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ABSTRACT 
 

Sensor-based Machine Olfaction with Neuromorphic Models of the Olfactory 

System.  (December 2005) 

Baranidharan Raman, B.Eng., University of Madras, India; 

M.S., Texas A&M University 

Chair of Advisory Committee: Dr. Ricardo Gutierrez-Osuna 

 

Electronic noses combine an array of cross-selective gas sensors with a pattern 

recognition engine to identify odors.  Pattern recognition of multivariate gas sensor 

response is usually performed using existing statistical and chemometric techniques.  An 

alternative solution involves developing novel algorithms inspired by information 

processing in the biological olfactory system. 

 The objective of this dissertation is to develop a neuromorphic architecture for 

pattern recognition for a chemosensor array inspired by key signal processing 

mechanisms in the olfactory system.  Our approach can be summarized as follows.  First, 

a high-dimensional odor signal is generated from a chemical sensor array.  Three 

approaches have been proposed to generate this combinatorial and high dimensional 

odor signal: temperature-modulation of a metal-oxide chemoresistor, a large population 

of optical microbead sensors, and infrared spectroscopy.  The resulting high-dimensional 

odor signals are subject to dimensionality reduction using a self-organizing model of 

chemotopic convergence.  This convergence transforms the initial combinatorial high-

dimensional code into an organized spatial pattern (i.e., an odor image), which decouples 
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odor identity from intensity.  Two lateral inhibitory circuits subsequently process the 

highly overlapping odor images obtained after convergence.  The first shunting lateral 

inhibition circuits perform gain control enabling identification of the odorant across a 

wide range of concentration.  This shunting lateral inhibition is followed by an additive 

lateral inhibition circuit with center-surround connections.  These circuits improve 

contrast between odor images leading to more sparse and orthogonal patterns than the 

one available at the input.  The sharpened odor image is stored in a neurodynamic model 

of a cortex.  Finally, anti-Hebbian/ Hebbian inhibitory feedback from the cortical circuits 

to the contrast enhancement circuits performs mixture segmentation and weaker 

odor/background suppression, respectively.  We validate the models using experimental 

datasets and show our results are consistent with recent neurobiological findings. 
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CHAPTER I  

INTRODUCTION 

 
The sense of smell is the most primitive of the known senses.  In humans, smell is often 

viewed as an aesthetic sense, as a sense capable of eliciting enduring thoughts and 

memories.  For many animal species however, olfaction is the primary sense.  Olfactory 

cues are extensively used for food foraging, trail following, mating, bonding, navigation, 

and detection of threats (Axel 1995).  Irrespective of its purpose i.e., as a primary sense 

or as an aesthetic sense, there exists an astonishing similarity in the organization of the 

peripheral olfactory system across phyla (Hildebrand and Shepherd 1997).  This 

suggests that the biological olfactory system may have been optimized over evolutionary 

time to perform the essential but complex task of recognizing odorants from their 

molecular features, and generating the perception of smells.   

Inspired by biology, artificial systems for chemical sensing and odor 

measurement, popularly referred to as the ‘electronic nose technology’ or ‘e-nose’ for 

short, have emerged in the past two decades.  An electronic nose combines an array of 

cross-selective chemical sensors and a pattern recognition engine to recognize odors 

(Persaud and Dodd 1982).  The ability of these instruments to detect and discriminate 

volatile compounds and odorants has demonstrated their potential as a low-cost 

high-throughput alternative to analytical instrume1nts and sensory analysis.   

                                                 
This dissertation follows the style of Biological Cybernetics. 
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A number of parallels between biological and artificial olfaction are well known 

to the e-nose community.  Two of these parallels are at the core of sensor-based machine 

olfaction1 (SMBO), as stated in the seminal work of Persaud and Dodd (1982).   First, 

biology relies on a population of olfactory receptor neurons (ORNs) that are broadly 

tuned to odorants.  In turn, SBMO employs chemical sensor arrays with highly 

overlapping selectivities.  Second, neural circuitry downstream the olfactory epithelium 

improves the signal-to-noise ratio and the specificity of the initial receptor code, 

enabling wider odor detection ranges than those of individual receptors.  Pattern 

recognition of chemical sensor signals performs similar functions through preprocessing, 

dimensionality reduction, and classification/regression algorithms [Gutierrez-Osuna 

2002].   

Most of the current approaches for processing multivariate data from e-noses are 

the direct application of statistical and chemometric pattern recognition techniques 

[Gutierrez-Osuna 2002].  In this dissertation, we focus on an alternative approach: 

computational models inspired by information processing in the biological olfactory 

system.  Our goal is to develop a complete pattern-recognition architecture for 

chemosensor arrays inspired by (our current understanding of) key signal processing 

mechanisms in the olfactory pathway.  This neuromorphic approach to signal-processing 

represents a unique departure from current practices in the e-nose community, one that 

we expect will move us beyond multivariate chemical sensing and in the direction of 

                                                 
1 We will refer to artificial olfaction as sensor-based machine olfaction (SBMO) or e-noses 
interchangeably in this document. 
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true machine olfaction: relating sensor/instrumental signals to the perceptual 

characteristics of the odorant being sensed. 

I.1.  The biological olfactory system 

The anatomy of the human olfactory system is illustrated in Fig. 1.  The entire olfactory 

pathway can be divided into three general stages: (1) olfactory epithelium, where 

primary reception takes place, (2) olfactory bulb, where an organized olfactory image is 

formed and, (3) olfactory cortex, where odor associations are stored (Buck 1996).   

These anatomically and functionally distinct relays perform a variety of signal 

processing tasks, resulting in the sensation that we know as an odor.  Fig. 2 identifies six 

olfactory signal-processing primitives in the olfactory pathway (Laurent 1999, Pearce 

1997): 

(1) population coding by olfactory receptor neurons (ORNs),  

(2) dimensionality reduction through chemotopic convergence of ORNs,  

(3) gain control  through lateral inhibition from periglomerular (PG) cells,  

(4) contrast enhancement through lateral inhibition from granule (GR) cells,  

(5) storage and association of odor memories in the olfactory cortex, and, 

(6) mixture segmentation and background suppression through cortical feedback. 
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OLFACTORY
BULB

OLFACTORY
EPITHELIUM

ODOR 
PARTICLES

ODOR
SIGNALS

CORTEX

LIMBIC
SYSTEM

OLFACTORY
TRACT

OLFACTORY
RECEPTOR
NEURONS

CILIA

ODOR
MOLECULES  

Fig. 1:  Olfactory information processing2.  Odorant molecules entering the nostrils bind 

to receptor neuron in the olfactory epithelium.  Odor signals from the receptor neurons 

are then relayed to olfactory bulb where the bulk of signal processing takes place.  

Bulbar outputs are then passed onto olfactory cortex, where they are interpreted as 

different odors. 

                                                 
2 Adapted from: http://www.sfn.org/content/Publications/BrainBriefings/smell.html 
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Fig. 2:  Different anatomical stages and signal-processing primitives in the olfactory 

pathway (adapted from Mori et al. 1999): (1) population coding, (2) chemotopic 

convergence, (3) gain control, (4) contrast enhancement, (5) storage and association of 

odor memories and (6) bulbar modulation through cortical feedback. 

The first primitive is concerned with transduction of the chemical stimulus into 

an electrical signal.  Odorants are volatile compounds with low molecular weight (30-

300 Dalton), typically organic, hydrophobic and polar (Schiffman and Pearce 2003).  

    
     



 6

Three notable theories have been proposed that relate molecular properties of an odorant 

with its overall quality: vibrational, steric, and odotope theories (Dyson 1938; Moncrieff 

1949; Shepherd 1987).  The vibrational theory first proposed by Dyson (1938) and later 

revisited by Wright (1982) and Turin (1996) (Lefingwell 2002), suggests that vibrations 

due to stretching and bending of odor molecules are the determinants of odor identity 

and quality.  On the other hand, the steric theory initially put forth by Moncreiff (1949) 

and later extended by Amoore (1970) (Lefingwell 2002) proposes that odor quality is 

determined by the shape and size of the odorant molecules.  More recently, the odotope 

or weak shape theory was proposed by Shepherd (1987).  According to this theory, odor 

quality is determined by various molecular features of an odorant (commonly referred to 

as odotopes), such as carbon chain length or different functional groups.   

Though the precise relationship between the molecular properties and the odorant 

quality is still not known; much has been recently discovered about the olfactory 

transduction mechanism.  Odorant molecules that enter the nostrils bind to olfactory 

receptor neurons, which belong to a family of G-protein coupled receptors (Axel 1991).  

As illustrated in Fig. 3, these receptors cross the cell membrane seven times (seven-

transmembrane) forming pockets where the odorants bind.  The odorant-bound receptor 

triggers a cascade of molecular events that transform the chemical signal into a neural 

signal.  A detailed illustration of this mechanism is shown in Fig. 4.  First, tens of G-

proteins are released by the activated receptor, which in turn activate the transducer 

Adenylyl cyclase (AC).  Once activated the adenylyl cyclase converts the abundant 

Adenosine TriPhosphate (ATP) intracellular molecules into cyclic-3’,5’-
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AdenosylMonoPhosphate (cAMP) secondary messengers.  The cAMP binds to the 

cyclic nucleotide channel (CNG) and opens it to allow Na2+ and Ca2+ cations inside.  

This depolarizes the cell and, if the gates are open long enough, causes it to fire an action 

potential (Firestein 2001). 

Outer
Cell-membrane

Inner
Cell-membrane

 

Fig. 3:  G-protein coupled odorant receptors make seven loops through the cell 

membrane, forming pockets for holding odor molecules.  Each receptor type is specified 

by a particular sequence of a string of amino acids.  Rearranging the amino acid 

sequence results in a different receptor type.  Approximately 1,000 different receptors 

have been known to exist in the case of mammals.  (reprinted from Mombaerts 2004; 

Laurent 2005).   
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A complete model of the transduction (Malaka 1995) is beyond the scope of this 

work; let it suffice that the spiking frequency of an ORN is a monotonically increasing 

function of the odorant concentration for a given receptor-odorant binding affinity.  Each 

ORN responds to a range of odorants and each odorant is encoded by a large population 

of such cross-selective ORNs.  To illustrate the combinatorial nature of the odor code 

available at the olfactory epithelium, Fig. 5 shows the response of sixty different ORNs 

to twenty odorants (Sicard and Holey 1982).  Each receptor exhibits broad tuning and 

responds to a number of odorants. 

 

Fig. 4: Olfactory signal transduction mechanism.  Binding of an odorant molecule to a 

receptor triggers a cascade of molecular mechanisms, finally leading to depolarization of 

the neuron and generation of an action potential (reprinted from Firestein 2001).   
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Fig. 5:  Combinatorial coding by ORNs.  Columns indicate odors; rows indicate receptor 

cells identified by a serial number given in the leftmost column.  ACE – acetophenone, 

ANI – anisole, BUT – n-butanol, CAM – DL-camphor, CDN – cyclodecanone, CIN – 

1,8-cineole, CYM – p-cymene, DCI – D-critonellol, HEP– n-heptanol, ISO – 

isoamylacetate, IVA – isophenol, PHO – thiophenol, PYR – pyridine, THY – thymol, 

XOL – cyclohexanol, XON – cyclohexanone.  The spot size is roughly proportional to 

spike frequency (spike/min).  (Reprinted from Sicard and Holey 1982). 
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The next three signal-processing primitives take place at the olfactory bulb (OB).  

The second primitive involves massive convergence of ORN axons onto one or a few 

glomeruli (GL) [Mori et al. 1999; Laurent 1999], which are spherical structures of 

neuropil on which ORNs synapse mitral cells.  Fig. 6 shows the convergence of ORNs 

expressing the same P2 receptor onto a single GL in the mouse OB [Bulfone et al. 1998].  

This form of convergence serves two computational functions.  First, massive 

summation of ORN inputs averages out uncorrelated noise, allowing the system to detect 

odorants below the detection threshold of individual ORNs.  This is discussed later in 

section I.3.  Second, chemotopic organization leads to a more compact odorant 

representation than that available at the epithelium, providing the means to decouple 

odor quality from odor intensity.  This is the basis for the traditional view of GL as 

labeled lines (one GL: one odor) or, more recently, as odotope detectors (one GL: one 

molecular feature) [Mori et al. 1999].  The GL maps of four different odors: pentanoic 

acid, methyl pentanoate, pentanol, and pentanal, and a single analyte (methyl 

pentanoate) at different concentrations are shown in Fig. 7.  These maps were obtained 

in rat olfactory bulb using optical imaging techniques involving 2-deoxyglucose uptakes.  

It can be seen that the identity of the odor is encoded by a unique spatial pattern across 

GLs, whereas the odor concentration is related to the intensity and spread of this pattern 

(Johnson and Leon 2000). 
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Fig. 6:  Convergence of ORNs expressing P2 receptor onto a single GL in the mouse OB 

(Bulfone et al. 1998).   
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Fig. 7:  Glomerular-layer activity patterns in rat olfactory bulb: identity is encoded by a 

unique spatial pattern across GLs (top row); concentration is related to the intensity and 

spread of this pattern (bottom row) (Johnson and Leon 2000). 

The initial glomerular image is further transformed in the olfactory bulb by 

means of two distinct lateral inhibitory circuits.  The first of these circuits (third 

primitive in Fig. 2) takes place between proximal GLs through periglomerular (PG) 

cells.   As noted by Freeman (1999), the interaction through PG cells may serve as a 
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“volume control” mechanism, enabling the identification of odorants over several log 

units of concentration.  Recently, local neurons in the moth antennal lobe (analogous to 

PG cells in the olfactory bulb of mammals) have been found to operate as 

multifunctional units, causing local inhibition at lower odor concentrations and global 

inhibition at higher concentrations (Christensen et al. 2001).  This result is particularly 

interesting and will be discussed later in Chapter IV. 

The fourth primitive is represented by dendro-dendritic interactions between 

excitatory mitral/tufted (M/T) and inhibitory granule (GR) cells.  These self and lateral 

inhibitory circuits form the negative feedback loops that are responsible for the observed 

oscillatory behavior in OB (Segev 1999).  More importantly, local inhibition introduces 

time as an additional coding dimension by generating temporal patterning of the initial 

spatial code at the GL layer (Shepherd et al. 2003).  The precise role of the granular 

lateral inhibition circuits is, however, under debate.  Two hypotheses have been 

suggested for the role of these circuits.  The first and more traditional view is that lateral 

inhibition sharpens the molecular tuning range of individual mitral cells with respect to 

that of their corresponding ORNs (Mori et al. 1999).  This is illustrated in Fig. 8, where 

the GL unit (indicated by B) responds to a wide range of odorants (aldehydes with 

hydrocarbon chain length from five to nine), whereas the M cell receiving this input 

(indicated by D) exhibits a shaper tuning range (D responds to aldehydes with 

hydrocarbon chain length from six to eight) due to lateral inhibition from neighboring M 

cells through GR cells.  Taken to the extreme, this function reduces to the Winner-Take-

All strategy of competitive learning.  The second hypothesis for the role of lateral 
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inhibition is that it leads to a “global redistribution” of activity such that the bulb-wide 

representation of an odorant, rather than the individual tuning ranges, becomes specific 

and concise over time (Laurent 1999).  Fig. 9 shows the odor trajectories formed by the 

spatio-temporal activity of projection neurons in the honeybee antennal lobe (analogous 

to M cells in mammalian OB); AL activity evolves over time, moving away and settling 

into odor specific regions.  This neuro-dynamics view of lateral inhibition is thus heavily 

related to temporal coding.  This temporal coding mechanism will be discussed further 

in Chapter V.   

A B C
GL

M/T

ORN
3 4 5 6 7 8 9 10 11

n-CHO

A

B

C

3 4 5 6 7 8 9 10 11
n-CHO

3 4 5 6 7 8 9 10 11
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GR

D

3 4 5 6 7 8 9 10 11
n-CHO

(+)
(-)

D

GR

D

3 4 5 6 7 8 9 10 11
n-CHO

(+)
(-)

 

Fig. 8:  Sharpening of molecular tuning range through lateral inhibition.  A, B, and C are 

GL units that respond to aldehydes with hydrocarbon chain length from three to eight, 

five to ten and seven to eleven, respectively.  Mitral cell D, which receives input from B, 

exhibits a shaper tuning range than B and responds to aldehydes with hydrocarbon chain 

length from six to eight due to lateral inhibition from neighboring mitral cells (adapted 

from Yokoi et al. 1995). 
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Fig. 9: Odor trajectories formed by spatio-temporal activity in the honeybee AL.  The 

spatio-temporal response of the twenty-one PNs was projected along their first three 

principal components for visualization purposes.  The trajectories begin close to each 

other, and evolve over time to converge into odor specific attractors.  (reprinted from 

Galan et al. 2003). 

