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Abstract 

 

Tin telluride (SnTe) is a topological crystalline insulator with gapless surface states protected by 

mirror symmetry. In this work the potential of SnTe for application in Majorana devices is 

investigated, which is approached from both a modelling and a materials science perspective. 2D 

surface states and 1D edge states are reproduced using tight binding models. Besides that, in 

modelled nanowire energy dispersions indications of Dirac physics appear, but Dirac cones are 

buried in the bulk bands for practical nanowire diameters. Moreover, modelling of superconducting 

SnTe thin films shows 2 and 4 Majorana fermions at each end of a superconducting 𝜋-junction for 

the [111] and [001] surface facets respectively.  

For the first time ever SnTe nanowires are grown in MBE, at low temperatures and low fluxes. They 

can be grown so that no traces of Au are detected in EDX. Sizes vary with lengths of 300 nm − 5 μm 

and diameters of 15 − 100 nm. Nanowires with {110} and {112} growth directions are found. The 

nanowire surface facets are oxidized, which could perturb the topological crystalline insulator 

surface states on its surface. 
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1. Introduction 

 

A quantum computer uses quantum-mechanical phenomena like superposition and entanglement to 

do computations. In contrast to a classical computer, which uses classical bits that can represent 

either the values 0 or 1, the basic unit of a quantum computer is a quantum mechanical two-level 

system (qubit) that can exist in superpositions of the values 0 and 1. This means that a set of 𝑛 

qubits can be in a superposition of up to 2𝑛 different states, each representing a binary number. The 

qubit system is controlled and manipulated by applying unitary transformations to the system, which 

affect all states of the superposition simultaneously. Quantum gates form the basic units from which 

these unitary transformations are built up1.  

 

Following Moore’s law2, integrated chips are getting denser and denser, as the number of transistors 

on a chip doubles about every two years. At the same time, transistors are getting smaller and 

smaller, as Intel’s processors scheduled for 2019 will have feature sizes below 10 nm3, corresponding 

to about the combined size of 40 silicon atoms on a row. At these length scales quantum 

phenomena, such as quantum tunneling, can no longer be ignored. As opposed to classical 

computing, where quantum behaviour is unwanted, quantum computers use these quantum 

mechanical effects to enable complex computations. 

Quantum computers have major advantages over classical computers. First of all, due to their high 

degree of parallelism, a number of problems which cannot feasibly be tackled on a classical 

computer can be solved efficiently on a quantum computer. An example is Shor’s quantum 

algorithm4, that allows the factorization of a number with an exponential increase of speed. 

 

Besides that, quantum computers can be used to simulate physics in quantum simulators. Proposed 

by Richard Feynman, quantum simulators5,6 use a simple control quantum system to simulate the 

behavior of a more complex quantum system, which is possible when their Hamiltonians are the 

same. Quantum simulation cannot be performed by classical computers, because they deal less 

efficiently with quantum-mechanical phenomena. Quantum simulators could for example eventually 

be used to simulate the dynamics of protein folding, which is valuable in the development of drugs. 

 

Possible qubits proposed for quantum computing are photons, trapped atoms or ions and nuclear 

spins, however all of these qubits display the phenomenon of decoherence, which holds back the 

realization of quantum computers. Decoherence is the transformation, over time, of a quantum-

mechanical superposition state into a classical statistical mixture as a result of the quantum system 

interacting with the ‘environment’1. In this process the system loses its quantum mechanical 

behavior. The coherent or pure state and non-coherent or mixture state have different density 

operators. The former has ‘off-diagonal’ or ‘coherence’ terms, while for the mixture state these 

terms are absent. An example of decoherence can be found in Rabi oscillations, where a two-level 

system, such as a Rydberg atom, inside a cavity oscillates between a ground state 𝑔 and an excited 

state 𝑒 with frequency Ω. The Rabi oscillation, a quantum-mechanical phenomenon, is damped 

because of interaction with the environment. Fig. 1.1 shows a measurement of a Rabi oscillation7 of 

a Rydberg atom in a microwave cavity undergoing decoherence. 



6 
 

 

Fig. 1.1: Vacuum Rabi oscillations. The atom in state 𝑒 enters an empty resonant cavity. 𝑃𝐸 denotes 

the probability for detecting the atom in state 𝑒 as a function of the effective interaction time 𝑡𝑖. The 

period of the oscillation is 1/2𝛺, while the exponential decay is proportional to the decoherence time 

𝜏𝜑
7. 

