    Get PDF
    The main goal of this work is the fusion of multiple images to a single composite that offers more information than the individual input images. We approach those fusion tasks within a variational framework. First, we present iterative schemes that are well-suited for such variational problems and related tasks. They lead to efficient algorithms that are simple to implement and well-parallelisable. Next, we design a general fusion technique that aims for an image with optimal local contrast. This is the key for a versatile method that performs well in many application areas such as multispectral imaging, decolourisation, and exposure fusion. To handle motion within an exposure set, we present the following two-step approach: First, we introduce the complete rank transform to design an optic flow approach that is robust against severe illumination changes. Second, we eliminate remaining misalignments by means of brightness transfer functions that relate the brightness values between frames. Additional knowledge about the exposure set enables us to propose the first fully coupled method that jointly computes an aligned high dynamic range image and dense displacement fields. Finally, we present a technique that infers depth information from differently focused images. In this context, we additionally introduce a novel second order regulariser that adapts to the image structure in an anisotropic way.Das Hauptziel dieser Arbeit ist die Fusion mehrerer Bilder zu einem Einzelbild, das mehr Informationen bietet als die einzelnen Eingangsbilder. Wir verwirklichen diese Fusionsaufgaben in einem variationellen Rahmen. ZunĂ€chst prĂ€sentieren wir iterative Schemata, die sich gut fĂŒr solche variationellen Probleme und verwandte Aufgaben eignen. Danach entwerfen wir eine Fusionstechnik, die ein Bild mit optimalem lokalen Kontrast anstrebt. Dies ist der SchlĂŒssel fĂŒr eine vielseitige Methode, die gute Ergebnisse fĂŒr zahlreiche Anwendungsbereiche wie Multispektralaufnahmen, BildentfĂ€rbung oder Belichtungsreihenfusion liefert. Um Bewegungen in einer Belichtungsreihe zu handhaben, prĂ€sentieren wir folgenden Zweischrittansatz: Zuerst stellen wir die komplette Rangtransformation vor, um eine optische Flussmethode zu entwerfen, die robust gegenĂŒber starken BeleuchtungsĂ€nderungen ist. Dann eliminieren wir verbleibende Registrierungsfehler mit der Helligkeitstransferfunktion, welche die Helligkeitswerte zwischen Bildern in Beziehung setzt. ZusĂ€tzliches Wissen ĂŒber die Belichtungsreihe ermöglicht uns, die erste vollstĂ€ndig gekoppelte Methode vorzustellen, die gemeinsam ein registriertes Hochkontrastbild sowie dichte Bewegungsfelder berechnet. Final prĂ€sentieren wir eine Technik, die von unterschiedlich fokussierten Bildern Tiefeninformation ableitet. In diesem Kontext stellen wir zusĂ€tzlich einen neuen Regularisierer zweiter Ordnung vor, der sich der Bildstruktur anisotrop anpasst

    Variational image fusion

    Get PDF
    The main goal of this work is the fusion of multiple images to a single composite that offers more information than the individual input images. We approach those fusion tasks within a variational framework. First, we present iterative schemes that are well-suited for such variational problems and related tasks. They lead to efficient algorithms that are simple to implement and well-parallelisable. Next, we design a general fusion technique that aims for an image with optimal local contrast. This is the key for a versatile method that performs well in many application areas such as multispectral imaging, decolourisation, and exposure fusion. To handle motion within an exposure set, we present the following two-step approach: First, we introduce the complete rank transform to design an optic flow approach that is robust against severe illumination changes. Second, we eliminate remaining misalignments by means of brightness transfer functions that relate the brightness values between frames. Additional knowledge about the exposure set enables us to propose the first fully coupled method that jointly computes an aligned high dynamic range image and dense displacement fields. Finally, we present a technique that infers depth information from differently focused images. In this context, we additionally introduce a novel second order regulariser that adapts to the image structure in an anisotropic way.Das Hauptziel dieser Arbeit ist die Fusion mehrerer Bilder zu einem Einzelbild, das mehr Informationen bietet als die einzelnen Eingangsbilder. Wir verwirklichen diese Fusionsaufgaben in einem variationellen Rahmen. ZunĂ€chst prĂ€sentieren wir iterative Schemata, die sich gut fĂŒr solche variationellen Probleme und verwandte Aufgaben eignen. Danach entwerfen wir eine Fusionstechnik, die ein Bild mit optimalem lokalen Kontrast anstrebt. Dies ist der SchlĂŒssel fĂŒr eine vielseitige Methode, die gute Ergebnisse fĂŒr zahlreiche Anwendungsbereiche wie Multispektralaufnahmen, BildentfĂ€rbung oder Belichtungsreihenfusion liefert. Um Bewegungen in einer Belichtungsreihe zu handhaben, prĂ€sentieren wir folgenden Zweischrittansatz: Zuerst stellen wir die komplette Rangtransformation vor, um eine optische Flussmethode zu entwerfen, die robust gegenĂŒber starken BeleuchtungsĂ€nderungen ist. Dann eliminieren wir verbleibende Registrierungsfehler mit der Helligkeitstransferfunktion, welche die Helligkeitswerte zwischen Bildern in Beziehung setzt. ZusĂ€tzliches Wissen ĂŒber die Belichtungsreihe ermöglicht uns, die erste vollstĂ€ndig gekoppelte Methode vorzustellen, die gemeinsam ein registriertes Hochkontrastbild sowie dichte Bewegungsfelder berechnet. Final prĂ€sentieren wir eine Technik, die von unterschiedlich fokussierten Bildern Tiefeninformation ableitet. In diesem Kontext stellen wir zusĂ€tzlich einen neuen Regularisierer zweiter Ordnung vor, der sich der Bildstruktur anisotrop anpasst