The fifth primitive involves the formation of “odor objects” and their subsequent 

storage in the piriform cortex (PC).  Pyramidal neurons (P), the principal cells in the PC, 

receive sparse, non-topographic, excitatory connections from M/T axons in the OB 

through the lateral olfactory tract (LOT).  These projections are both convergent and 

divergent (many-to-many).  This suggests that P cells detect combinations of co-

occurring molecular features of the odorant, and therefore function as “coincidence 
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detectors” (Wilson and Stevenson 2003).  The PC is also characterized by sparse, 

distributed connections between P cells.  These lateral connections have been shown to 

play an important role in storing odors with minimum interference and pattern 

completion of degraded stimuli (Wilson and Bower 1988).  Together, these two 

anatomical features of the PC (many-to-many connection from OB and lateral 

association connections between P cells) form the basis for the synthetic processing of 

odors (Wilson and Stevenson 2003). 

The sixth primitive involves centrifugal connections from the cortex onto GR 

interneurons in the olfactory bulb.  Several computational functions have been 

associated with these feedback connections, including odor segmentation and 

habituation (Li and Hertz 2000), hierarchical clustering (Ambrose-Ingerson et al. 1990), 

and chaotic bulbar dynamics (Yao and Freeman 1990).   

We have presented a review of our current understanding of information 

processing strategies in the biological olfactory system.  Next, we present an overview of 

current sensing technologies and pattern recognition approaches in e-noses. 

I.2.  The electronic nose 

An electronic nose is an instrument that combines an array of cross-selective chemical 

sensors and a pattern recognition engine to recognize odors (Persaud and Dodd 1982).  

The processing of multivariate sensor responses is usually performed by means of 

statistical pattern recognition (Gutierrez-Osuna 2002), as illustrated in Fig. 10 (Nagle et 

al. 1998).   
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Fig. 10: Building blocks of sensor-based machine olfaction architecture: (i) sensor array, 

(ii) signal preprocessing, (iii) dimensionality reduction, (iv) classification, and (v) 

validation (reprinted from Gutierrez-Osuna 2002). 

I.2.1.  Review of sensor technologies 

A number of sensor technologies have been employed for the purpose of detecting and 

identifying chemicals, including metal-oxide (MOS) and conducting polymer (CP) 

chemoresistors, quartz microbalance (QMB) resonators, surface acoustic waves (SAW) 

devices, and optical-fiber based devices.  Fig. 11 provides an illustration of the 

underlying principles used by these different types of sensors.   

MOS sensors detect odorants through changes in conductance of the sensing 

material due to oxidation/reduction reactions caused by the odorant (Nagle et al. 1998).  

In the case of CP sensors, the odorants interact with the polymer (usually polypyrole, 

polythiophene or polyaniline) by directly accepting ions from the polymer chain, 

interacting with the dopant ions (e.g., chloride ions) or diffusing into the polymer lattice 

causing it to swell (Nagle et al. 1998; Yinon 2003).  These interactions change the 

conductivity of the material, which is read out as the sensor signal (Nagle et al. 1998).   
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(a) (b)

(c) (d)

 

Fig. 11: Chemical sensing technologies: (a) Metal-oxide sensors (MOS)/ Conducting 

Polymer (CP) chemoresistors; (b) Quartz crystal microbalance (QCM) resonators; (c) 

Surface Acoustic Waves (SAW) devices; (d) Optical fiber sensors (Nagle et al. 1998). 

QCM and SAW sensors employ a completely different sensing principle for 

detecting odorants compared to MOS and CP sensors.  In the case of QCM, odorants 

adsorb to the surface of a piezoelectric quartz crystal, altering its mass and therefore 

shifting its resonant frequency (Nagle et al. 1998).  On the other hand, in SAW sensors, 

an A.C voltage is applied to the input electrode, generating an acoustic wave that 

propagates through the surface of the piezoelectric material.  Odorants adsorb to the 
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active material in the propagation path, which alters the surface characteristics and 

affects the velocity of the acoustic wave.  The change in the velocity, measured by 

monitoring the phase shifts of the signal at the output electrode, becomes the sensor 

response (Nagle et al. 1998).   

In the case of optical fiber sensors, fluorescent dyes are immobilized in the 

polymer matrices placed on one end of the fibers.  Exposure to odorants alters the micro-

environmental polarity of the dyes in the polymer matrices.  The dyes respond with a 

corresponding shift in their fluorescent spectrum, which becomes the sensor response 

(Dickinson et al. 1996).  The reader is referred to (Nagle et al. 1998) for an introductory 

review of odor sensing technologies.  The transduction principles for MOS sensor and 

optical fiber sensors, which are used in this dissertation, will be discussed in detail in 

Chapter II.   

I.2.2.  Review of pattern recognition for chemical sensor arrays 

The multivariate sensor array response is then regarded as a fingerprint of the stimulus.  

These raw signals are first preprocessed to accomplish several functions, such as drift 

compensation, feature extraction and reduction of sample-to-sample variance (Nagle et 

al. 1998).  Preprocessing is followed by a dimensionality reduction stage.  Linear 

techniques such as principal component analysis (PCA) and linear discriminant analysis 

(LDA), non-linear techniques such as Kohonen self-organizing maps (SOM) and several 

feature selection approaches have been widely used for this purpose (Nagle et al. 1998; 

Pearce 1997).  These lower-dimensional odor signals are then passed to a pattern 
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classification algorithm to predict the identity of the stimulus from among a finite set of 

previously learned classes.   

A number of pattern classifiers have been used with gas sensor arrays.  Fig. 12 

shows a summary of statistical methods that have been used for pattern analysis with gas 

sensor arrays.  Readers are referred to (Schiffman and Pearce 2003; Gutierrez-Osuna 

2002) for a thorough review of these methods.  These statistical techniques have been 

used extensively for handling generic pattern recognition tasks such as dimensionality 

reduction, 1-of-m classification, and clustering (Pearce 1997; Gutierrez-Osuna 1998 and 

references therein).  Problems unique to chemical sensors such as estimating chemical 

concentrations in a mixture (Ortega et al. 2000; Sundic et al. 2003), canceling 

background odors (Gutierrez-Osuna and Powar 2003), handling odor mixtures (Capone 

et al. 2001; Yamanaka 2004), drift compensation (Gutierrez-Osuna 2000; Holmberg and 

Arthursson 2002), event detection (Perera et al. 2003) and prediction of sensory scores 

(Gutierrez-Osuna 2002) have also been tackled using these methods.  The last problem, 

that of predicting organoleptic properties of odorants from their response on a sensor 

array, is arguably the ultimate challenge of machine olfaction, but also the least 

successful to date. 
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Fig. 12:  Statistical methods for multivariate pattern analysis techniques applied with gas 

sensor arrays (Schiffman and Pearce 2003; Gutierrez-Osuna 2000, 2002; DeCoste et al. 

2001).  MDS- Multi-dimensional scaling, PCA- Principal Component Analysis, SOM- 

Self-Organized Maps, ICA- Independent Component Analysis, CA- Cluster Analysis, 

LDA- Linear Discriminant Analysis, PLS- Partial Least Squares, FSS- Feature Selection 

Search, PCR- Principal Component Regression, MLR- Multi Linear Regression, CCR- 

Canonical Correlation Regression, MLP- Multi-Layer Perceptron, RBF- Radial Basis 

Functions, PNN- Probabilistic Neural Network, k-NN- k-Nearest Neighbors, SVM-

Support Vector Machines, ART- Adaptive Resonance Theory, GA- Genetic Algorithms, 

and HC- Hierarchical Clustering.   
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I.3.  Neuromorphic processing for chemical sensor arrays 

Leveraging a growing body of knowledge from computational neuroscience (Davies and 

Eichenbaum 1991), neuromorphic models of the olfactory system have become a recent 

subject of attention for the purpose of processing data from chemical sensor arrays.   

Ratton et al. (1997) have employed the olfactory model of Ambros-Ingerson et 

al. (1990), which simulates the closed-loop interactions between the olfactory bulb and 

higher cortical areas.  The model performs a hierarchical processing of an input stimulus 

into increasingly finer descriptions by repetitive projection of bulbar activity to (and 

feedback from) the olfactory cortex.   Ratton et al. (1997) have applied the model to 

classify data from a micro-hotplate metal oxide sensor excited with a saw-tooth 

temperature profile.  Sensor data was converted into a binary representation by means of 

thermometer and Gray coding, which was then used to simulate the spatial activity at the 

olfactory bulb.  Their results show that classical approaches (Gram-Schmidt 

orthogonalization, fast Fourier transform and Haar wavelets) yield better classification 

performance.  This result should come as no surprise given that the thermometer and 

Gray codes are unable to faithfully simulate the spatial activity at the olfactory bulb, 

where the most critical representation of an odor stimulus is formed.   

White et al.  (1998, 1999) have employed a spiking neuron model of the 

peripheral olfactory system to process signals from fiber-optic sensor array.  In their 

model, the response of each sensor is converted into a pattern of spikes across a 

population of ORNs, which then projects to a unique mitral cell.  Different odors 

produce unique spatio-temporal activation patterns across mitral cells, which are then 
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discriminated with a delay line neural network (DLNN).  Their OB-DLNN model is able 

to produce a decoupled odor code: odor quality being encoded by the spatial activity 

across units, and odor intensity by the response latency of the units.   

Pearce et al.  (2001) have investigated the issue of concentration hyperacuity by 

means of massive convergence of ORNs onto GL.  Modeling spike trains of individual 

ORNs as Poisson processes, the authors show that an enhancement in sensitivity of n  

can be achieved at the GL, where n is the number of convergent ORNs.  Experimental 

results on an array of optical micro-beads are presented to validate the theoretical 

predictions. 

Otto et al. (2000) have employed the KIII model of Freeman et al. (1998) to 

process data from FT-IR spectra (Quarder et al. 2001; Claussnitzer et al. 2001) and 

chemical sensors (Otto et al. 2000).  The KIII is a neurodynamics model that faithfully 

captures the spatio-temporal activity in the olfactory bulb, as observed in electro-

encephalogram (EEG) recordings.  In (Quarder et al. 2001), the FT-IR spectrum of each 

analyte was decimated, Hadamard-transformed and normalized before being used as an 

input vector into the KIII model.  The authors show that the principal components of the 

mitral cell state-space attractors can be used to discriminate different analytes.  Their 

results, however, indicate that the KIII is unable to match the performance of a 

Regularized Discriminant Analysis classifier.   

Gill and Pearce (2003) have used an array of optical micro-bead sensors to 

investigate the issues of development, organization and maintenance of connections in 

the early olfactory pathway.  Two populations of micro-bead sensors: active (exposed to 
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various odorants) and inactive (exposed only to air) were used to simulate the 

distribution of ORNs in the olfactory epithelium.  Oja’s Hebbian learning rule was used 

to develop activity-dependent weights between the sensor (receptor) layer and the GL 

layer; a Mexican hat function was used to model the lateral interactions between GLs 

mediated by PG cells.  Similar to experimental findings on mice (Zheng et al. 2000), 

their results show segregation of the active and inactive ORN populations into separate 

GLs suggesting the influence of odorant-evoked activity in the organization and 

maintenance of OB connections.  Further their results suggest that the lateral interaction 

between GLs through PG cells play an important role in realizing the topological 

organization of the ORN projections.  However, this predicted role of PG cells has not 

been confirmed through experimental studies. 

Gutierrez-Osuna et al. (2003a, 2003b) has investigated the use of habituation for 

processing odor mixtures with chemical sensor arrays.  A statistical pattern recognition 

model was presented in (Gutierrez-Osuna and Powar 2003), where habituation is 

triggered by a global cortical feedback signal, in a manner akin to Li and Hertz (2000).  

A neuromorphic approach based on the KIII model was proposed in (Gutierrez-Osuna 

and Gutierrez-Galvez 2003), where habituation is simulated by local synaptic depression 

of mitral channels.  Inspired by the role of GL as functional units (Pearce 1997), sensor 

array patterns are preprocessed with a family of odor selective discriminant functions 

before being fed to the KIII model.  Their results showed that the KIII model is able to 

recover the majority of the errors, introduced in the sensor-array and discriminant-

function stages, by means of its Hebbian pattern-completion capabilities.   
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With the exception of prior work in our group, the use of neuromorphic models 

has focused on 1-of-m classification (Ratton et al. 1997; Otto et al. 2000; White et al. 

1998) and sensitivity enhancement (Pearce et al. 2001).  Problems of dimensionality 

reduction, gain control and intensity/quality coding have not been investigated using 

neuromorphic approaches.  In this dissertation, we address this issue and propose 

neuromorphic solutions to these problems.   

I.4.  Proposed work: Biologically-inspired computational models for machine 

olfaction 

Based on the computational view of the olfactory pathway presented in section I.1, this 

dissertation proposes a biologically-inspired architecture for the processing of gas sensor 

array signals.  Shown in Fig. 13, the architecture consists of six building blocks, 

modeled after the six signal processing primitives identified in the olfactory pathway.  

First, a high dimensional odor signal is generated from the sensor arrays using a variety 

of methods that will be discussed in Chapter II.  This high dimensional odor signal 

undergoes dimensionality reduction through chemotopic convergence, producing an 

odor image that decouples odor identity from intensity.  The odor images formed 

through convergence are highly overlapping, and are subsequently processed by two 

lateral inhibitory circuits.  The first circuit performs gain control, enabling identification 

of the odorant across a wide range of concentration.  The second lateral inhibitory circuit 

enhances the initial contrast between odor images.  The sharpened odor image is stored 

in a content addressable memory (CAM).  Finally, interaction between the CAM and the 
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contrast enhancement circuits performs mixture segmentation and background 

suppression.   

In the following chapters we will propose computational models of these six 

signal-processing primitives, which are all novel to machine olfaction.  We will validate 

these models on experimental datasets generated using sensor arrays employing MOS 

and optical fiber sensors and Infrared absorption spectroscopy. 
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Fig. 13: Building blocks for biologically-inspired pattern recognition in sensor-based 

machine olfaction.  The six stages correspond to the six signal processing primitives 

identified in the olfactory pathway (refer to Fig. 2).   

I.5.  Contributions of this work 

The principal contributions of this dissertation research can be summarized as follows: 

(1) We have developed computational models of key signal processing primitives in 

the olfactory system, and integrated them in a neuromorphic architecture suitable 

for machine olfaction with gas sensor arrays.   
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(2) We have characterized the proposed models and validated them on experimental 

datasets from temperature-modulated metal oxide chemoresistors and a large 

population of optical microbead sensors. 

(3) We have conducted a preliminary investigation to examine the relationships 

between molecular features of odorants detected by their infrared absorption 

spectra, and their olfactory bulb images, and their overall smell descriptors.   

I.6.  Organization of this document 

The rest of this dissertation is organized as follows: Chapter II describes three separate 

methods that can be used to generate a high-dimensional, combinatorial input signal 

from gas sensor arrays.  Chapter III presents a computational model of receptor neuron 

convergence that generates compact odorant representations similar to those observed in 

the olfactory bulb.  Chapter IV presents a model of shunting lateral inhibition that 

removes concentration effects from the multivariate response of a gas sensor array.  

Chapter V presents an additive model of lateral inhibition with center-surround 

connections that improves contrast between odor images formed after chemotopic 

convergence.  Chapter VI presents a model of bulbar-cortical interactions capable of 

achieving background suppression and mixture segmentation.  Chapter VII integrates the 

six primitives to create a unified neuromorphic signal processing architecture for 

machine olfaction.  Chapter VIII presents a summary of results and identifies directions 

for future research.   

Supplementary materials are provided as three separate appendices.  Appendix A 

includes a table with the range of IR absorption spectra for different functional groups; 
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this reference material is useful for illustrating the IR principle in Chapter II.  Appendix 

B presents a computational model for olfactory receptors that can be used to generate 

high-dimensional signals from the low-dimensional feature spaces typically obtained 

with e-nose instruments.  Appendix C presents a spiking model of the OB; this model 

shows that the proposed primitives are not tied to any particular neural network model 

(e.g., spiking vs. rate model). 
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CHAPTER II  

HIGH-DIMENSIONAL ODOR CODING WITH PSEUDO-SENSORS 

 
The first stage in the olfactory pathway consists of a large array (~10-100 million) of 

sensory neurons, each of which selectively expresses one or a few genes from a large 

(~1,000) family of receptor proteins (Buck and Axel, 1991).  Each receptor is capable of 

detecting multiple odorants, and each odorant can be detected by multiple receptors, 

leading to a massively combinatorial olfactory code at the receptor level.  It has been 

shown (Alkasab et al. 2002; Zhang and Sejnowski 1999) that this broad tuning of 

receptors may be an advantageous strategy for sensory systems dealing with a very large 

detection space.   This is certainly the case for the human olfactory system, which has 

been estimated to discriminate up to 10,000 different odorants (Schiffman and Pearce, 

2003).  Further, the massively redundant representation improves signal-to-noise ratio, 

providing increased sensitivity in the subsequent processing layers (Pearce et al. 2002).   

Unlike the biological olfactory system, the artificial system uses very few 

sensors, commonly one replica of up to 32-64 different sensor types.  This fundamental 

mismatch between the two systems in their input dimensionality must be overcome in 

order to be able to exploit the processing strategies employed by the biological olfactory 

system.  In order to generate a combinatorial and high dimensional odor representation 

from chemical sensor arrays, similar to that available in the olfactory epithelium, we will 

adopt the following three mechanisms:   
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• Temperature modulation in metal-oxide sensors, 

• Sensing with a large population of optical microbead arrays, and 

• Infrared absorption spectroscopy. 