 

The problem of decoherence can be tackled by quantum error correction (QEC). For example non-

destructive measurements can be performed on the qubits. Hereby errors can be detected before 

they accumulate and corrections can be made to the system within the coherence time8.5. However 

there are also proposals for qubits that are intrinsically free of decoherence and do not need 

quantum error correction. These qubits are called topological qubits, which could be realized by 

certain quasiparticles called Majorana fermions.  

 

The topological qubit or Majorana quasiparticle8, which is investigated in this research, does not 

interact with its environment; it is topologically protected against decoherence9. Unlike electrons, 

Majorana quasiparticles are their own antiparticle and they always come in pairs. A consequence of 

the former property of Majorana quasiparticles is that these particles have no observable energy, 

charge or spin. Also they only appear in exotic materials called topological superconductors. 

 

Quantum computing with Majorana quasiparticles or zero modes is done by braiding. The position of 

Majorana zero modes is exchanged which corresponds to a nontrivial transformation within the 

degenerate ground-state manifold, and represents a non-commutative operation which does not 

depend on the way and the details of its execution10. Because of the properties of braiding it is 

topologically protected, therefore minimizing decoherence and errors. 

 
From a materials point of view the topological qubit could be realized by 

semiconductor/superconductor hybrid nanowire, often made from a (heavy-element and high spin-

orbit) InSb nanowire on which superconducting aluminum is evaporated at some of the surface 

facets. The semiconductor/superconductor hybrid nanowire is brought into the topological phase by 

applying specific magnetic and electric fields, so that Majorana fermions are generated. This 

research looks into a different materials system called tin telluride (SnTe) which does not generate 
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Majoranas by itself, but due to its different topological properties then trivial heavy-element 

semiconductors could be a promising material for a topological qubit. In this research is investigated 

whether SnTe could be used in a similar way as InSb nanowires to generate Majorana fermions, but 

also whether it can be used in completely different ways such as in thin film geometries.  

 

SnTe is a topological crystalline insulator (TCI) protected by the crystal’s mirror symmetry. Its bulk is 

insulating, while gapless surface states exist on the surfaces that are mirror symmetric with respect 

to the {110} plane. In contrast to a topological crystalline insulator, a topological insulator (TI) has 

gapless surface states that are protected by time-reversal symmetry. TCIs and TIs could have major 

advantages over these heavy-element semiconductors. Proposals for TI Majorana devices have 

already been reported using for example Bi2Se3 nanowires or HgTe thin films.  

 

Both the theoretical aspects as the materials science aspects of the subject of SnTe Majorana 

devices are not yet heavily researched. Therefore this research will approach the subject from both 

the modelling as the materials science side. The theoretical side will focus on the modelling of SnTe 

dispersions in multiple geometries, with focus on thin films and nanowires, where the nanowire part 

is never reported in literature before. The modelling will be done using a tight binding model from 

literature. Additionally the normal state of SnTe also the superconducting state will be investigated 

which, in combination of interaction with magnetic field, is essential for Majorana devices. Finally 

topological invariants and conductance calculations will be treated shortly. 

The experimental part of this research will focus on the growth of nanowires. This will be done using 

a MBE system which was not reported in literature up till now. Growing SnTe nanowires in MBE is 

promising in improving the quality of the SnTe nanowires by reducing their spontaneously emerging 

p-dopant levels due to growth at lower temperatures. 

 

In this report the modelling and growth sections are not strictly separated, but the modelling part is 

central in the first sections of each Chapter, while for the last sections of each Chapter the growth 

parts are central. The report is built up so that in Chapter 2 the theory of topological (crystalline) 

insulators, Majorana devices and molecular beam epitaxy of SnTe are discussed. In Chapter 3 the 

experimental methods are discussed, starting with the tight-binding approach and SnTe bulk 

dispersion calculations to gain confidence into the model. In section 3.2 all considerations relevant 

to the MBE setup and substrate processing are discussed. This includes discussions on the choice of 

effusion sources and the means of temperature monitoring during growth etc. In Chapter 4 the 

results of the tight binding simulations on SnTe are discussed, where section 4.1 focusses on the 

normal state and section 4.2 treats the superconducting state in which Majorana fermions emerge in 

certain geometries of the material.  Finally in section 4.3 the growth results acquired after about 40 

days of growth are reported. Here growth under different growth conditions is discussed such as 

different temperatures and material fluxes. This is supported by SEM and TEM microscopy studies. 
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2. Theory  

 

In this Chapter first in section 2.1 the special properties of topological insulators (Bi2Se3, HgTe) and 

topological crystalline insulators (SnTe, Pb1-xSnxSe) are discussed. These properties can be used for 

new Majorana devices, which are discussed in section 2.2. Finally in section 2.3 the basic concepts 

molecular beam epitaxy of SnTe is discussed. 