    Theory and fabrication of SnTe for Majorana devices

    Get PDF

    From locomotion to dance and back : exploring rhythmic sensorimotor synchronization

    Full text link
    Le rythme est un aspect important du mouvement et de la perception de l’environnement. Lorsque l’on danse, la pulsation musicale induit une activitĂ© neurale oscillatoire qui permet au systĂšme nerveux d’anticiper les Ă©vĂšnements musicaux Ă  venir. Le systĂšme moteur peut alors s’y synchroniser. Cette thĂšse dĂ©veloppe de nouvelles techniques d’investigation des rythmes neuraux non strictement pĂ©riodiques, tels que ceux qui rĂ©gulent le tempo naturellement variable de la marche ou la perception rythmes musicaux. Elle Ă©tudie des rĂ©ponses neurales reflĂ©tant la discordance entre ce que le systĂšme nerveux anticipe et ce qu’il perçoit, et qui sont nĂ©cessaire pour adapter la synchronisation de mouvements Ă  un environnement variable. Elle montre aussi comment l’activitĂ© neurale Ă©voquĂ©e par un rythme musical complexe est renforcĂ©e par les mouvements qui y sont synchronisĂ©s. Enfin, elle s’intĂ©resse Ă  ces rythmes neuraux chez des patients ayant des troubles de la marche ou de la conscience.Rhythms are central in human behaviours spanning from locomotion to music performance. In dance, self-sustaining and dynamically adapting neural oscillations entrain to the regular auditory inputs that is the musical beat. This entrainment leads to anticipation of forthcoming sensory events, which in turn allows synchronization of movements to the perceived environment. This dissertation develops novel technical approaches to investigate neural rhythms that are not strictly periodic, such as naturally tempo-varying locomotion movements and rhythms of music. It studies neural responses reflecting the discordance between what the nervous system anticipates and the actual timing of events, and that are critical for synchronizing movements to a changing environment. It also shows how the neural activity elicited by a musical rhythm is shaped by how we move. Finally, it investigates such neural rhythms in patient with gait or consciousness disorders

    Pathways toward controlled assembly of functional polymer-based nanostructures

    Get PDF
    This thesis deals with a common drawback that is often encountered in self-assembled nanostructured soft matter. Even though spontaneous self-assembly can be used to create diverse nanostructures, the structures, as such, are typically polydomain, consisting of locally ordered small domains that lack mutual orientation and/or long range correlation. As a result, the material remains macroscopically isotropic and disordered. The aim here is to explore feasible ways, on one hand, to control the assembly and, on the other hand, to obtain macroscopically anisotropic materials and functions. We show the first example of how charge-transfer complexation between C60 fullerenes and electron-donating units of block copolymers can enable control of the morphology and properties of fullerene based materials. We also study the alignment of randomly oriented domains of nanostructured material over macroscopic length scales by using a real-time rheo-optical apparatus in combination with more detailed ex-situ structural characterization. Alignment of randomly oriented domains is not only useful for obtaining macroscopically anisotropic materials and functions but it can also be a prerequisite for detailed characterization of the local structures. This aspect is demonstrated for hierarchical liquid crystalline (LC) diblock copolymer structures which, upon inducing shear alignment, exhibit coexistence of two orthogonal orientations of the LC phase within the copolymer lamellae. Furthermore we demonstrate that ionic complexes forming a columnar LC phase can be efficiently aligned within polymer blends upon shearing, taken that the matrix polymers have sufficiently high molecular weight. This concept allows a simple route for macroscopically aligned nanocomposites with conjugated columnar LC functional additives. Finally, control of the nanoscale morphology in polymer/fullerene nanocomposite thin film devices is shown to allow tuning of the electrical switching that can enable construction of a memory unit. The working principles of such thin film organic memory devices have remained debated and the first systematic approach is here undertaken to tailor the active material composition and to study the morphology vs. functionality relationship
    • 

    corecore