The objective of this chapter is to present and analyze each one of these dimensionality 

expansion techniques.   

II.1. MOS sensor array 

The first method to simulate a large population of cross-selective sensors involves 

temperature modulation of metal oxide (MOS) chemoresistors.  The various components 

of a MOS sensor are shown in Fig. 14.  The sensing material is a metal oxide (tin, zinc, 

titanium, or iridium) coated with a noble metal catalyst (palladium or platinum) (Nagle 

et al. 1998).  The active material is placed on a substrate made of silicon, glass or plastic, 

and heated by applying a voltage to a resistive heating built into the device.  When the 

heated active material comes in contact with the odorant, it undergoes 

reduction/oxidation chemical reaction depending on the nature of the environment.  In an 

oxidizing atmosphere, oxygen ions resulting from the decomposition of oxygen 

molecules in the ambient, or other electron acceptors adsorb to the surface of the 

material and trap free electrons from the conduction band of the semiconductor as shown 

in Fig. 15(a).  This results in a decrease in the conductance of the sensing material.  In a 

reducing atmosphere, on the other hand, the adsorbed oxygen atoms react with the 

reducing ambient molecules, releasing the trapped electrons to the sensing material as 

shown in Fig. 15(b).  This results in an increase in the conductance of the sensing 

    
     



 31

material.  The change in conductivity of the active material is measured by observing the 

change in resistance across the electrode pair below the active material.   

  

Fig. 14: General structure of a metal-oxide semiconductor chemoresistor (Nagle et al. 

1998). 
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Fig. 15: (a) Atmospheric oxygen adsorbed on the surface of the metal oxide trap free 

electrons from the conduction band of the semiconductor.  This causes a potential barrier 

(eVs), which prevents electrons from moving freely, reducing the sensor conductance.  

(b) In the presence of reducing gas, the adsorbed oxygen atoms react with the reducing 

ambient molecules, releasing the trapped electrons.  The potential barrier (eVs) 

decreases allowing electrons to move freely increasing the sensor conductance.  (adapted 

from Figaro 1996). 
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II.1.1. Temperature modulation 

In the case of MOS materials, the relative selectivity to different volatiles is known to be 

a function of the operating temperature at the surface of the material (Lee and Reddy 

1999).  This operating temperature is typically maintained at a constant set-point 

(specified by the manufacturer).  This form of excitation is commonly referred to as 

isothermal operation.  However, due to the temperature-selectivity dependence of MOS 

devices, more information can be extracted from the sensor by simply modulating the 

heater voltage during exposure to a volatile and capturing the dynamic response of the 

sensor at each heater voltage.  The process is illustrated in Fig. 16.  A sinusoidal voltage 

is applied to the sensor’s heater, and the dynamic response of the sensing element is 

recorded simultaneously.  If the heater voltage is modulated slowly enough relative to 

the thermal time constants of the device, the response of the sensor at each heater 

voltage can be considered a separate “pseudo-sensor”, and used to simulate a large 

population of ORNs. 
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Fig. 16:   Temperature modulation for metal-oxide sensors.  A sinusoidal voltage VH is 

applied to a resistive heather RH, and the sensor resistance RS is measured as a voltage 

drop across a load resistor RL on a half-bridge.  Due to the temperature-selectivity 

dependence, the response of a sensor at a particular temperature can be treated as a 

separate “pseudo-sensor,” and used to simulate a large population of ORNs. 

II.1.2. Selectivity data set (Powar 2002) 

In order to generate a high-dimensional sensor response to overcome the dimensionality 

mismatch between the artificial olfactory system and its biological counterpart and 

validate the models presented in the following chapters, we perform temperature 

modulation of two Figaro MOS sensors (TGS 2600, TGS 2620) (Figaro 1996).  A 

sinusoidal heater voltage (1-7 V range) with a 150 seconds time period, shown in Fig. 

17, is used for this purpose.  The sensor response is sampled at 10 Hz, leading to a 

population of 1500 pseudo-sensors from each sensor.  The sensor array is exposed to the 

static headspace of mixtures from three analytes: acetone (A), isopropyl alcohol (B) and 
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ammonia (C), at three dilution levels in distilled water (the neutral).  The lowest dilution 

of the analytes is 0.3 v/v% for acetone, 1.0 v/v% for isopropyl alcohol and 33 v/v% for 

ammonia.  These baseline dilutions were chosen so that the average isothermal response 

(i.e., a constant heater voltage of 5V) across the two sensors was similar for the three 

analytes, thus ensuring that they could not be trivially discriminated (Gutierrez-Osuna 

and Raman 2004).  Two serial dilutions by a factor of 1/3 were also acquired, resulting 

in 21 samples per day (4 mixtures × 3 concentrations).  The process was repeated on 

three separate days, for a total of 63 samples.  The temperature-modulated response of 

the two sensors to the three concentrations of the single analytes is shown in Fig. 18.  

Each analyte leads to a unique pattern, defined by the amplitude and location of a 

maximum in conductance.  Two maxima are easily resolved in the case of isopropyl 

alcohol.   
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Fig. 17: Sinusoidal heater voltage profile used for modulating the operating temperature 

of the MOS sensors. 
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Fig. 18: Temperature-modulated response of two MOS sensors (concatenated) to acetone 

(odor A), isopropyl alcohol (odor B) and ammonia (odor C) at three concentrations.  

Three replicates per analyte and concentration are shown in the figure to illustrate the 

repeatability of the patterns. 

The temperature-modulated response of one MOS sensors to binary and ternary 

mixtures at the highest concentration is shown in Fig. 19.  It can be seen that the sensor 

responses show some degree of additivity with respect to the single analyte responses, 

particularly in the case of binary mixtures.  We will show later that this type of additivity 

in the sensor response is necessary for segmenting mixtures into their constituents. 
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Fig. 19:  Temperature-modulated response of a TGS 2620 MOS sensor to three pure 

analytes and their binary mixtures: (1) acetone (A), isopropyl alcohol (B) and their 

binary mixture (AB); (2) acetone (A), ammonia (C) and their binary mixture (AC); (3) 

isopropyl alcohol (B), ammonia (C) and their binary mixture (BC); (4)acetone (A), 

isopropyl alcohol (B), ammonia (C) and their ternary mixture (ABC). 
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(Fig. 19: continued) 
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II.2. Optical microbead array 

Walt and colleagues at Tufts University have proposed a novel method for chemical 

sensing based on optical microbead sensors.  The microbead arrays typically include 

hundreds of broadly-tuned bead sensors, each belonging to a discrete class, randomly 

dispersed across the tip of an optical fiber (Dickinson et al. 1999).  The high-

dimensional, combinatorial response generate by the microbead arrays to odorants 

makes them an attractive alternative for use with neuromorphic models. 

II.2.1. Microbead transduction principle 

The basic transduction mechanism of microarray bead sensor arrays is as follows.  Each 

microbead is coated with a polymer matrix onto which a salvotochromic dye (e.g.  Nile 

red) is immobilized.  The microbead is then placed on the distal end of an individual 

optical fibers, as shown in Fig. 20(inset A).  The salvotochromic dyes change their color 

based on the polarity of the microenvironment, i.e.  polymer surface polarity or odor 

exposure.  Immobilizing these salvotochromic dyes in polymer matrices that vary in 

polarity, hydrophobicity, porosity, elasticity, and swelling tendency, creates unique 

sensing regions that interact differently with odor molecules, giving unique response to 

various odors (Dickinson et al. 1996).   

Fig. 20 shows the basic odor sensing process using the microbead sensor arrays.  

Odor vapor diffuses into the polymer coated on the distal end of the fiber and modifies 

the microenvironment polarity.  This causes the dyes to change their fluorescence 

intensity, which is captured with a CCD camera and plotted over time. 
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Fig. 20:  Odor sensing using microbead arrays: Odor vapor is delivered to the distal end 

of the fiber.  Exposure to odor vapor induces a change in fluorescence that is recorded 

and plotted versus time.  (inset A) microspheres coated with a polymer matrix, onto 

which a salvotochromic dye (e.g.  Nile red) is immobilized, randomly fill the distal end 

of the fiber.  (inset B) distal end of the optical fiber from which the response is read 

(adapted from Dickinson et al. 1996). 
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II.2.2. Illumina data set 

We will use a database from Illumina.  Inc3, comprising of transient responses of 586 

microbead sensors to five analytes: Acetone (A), Ethyl Alcohol (EA), Ethyl hydroxide 

(EtOH), Methyl hydoxide (MeOH), and Toulene.  Fig. 21 shows the transient response 

of 100 microbead sensors to acetone.  The odorant was introduced at t=14 sec and 

removed at t=35 sec.  The response of each sensor to the odorant is obtained by 

computing the difference between its steady state response (t=34 s) and baseline value 

(t=13 s).   

                                                 
3 Data from Illumina microbead arrays, which are not commercially available, will be obtained through an 

existing collaboration between Illumina and our research group. 
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Fig. 21: Response of 100 microbead sensors to acetone (courtesy of Illumina, Inc.).  The 

odor, acetone in this case, is introduced at t=14sec and removed at t=35 sec. 

II.3. Infrared spectroscopy 

The third approach that will be used in this dissertation to generate a high-dimensional 

response involves infrared absorption spectroscopy.  Though very little is known about 

the molecular determinants of an odorant, it is widely believed that each GL unit (to 

which similar ORNs converge) acts like a “molecular feature detector” that identifies a 

particular molecular property, such as type and position of a functional group (Mori et 

    
     



 43

al. 1999).   In the realm of instrumental data, infrared (IR) absorption spectroscopy is the 

closest match to this form of molecular detection.   

II.3.1. IR principle 

IR spectroscopy is based on the fact that different inter-atomic bonds in a molecule 

absorb IR radiation at unique wavelengths in the mid-IR range (4000-0 cm-1).  The 

absorption spectrum can be divided into two distinct regions: the so-called “functional-

group” region (4000-1500 cm-1) and the “fingerprint” region (<1500cm-1).  The former 

contains information about the functional groups that are present in the molecule (e.g., 

alcohols, aldehydes, ketones, esters etc.,), whereas the latter contains a global absorption 

pattern that is unique to each organic compound.  A sample IR spectrum (iso-amyl 

acetate; an ester with a fruity smell) obtained from the National Institute of Standards 

and Technology (NIST) Chemistry Web Book database is shown in Fig. 22.  Different 

peaks in the absorption spectrum correspond to the various functional groups present in 

iso-amyl acetate.  As a reference, a table of different functional groups and their IR 

absorption regions is included in Appendix A. 
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Fig. 22: IR absorption spectrum of iso-amyl acetate (an ester with a fruity smell).  Each 

peak is labeled by the functional group responsible for the absorption. 

II.3.2. NIST IR database 

We will use a database comprising of infrared absorption spectra (wave number range 0 

– 4000 cm-1) of ninety-three chemicals obtained from NIST (Linstrom and Mallard 

2003).  Each feature in the absorption spectrum indicates the intensity of light absorbed 

by a molecule at a particular wavenumber, thus defining a high dimensional odor signal 

of 4,000 features. 
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II.4.  Application of the experimental datasets 

The high dimensional datasets generated with the MOS and optical microbead sensor 

arrays will be used to validate the computational models presented in the following 

chapters.  Both Selectivity and Illumina dataset include sensor responses to different 

single analytes and will be used to validate models of chemotopic convergence for 

dimensionality reduction (Chapter III) and additive lateral inhibition for contrast 

enhancement (Chapter V).  The Selectivity dataset is the only dataset that includes sensor 

response to single analytes at different concentration and their binary and ternary 

mixtures.  Hence we will use this dataset to validate the shunting inhibition model for 

concentration normalization (Chapter IV), the model of bulb-cortex interaction for 

mixture segmentation and background suppression (Chapter VI) and the final integrated 

model (Chapter VII).  The NIST IR spectrum database will be used specifically to 

demonstrate the ability of the chemotopic convergence model to generate artificial odor 

maps that are qualitatively similar to those found in rat olfactory bulb. 
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CHAPTER III  

DIMENSIONALITY REDUCTION USING CHEMOTOPIC 

CONVERGENCE 

 
The second stage of olfactory information processing deals with the generation of a 

compact odorant representation.  The projection from the olfactory epithelium onto the 

olfactory bulb is organized such that ORNs expressing same receptor gene converge 

onto one or a few GL (Vassar et al. 1994).  This convergence transforms the initial 

combinatorial high-dimensional code into an organized spatial pattern (i.e. an odor 

image), which decouples odor identity from intensity (Gutierrez-Osuna 2002).  In 

addition, massive convergence improves the signal-to-noise-ratio (SNR) by integrating 

signals from multiple receptor neurons (Laurent 1999; Pearce et al. 2001).  In this 

chapter, we adapt the self-organizing model of chemotopic convergence presented by us 

in (Gutierrez-Osuna 2002) to generate odor maps from the three input modalities 

discussed in Chapter II.  We also study the benefits of this dimensionality reduction 

model, and analyze thee extent to which the resulting odor maps are consistent with 

those reported in neurobiology.   
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III.1.  Chemotopic convergence model 

Gutierrez-Osuna (Gutierrez-Osuna 2002) has presented a theoretical model of 

chemotopic convergence in olfactory bulb.  The model is based on three principles: (i) 

ORNs with similar affinities project onto neighboring GL, (ii) GLs in OB are spatially 

arranged as a two-dimensional surface, and (iii) neighboring GL tend to respond to 

similar odors (Meister and Bonhoeffer 2001; Johnson and Leon 2000).  Therefore, a 

natural choice to model the ORN-GL convergence is the self-organizing map (SOM) of 

Kohonen (1982). 

We adapt the model presented in (Gutierrez-Osuna 2002) to process high-

dimensional experimental data from each of the three input modalities discussed in 

Chapter II.  In what follows, we will refer to pseudo-sensors (either defined by different 

modulating temperatures, microbeads or IR absorption bands), as ORNs.  The SOM 

nodes to which the pseudo-sensors converge will be considered as GL in a simulated 

olfactory bulb.   

To form a chemotopic mapping, we must first define a selectivity measure upon 

which ORNs can be clustered together.  In this work, this is accomplished by treating the 

ORN response across a set of odorants as an affinity vector: 

[ ]CO
i

O
i

O
ii ,...,ORNORN,ORNORN 21=    (3.1) 

where is the response of ORNO
iORN i to odor O, and C is the number of odorants.   

The convergence model operates as follows.  The SOM is presented with a 

population of ORNs, each represented by a vector in C-dimensional affinity space, and 
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trained to model this distribution.  Once the SOM is trained, each ORN is then assigned 

to the closest GL in affinity space, thereby forming a convergence map from which the 

response of each GL is computed as: 

∑ == N
i

O
iij

O
j ORNWG 1      (3.2) 

where N is the number of ORNs in the array, and Wij=1 if ORNi converges to GLj and 

zero otherwise.  It is the novelty in training the SOM in the affinity space (discussed in 

detail in section III.1.1) that we will show leads to spatial odor maps that are 

qualitatively consistent with those found in neurobiology (Johnson and Leon 2000; 

Joerges et al. 1997; Friedrich and Korsching  1997).   

  To help visualize this model, Fig. 23 illustrates a problem with three odors 

(labeled as A, B and C).  The affinities of pseudo-sensors are shown as a colorbar below 

the senor response.  This is a simplification to illustrate the concept, as the actual affinity 

space for this problem will be three-dimensional.  The chemotopic mapping is achieved 

by assigning the pseudo-sensors with similar affinities to the same SOM node.  The 

activity of the entire SOM lattice is then considered as an artificial odor map.   
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Fig. 23:  Illustration of chemotopic convergence: the relative response to three analytes 

(labeled A, B and C) is used to define the affinity (shown as a colorbar) of the sensor at 

each operating temperature.  Pseudo-sensors with similar affinities project to the same 

SOM node as a result of chemotopic convergence.  Activity across the SOM lattice can 

be considered as an artificial odor map.   

This convergence model works well when the different sensors are reasonably 

uncorrelated, since then the projection of ORNs across the SOM lattice approximates a 

uniform distribution, i.e., maximum entropy [Lancet et al. 1993; Laaksonen et al. 2003].  

Unfortunately, the population of pseudo-sensors created by the methods proposed in 

Chapter II are collinear  (Selectivity and Illumina) or over-sampled (NIST IR).   As a 

result, a few GL tend to receive the majority of ORNs, which capture the “common-
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mode” response of the sensor, overshadowing the most discriminatory information in the 

temperature-modulated response.  To avoid this issue, the activity of each GL is 

normalized by the number of ORNs that converge to it: 

∑
∑

=

== N

i ij

N

i iij
j

W

RW
G

1

1      (3.3) 

Note that this solution is not driven by biological plausibility but largely by the 

limitations of our sensors. 