 

2.1 Topological (crystalline) insulators: SnTe 

 

Topological insulators1-2 (TIs) are crystalline or non-crystalline materials that are insulating in the 

bulk but have conducting surfaces. An example is the surface of a 3-dimensional TI, where the bulk 

has a finite value for a certain topological invariant and the vacuum’s topological invariant is zero. 

On the interface between the bulk and the vacuum, which is the surface of the TI, gapless surface 

states appear. The topological invariant for a TI, which is the 𝑍2 topological invariant3, can be 

calculated from the Hamiltonian of the system and determines whether the system is topological or 

not. 

In an inversion-symmetric material the 𝑍2 topological invariant only has a non-trivial value when the 

dispersion of the material shows band inversion. This means that the valence and conduction bands 

switch parity in comparison with the topologically trivial case4. The highest valence-band is then of 

even parity and the lowest conduction band is of odd parity. This band inversion is theoretically 

predicted for heavy-element materials such as HgTe and Bi2Se3, which are materials with a high spin-

orbit coupling. 

Fig. 2.1a-c) show the crystal structure of the 3D topological insulator Bi2Se3. The bandgap of Bi2Se3 is 

theoretically calculated to be in the range of 0.24−0.3 eV5,6. Fig. 2.1d) and 2.1e) shows the single 

Dirac cone in the band structure corresponding to the conductive surface states of Bi2Se3 as 

measured using angle-resolved photoemission spectroscopy (ARPES). The band structure is shown as 

a function of two different directions in momentum space. 
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Fig. 2.1:  (a) Crystal structure of Bi2Se3 with three primitive lattice vectors denoted by 𝑡1,2,3. (b) Top 

view along the 𝑧-direction. (c) Side view of a quintuple layer structure. (d,e) High-resolution ARPES 

measurements of surface electronic band dispersion on Bi2Se3. Electron dispersion data measured 

with an incident photon energy of 22 eV near the �̅�-point along the �̅� − �̅� (d) and  �̅� − �̅� (e) 

momentum space cuts. Figures are reproduced from ref. 5 and 6. 

 

In contrast to TI’s, topological crystalline insulators7-8 (TCIs) are (narrow bandgap) semiconductors 

that have gapless surface states which are protected by the crystal symmetry of the periodic lattice. 

A TCI cannot be deformed into a topologically trivial insulator without breaking the particular crystal 

symmetry. The classification of TCIs is still in development55-56, due to the large amount of different 

crystal symmetries and since combinations with 𝑇, 𝑃 and 𝐶 symmetry, which are the protecting 

symmetries of TIs, can be made. Due to a principle called bulk-boundary correspondence, only 

surfaces that preserve the same symmetry as the bulk are gapless. TCIs are theoretically predicted 

for the SnTe class of materials14-18, transition metal oxides with a pyrochlore structure9 and anti-

perovskite materials10. 

 

Several TCIs are experimentally verified in the SnTe class of IV-VI semiconductors. This class contains 

pure and alloyed materials having the formula Pb1-xSnxTe and Pb1-xSnxSe and they are only predicted 

to be TCIs in their cubic rocksalt phase. Fig. 2.2 shows the rocksalt crystal structure of SnTe.  

Pb1-xSnxTe is predicted to be topologically non-trivial for 𝑥 ≳ 0.411. However for temperatures below 

the ferroelectric temperature 𝑇𝑐 it goes from the rocksalt to the rhombohedral crystal phase, 

therefore becoming topologically trivial (also called non-topological). Pb1-xSnxSe is topologically non-

trivial for 0.23 ≲ 𝑥 ≲ 0.412-13. It goes from the rocksalt to the rhombohedral crystal phase for 

(a) (c) 

(d) (e) 

(b) 
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𝑥 ≳ 0.413. The pure materials PbTe and PbSe are topologically trivial. Their bandgap is band-inverted 

in comparison to the pure rocksalt forms of the SnTe and PbSnSe.  

 

As opposed to TIs, for which the Dirac cones are protected by time-reversal symmetry, for SnTe-type 

TCIs the Dirac cones are protected by mirror symmetry with respect to the {110} family of planes13. 

The valence-band maxima and conduction-band minima are located at four equivalent 𝐿 points in 

the Brillouin zone. In the vicinity of the 𝐿-points the band structure of for example the non-trivial 

SnTe shows band inversion with respect to the trivial PbTe. This band inversion means that for PbTe 

the eigenstates in the bottom of the conduction band are dominated by the orbitals of the Pb atom, 

while the top of the valence band is dominated by the Te atom. However for SnTe this behavior is 

inverted near the 𝐿-points as the top of the valence band is dominated by the Sn atom and the 

bottom of the conduction band is dominated by the Te atom. This band inversion will also be shown 

in the surface state calculations in section 4.1.1. 

 

Materials in the SnTe class are no TIs, because band inversion takes place in an even number instead 

of odd number of points in the Brillouin zone. This means that the topological invariant for TIs, the 

𝑍2 topological invariant is trivial for SnTe. However the crystal structure of SnTe is a face-centered 

cubic structure with a basis of two atoms, also called a rocksalt structure. This crystal structure is 

mirror symmetric with respect to the {110} plane, i.e. the Hamiltonian of this system under mirror 

operation 𝑀 satisfies 

𝑀𝐻(𝑘1, 𝑘2, 𝑘3)𝑀
−1 = 𝐻(−𝑘1, 𝑘2, 𝑘3)     (2.1) 

in which 𝑘1 is along the direction perpendicular to the [110] plane and 𝑘2 and 𝑘3 are parallel to this 

plane. Therefore on the [110] plane, where 𝑘1 = 0, the Hamiltonian commutates with the mirror 

operator, i.e. [𝐻,𝑀] = 0. Due to this fact a different topological invariant can be defined called the 

mirror Chern number. It has been shown that the mirror Chern number of PbTe 𝐶𝑀 = 0, while for 

SnTe it is 𝐶𝑀 = −213-14. 

 

  

Fig. 2.2: Rocksalt crystal structure of SnTe.  
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2.2 Comparison of different devices to create Majorana fermions 

 

In this section Majorana devices are discussed. First in section 2.2.1 superconductor-semiconductor 

hybrid Majorana wires are discussed, which are heavy-element nanowires such as InAs and InSb in 

which superconductivity is induced by for example Al. These nanowires are promising candidates for 

Majorana devices. However TI/TCI nanowires or thin films could be a more reliable platform for 

these Majorana devices. Therefore in section 2.2.2 the application of TI nanowires in Majorana 

devices is discussed. Finally in section 2.2.3 quantum spin Hall Majorana devices are discussed, 

which will be applied later in section 4.2.3 on SnTe thin film superconducting junctions.   

 

2.2.1 Superconductor-semiconductor hybrid nanowires 

 

Topological quantum computing is not yet possible, as braiding of Majorana fermions has not yet 

been achieved. However the observation of the Majorana quasiparticle itself, has been reported19. 

The Majorana zero mode can be detected in tunneling spectroscopy experiments. In such an 

experiment a topological superconductor, realised by a hybrid material of a Rashba spin-orbit 

nanowire and a 𝑠-wave superconductor, is contacted between metal source and drain contacts, as 

shown in Fig. 2.3. In the conductance measurement of the Majorana wire a resonant peak quantized 

at a differential conductance of 
𝑑𝐼

𝑑𝑉
=

2𝑒2

ℎ
  will appear in the weak tunneling limit, independent of the 

tunnel barrier strength20. This is due to the resonant Andreev reflection caused by the Majorana 

particle located in the middle of the normal-barrier-superconductor junction. The semiconductor 

nanowire used in this experiment needs to show ballistic transport21 and must therefore be defect-

free. Besides that, the spin-orbit energy and the 𝑔-factor need to be large. The relevant parameters 

for the semiconductors and superconductors that are typically used in Majorana devices are listed in 

Table 2.122.  