III.1.1.  Chemotopic convergence as feature clustering in affinity space  

Conventional statistical pattern recognition approaches to dimensionality reduction 

operate in the feature space, where each input dimension corresponds to a particular 

feature (or sensor).  Samples that belong to the same (odor) class cluster together in 

feature space, as shown in Fig. 24 (a).  In contrast to feature space, each dimension in 

affinity space corresponds to a particular (odor) class.  Features that provide similar 

information regarding the different classes cluster together in affinity space.  As an 

example, in Fig. 24(b) all features of type S1 provide high response to class B and low 

response to class A; as a result they can be clustered together.  In contrast, all features of 

type S2 provide high response to class A and low response to class B, therefore they can 

form a separate cluster.  This basic principle underlies the chemotopic convergence 

model presented in section III.1: the SOM is used to cluster sensor features that have 

similar affinities (similar class information). 
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Fig. 24: Clustering in feature space and in affinity space.  (a) Samples of the same class 

produce similar response across sensor array, and therefore cluster together in feature 

space.  (b) Features that produce similar response to different odors (classes) cluster 

together in the affinity (class) space.   

To visually illustrate this feature-clustering scheme, lets consider a toy problem 

consisting of discriminating three geometric silhouettes: Circles (C), Squares (S) and 

Triangles (T).  Fig. 25(a) shows silhouettes used for training the model, where different 

labels are used to identify different types of features (e.g. CS indicates features that 

respond only to Circle and Square, T indicates features that respond only to Triangle, 

and so on).  Following the convergence model, the features (pixels of the image) are 

chemotopically projected onto eight SOM nodes.  Fig. 25(b) shows the features that are 

assigned to each SOM node, (represented by the lighter areas in the figure) after training 

in affinity space.  It can be clearly seen that chemotopic convergence groups features 
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that convey similar class information, thus reducing the dimensionality of the input 

signals.   
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Fig. 25: (a) Toy problem with three classes: Circle, Square and Triangle.  Different 

labels are used to identify different types of features (e.g. CS indicates features that are 

only active in Circle and Square, T indicates features that are active only in Triangle, and 

so on).  (b) Eight feature clusters generated after chemotopic convergence with eight 

SOM nodes.  Each SOM node receives projection from a single features cluster. 
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III.2.  Experimental results 

In this section, we apply the chemotopic convergence model on the experimental 

datasets obtained using temperature modulated MOS sensors (Selectivity dataset) and 

optical microbead sensors (Illumina dataset).  The performance of the model is analyzed 

by comparing odor separability before (raw data) and after chemotopic convergence.   

III.2.1.  Validation on the Selectivity database 

The high dimensional odor signal (3000 pseudo-sensors) generated by temperature 

modulating two MOS sensors is projected onto a GL layer with 400 nodes, arranged as a 

20x20 SOM lattice, based on the convergence model described in section III.1.  The 

SOM arranges itself after training to model the affinity space as shown in Fig. 26.   Only 

one of the samples for the highest concentration of each odor was used to train the SOM; 

all the remaining samples and concentrations were used for validation purposes. 

Fig. 27 shows the odor maps generated from the high dimensional sensor 

response to acetone (A), isopropyl alcohol (B) and ammonia (C) at three concentrations.  

It can be seen that odor quality is encoded by a unique spatial pattern across the SOM 

lattice, whereas odor concentration is related to the intensity and spread of this pattern.  

The locus of activity for a given odor corresponds to those SOM nodes that receive 

projections from the temperature features of maximum gain (peak in the temperature 

modulated response) to that odor.  Fig. 28 shows the odor maps generated for the binary 

and ternary mixtures of the pure analytes.  The processing of these odor maps for 

identifying the constituents of a mixture or suppressing the weaker (background) odor is 
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discussed in Chapter VI.  It should be noted that these maps show a high degree of 

overlap; this issue is addressed by the two lateral inhibitory circuits that are presented in 

Chapters IV and V.   
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Fig. 26: Distribution of glomerular SOM nodes and pseudo-sensor repertoire in affinity 

space for the MOS sensor Selectivity database (3,000 ORNs, 20x20 lattice). 
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Fig. 27: Glomerular maps generated using a 20x20 lattice of GLs and 3,000 pseudo 

sensors from the temperature-modulated response profile of two MOS sensors to three 

analytes at three concentrations (Selectivity database). 
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Fig. 28: Glomerular maps of the binary and ternary mixtures of the three analytes at 

three concentrations (Selectivity database). 

III.2.2.  Validation on the Illumina database 

Similar to the study on Selectivity dataset, the sensor response of 586 optical sensors in 

the Illumina bead array are chemotopically projected onto a GL layer with 400 nodes, 

arranged as a 20x20 SOM lattice.   Only one sample per odor was used to train the SOM; 

all the remaining samples were used for validation purposes.  Fig. 29 shows the odor 

maps of five analytes: acetone (A), ethyl alcohol (EA), ethyl hydroxide (Et-OH), methyl 

hydroxide (Me-OH) and toulene (T).  Five samples per odor are shown to illustrate 
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repeatability.  It can be observed that the odor quality is encoded by a unique spatial 

pattern across the SOM lattice.   
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Toluene (T)

Ethyl hydroxide 
(EtOH)

Sample 1 Sample 5Sample 4Sample 3Sample 2

 

Fig. 29: Glomerular maps for the five analytes generated using a 20x20 lattice of GLs 

and 586 sensors in the Illumina microbead array.   

III.3.  Characterization of the model 

To quantify the advantage of the proposed model for pattern recognition purposes, we 

employ a measure of class separability derived from Fisher’s linear discriminant analysis 

(Fukanaga 1990):  
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where SW and SB are the within-class and between-class scatter matrices, respectively, 

defined as follows: 
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where x is a feature vector, Q is the number of odor classes, µq and nq are the mean 

vector and number of examples for odor q, respectively, n is the total number of 

examples in the dataset, and µ is the mean vector of the entire distribution.  Being the 

ratio of the spread between classes relative to the spread within each class, the measure J 

increases monotonically as classes become increasingly more separable. 

Fig. 30 shows the odor separability as the number of SOM nodes in the lattice is 

increased.  In the case of the Selectivity dataset, odor separability increases rapidly with 

the number of nodes, and saturates as the size of SOM lattices becomes large.  Results 

on the Illumina dataset also reveal similar characteristics, except in this case the sum of 

responses of all 586 microbead sensors (1x1 SOM lattice) surprisingly provides 

maximum separability.   This is because, the odor separability in the case of the Illumina 

dataset, is computed only using sensor responses to analytes at a single concentration.  In 

both datasets, convergence mapping shows better performance compared to those of 
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principal component analysis and the baseline from raw data.  This is a direct result of 

the supervised nature of the convergence mapping, which leads to more orthogonal 

patterns than those available at the input thereby enhancing the signal-to-noise-ratio. 
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Fig. 30: Comparison of odor separability (1) from raw data, and (2) following 

chemotopic convergence with SOM lattices of increasing size (1×1 to 20×20).  Only one 

of the samples for the highest concentration of each odor was used to train the SOM in 

each case.  The generated chemotopic maps (with larger lattices) provide better odor 

separability than principal component analysis (capturing 99.9% variance) and the 

baseline from raw data. 

III.4.  Discussion: consistency with neurobiology 

So far we have demonstrated the use of chemotopic convergence as a dimensionality 

reduction scheme to generate compact odor representation from a high dimensional 
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sensor response.  In this section, we discuss the extent to which the odor maps generated 

by the convergence model are consistent with results from neurobiology.   

Though very little is known about the molecular determinants of an odorant, it is 

widely believed that each GL unit to which similar ORNs converge acts like a 

“molecular feature detector” that identifies a particular property, such as type and 

position of a functional group (Mori et al. 1999).  In the realm of instrumental data, 

infrared (IR) absorption spectroscopy is the closest match to this form of molecular 

detection.  Hence we will use the IR absorption spectrum (NIST IR dataset) to generate 

artificial odor maps and show that the generated spatial patterns are qualitatively similar 

to those obtained in the rat olfactory bulb4.     

To generate artificial odor maps, a population of 4,000 pseudo-sensors is 

generated from the IR spectrum by treating the absorbance level at each wave number as 

a separate pseudo-sensor.  The pseudo-sensors population is subsequently projected 

chemotopically onto a GL layer with 100 nodes, arranged as a 10x10 SOM lattice.  The 

odor images are then low-pass filtered using a 5x5 Gaussian kernel.   Fig. 31 shows the 

odor maps for ten different smell percepts5 from the IR database.  The following 

observations can be made based on the odor images obtained from their IR absorption 

spectrum: 

                                                 
4 A database of odor maps from the rat olfactory bulb is available at http://leonlab.bio.uci.edu/. 

5 The organleptic descriptors were obtained from Flavornet. 
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(i) Esters that smell like tropical fruits (banana and pineapple) produce similar 

odor maps, which are different from the maps of chemicals with apricots or 

citrus fruits descriptors,  

(ii) Citrus odor maps are similar to those that smell Fatty,  

(iii) Sweat and Cheese also produce similar odor maps, and, 

(iv) Methyl salicylate and Menthol, which are both minty, produce distinct odor 

maps. 

Spatial odor images for these compounds in the dorsal part of rat OB are shown 

in Fig. 32.  These odor maps were obtained using optical imaging techniques involving 

2-deoxyglucose uptakes in the dorsal part of the rat olfactory bulb (Johnson and Leon 

2000).  Similar to the images obtained from the IR spectra, esters with tropical fruit 

smells produce similar activation patterns across the OB, which is different from 

chemicals with apricot and citrus descriptors.  Odor maps for Citrus and Fat descriptors, 

Sweat and Cheese descriptors overlap similar to the IR-generated odor maps.  Minty 

smelling Methyl salicylate and Menthol produced distinct odor maps.    

Hierarchical cluster analysis of the seventeen chemicals present in both the NIST-

IR dataset and the rat OB image dataset reveal similar groupings, as shown in Fig. 33(a, 

b).  In both cases, four distinct clusters can be identified that correspond to the following 

four smell descriptors: Fruity, Cheese or Sweat, Fat or Citrus and Nuts.  Methyl 

salicylate, which smells Minty, is grouped with the nuts category in both cases.  

Hexanoic acid, which is a fatty acid that smells like Sweat, is grouped under Fat or 
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Citrus smell descriptor using the rat OB images and in the Sweat cluster using IR odor 

maps.   

These results suggest that convergence mapping, combined with IR absorption 

spectra, may be an appropriate method to capture perceptual characteristics of the 

odorants from their molecular features. 

III.5.  Summary 

In this chapter we have presented a computational model for the chemotopic 

convergence of ORNs onto GLs.  A Kohonen SOM is used to topologically cluster 

pseudo-sensors obtained from the three experimental datasets.  This results in a two-

dimensional odor map that decouples odor quality from intensity.  The identity of the 

odor is captured by the unique spatial pattern across SOM nodes, whereas concentration 

is related to the intensity and spread of this pattern.  These results are consistent with 

those observed in the biological olfactory bulb through optical imaging.  The next stage 

of processing involves contrast enhancement of the odor images formed through 

convergence by two lateral inhibitory circuits. 
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Fig. 31: Odor maps to the same ten different smell percepts as the OB images generated 

from the IR spectrum using the chemotopic convergence model. 
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(Fig. 31: continued) 
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Ethyl butyrate

Apple

Pineapple

Apricot
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Isoamyl acetate Isoamyl butyrate

Ethyl caproate Ethyl valerate Propyl propionate

Ethyl propionate Methyl isocarproate Propyl butyrate

Ethyl octanoate Methyl Caproate

Banana

2-undecanone Decanal Nonanal

 

Fig. 32: Odor maps obtained in the rat olfactory bulb to ten different smell percepts: i) 

banana, ii) pineapple, iii) apple, iv) apricot, v) citrus, vi) nuts, vii) cheese, viii) sweat, ix) 

minty and x) fat.   
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(Fig. 32: continued) 
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Fig. 33: Dendrograms (complete-linkage) revealing similar clusters a) from OB odor 

maps b) from artificial odor maps formed from their IR absorption spectra.  The 

seventeen common chemicals found in both databases used in this study are as follows: 

1 – Acetyl Pyridine (Nuts), 2 – Iso-amyl Acetate (Fruity), 3 – Benzaldehyde (Nuts), 4 – 

Butanoic Acid or Butyric acid (Cheese), 5 – 2,3-Dimethyl pyrazine (Nuts), 6 – Ethyl 

Butyrate (Fruity), 7 – Ethyl Propionate (Fruity), 8 – Heptanal (Citrus, Fatty), 9 – 

Heptanol (Fatty), 10 – Hexanal (Fatty), 11 – Hexanoic acid or Caproic acid   (Sweat), 12 

– Hexanol (Fatty), 13 – Methyl Salicylate (Minty), 14 – Octanol (Fatty), 15 – Pentanoic 

Acid or Valeric acid (Sweat), 16 – Propyl Butyrate (Fruity), 17 – Iso-Valeric Acid 

(Sweat).  Asterix identifies chemicals with smell descriptors different from other 

members in the cluster. 
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CHAPTER IV  

CONCENTRATION NORMALIZATION THROUGH SHUNTING 

INHIBITION 

 
The third stage of olfactory signal processing involves gain or “volume” control, a 

mechanism that enables invariant identification of odorants across a wide concentration 

range.  The odor and concentration specific spatial patterns formed at the input of the 

olfactory bulb by the chemotopic convergence (Chapter III) are input to a layer of lateral 

inhibitory circuits driven by periglomerular interneurons.  These lateral interactions are 

known to be shunting-type (divisive inhibition), and have been hypothesized to serve as 

a “volume control” mechanism (Freeman 1999).  Recently these glomerular circuits 

have been found to have center-surround type connectivity and have been suggested to 

perform pattern normalization, noise reduction and contrast enhancement (Aungst et al. 

2003).  In this chapter, we present a computational model of these gain-control circuits, 

and analyze the role of the spread of lateral inhibition in achieving concentration 

removal with the network.  We validate the concentration-normalization performance of 

the model on the Selectivity dataset, which consists of temperature-modulated responses 

of MOS sensors to three analytes at three different concentrations.   

IV.1.  Model of shunting lateral inhibition 

The shunting lateral inhibition mediated by periglomerular interneurons is realized using 

a model of divisive normalization proposed by Grossberg (1976) as shown below:  
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where  is the activity of SOM node i (i.e., after chemotopic convergence), is the 

corresponding neuron output to odor O, is a decay term that models the dynamics 

of a neuron, 
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Gcx is the shunting inhibition from other neurons 

(Grossberg 1976).   The complete model of the shunting lateral inhibition occurring at 

the input of the olfactory bulb is schematically shown in Fig. 34.  The connection matrix 

C modeling the shunting inhibition is set as follows: 
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MikdbaUcki

0

),(),(     (4.2) 

where  is a uniform distribution between a and b, and d is the distance between 

units measured as a Euclidean distance within the lattice 

(

( baU , )

)( ) ( 22
ikik colcolrowrowd −+−= ; row and col being the row and column 

coordinates of a neuron in the lattice), M is the number of SOM nodes, and r determines 

the width of the lateral inhibitory connections.  Fig. 35 provides an illustration of these 

three model parameters.   
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Fig. 34: Shunting lateral inhibition at the input of the olfactory bulb. 
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Fig. 35:  Illustration of the shunting inhibition model parameters:  (a) the term  in 

equation (4.1) models the impulse response as an exponential decay;  (b) the term 

O
iDx−

( ) OO
ii

GxB − captures saturation effects, according to which the response of a neuron to an 

input becomes smaller as the neuron’s current activation approaches the maximum 

response level (B) (Gerstner and Kitler 2002);  (c) the connection matrix C, modeling the 

lateral connectivity.  Note that in this case activation of one GL (‘on-center’) causes 

widespread inhibition of surrounding GLs (‘off-surround’) similar to the results reported 

in (Aungst et al. 2003). 

Equating equation (4.1) to zero, it trivially follows that the steady-state output of 

each neuron is: 

∑
≠

++
=
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O
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i GcGD
BGx     (4.3) 

which, for cki=1 ∀ k,i, and D=0, becomes proportional to the (L1) normalized response 

of its input relative to the total network activity: 
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The original study by Grossberg (1976) only considered global connections for 

the purpose of pattern normalization.  However, in this work, we show that by adjusting 

the spread of the lateral inhibitory connections using equation (4.2), the degree of 

concentration normalization can be controlled parametrically.   

IV.2.   Experimental results 

To validate the model, temperature-modulated patterns for three analytes acetone (A), 

isopropyl alcohol (B) and ammonia (C), at three different concentrations are first 

chemotopically projected using the convergence model described in Chapter III.  A GL 

layer with 400 nodes, arranged as a 20x20 SOM lattice, is used to perform chemotopic 

mapping of sensor response.  The outputs of the convergence model are then used as the 

inputs to the shunting inhibition model in equation (4.1).   

The PCA scatterplot of steady-state activity across the network is shown in Fig. 