The nanowire can be brought into the topological phase by applying a magnetic field parallel to the 

wire and an electric field perpendicular to the wire. The topological phase, in which Majorana 

fermions appear on the ends of the nanowire, is satisfied when the Zeeman field 

𝐸𝑧 > √∆2 + 𝜇2,    (2.2) 

where ∆ is the superconductive gap induced by the superconductor into the semiconductor and 𝜇 is 

the chemical potential with respect to the bottom of the conduction band.  

 

 

 

 

 



13 
 

 
Fig. 2.3: Schematic of Majorana wire experiment19. The yellow contacts are the source (V) and drain 

(I) contacts. The red ‘tunnel-gate’ contacts set the height of the tunneling barrier between the normal 

contact and the topological superconductor. The blue contacts control the chemical potential of the 

nanowire. The Majorana fermions at the normal-superconductor interface and at the other end of 

the nanowire are indicated by an ′𝑀′. 

 

Table 2.1: Parameters of semiconductors and superconductors typically used in Majorana devices22. 

Semiconductors InAs InSb 

spin-orbit energy 0.05 – 1 meV 0.05 – 1 meV 

g-factor 8 – 12  40 – 50  

Superconductor Al NbTiN 

type type I type II 

gap ∆ 0.2 meV 3 meV 

critical field 𝐵𝑐 10 mT 10 T 

𝑇𝐶  1.2 K 15 K 

 

To understand how the magnetic and electric fields bring the nanowire in the topological phase, now 

the dispersion of the Majorana wire is discussed in the 1D approximation. This is done by looking at 

the effects of a magnetic field and spin-orbit coupling separately. In Fig. 2.4a) the effect of only a 

Zeeman field on a nanowire is illustrated. When starting with a spin-degenerate parabolic 

dispersion, the Zeeman field shifts the different spin-branches upward or downward in energy. The 

spins of both bands are opposite and aligned parallel to the nanowire. In Fig. 2.4b) the effect of only 

the Rashba spin-orbit coupling, which scales with the applied electric field, is illustrated. When 

starting again with the spin-degenerate parabolic dispersion, the spin-orbit coupling splits the 

parabola in the 𝑘-direction, with the spins of both parabolas opposite but now aligned perpendicular 

to the nanowire. In Fig. 2.4c) the combined effect of the Zeeman field and the spin-orbit coupling on 

the nanowire dispersion is illustrated. The dispersion is now similar to the case without Zeeman field 

(Fig. 2.4b)), but now a Zeeman gap is opened where the parabolas used to intersect. Also now both 

bands have an opposite spin, aligned between perpendicular and parallel to the nanowire. Note that 

when the chemical potential is inside the Zeeman gap in Fig. 2.4c), the chemical potential intersects 

the bottom band at two points with a different spin and opposite momentum. This situation is 

similar as is seen in a topological insulator nanowire where (see section 2.2.2), if the chemical 

potential is in the gap of the TI, it will intersect the dispersion at two points with opposite spin and 

opposite momentum. 

 

 

M 

M 
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a)    b)    c) 

Next the superconductivity is added to the dispersion of Fig. 2.4c), which can for example be induced 

in the semiconductor by a layer of NbTiN or Al, which are 𝑠-wave superconductors. An 𝑠-wave 

superconductive coupling has the effect that a mirror image of the dispersion, with respect to the 

Fermi level, is superimposed to the original dispersion. On top of that, a superconducting gap of size 

2Δ proportional to the strength of the superconducting coupling, is opened up around the Fermi 

level. The topological state is achieved by placing the chemical potential inside the Zeeman gap. Fig. 

2.5 shows the resulting dispersion. The dispersion is called topological due to its band inversion: The 

bands above the superconducting gap are hole-like (near 𝑘 = 0) while the bands below the 

superconducting gap are electron-like. This is opposite to the normal case in semiconductor where 

above the Fermi level states are electron-like, while below it they are hole-like. 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2.4: From left the right, nanowire dispersion with only Zeeman field (Kitaev limit), with only spin-

orbit coupling (topological-insulator limit without Zeeman field) and with spin-orbit coupling and 

Zeeman field combined (topological-insulator limit without Zeeman field). Figures are reproduced 

from ref. 23.  

 

 

 

 

  

 

 

 

 

 

 

 

 

Fig. 2.5: Nanowire dispersion with spin-orbit coupling and Zeeman field combined and induced 𝑠-

wave superconductivity. Figure is reproduced from ref. 24. 
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2.2.2 Topological insulator Majorana wires 

 

In this section the application of topological insulators for Majorana devices is investigated. 

Topological insulators have been compared with Rashba spin-orbit semiconductors by Cook and 

Franz25-26. In both cases a magnetic field is needed to bring the nanowires into the topological phase. 

Fig. 2.6 shows the setup for the TI nanowire, where a magnetic field �⃑�  is applied along the nanowire 

axis. Fig. 2.7a) shows the modeled dispersion of a topological insulator like Bi2Se3 without magnetic 

field25. It can be seen that the Dirac cone is actually not there without a magnetic field. A magnetic 

flux through the nanowire cross section of approximately a half-integer multiple of the magnetic flux 

quantum 𝛷0 =
ℎ

𝑒
  is needed to realize a 1D topological superconductor on the topologically 

protected surface of the nanowire.  

 

 

Fig. 2.6 Schematic of a TI Majorana nanowire with a magnetic field �⃑�  applied along the nanowire 

axis25. 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2.7: Surface-state excitation spectra 𝐸𝑘𝑙 of a topological insulator without induced 

superconductivity for various values of magnetic flux 𝛷 = 휂𝛷0 = 휂
ℎ

𝑒
. Figures are reproduced from 

ref. 25. 

 

  

a) b) c) 
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Fig. 2.8 shows the results of simulating a TI nanowire with 6 × 6 cross-section, where a model by Fu 

and Berg27 was used to model the Hamiltonian of the topological insulator. To simulate the magnetic 

field a Peierls substitution (section 4.1.4) and Zeemann Hamiltonian (section 4.1.4) were 

implemented, while a BdG Hamiltonian was used to include 𝑠-wave superconductivity (section 

4.2.1). 

  
Fig. 2.8: (a) Energy bands for an infinitely long TI wire with a 6 × 6 base in the SC state with 휂 =

0.49, 𝜇 = 0.09, 𝛥0 = 0.08, and 𝑔 = 0 (solid lines), and the energy levels for a 𝐿 = 36 finite-length 

wire with open boundary conditions (red circles) obtained by exact numerical diagonalization. (b) 

Three lowest positive energy eigenvalues obtained by the Lanczos method as a function of 𝐿. Figures 

are reproduced from ref. 25. 

 

The main advantage of using topological insulators instead of high spin-orbit semiconductors for 

Majorana devices is the larger energy range on which the nanowire is topological. For the 

topological phase to occur in a semiconductor nanowire the chemical potential must be tuned 

exactly so that it lies inside the Zeemann gap, whose typical size is ~1 meV or less in a 1 T magnetic 

field. However in a TI the nanowire is in a topological phase whenever the chemical potential is 

inside the bulk gap. For a TI such as Bi2Se3 the typical tuning range of the chemical potential is then 

as high as ~300 meV. This tuning is important because the small tuning range of semiconductor 

nanowires seems to cause problems in experiments. In a research13 of semiconductor Majorana 

wires many (>60) devices were tested, out of which 11 devices were selected. Only 2 of these 

devices13 could be brought into the topological phase by tuning the chemical potential in the 

Zeemann gap using a back-gate. These problems arise because the back-gate often only allows to 

tune the chemical potential in a certain range, which may not be enough to achieve the topological 

phase. Thus the tuning range of the chemical potential in which the nanowire is topological is 

important to improve yield when fabricating Majorana devices. 

  

  a) b) 
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2.2.3 Superconducting quantum spin Hall insulators 

 
As will be discussed in section 4.1.2 the SnTe [111] thin film is a quantum spin Hall insulator (QSHI). 

There are multiple proposals and experimental advances for the detection and braiding of Majorana 

fermions in QSHIs28-30. The geometries used to generate Majoranas in QSHI thin films seem to be 

more complicated than the proposals for TI nanowires. As proposed in literature30 Majorana 

fermions can be generated at superconductor/QSHI/superconductor junctions. Fig. 2.7a) shows a 

QSHI at the edge of a disc. Pairs of edge states run over the inner and outer edges of the disc. The 

whole outer edge of the disc is brought into contact with a superconductor with superconducting 

order parameter ∆, except for a part of the edge of length 𝐿, which we’ll call the junction. By 

introducing a magnetic flux Φ though the hole in the disc a superconducting phase difference 𝜑 is 

generated at both sides of the junction. This phase is realized by including it as a phase term in the 

superconducting order parameter ∆ = ∆𝑒𝑖𝜑. When this phase difference is exactly 𝜑 = 𝜋, 1 

Majorana fermion is generated at each end of the junction.  