36.  Without shunting inhibition (a), the model preserves most of the concentration 

information, as can be seen in Fig. 36 (a), where the principal sources of variance is 

concentration information.  In contrast, with global shunting inhibition (c) the network is 

able to remove most of the concentration information and provide maximum separability 

between odors.  Finally, different degrees of cancellation can be achieved by controlling 

the spread of the shunting lateral inhibitory connections, as shown in Fig. 36(b).   Also, 

it can be observed in the case of models with shunting inhibition, the first principal 
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components contains mostly odor information and the second principal component 

contains mostly concentration information.   A detailed characterization of the model is 

presented next.   
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Fig. 36:  PCA scatterplot of SOM activity following normalization with the shunting 

inhibition network (A1: lowest concentration of analyte A, C3: highest concentration of 

analyte C).  Model parameters B=1, D=0.1.  (a) PCA scatterplot of steady-state activity 

across the network after chemotopic convergence (no shunting inhibition)  (b) PCA 

scatterplot of steady-state activity across the network with local shunting inhibition  (c) 

PCA scatterplot of steady-state activity across the network with global shunting 

inhibition. 
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(Fig. 36: continued) 
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IV.2.1.  Characterization of the model 

 Based on the class separability measure in Chapter III, we define two different measures 

to quantify the performance of the model: concentration-invariant separability and 

concentration information.  Assuming a three-odor problem (merely to simplify the 

notation), the concentration-invariant separability is measured by:  

CABCABodor JwJwJwJ 321 ++=    (4.5) 

where JAB, JBC, and JCA are the separability between odors A and B, B and C, and C and 

A, respectively, and w1, w2, and w3 are normalization weights to prevent any pair of 

odors from dominating the metric.   

The concentration information within each odor class is defined by:  

321632153214 cccbbbaaaconc JwJwJwJ ++=    (4.6) 

where Ja1a2a3, Jb1b2b3, and Jc1c2c3 are the separability among the three concentrations 

within an odor, and w4, w5, and w6 are normalization weights to balance the relative 

contribution of these three terms.  The normalization weights are set as the inverse of the 

maximum possible value of the corresponding term across all values of r, the width of 

lateral connections (e.g. 
)(max

1
1

ABr
J

w
∀

= ).  This scales each term JAB, JBC, JCA, Ja1a2a3, 

Jb1b2b3, Jc1c2c3 between 0 and 1 making their contribution to Jodor and Jconc comparable. 

IV.2.2.  Spread of the lateral connections (r) 

In this section we characterize the width of lateral inhibition using the two separability 

measure proposed in the previous section.  Fig. 37(a) shows the concentration-invariant 
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separability measure (Jodor) as a function of the width of the shunting inhibitory 

connections.  Maximum separability between odors is achieved for small r (global 

connections).  Global connections remove most of the concentration information, a result 

that follows from the steady-state response in equation (4.3) and is also consistent with 

the scatterplot in Fig. 36(c).  In contrast, reduction in the width of the shunting inhibition 

allows the within class-scatter to increase, thereby reducing Jodor. 

Fig. 37(b) shows the concentration information measure (Jconc) as a function of 

the width of the shunting inhibitory connections.  Maximum separability is achieved for 

no shunting inhibition (r=20; i.e., the size of the lattice).  In this case, concentration 

information serves as the principal source of variance, as was shown in Fig. 36(a).  As 

the connections become global, most of the concentration information is removed.  In 

between the two extremes, different degrees of separability can be achieved among 

concentration levels of the same odor. 

In summary, the width of the lateral inhibition can be used to select an 

appropriate tradeoff between odor class information (between class-scatter) and odor 

concentration information (within class-scatter).   This prediction is consistent with 

recent work by Christensen et al. (2001) suggesting that local neurons (analogous to PG 

cells) in the antennal lobe (analogous to the mammalian olfactory bulb) of sphinx moth 

can operate as multifunctional units, causing local inhibition at lower odor 

concentrations and global inhibition at higher concentrations.  Their study is particularly 

relevant to this work as it identifies a possible biological mechanism for modulating 
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inhibitory width.  The model can therefore be used to predict the effect that modulation 

of inhibitory width may have during the processing of odor signals. 
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Fig. 37:  Characterization of the model; small r represents global connections, and large 

r represents local connections.  (a) Measure of concentration-invariant separability (Jodor) 

as a function of the width of shunting lateral inhibition.  (b) Measure of concentration 

information (Jconc) as a function of the width of shunting lateral inhibition. 

IV.2.3.  Rate of exponential decay (D) 

Fig. 38(a, b) shows the concentration-invariant separability and concentration 

information measures as a function of decay rate D.  For small value of D 

( ), the model achieves concentration compression similar to the L1 norm, 

thereby improving separability between odors as shown in Fig. 38(a).  For large D 

values ( ), the steady state response of the model is a scaled version of its 
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inputs and hence the model retains all the concentration information, as shown in Fig. 

38(b).  Therefore, for a fixed spread of lateral connections, the exponential decay rate D 

can also be used to control the amount of concentration compression.  These results 

suggest that the time constant of the PG cells may have a role in the degree of 

normalization performed by the network.  This prediction has   yet to be confirmed by 

experimental studies on animal models.   
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Fig. 38: Characterization of the exponential decay rate (D) (a) Measure of concentration-

invariant separability (Jodor) as a function of the decay parameter D.  (b) Measure of 

concentration information (Jconc) as a function of the decay parameter D.  (model 

parameters r=0.5 and cki=1 ∀ k,i).  Dashed line indicates separability without shunting-

inhibition normalization. 
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IV.3.  Summary  

In this chapter, we have presented a neurodynamic model of the first stage of lateral 

inhibition in the olfactory bulb, that mediated by periglomerular interneurons.  Our 

results show that global connections remove most of the concentration information, 

increasing the separability between odors.  Local connections, on the other hand, retain 

most of the concentration information at the expense of discriminatory power among 

odor classes.  Thus, different degrees of concentration normalization can be achieved by 

modulating the width of the lateral connections (or the rate of decay of the neurons).  We 

have analyzed the role of periglomerular inhibition in isolation.  Next, we present an 

additive model of OB lateral interactions for further contrast enhancements and their 

integration with the gain control circuits. 
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CHAPTER V   

CONTRAST ENHANCEMENT THROUGH CENTER ON-OFF 

SURROUND LATERAL INHIBITION 

 
Following shunting inhibition, glomerular inputs are further transformed by a layer of 

additive lateral interaction between mitral and inhibitory granule (G) cells at the output 

of the OB (Freeman 1983).  Two roles have been suggested for this granule-mediated 

circuit: (i) sharpening of the molecular tuning range of individual mitral cells (Mori et al. 

1999), and (ii) global redistribution of activity (Laurent 1999).   According to the latter 

hypothesis, it is the bulb-wide representation of an odorant that becomes specific and 

concise over time, rather than the tuning range of individual mitral cells.  More recently, 

granule-mediated circuits have been found to be center on-off surround inhibitory 

(Aungst et al. 2003; Luo and Katz 2001; Lei et al. 2004), an organization reminiscent of 

the classical receptive fields mediated by ganglion cells in the retina (Kuffler 1953).  

This form of lateral inhibition performs a winner-take-all competition, where strongly 

excited units suppress weakly excited ones.  In this chapter, we present a computational 

model of these lateral inhibitory circuits for contrast enhancement of the spatial patterns 

obtained through chemotopic convergence.  We validate the model on the Selectivity and 

Illumina datasets. 
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V.1. Additive lateral inhibition model 

We capture this center on-off surround circuit with the classical additive model of 

Grossberg (Haykin 1999, p.  676), whose general form is: 

( ) jk

M

k
kj

j

jj ItvL
tv

dt
tdv

++−= ∑
=

)(
)()(

1
ϕ

τ
   (5.1) 

where vj is the activity of mitral neuron j, τj is the time constant that captures the 

dynamics of the neuron, Lkj is the synaptic weight between neurons k and j, M is the 

number of neurons, and Ij is the external input in equation (5.1) properly scaled to 

balance the contribution of receptor and lateral inputs ( ).  Our model assumes 

a one-to-one mapping between GL and mitral neurons (refer to Fig. 39); although in 

some animal species GL are known to project to several mitral neurons, the 

computational function of this divergence mapping is largely unknown.  The non-linear 

activation 

jj GI 10=

( )⋅ϕ  is the logistic function defined by: 

( )
))(exp(1

1

21 ava
v

j
j −⋅−+

=ϕ    (5.2) 

where the constants a1 and a2 are adjusted to match the dynamic range of the input 

signals.  For simplicity, all mitral neurons are assumed to have the same time constant 

τ=10ms.   
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Fig. 39: Additive lateral inhibition at the output of the olfactory bulb. 
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Integration of equation (5.1) with Euler’s method leads to a difference equation:  
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   (5.3) 

where the integration time step ∆t is set to 1ms. 

To model center on-off surround, each neuron makes excitatory synapses to 

nearby units, and inhibitory synapses with distant units as follows:  
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   (5.4) 

where  is a uniform distribution between a and b, d is the distance between units 

measured as a Euclidean distance within the lattice 

(

( baU , )

)( ) ( 22
jkjk colcolrowrowd −+−= ; row and col being the row and column 

coordinates of a neuron in the lattice), and r determines the receptive-field width of the 

lateral connections.  Thus, the output of a given mitral neuron is determined by the 

combined effect of external inputs from ORNs, center on–off surround interactions with 

collateral neurons, as well as by its own dynamics.  An example of the center on-off 

surround receptive field described by equation (5.4) is shown in Fig. 40.   
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Fig. 40: An example center on-off surround receptive field in a 20x20 lattice for r=5. 

V.2.  Validation on the Selectivity dataset  

Following the convergence model described in Chapter III, temperature-modulated 

sensor patterns are first chemotopically projected onto a GL layer with 400 nodes, 

arranged as a 20x20 SOM lattice.  The 400 outputs of the convergence model are used as 

inputs to the center-surround OB network.  The parameter a1 and a2 of the non-linear 

activation function are set to 0.0336 and 60.0335 respectively to match the dynamic 

range of the input signals.  A systematic study of the improvements in pattern 

separability provided by the OB model as a function of the width of center-surround 

connections is presented next.   

V.2.1. Effect of receptive field width for the center surround connections 

The width of the center on-off surround connections is an important parameter for the 

purpose of pattern formation and generalization.  An appropriate value for receptive field 
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width must provide both stability and good separability.  Though the exact optimal value 

may depend on the database used, the general characteristics described below hold 

across various databases. 

Fig. 41(a-c) shows the measures of concentration-invariant recognition (Jodor), 

concentration separability (Jconc), and their combination Jbalance (Jbalance = Jodor + Jconc) as 

a function of the receptive field widths.  Small receptive fields (r>4) are primarily driven 

by inputs and hence show high stability (converge to a fixed-point attractor) and less 

variance.  For large receptive fields (r≤4), the net value of the lateral connections 

becomes excitatory, and the system fails to converge into fixed-point attractors.  Hence 

we will not consider them for determining the optimal parameter value for this odor 

database.   

Fig. 41(a,b) shows the separability between various odors (Jodor) and across 

different concentrations within each odor (Jconc ) as a function of the receptive field 

width (r).  From these results, it is clear that that the separability between pairs of odors 

increases as the width of the receptive field increases, whereas maximum concentration 

separability is achieved with small receptive fields.  The maximum of the objective 

function Jbalance, which combines concentration-invariant separability and concentration 

separability, occurs at r=5, as shown in Fig. 41(c).  This receptive field width will be 

used to quantify the benefits of the proposed model.   
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Fig. 41:  Discriminatory information of GL patterns as a function of receptive field 

width: (a) separability between odors Jodor (b) separability between concentrations within 

an odor Jconc, and (c) separability across odors and across concentrations (Selectivity 

dataset). 
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The steady-state spatial patterns for various receptive field widths (r>4) are 

shown in Fig. 42.  Global connections lead to sparse representation (fewer active mitral 

cells) since highly active GL regions are able to suppress activity in other regions in the 

lattice with weak activity.  This causes reduction in the overlap across patterns and 

improves odor separability.   

r=20 r=5r=6r=8r=12

Odor A

Odor B

Odor C

globallocal

on-off
surround

 

Fig. 42: Characteristics of the spatial odor code for various receptive-field widths of 

center on-off surround lateral connections.  Global connections result in more sparse 

patterns that provide better odor separability.   

    
     



 89

V.2.2. Spatial patterning of MOS sensor responses 

In this section we qualitatively analyze the improvements in pattern separability that 

result from the center on-off surround connections (r=5).  Fig. 43 (top row of each 

block) shows the spatial pattern that result from sensory convergence at the input of the 

OB.  As a result of the chemotopic mapping, each odor generates a unique spatial pattern 

across units in the SOM.   However, these spatial patterns are highly overlapping due to 

the collinearity of the sensors.  Fig. 43 (bottom row of each block) shows the resulting 

spatial activities following stabilization of the center-surround lateral interactions in 

equation (5.1).  Odor A leads to heavy activation on two highly-localized regions (spatial 

code: 13).  Odor B produces similar activation in regions 1 and 3, but also high 

activation in region 4 (spatial code: 134).  This unique region 4 corresponds to pseudo-

sensors in the smaller peak that occurs for odor B alone (refer Fig. 18).  Odor C produces 

heavy activation of regions 1, 2 and 5 (spatial code: 125).  It is important to note that the 

location of these activation regions is concentration-invariant, but their amplitude and 

spread increases with concentration, in consistency with recent finding in neurobiology 

(Friedrich and Korsching 1997). 
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Fig. 43: Spatial maps generated from temperature modulated MOS sensor response at 

the input (top row of each block) and output (bottom row of each block) of the olfactory-

bulb network.  Three blocks are shown corresponding to three odors: acetone (first 

block), isopropyl alcohol (second block) and ammonia (third block).  Five sparse coding 

regions that emerge as a result of the lateral interactions are shown on the right.   
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V.2.3. Temporal evolution of the odor trajectories  

The spatial patterns in Fig. 43 only describe the information content in the steady-state 

response of the model.  To analyze the temporal trajectory of each dynamic attractor, the 

400-dimensional (20x20) space was projected onto the first three principal components 

of the data, which are shown in Fig. 44.  Trajectories for each odor and concentration 

originate at nearby locations in state space, which correspond to the highly overlapping 

spatial patterns at the input of OB, shown in Fig. 43 (top row).  As a result of center on-

off-surround lateral connections, the activity for each odor slowly moves away from the 

initial location and settle into odor-specific fixed-point attractors, which correspond to 

the localized spatial patterns in Fig. 43 (middle row).   

Visual inspection of the steady-state response in Fig. 43 and the transient 

trajectories in Fig. 44 clearly shows that the lateral inhibitory network is able to 

significantly increase the contrast between different odors.  Parallels between this odor 

code and recent findings in neurobiology are discussed in section V.2.4.  The 

separability of these patterns is analyzed systematically in section V.2.5. 
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Fig. 44: Evolution of OB activity along the first three principal components of the data.  

Nine trajectories are shown, one per odor and concentration in the data.  The initial 

points in the trajectories are the spatial maps at the input of the OB network.  Odor 

separability is improved as a result of lateral inhibition. 

V.2.4. Discussion: Temporal coding in the biological olfactory system and our 

model 

A recent study of spatio-temporal activity of projection neurons (PN) in the honeybee 

antennal lobe (analogous to M cells in mammalian OB) by Galan et al. (2003), reveals 

evolution and convergence of the network activity into odor-specific attractors.  Fig. 

45(a) shows the projection of the spatio-temporal response of the twenty-one PNs along 

their first three principal components.  These trajectories begin close to each other, and 

evolve over time to converge into odor specific regions.  These experimental results are 

consistent with the attractor patterns emerging from our model.  Furthermore, in-vivo 
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experiments conducted by Stopfer et al. (2003), to study odor identity and intensity 

coding in the locusts show hierarchical groupings of spatio-temporal PN activity 

according to odor identity, followed by odor intensity.  Fig. 45(b) illustrates this 

grouping in the activity of fourteen PNs when exposed to three odors at five 

concentrations.  Again, these results closely resemble the grouping of attractors in our 

model, shown in Fig. 44.   

(a) (b)

hexanoloctanol

nonanol

isoamylacetate

(a) (b)

hexanoloctanol

nonanol
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Fig. 45: (a) Odor trajectories formed by spatio-temporal activity in the honeybee AL 

(adapted from Galan et al. 2003).  (b) Identity and intensity clustering of spatio-temporal 

activity in the locust AL (adapted from Stopfer et al. 2003); arrows indicate the direction 

of increasing concentration. 
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V.2.5. Temporal evolution of pattern separability  

To illustrate the benefits of the proposed model, we compare the resulting pattern-

separability against that which is available (1) from raw sensor data, (2) following 

chemotopic convergence, (3) at the output of the OB network without lateral 

connections, and (4) at the output of the OB network with random lateral connections.  

Fig. 46(a-c) shows the temporal evolution of the separability measures Jodor, Jconc and 

Jbalance for each of these cases.  Fig. 46(a) indicates that chemotopic convergence 

provides better concentration-invariant separability than raw temperature-modulated 

signals.  On the other hand, Fig. 46(b) shows that random connections can in some cases 

provide better concentration discrimination than center-surround connections, but have 

significantly lower concentration-invariant separability as shown in Fig. 46(a).  Overall, 

center on-off surround lateral connections (three repetitions are shown using different 

initial weights) provides maximum contrast between odor patterns amongst the 

compared schemes, and yields maximum value for the joint objective function Jbalance as 

shown in Fig. 46(c).   
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Fig. 46: Comparison of the additive model of OB lateral inhibition with center-surround 

lateral connections (three repetitions are shown) against (1) raw temperature-modulated 

data, (2) following chemotopic convergence, (3) at the output of OB with no lateral 

connections, and (4) at the output of OB with random lateral connections (three 

repetitions).  (a) Concentration-invariant recognition measure Jodor, (b) concentration 

discrimination measure Jconc, and (c) balanced measure Jbalance. 
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(Fig. 46: continued) 

V.3. Validation on the Illumina dataset 

In this section, we characterize the center-surround lateral inhibition model on the 

Illumina dataset and present the improvements in odor separability achieved on this 
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dataset.  The microbead array response is chemotopically projected onto a GL layer with 

400 nodes, arranged as a 20x20 SOM lattice.  The outputs of the convergence model are 

then used as the input for the neurodynamic OB model.  The parameter a1 and a2 of the 

non-linear activation function are set to 0.0589 and 49.9999 respectively to match the 

dynamic range of the input signal from microbead arrays.  The appropriate lateral 

inhibition spread (parameter r) is determined experimentally in a manner similar to the 

previous study on the Selectivity dataset.  Results are shown in Fig. 47; separability 

between pairs of odors increases with the receptive field width till r=5.  For receptive 

field width greater than r=5, small variations in the inputs are amplified considerably 

increasing the within-class scatter. 
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Fig. 47: Discriminatory information of GL patterns as a function of receptive field width 

(r).  Since the dataset contains the response of the optical microbeads to a single 

concentration of five odors, the optimum center-surround width (r) can only be selected 

based on odor separability (Jodor). 
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V.3.1. Spatial patterning of microbead array responses 

In this section, we qualitatively analyze the improvements in pattern separability that 

result from the center on-off surround connections (r=5).  Fig. 48 (top row) shows the 

spatial patterns that result from sensory convergence at the input of the OB to five odors: 

(i) acetone (ACE), (ii) ehtyl alcohol (EA), (iii) ethyl hydroxide (Et-OH), (iv) methyl 

hydroxide (Me-OH) and (v) toluene (TOL).  Each odor generates a unique spatial pattern 

across SOM units.  Fig. 48 (middle row) shows the resulting spatial activities following 

stabilization of the center-surround lateral interactions.  ACE leads to heavy activation 

on four highly-localized regions (spatial code: 123’4).  EA and Et-OH produce similar 

activation as ACE in regions 2 and 4, but produce slightly different activation in regions 

1 and 3 (spatial code: EA - 1’234; Et-OH - 1’234).  Me-OH produces heavy activation of 

region 3 alone (spatial code: 3).  TOL produces heavy activation of region 1, 2 and 4 

(spatial code: 124).  The spatial patterns after center-surround interactions are sparser 

than the chemotopic odor maps and provide better odor separability.   
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Fig. 48:  Spatial maps at the input (top row) and output (middle row) of the OB network 

for the Illumina dataset.  The bottom row shows the four sparse coding regions that 

emerge as a result of the lateral interactions. 

V.3.2. Temporal patterning 

To study the temporal odor code, the 400-dimensional (20x20) OB model response is 

projected onto the first three principal components of the data, as shown in Fig. 49.  

Trajectories for each odor sample originate at nearby locations in state space.  As a result 

of center on-off-surround lateral connections, the activity for each odor slowly moves 

away from the initial location and settles into odor-specific fixed-point attractors.  The 

repeatability of the odor trajectories is illustrated by visualizing all twenty-five 

trajectories (five samples per odor) in the dataset.  These results are qualitatively similar 

to those obtained on the Selectivity dataset (Fig. 44). 
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Fig. 49:  Evolution of OB activity for the Illumina dataset along the first three principal 

components.  Twenty-five trajectories are shown, one per odor sample in the dataset.  

The initial points in the trajectories are the spatial maps at the input of the OB network, 

shown in Fig. 48 (top row).  Odor separability is improved as a result of lateral 

inhibition. 

V.3.3. Temporal evolution of pattern separability  

To illustrate the benefits of the proposed model, we compare the resulting pattern-

separability against that which is available (1) from raw sensor data, (2) following 

chemotopic convergence, (3) at the output of the OB network without lateral 

connections, and (4) at the output of the OB network with random lateral connections.  

Fig. 50 shows the temporal evolution of the odor separability for each of these cases.  

Similar to the results observed in the Selectivity dataset, center on-off surround lateral 
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connection provides maximum contrast between odor patterns amongst the compared 

schemes.   
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Fig. 50: Comparison of the OB network with center-surround lateral connections (three 

repetitions are shown) against (1) raw temperature-modulated data, (2) following 

chemotopic convergence, (3) at the output of OB with no lateral connections, and (4) at 

the output of OB with random lateral connections (three repetitions). 

V.4. Summary 

In this chapter, we have presented an additive model of lateral inhibition with center on-

off surround receptive fields to model the circuits at the output of the bulb.  This network 

is able to significantly reduce the overlap between the spatial odor patterns, and 

produces a sparser representation on a few selected mitral cells.  The spatial and 

temporal odor code resulting from the center-surround interactions are consistent with 
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recent results from neurobiology.  The next stage of processing involves synthetic 

processing of the odor signals in the cortex, and modulatory feedback to the bulb. 
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CHAPTER VI   

MIXTURE SEGMENTATION AND BACKGROUND SUPPRESSION 

THROUGH BULB-CORTEX INTERACTION 

 
The last two olfactory primitives are concerned with the recognition of odorants against 

complex backgrounds, and the identification of the constituents in an odor mixture.  

Several studies have suggested that cortical feedback to the bulb may play an essential 

role in achieving these computational functions.  Ambrose-Ingerson et al. (1990) have 

modeled the cortical feedback connections to account for hierarchical recognition of 

odors by humans.  In this model, cues common to a subset of odorants are recognized 

before those that are odorant-specific.  Li and Hertz (2000) have shown that centrifugal 

connections may cause odor-specific adaptation, leading to segmentation of odor 

mixtures.  Grossberg (1976) has proposed that cortical connections to the bulb may 

selectively filter the bulb input and cause resonance between the two regions.  Finally, 

Yao and Freeman (1990) have implicated these feedback connections with chaotic 

dynamics in the bulb.  In this chapter, we will present a model of olfactory bulb–cortex 

interaction, and show that two different computational functions can be achieved 

(mixture segmentation, weaker odor/background suppression) depending upon the 

learning rule used to establish the cortical feedback connections to the bulb: anti-

Hebbian or Hebbian, respectively.  We validate these computational models to handle 

odor mixture signals on simulated odor patterns.    
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VI.1.  Model of bulb-cortex interaction 

The olfactory bulb sends non-topographic and many-to-many projections to the 

olfactory cortex.  These convergent and divergent (many-to-many) projections suggest 

that cortical neurons detect combinations of co-occurring molecular features of the 

odorant, and therefore function as “coincidence detectors” (Wilson and Stevenson 

2003).  Fig. 51 illustrates the synthetic processing of odor signals through coincidence 

detection mechanism in the cortex.  Since the number of possible combinations to be 

detected is extremely large, Laurent (1999) has suggested that these cortical cells 

perform a random sampling of this space.  In our model with only few neurons, we 

simplify these circuits, and manually label the cortical cells to detect combinations of 

features for the odors in our datasets. 

Apart from these forward connections, the cortex is characterized by excitatory 

and inhibitory lateral connections that are known to play an important role in the storage 

of odors with minimum interference and pattern completion of degraded stimuli (Wilson 

and Bower 1988).  Together, these two architectural features of the piriform cortex 

(many-to-many connection from OB, and lateral association connections between 

cortical cells) form the basis for the synthetic processing of odors (Wilson and 

Stevenson 2003).   
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Fig. 51: Synthetic processing by the cortical neurons through coincidence detection 

mechanism.  (a) In response to a new odor the cortical neurons detect a particular 

combination of co-occurring molecular features identified by the mitral cells.  (b) 

Adaptation of the afferent and association connections through learning enables the 

cortical neurons respond to odors as a whole when presented subsequently (reprinted 

from Wilson and Stevenson 2003). 

We model these olfactory circuits using an additive model, similar to the 

olfactory bulb model presented in Chapter V, as follows:  
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where yj is the activity of cortical pyramidal neuron i, λi is the time constant of the 

neuron, ACki is the synaptic weight between neurons k and i obtained through Hebbian 

learning, P is the number of neurons, FF is the feedforward connectivity matrix 

established through Hebbian learning, and vj is the activity of bulb neuron j. 
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Feedforward connections FF from bulb to cortex are established through a simple 

Hebbian learning rule as follows: 

)()( HebbianVYFF Tδ=    (6.2) 

where Y is the matrix of cortical neuron outputs to different pure odors (row vectors 

manually labeled to recognized different odors), V is the matrix of bulb neuron outputs 

to pure odors (row vectors), and δ is a scaling parameter.   

Associational connections AC within cortex are established through a Hebbian 

update rule proposed in (Gutierrez-Galvez and Gutierrez-Osuna 2005) as follows:  
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where 1OY is the cortical response for odor O1, α and β are scaling parameters, which 

provide a necessary tradeoff between the first correlation term and the second 

decorrelation term.  This form of update has been shown to enhance the contrast between 

input patterns (Gutierrez-Galvez and Gutierrez-Osuna 2005).  In this case, this update 

rule results in associational connections such that neurons that code for at least one 

common odor have purely excitatory connections between them, and neurons that 

encode for different odors (no common odor) have purely inhibitory connections 

between them.  Excitatory lateral connections perform pattern-completion of degraded 

inputs from the bulb (Wilson and Bower 1988), whereas the inhibitory connections 

introduce winner-take-all competition among cortical neurons (Xie et al. 2001).   

The last component of the model involves feedback connections from the cortex 

to the bulb.  The cortical feedback is integrated to the OB model as follows: 
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where vj is the activity of bulb neuron j, τj is the time constant that captures the dynamics 

of the neuron, Lkj is the synaptic weight between neurons k and j, M is the number of 

neurons, Ij is the external input from the olfactory epithelium, FB is the feedback 

connectivity matrix, and yi is the activity of cortical neuron i. 

To model these feedback connections (FB) in equation (6.4), we use either anti-

Hebbian or Hebbian rule as follows: 
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where Y is the matrix of cortical neuron outputs to different pure odors (organized as 

row vectors), V is the matrix of bulb neuron outputs to pure odors (row vectors), and γ is 

a scaling parameter.   

In the case of anti-Hebbian learning, all connections are initialized to 0.  The 

anti-Hebbian update forms feedback connections between the cortical and the bulb 

neurons that respond to at least one common odor.  The resulting feedback from cortex 

inhibits bulbar neurons responsible for the cortical response, in a manner akin to the 

model proposed by Ambrose-Ingerson et al. (1990), resulting in the temporal 

segmentation of binary mixtures.   

In the case of Hebbian learning, all connections are initialized to –1.  The 

Hebbian update retains only those connections between cortical neurons and bulb 
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neurons that respond to different odors (no common odor).  The resulting feedback from 

cortex inhibits bulbar neurons other than those responsible for the cortical response, 

causing cortical activity to resonate with OB activity as suggested by Grossberg (1976).  

This type of resonance allows the model to lock onto a particular odor and suppress the 

background/weaker odor.   

VI.1.1.  Illustration of the bulb-cortex interaction 

Proof of concept for this model is best illustrated with an example.  Let the encoding of 

two simulated odors at the bulb be OBA=[1,0,0,1,1,0]T and OBB=[0,1,1,1,0,0]T, and the 

encoding at the cortex be OCA=[1,1,0,0,0,0]T and OCB=[0,0,1,1,0,0]T, respectively.   

Using these patterns, lateral connections in the OB (not shown in Fig. 52) and 

associational connections within cortex (shown in Fig. 52 (a)) were established through 

Hebbian learning as described in the previous section.  Time constants were set to 10ms 

and 5ms for bulb and cortical neurons, respectively.  Model parameters were set as 

follows: γ=1 and δ=0.25.   
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Fig. 52:  Bulb-cortex interaction.  (a) Lateral connections in OC are learned through 

Hebbian updates (single analytes used for training).  (b) Feedback connections 

established through anti-Hebbian updates.  (c) Feedback connections established through 

Hebbian updates. 

VI.1.2.  Case 1: Anti-Hebbian learning leads to temporal segmentation  

Anti-Hebbian feedback connections are shown in Fig. 52(b).  Note that these 

connections are the reverse of the forward connections in Fig. 52(a).  Following learning 

with pure odors, the model is exposed to a mixture of odor A and B [0.8, 0.5, 0.5, 0.6, 

0.8, 0.0]T.  As a result of lateral inhibition, OB activity for the stronger odor A 

suppresses the weaker activity of odor B.  Hence odor A is first recognized by the 

cortex.  Subsequently, feedback from cortex suppresses activity in the bulb due to odor 

A, allowing odor B to win the competition.  To illustrate this effect, Fig. 53 shows the 

activity in the OB and the OC over the course of several periods.  The activity of B1 and 
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B5, which code for odor A, become out of phase with B2 and B3, which code for odor 

B.  The common mode B4 is removed.  Further, the activity of C1 and C2, which code 

for odor A, becomes out of phase with C3 and C4, which code for odor B.  Hence anti-

Hebbian learning of centrifugal projections realizes temporal segmentation of odor 

mixtures in both bulb and cortex. 

Bulb Activity Cortex Activity

C1 (A)

C6

C2 (A)

C3 (B)

C4 (B)

C5

B1 (A)

B6

B2 (B)

B3 (B)

B4 (AB)

B5 (A)

A AB BAA B A AB A BB  

Fig. 53: Temporal segmentation of binary mixtures through anti-Hebbian feedback 

connections.  In response to a mixture of odors A and B [0.8, 0.5, 0.5, 0.6, 0.8, 0.0]T., the 

cortex first recognizes the stronger odor A.  Subsequently, feedback from cortex 

suppresses activity in the bulb due to odor A, allowing odor B to win the competition.  

This process is repeated, allowing recognition of mixture components in alternate cycles 

(see odor labels below). 
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VI.1.3.  Case 2: Hebbian learning leads to background suppression  

Hebbian feedback connections are shown in Fig. 52(c).  Following learning with pure 

odors, the model is exposed to a mixture of odors A and B [0.8, 0.5, 0.5, 0.6, 0.8, 0.0]T.  

In this case, cortical feedback suppresses the weaker background odor (B) immediately 

and resonates with odor A, as shown in Fig. 54. 
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Fig. 54: Suppression of background/weaker odor through Hebbian feedback connections.  

In response to a mixture of odors A and B  [0.8, 0.5, 0.5, 0.6, 0.8, 0.0]T, the cortical 

feedback suppresses the weaker background odor (B) and allows the stronger odor A to 

be easily detected. 
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VI.2.  Summary  

In this chapter, we have presented a neurodynamic model of bulbar-cortical interactions.  

The cortical neurons respond to odors as a whole, synthesizing the features detected by 

the OB model.  Evidence for this kind of processing has emerged recently.  Laurent and 

his colleagues (2005) have shown that Kenyon cells (cortical cells analogue in locusts) 

respond selectively to one or a few odors.  Fig. 55 shows the response of a single KC 

cell over time (columns) to different repetition (rows) of ten different odors.  The KC 

responds reliable to odor nine alone, clearly indicating that cortical neurons recognize 

one or at most a few odors (Laurent 2005).  This further supports synthetic odor 

processing in the cortex. 

To model the feedback from cortex to bulb both Hebbian and anti-Hebbian 

learning mechanisms were used.  Depending on the type of update rule used to learn 

these feedback connections, Hebbian or anti-Hebbian, the model realizes background 

suppression or mixture segmentation functions, respectively.  Anti-Hebbian feedback 

connections result in the identification of binary mixture components as a time series 

(Liang and Jinks 2001).  Hebbian feedback connections allow the olfactory cortex to 

selectively filter the background or weaker odor input from the bulb, in analogy with the 

selective attention mechanism proposed by Grossberg (1976).   
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Fig. 55:  Response of a single Kenyon cell (analogue of mammalian pyramidal cell) to 

ten different odors in locust’s mushroom body (analogue of mammalian cortex).   Rows 

show multiple repetitions to the same odor; columns show response of the cortical 

neuron over time.  Gray bar denotes the duration of odor exposure.  The recorded cell 

shows reliable response (shown as dots) only to odor nine, a result that suggests a more 

holistic processing occurs at the cortical level (reprinted from Laurent 2005). 
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CHAPTER VII  

INTEGRATION 

 
The objective of this chapter is to integrate the computational models of the olfactory 

signal processing primitives presented in the earlier chapters.  This integration is 

performed in two-stages.  First, we integrate the olfactory bulb primitives: chemotopic 

convergence, shunting lateral inhibition and additive center-surround lateral interactions, 

and study the benefit of having two levels of lateral inhibition in the bulb.  Next, we 

combine the integrated OB model with the cortical primitives to perform mixture 

segmentation and background suppression on experimental data.  We validate the 

integrated model using the Selectivity dataset, which includes temperature-modulated 

MOS sensor responses to single analytes at different concentrations, and to their binary 

and ternary mixtures.   