 

 

Fig. 2.7: A S/QSHI/S junction in a RF SQUID geometry where the QSHI forms a Corbino disk30. 
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2.3. Molecular beam epitaxy of SnTe and Pb1-xSnxTe 

 

In this Chapter the results of literature study on MBE growth of Pb1-xSnxTe thin films and nanowires 

are discussed. In section 2.3.1 the basic concepts of MBE are discussed and the important parts of 

the machine are shown. Then in section 2.3.2 the choice of substrate is discussed, mostly in the 

context of thin film growth. Next in section 2.3.3 the basic concepts of nanowire growth and 

relevant phase diagrams for SnTe nanowire growth are discussed. Finally section 2.3.4 treats the fact 

that SnTe is generally found to be p-doped spontaneously.  

 

2.3.1 General introduction to molecular beam epitaxy 

 

The growth method used in this research is molecular beam epitaxy (MBE). MBE is an epitaxial 

process by which growth of materials takes place under ultra-high vacuum (UHV) conditions. 

Material is grown on a heated crystalline substrate by the interaction of adsorbed species supplied 

by atomic or molecular beams31. To obtain high quality materials the deposits should have the same 

crystalline structure of the substrate or a structure with similar symmetry and lattice parameters. 

The beams generally have thermal energy and are produced by evaporation or sublimation of 

suitable materials contained in ultra-pure crucibles.  

 

An advantage of MBE is that diagnostic techniques monitoring the growth, such as reflection high-

energy electron diffraction (RHEED), are available inside the growth chamber. Also growth 

temperatures can be lower than other growth method such as for example metalorganic vapour-

phase epitaxy (MOVPE). This is because growth precursors are supplied in elemental form so that 

they do not have to be dissociated or cracked anymore. This is needed for example for the growth of 

InSb in MOVPE where among others the precursor tri-methyl-indium is needed. The result of these 

lower growth temperatures is a reduced amount of thermodynamical defects.  

Another interesting property of MBE is that during growth the composition or doping of structures 

can be varied in well controlled abrupt or continuous profiles. This feature makes it possible to grow 

for example quantum wells, in which carriers are confined in 2D or 3D regions with sizes smaller or 

comparable to the de Broglie wavelength of carriers32. 

 

Fig. 2.8a) shows a schematic view of the MBE growth chamber. It is a vacuum sealed stainless steel 

vessel with on the inside cryopanels kept at liquid nitrogen temperature to remove contaminants 

from the growth. The cryopanels also thermally insulate the different effusion cells. The effusion 

cells are at the bottom of the MBE system and produce molecular beams pointed upward in the 

direction of the substrate. Shutters are mounted above the openings of the effusion cells so that 

molecular beams can be switched on and off instantly. A substrate holder heatable up to several 

hundreds of ℃ is located in the middle of the chamber pointing downward to the effusion cells. It is 

mounted to a manipulator that can rotate the sample during growth. A loadlock system allows for 

the introduction and extraction of wafers into and out of the growth chamber without breaking the 

UHV. In section 3.2.3 we discuss how UHV is reached. 

 

 

 

 

Au-Te phase diagram  
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Fig. 2.8: (a) Schematic view of the MBE growth chamber.32(b) Photo of our III/V and IV/VI MBE 

reactors. 

 

In IV-VI MBE constituents are usually supplied in the form of compound effusion sources such as 

PbTe, PbS and SnSe since the compounds evaporate mostly in the form of binary molecules57-59. 

However for some IV-VI materials such as GeTe and SnTe the binary dissociates quickly. This results 

in more Sn on the target substrate then Te since Te is volatile and Sn sticks to the surface. Therefore 

an additional small Te flux is needed to retain the stoichiometry of the layers. In our case elemental 

effusion sources are used. Stoichiometric layers are formed when a sufficient excess of group VI flux 

is supplied to compensate the much higher reevaporation rates of the VI elements compared to 

those of the group IV elements. See also section 5.2 for the reevaporation rates of group IV and VI 

elements and compounds. 

 

The effusion temperatures in our growth are typically between 980 and 1200 ℃ for Sn and between 

285 and 310 ℃ for Te. For the Te source a cracker cell is used. The valved cracker cell, whose 

needle valve tip is kept at 650 ℃, effectively modulates the flux. The Te beam passes through a 

needle valve, made of heat resistant Pyrolytic Boron Nitride (PBN), which can be opened and closed. 