VII.1. Integrated model of the bulb  

A unified model of the olfactory bulb is shown in Fig. 56.  The high-dimensional odor 

code from the sensors is first transformed into an organized spatial pattern (i.e., an odor 

image) using the model of chemotopic convergence presented in Chapter III.  The odor 

images are further transformed in the olfactory bulb by means of two distinct lateral 

inhibitory circuits (Aungst et al. 2003).  First, the outputs of the convergence mapping 

are input to the shunting lateral inhibition model with global connections (Sache and 

Galizia 2002), which performs gain control.  The outputs of the gain control circuits are 
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subsequently input to the additive model of lateral inhibition with local center-surround 

connections (Sache and Galizia 2002).  These circuits enhance the sparseness and 

contrast of the odor patterns.   

Olfactory
epithelium

(transduction)

Olfactory bulb
(signal processing)

Piriform cortex
(storage/recognition)

Mitral neuron

Receptor neuron (1) Chemotopic
convergence 

(2) Global shunting inhibitory 
network

(3) Local Center-Surround 
lateral inhibition

PG cells

LOT

(4) Coincidence detection

(5) Cortical feedback

 

Fig. 56: Structure of the integrated model.  Receptor neurons in the olfactory epithelium 

converge onto the olfactory bulb in a chemotopic manner, forming the first organized 

representation of a stimulus: an olfactory image.   The odor images are further 

transformed in the olfactory bulb by means of two distinct lateral inhibitory circuits: a 

global gain control circuit followed by a local center-surround contrast enhancement 

circuit (Sache and Galiza 2002).  The output of the olfactory bulb is projected in a non-

topographic, many to many fashion onto the cortex.  These convergent and divergent 

(many-to-many) projections allow the cortical neurons to detect combinations of co-

occurring molecular features of the odorant and function as “coincidence detectors”.  

Feedback from cortex modulates the activity in the bulb. 
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VII.1.1. Validation on the Selectivity dataset 

To validate the integrated model of olfactory bulb, the temperature-modulated patterns 

for three analytes (acetone (A), isopropyl alcohol (B) and ammonia (C), at three different 

concentrations) are first chemotopically projected onto a GL layer with 400 nodes, 

arranged as a 20x20 SOM lattice.  The outputs of the convergence model (i.e., activity 

across the SOM lattice) are first input to the shunting inhibition model in equation 4.1 

with global connections (r=0.5), which performs pattern normalization.  The outputs of 

the gain control circuits are subsequently input to the center-surround circuit in equation 

5.1 with local connections (r=5).   

Fig. 57 (top row of each 3×3 image stack) shows the highly overlapping spatial 

patterns that result from sensory convergence at the input of the OB in response to the 

three analytes.  The spatial pattern following stabilization of the center-surround lateral 

interactions in equation (5.1) are shown in the middle row of each block.  As discussed 

earlier, the center-surround interaction improves the contrast between the spatial 

patterns.  However, due to its local nature, center-surround does not suppress the activity 

of mitral cells weakly activated in regions far from the peak activity (e.g., region 1 in the 

acetone map).  This makes the mechanism sensitive to noise.  Further, since these 

circuits amplify differences between odor patterns, they require a preprocessing stage to 

perform noise reduction and pattern normalization of the inputs (Aungst et al. 2003).  

This is precisely what is accomplished in the integrated model, where the global 

shunting-inhibitory layer first performs pattern normalization and noise reduction before 

the center-surround layer attempts to improve sparseness and contrast.  Fig. 57 (bottom 
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row of each block) shows the resulting spatial activity following stabilization of the 

global shunting inhibition and local center-surround lateral interactions.  It can be 

observed that only those regions corresponding to peak activity are used to encode each 

odor.  Note that the weakly activated region 1 for acetone and isopropyl alcohol, and 

region 5 for ammonia, are suppressed.   
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Fig. 57: Spatial maps after (a) chemotopic convergence (top row of each block), (b) only 

center-surround inhibition (middle row of each block), and (c) integrated OB network 

with shunting inhibition (model parameters B=10, D=0.1, r=0.5) and center-surround 

inhibition (model parameters: a1=0.064, a2=45.99, r=5).  Three blocks are shown 

corresponding to three odors: acetone (first block), isopropyl alcohol (second block) and 

ammonia (third block). 
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(Fig. 57: continued) 

Fig. 58 compares the odor separability between the raw data, chemotopic 

convergence and the three forms of lateral inhibition (shunting, center-surround and the 

combination of both).  Chemotopic convergence of pseudo-sensors averages out 

uncorrelated noise and enhances the signal-to-noise-ratio compared to that available in 

the raw data.  The shunting-inhibitory layer performs pattern normalization (L1-norm), 

which results in a decrease of the within-class scatter and an improvement in odor 
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separability.  The center-surround, on the other hand, produces more sparse and 

orthogonal patterns than those available at the input.  However, in the absence of 

concentration normalization, the center-surround also tends to emphasize discrimination 

among the various concentration levels of each odor, which increases the within-class 

scatter of each odor.  The integrated model combines the benefits of both inhibitory 

mechanisms and convergence, improving the separability between odor patterns 

significantly than those provided by any of those mechanisms individually.   
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Fig. 58: Comparison of odor separability between (a) raw-data, (b) chemotopic 

convergence, (c) shunting inhibition, (d) center-surround lateral inhibition and (e) 

integrated model. 
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VII.2. Integration with cortical primitives 

Next, we integrate the bulbar circuits with the cortical primitives presented in Chapter 

VI to perform mixture segmentation and background suppression on experimental data.  

The output of the integrated OB model is input to a cortical network with six manually 

labeled neurons.  Cortical feedback to the bulb is modeled using either anti-Hebbian or 

Hebbian update rules presented in equation 6.5. 

VII.2.1. Mixture segmentation with anti-Hebbian feedback 

In order to perform binary mixture segmentation on the experimental datasets, the OB-

OC network is initially trained using the three pure odors.  Feedforward and feedback 

connections are learned by considering only the steady-state response of the bulb to the 

single analytes at their highest concentrations (Fig. 57; 3rd row of each block).  The 

resulting Hebbian feedforward and anti-Hebbian feedback connections are shown in the 

Fig. 59; each image represents the connection from all bulbar units onto a particular 

cortical unit.  Note that the anti-Hebbian connections are the reverse of the forward 

connections.  The activity of the trained network with anti-Hebbian feedback 

connections when exposed to a binary mixture of isopropyl alcohol and ammonia and 

the ternary mixture is shown in Fig. 60.  As mentioned in section VI.1, anti-Hebbian 

feedback results in the removal of bulb activity that is responsible for activity in the 

cortex.  In the case of the binary mixture, isopropyl alcohol is first recognized in the 

cortex since it is the stronger odor in the mixture.  Subsequently, feedback from cortex 

inhibits bulb neurons responsible for this cortical activity, allowing ammonia to be 
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detected.  These segmentation results are in agreement with results from psychophysical 

studies on mixtures, which report recognition of components of some binary mixtures in 

series (Liang and Jinks 2001).   
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Fig. 59: Feedforward connections from bulb (left) and anti-Hebbian feedback 

connections from cortex (right).  Lighter areas in the Fig. identify bulbar neurons that 

send or receive connections from cortical neurons, which were manually labeled.  These 

connections were obtained using the steady-state response of the bulb to single analytes 

at their highest concentration.  Cortical neurons C1 and C2 detect Acetone, C3 and C4 

detect Isopropyl alcohol, and, C5 and C6 detect Ammonia. 
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Fig. 60: Segmentation of binary mixture of isopropyl alcohol and ammonia and the 

ternary mixture by anti-Hebbian cortical feedback.  Parameters are set as follows: τ= 

10ms, λ=10ms, γ=40 and δ=0.1.    

Similar behavior can be observed in the case of the ternary mixtures.  However, 

the region corresponding to acetone is inhibited at all times since it is common across all 

odors in the dataset.  This prevents identification of acetone in the ternary mixture and in 

other binary mixtures containing acetone (not shown).  Behavioral experiments in rats 

have shown that this kind of odor masking is also a common phenomenon while 
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processing some odor mixtures (Chandra and Smith 1998; Liang et al. 1989).  The 

proposed anti-Hebbian feedback mechanism also appears to be limited to the 

segmentation of binary odor mixtures whose sensor responses are relatively additive. 

VII.2.2. Background suppression with Hebbian feedback 

In order to perform background suppression, the OB-OC network is initially trained 

using the three pure odors at their highest concentration.  The resulting Hebbian 

feedforward and feedback connections are shown in Fig. 61.  Note that the Hebbian 

connections are complementary to the forward connections.  The activity of the trained 

network when exposed to the each of three binary mixtures is shown in Fig. 62.  In 

binary mixtures involving isopropyl alcohol, as well as in the ternary mixture, cortical 

feedback from the stronger odor (isopropyl alcohol) suppresses the weaker odor 

(acetone and ammonia, respectively).  In the binary mixture containing acetone and 

ammonia, cortical cells detecting ammonia receive greater input than those that detect 

acetone.  As a result, cortical activity suppresses acetone, in this case the weaker odor.  

The steady state OB activity for the three binary mixtures and the ternary mixture with 

and without cortical feedback is shown in Fig. 63.  Without cortical feedback, the 

regions corresponding to different constituents show some activity.  The Hebbian 

cortical feedback helps filter these inputs and lock on to the stronger odor in the mixture, 

in this case isopropyl alcohol. 
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Fig. 61:  Feedforward connections from bulb onto cortex (left), and anti-Hebbian 

feedback connections from cortex (right).  Lighter areas in the Fig. identify bulb neurons 

that send or receive connections from cortical neurons.  These connections were 

obtained using the steady-state response of the bulb to single analytes at their highest 

concentration.  Cortical neurons C1 and C2 detect acetone, C3 and C4 detect isopropyl 

alcohol, and, C5 and C6 detect ammonia. 
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Fig. 62: Background/weaker odor suppression by Hebbian cortical feedback.  Parameters 

were set as follows: τ= 10ms, λ=10ms, γ=1 and δ=0.1. 
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Fig. 63:  Comparison of activity in the bulb with and without Hebbian cortical feedback 

to the binary and ternary mixtures.  Without cortical feedback, regions corresponding to 

different constituents show some activity.  With cortical feedback bulbar activity 

resembles the response to the stronger odor alone. 

VII.3. Summary 

In this chapter we have integrated the models of the six olfactory signal-processing 

primitives presented in the earlier chapters.  The model of bulb with chemotopic 

convergence, shunting lateral inhibition and center-surround lateral inhibition enhances 

the separability between odor patterns significantly that those provided by any of those 

mechanisms individually.  This is a direct result of the global shunting network 

complementing the local center-surround circuits, which allows the combined model to 

synergistically enhance the contrast of the odor patterns.  Integration of the bulbar 

circuits with the cortical primitives allows the model to perform mixture segmentation 

and background suppression on experimental datasets. 
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CHAPTER VIII  

CONCLUSIONS 

 
In this dissertation, I have proposed a biologically-inspired approach for pattern 

recognition for chemical sensor arrays.  I have presented computational models of six 

signal processing primitives in the olfactory pathway: (i) population coding by olfactory 

receptor neurons (ORNs),  (ii) dimensionality and noise reduction through chemotopic 

convergence of ORNs, (iii) gain control through lateral inhibition from periglomerular 

(PG) cells, (iv) contrast enhancement through lateral inhibition from granule (GR) cells, 

(5) storage of odors in the olfactory cortex, and, (6) mixture segmentation and 

background suppression through cortical feedback.  These computational models were 

integrated into a neuromorphic architecture as shown in Fig. 64.   
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Fig. 64: Building blocks of a biologically inspired pattern recognition architecture for 

chemical sensor arrays.  Each of the six stages corresponds to a signal processing 

primitive in the olfactory pathway.   
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Our approach can be summarized as follows.  First a high dimensional odor 

signal was generated from chemical sensor arrays.  Three approaches have been 

proposed to generate a combinatorial and high dimensional odor signal: temperature 

modulation of metal-oxide sensors, a large population of optical microbead sensors, and 

infrared spectroscopy.  These approaches overcome the dimensionality mismatch 

between the artificial olfactory system and its biological counterpart.  In addition to 

these approaches, a receptor model has also been presented in Appendix B to generate a 

high-dimensional response from a low-dimensional feature space, such as the one 

available in conventional datasets with small sensor arrays (2-32 sensors).   

Following combinatorial coding, the resulting high-dimensional odor signal was 

subject to dimensionality reduction using a self-organizing model of chemotopic 

convergence.  This convergence transforms the initial combinatorial, high-dimensional 

code into an organized spatial pattern (i.e., an odor image), which decouples odor 

identity from intensity.  Odor images formed through convergence are however highly 

overlapping due to collinearity of sensor input, and require further processing.   

Two lateral inhibitory circuits, subsequently process the overlapping odor images 

obtained after chemotopic convergence.  The first shunting lateral inhibition circuits 

perform gain control enabling identification of the odorant across a wide range of 

concentration.  We have shown that the spread of lateral inhibition can be used to control 

the degree of concentration removal performed by this circuit.  The second circuit is 

modeled using additive model of lateral inhibition with center-surround connections.  

These lateral interactions improve contrast between odor images producing more sparse 
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and orthogonal patterns compared to that available at the input.  Furthermore, we have 

shown that the odor-evoked responses evolve continuously and settle into odor-specific 

fixed-point attractors.  These attractors have been shown to cluster by identity followed 

by intensity and are consistent with recent findings in neurobiology.  Integration of these 

two lateral inhibitory mechanisms resulted in significant improvement in odor 

separability, better than those provided by any of these lateral inhibition mechanisms 

individually.  This was a direct result of the global shunting network complementing the 

local center-surround circuits, which allows the combined model to synergistically 

enhance the contrast of the odor patterns.   

The sharpened odor image was stored in a simple cortical circuit, also modeled 

using an additive neurodynamics model.  We showed that depending upon the learning 

rule used to establish the cortical feedback to bulb: anti-Hebbian or Hebbian, mixture 

segmentation and weaker odor/background suppression were achieved, respectively.   

The proposed models are not tied to a particular input representation.  We have 

presented a receptor model in Appendix B, which allows these models to work with 

traditional feature space with fewer dimensions.  Also it should be noted that the 

identified signal processing primitives are not tied to any particular neural network 

model.  To illustrate this point, we have presented a spiking model of the olfactory bulb 

circuits in Appendix C. 

 The neuromorphic approach to signal processing presented in this dissertation 

represents a unique departure from current practices in the e-nose community.  We 

expect this approach to move the electronic nose technology beyond multivariate 
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chemical sensing and in the direction of true machine olfaction: relating 

sensor/instrumental signals to the perceptual characteristics of the odorant being sensed 

(structure-odor relationships).  A preliminary study in this direction was included in this 

dissertation involving our chemotopic convergence model and IR absorption 

spectroscopy.  Our results show that the chemical clusters obtained from the IR data 

match those from rat OB images.  More interestingly, each of these clusters uniquely 

identified a specific smell descriptor: Fruity, Cheese or Sweat, Fat or Citrus and Nuts.  

These results provide evidence supporting the proposed biologically inspired approach 

for machine olfaction. 

VIII.1.  Future work 

The computational models presented can also be used to gain insight into and predict the 

functions of various olfactory processing mechanisms: 

• The receptor model presented in Appendix B predicts that maximum separability 

is achieved using convergence mapping with receptor neurons whose receptive 

field width is neither too broad nor too narrow.  This is in agreement with 

theoretical work on biological and artificial chemical sensors, which indicates 

that maximum mutual information between the sensor response and the set of 

odors to be identified is obtained with an array of receptors/sensors that are tuned 

to 25-35% of the entire stimuli set (Alkasab et al. 2002).   

Our model has employed a homogeneous receptor population.  However, 

theoretical predictions by Alkasab et al., (2002) indicate that maximum mutual 
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information is achieved with a heterogeneous population of receptors/sensors.  It 

is therefore possible to further improve pattern separability by employing a non-

uniform distribution of receptor field widths. 

An additional but related study involves the trade-off between selectivity 

and generality.  In (Raman et al., 2005), we argue that receptors with narrow 

receptive fields allow effective discrimination of odors in the training set, 

whereas broadly-tuned receptors allow detection of new, unknown odors.  

Therefore, we predict that a non-uniform distribution of receptor-field width is 

necessary to strike an appropriate balance between selectivity and generalization 

capabilities.  A related prediction is that receptors may be sharply tuned if they 

detect odors in well-sampled regions of feature space to improve selectivity, 

whereas, receptors that identify odors in under-sampled regions may be broadly 

tuned to allow identification of new odors.  These predictions are yet to be 

confirmed by experimental studies. 

• Based on the results presented in Chapter III, we predict that convergence 

mapping combined with IR absorption spectra may be an appropriate method to 

capture perceptual characteristics of the odorants.  Though encouraging, our 

results with IR data are preliminary at best.  Further investigations are required to 

unveil the relationships that exist across the three representations of an odorant: 

stereo-chemical molecular features (Pelosi and Persaud 2000), olfactory bulb 

images (Johnson and Leon 2000), and organoleptic descriptors (Dravnieks 1985).   
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• Results from our shunting-inhibition model suggest that the width of the lateral 

inhibition can be used to control the amount of concentration normalization 

achieved at the input of the OB.  This prediction is consistent with recent work 

by Christensen et al., (2001), which suggests that local neurons in the antennal 

lobe (analogous to PG cells in the mammalian olfactory bulb) of sphinx moth can 

operate as multifunctional units, causing local inhibition at lower odor 

concentrations and global inhibition at higher concentrations.  Their study is 

particularly relevant to our work as it identifies a possible biological mechanism 

for modulating inhibitory width.  Our shunting inhibition model can therefore be 

used to predict the effect that modulation of inhibitory width may have during 

the processing of odor signals. 

• Results from the contrast-enhancement circuits indicate that removal of lateral 

inhibition between mitral cells through granule inter-neurons can reduce odor 

discriminability (refer to Figure 46, Figure 50).  These predictions are similar to 

those made by Bazhenov et al., (2001), and are consistent with recent 

experimental results on locusts (Stopfer et al. 1997; Laurent 1999).   

Further, the model predicts that excitatory lateral connections are 

responsible for spreading mitral cell activity and moving odor-specific attractors  

(Galan et al. 2003) away from their initial coordinates.  Hence removal of the 

glutamatergic (excitatory) lateral interactions between mitral cells should affect 

the temporal and spatial characteristics of the odor code, specifically causing 
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odor attractors to remain close to one another.  This prediction has yet to be 

confirmed by experimental studies. 

• The model of bulb-cortex interaction predicts two roles for the cortical feedback 

depending on the update rule used to establish these connections.  Anti-Hebbian 

connections result in the identification of binary mixture components as a time 

series.  On the contrary, Hebbian feedback allows the olfactory cortex to 

selectively filter the background or weaker odor input from the bulb, in analogy 

with the selective attention mechanism proposed by Grossberg (1976).   

Both mixture segmentation (Liang and Jinks 2001) and background 

suppression (Chandra and Smith, 1998; Liang et al. 1989) have been reported by 

psychophysical studies on the processing of odor mixtures.  A possible 

explanation may be that both types of connections co-exist and the type of 

feedback may be determined by the importance of the odor to the animal.  For 

example, cortical neurons that recognize odors of a prey or a predator may have 

Hebbian feedback to the bulb, whereas other less important odors may have anti-

Hebbian feedback.  This prediction has yet to be confirmed by experimental 

studies on animal models.   

Our modeling efforts in this dissertation research have focused on capturing the 

principal signal processing circuits in the early olfactory pathway.  Incorporation of 

adaptation mechanisms such as neurogenesis (Cecchi et al. 2002) and synaptogensis 

(Jefferis et al. 2004)] will allow the models to deal with additional problems, such as 

sensor drift.  Here, we anticipate that a specific case of synaptogenesis, the wiring of 
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newly born ORNs onto PNs (Jefferis et al. 2004), could be combined with disposable 

sensor arrays to prevent drift. 

This work has concentrated primarily on chemosensory signals.  However the 

developed models have a broader application to problems with high-dimensional data, 

such as face recognition, image processing and DNA microarray analysis.  Future 

research will investigate the issue of abstracting the models of chemotopic convergence 

and lateral inhibition circuits and formulating them as novel pattern recognition 

schemes.   
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APPENDIX A 

 IR ABSORPTIONS FOR DIFFERENT FUNCTIONAL GROUPS6

 
Functional Class Range (wave numbers) Assignment 
Alkanes 2850-3000 

1350-1470 

1370-1390 

720-725 

CH3, CH2 & CH 2 or 3 bands  

CH2 & CH3 deformation 

CH3 deformation 

CH2 rocking 

Alkenes 3020-3100 

1630-1680 

1900-2000 

880-995 

780-850 

675-730 

=C-H & =CH2 (usually sharp)  

C=C (symmetry reduces intensity)

C=C asymmetric stretch 

=C-H & =CH2 

(out-of-plane bending) 

cis-RCH=CHR 

Alkynes 3300 

2100-2250 

600-700 

C-H (usually sharp) 

C≡C (symmetry reduces intensity) 

C-H deformation 

Arenes 3030 

1600 & 1500 

 

690-900 

C-H (may be several bands) 

C=C (in ring) (2 bands) 

(3 if conjugated) 

C-H bending & 

ring puckering 

Alcohols & 
Phenols 

3580-3650 

3200-3550 

970-1250 

1330-1430 

650-770 

O-H (free), usually sharp 

O-H (H-bonded), usually broad 

C-O 

O-H bending (in-plane) 

O-H bend (out-of-plane) 

                                                 
6 http://www.cem.msu.edu/~reusch/VirtualText/Spectrpy/InfraRed/infrared.htm 
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Amines 3400-3500 (dil.  soln.) 

3300-3400 (dil.  soln.) 

1000-1250 

1550-1650 

660-900 

N-H (1°-amines), 2 bands 

N-H (2°-amines) 

C-N 

NH2 scissoring (1°-amines) 

NH2 & N-H wagging 

(shifts on H-bonding) 

Aldehydes & 
Ketones 

2690-2840(2 bands) 

1720-1740 

1710-1720 

1690  

1675  

1745  

1780 

1350-1360 

1400-1450  

1100 

C-H (aldehyde C-H) 

C=O (saturated aldehyde)  

C=O (saturated ketone) 

aryl ketone 

α, β-unsaturation 

cyclopentanone 

cyclobutanone 

α-CH3 bending 

α-CH2 bending 
 C-C-C bending 

Carboxylic 
Acids & 
Derivatives 

2500-3300 (acids) overlap 

C-H 

1705-1720 (acids) 

1210-1320 (acids) 

1785-1815 ( acyl halides)  

1750 & 1820 (anhydrides)  

    1040-1100  

1735-1750 (esters)  

    1000-1300  

1630-1695(amides) 

1395-1440 

1590-1650  

1500-1560 

O-H (very broad) 

C=O (H-bonded)  

O-C (sometimes 2-peaks) 

 

C=O 

C=O (2-bands) 

    O-C 

C=O 

    O-C (2-bands) 

C=O (amide I band) 

 

C-O-H bending 

N-H (1¡-amide) II band 

N-H (2¡-amide) II band 
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Nitriles 
Isocyanates,Isot
hiocyanates, 
Diimides, Azides 
& Ketenes 

2240-2260 

2100-2270 

C≡N (sharp) 

-N=C=O, -N=C=S 

-N=C=N-, -N3, C=C=O 
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APPENDIX B 

 RECEPTOR MODEL 

 
Our computational model has been validated on high-dimensional data from three 

chemical sensor arrays.  In this appendix we propose a computational model for 

olfactory receptors that can be used to generate high-dimensional signals from the low-

dimensional feature spaces typically obtained with e-nose instruments.   

To simulate an ORN population from a low-dimensional feature space, we 

present the following receptor model.  The receptor model transforms a n-dimensional 

sensor response [ A
n

AAA SSSS ,...,, 21= ], where is the response of sensor j to odor A, 

onto an m-dimensional response 

A
jS

[ ]A
m

AAA RRRR ,...,, 21=  across a population of m (m>>n) 

ORNs.  The selectivity of each simulated ORN is given by a n-dimensional unit-vector 

[ ni VVVV ,...,, 21= ] defined in feature space, as illustrated in Fig. 65(a).  The response of 

receptor i to odor A is then given by   

 ( )( )p
SV

A
A

ii
R

,
cos θσ ⋅= AS     (B.1) 

where |SA| is the length of the odor vector, which captures concentration information, 

A
i SV ,

θ  is the angle between the vectors iV  and AS , which is related to the identity of the 

odor, p defines the receptive field width of this receptor (refer Fig. 65(b)), and ( )⋅σ  is a 

logistic function that models saturation.  The cosine weighting of the form shown in 
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equation (B.1) is common in the primary motor neurons used to code movement 

directions (Georgopoulos et al. 1986), and has been suggested to be a primary 

requirement for performing vector computations on sensory inputs (Wilson 1999).   

Let us illustrate this mapping with an example.  Consider a synthetic problem 

with two gas sensors (1 and 2) and three receptors (A, B, and C).  The surface plot in Fig. 

66 shows the response of each simulated ORN to all possible combinations of sensor 1 

and sensor 2 responses.  Receptor A is selective to odors that produce high response in 

sensor 2 and low response in sensor 1.  Receptor B and C, which have similar selectivity, 

respond maximally to odors that generate high response in sensor 1 but low response in 

sensor 2.  Furthermore, the response of the receptors increases with an increase in 

concentration (represented by an increase in the amplitude of the sensor response) until 

saturation sets in.  By sampling the sensor space with a population of such simulated 

receptors, a high dimensional odor signal can be obtained that preserves the topology 

and proximity relationships of the sensor space.   
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Fig. 65: (a) Illustration of the receptor model: The selectivity of receptor neuron i is 

defined by the unit-vector Vi in a two-dimensional sensor space.  The response of this 

receptor to odor A depends on the angle ASiV ,
θ between Vi and the sensor response to the 

odor SA=[S1, S2]T.  (b) Effect of parameter p on the cosine weights: increasing values of 

p correspond to narrower receptive field widths. 
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Fig. 66: Illustration of the receptor mapping: Three receptors and their receptive field 

defined in a synthetic two dimensional sensor space. 

Experimental results 

In order to evaluate the proposed receptor model on experimental datasets, we use the 

temperature-modulated MOS sensor response from the Selectivity dataset.  To generate a 

low dimensional sensor response each transient is now decimated into 10 equally spaced 

measurements per sensor, generating a 20-dimensional input signal.  The sensor 

response (only one out of three replicates) to each of the three analytes (acetone (A), 

isopropyl alcohol (B) and ammonia (C)) at their highest concentration is used to train the 

system.  A population of 5,000 ORNs is simulated by aligning the ORNs in the direction 

of the three training odor vectors with the addition of uniformly distributed noise to each 
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dimension (±25% of the maximum value).  This is done to overcome the difficulty in 

uniformly sampling the 20-dimensional space with 5,000 ORNs and also to prevent 

overfitting.  Subsequently, the high dimensional ORN response is chemotopically 

projected onto a GL layer with 400 nodes, arranged as a 20x20 SOM lattice.  Fig. 67 

shows the simulated glomerular images (SOM activity) for the three analytes at three 

concentration levels.  The SOM learns three odor-specific loci corresponding to the three 

odors.  The concentration information is captured by the amplitude and spread of this 

pattern.  These results are qualitatively similar to those obtained in Chapter III. 

Acetone (A) 

Isopropyl
Alcohol (B)

Ammonia (C) 

C1 C3C2

 

Fig. 67: Glomerular images of the three analytes generated using an experimental 

database of temperature-modulated MOS sensors exposed to acetone, isopropyl alcohol, 

and ammonia at three different concentrations levels (Selectivity database).  A 

population of 5,000 sharply tuned receptor neurons (p=30) and a 20×20 SOM lattice was 

used to generate these spatial maps. 
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Broad vs. sharp tuning of receptors  

Next we use the model to study the relationship between receptor neuron tuning width 

and odor separability.  The tuning width of the simulated ORNs can be controlled by 

adjusting the value of the parameter p in equation B.1.  Large p values correspond to 

sharply tuned ORNs, whereas small p values correspond to broad receptive field widths.   

Fig. 68 shows the separability between the three analytes (all concentrations included) 

when computed from raw sensor data (20 dimensions), principal components (first two 

eigenvectors), and following convergence mapping.  Maximum separability is achieved 

using convergence mapping with receptor neurons whose receptive field width is neither 

too broad nor too narrow (p=8 to p=12).  This is in agreement with theoretical work on 

biological and artificial chemical sensors, which indicates that maximum mutual 

information between the sensor response and the set of odors to be identified is obtained 

by using an array of receptors/sensors that are tuned to 25-35% of the entire stimulus set 

(Alkasab et al. 2002).  Furthermore, our results show that convergence (for 6≤p≤15) 

leads to an increase in odor separability when compared with the raw signals or the PCA 

projection.  This improvement in signal-to-noise-ratio is again a direct result of the 

supervised nature of the convergence mapping, which leads to more orthogonal patterns 

than those available at the input. 
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Fig. 68:  Comparison of pattern separability using (a) raw sensor data, (b) PCA,  and (c) 

convergence (maximum separability is achieved in the region p=8 to p=12). 
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APPENDIX C 

SPIKING MODEL OF THE OLFACTORY BULB NETWORK 

 
The proposed signal-processing primitives have been demonstrated on a rate model of 

the olfactory pathway.  These primitives, however, are not tied to a particular neural 

network model.  To illustrate this point, this section presents a spiking model of the 

olfactory bulb circuits described in Chapter V.   

Each M cell is now modeled using a leaky integrate-and-fire spiking neuron 

(Gerstner and Kitler 2002).  The input current I(t) and change in membrane potential u(t) 

of a neuron is now given by: 
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Each M cell receives current Iinput from ORNs and current Ilateral from lateral connections 

with other M cells: 

    (4.2) 
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where Wij indicates the presence/absence of a synapse between ORNi and Mj, as 

determined by the chemotopic mapping, Lkj is the efficacy of the lateral connection 

between Mk and Mj, and α(k,t-1) is the post-synaptic current generated by a spike at Mk: 
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 ])1,([)1,()1,( synEtjutkgtk −−⋅−−=− +α   (4.3) 

g(k,t-1) is the conductance of the synapse between Mk and Mj at time t-1, u(j,t-1) is the 

membrane potential of Mj at time t-1 and the + subscript indicates this value becomes 

zero if negative, and Esyn is the reverse synaptic potential.  The change in conductance of 

post-synaptic membrane is: 
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where z(.) and g(.) are low pass filters of the form exp(-t/τsyn) and )/exp( syntt τ−⋅ ,  

respectively, τsyn is the synaptic time constant, gnorm is a normalization constant, and 

spk(j,t) marks the occurrence of a spike in neuron i at time t: 

 
⎭
⎬
⎫

⎩
⎨
⎧

≠
=

=
spike

spike
Vtju
Vtju

tjspk
),(0
),(1

),(    (4.5) 

Combining equations (4.3) and (4.4), the membrane potential can be expressed as: 

 

⎭
⎬
⎫

⎩
⎨
⎧

≥
<⋅−+−

=

++
−

==

thresholdspike

threshold

inputlateral

VtjuV
Vtjudttjutju

tju

C

jI

C
tjI

RC
tju

dt
tjdu

tju

),(
),()1,()1,(

),(

)(),(),(),(
),(

&

&

  (4.6) 

When the membrane potential reaches Vthreshold, a spike is generated, and the membrane 

potential is reset to Vrest.  Any further inputs to the neuron are ignored during the 

subsequent refractory period.  Model parameters are summarized in Table 1.   
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Table 1.  Parameters of the OB spiking neuron lattice 

Parameter Value Parameter Value 

Peak synaptic conductance (Gpeak)  0.01 Synaptic time constants (τsyn)  10 ms 
Capacitance (C) 1 nF Total simulation time (ttot)  500 ms 
Resistance (R) 10 MOhm Integration time step (dt)  1 ms 
Spike voltage (Vspike) 70 mV Refractory period (tref)  3 ms 
Threshold voltage (Vthreshold) 5 mV Number of mitral cells (N)  400 
Synapse Reverse potential (Esyn) 70 mV Normalization constant (gnorm) 0.0027 

 

Experimental Results 

The temperature-modulated sensor patterns for three analytes acetone (A), isopropyl 

alcohol (B) and ammonia (C), at three different concentrations are chemotopically 

projected onto a GL layer with 400 nodes, arranged as a 20x20 SOM lattice, based on 

the convergence model described in Chapter III.  The 400 outputs of the convergence 

model are used as the inputs to the spiking OB model. 

Fig. 69 shows the projection of membrane potential of the 400 M cells along 

their first three principal components.  Three trajectories are shown per analyte, which 

correspond to the sensor response to the highest analyte concentration on three separate 

days of data collection.  Similar to the results from the firing rate model, the trajectories 

originate close to each other, but slowly migrate and converge into unique odor-specific 

attractors, as illustrated by the insets in Fig. 69. 
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Fig. 69:  Odor-specific attractors from experimental sensor data.  Three trajectories are 

shown per analyte, corresponding to the sensor response on three separate days.   

To illustrate the coding of identity and intensity performed by the model, Fig. 70 

shows the trajectories of the three analytes at three concentrations.  The OB network 

activity evolves to settle into an attractor, where the identity of the stimulus is encoded 

by the direction of the trajectory relative to the initial position, and the intensity is 

encoded by the length along the trajectory.  This emerging code is consistent with the 

results generated using the firing rate model presented in Chapter V. 

These results show that that the proposed signal-processing primitives are not 

tied to any particular neural network model. 

    
     



 161

-300

-250

-200

-150

-100

-50

0

50

-50

0

50

100

150

200

250

300

350
-50

0

50

100

150

200

PC1PC2
PC

3

C3
C2

C1

A3

A1
A2

B2
B3

B1

-300

-250

-200

-150

-100

-50

0

50

-50

0

50

100

150

200

250

300

350
-50

0

50

100

150

200

PC1PC2
PC

3

C3
C2

C1

A3

A1
A2

B2
B3

B1

 

Fig. 70: Identity and intensity coding using dynamic attractors.   
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