A special heating system is attached to the top of the cell for much higher temperatures than the 

evaporation temperature. Insulation parts are used to minimize crosstalk between the two heating 

stages. With our system very low fluxes of material can be achieved.  
 

2.3.2 Substrates and Pb1-xSnxTe film growth 

 

For the choice of substrate it is first of all important that the substrate is lattice matched with the 

material to be grown. Lattice matching means that the lattice constant and the crystal structure, e.g. 

zinc blende, wurtzite or rocksalt, are the same. Moreover the place in the periodic table of elements 

of the materials should be the same. Otherwise a layer of trapped charges can form on the interface 

of the substrate and the grown epitaxial crystal. Besides lattice matching, it can be important that 

Te Control valve 

(0 turns = closed, 

14 turns = open) 

Te Cracker Zone 

Te Crucible 

Sn Crucible BandiT light 

source 

BandiT 

detector 

Load-lock 
  

Substrate 

manipulator 
  

Cryoshrouds 
  

Shutters 
 

Rotating substrate holder 

and heater 
  

a) b) 
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the substrate, and if present a capping layer, have a higher bandgap than the crystal to be studied. 

Hereby charge carriers can be confined to the target material and electronic transport in this 

material can be investigated. In Fig. 2.9 the lattice constant of various semiconductors and 

substrates are plotted with a lattice parameter close to the lattice parameter of SnTe (0.63 nm). 

Finally thermal expansion coefficients 𝑘 of the grown materials should be comparable so that stress 

emerging during cooldown after growth at high temperature is reduced. 

 

In literature different substrates are used to grow IV-VI materials like Pb1-xSnxTe. The most used are 

BaF2 (111), IV-VI substrates, KCl and NaCl, silicon, GaAs and CdTe. For the growth performed in this 

report substrates were mostly chosen because of their good availability and at least to some extent 

due to their crystal symmetry. For example for GaAs the [001] substrate was used instead of the 

[111] substrate because SnTe nanowire growth in the [001] direction was expected. Namely the 

[001] surface is expected to have the lowest energy of formation due to the lowest amount of 

dangling bonds. However less effort was put to achieve the perfect lattice matching since lattice 

mismatching is less important for nanowires than for thin films. This is because nanowires can relax 

stress caused by lattice mismatching much easier than thin films. The following study of lattice 

matched growth may thus not be directly relevant for SnTe nanowire growth, however will be 

important for eventual thin film growth in the future or further attempts to improve the nanowire 

growth.  

Relevant properties of commonly used substrates for Pb1-xSnxTe growth are listed in Table 2.2. The 

thermal strain at room temperature is defined as 휀𝑡ℎ = (𝛽SnTe − 𝛽) × 300K, where 𝛽 is the thermal 

expansion constant of the substrate.  

 

Fig. 2.9: Lattice constant vs. bandgap diagram for III-V (yellow), II-VI (blue) and IV-VI (red) 

semiconductors  and insulators with a lattice constant close to  Pb1-xSnxTe (0.630 to 0.646 nm). Also 

substrates such as BaF2 and KCl are shown. 
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Table 2.2: Crystal structure, lattice mismatch, thermal strain and bandgap data for common 

substrates used to grow Pb1-xSnxTe33. 

Substrate Crystal structure Lattice mismatch 

to SnTe (%) 

Thermal strain at RT (%) 

휀𝑡ℎ = (𝛽SnTe − 𝛽) × 300K 

Bandgap 

(eV) 

BaF2 Calcium fluoride -1.6 0.07 9 

KCl Rock salt -0.16 -0.54 6.4 

NaCl Rock salt -10.5 -0.57 9 

Silicon Diamond -13.8 0.55 1.17 

Ge Diamond -10.2 0.45 0.67 

GaAs Zinc blende -10.3 0.45 1.42 

CdTe Zinc blende 2.9 0.49 1.49 

PbTe Rock salt 2.6 0.04 0.319 

 

BaF2 is probably the most used substrate. As can be seen in Table 2.2 its lattice mismatch to SnTe is 

for example only 2% and its thermal strain with respect to SnTe is only 0.07%. Besides that BaF2 is 

highly insulating and optically transparent33. The (111) surface is mostly used because is the lowest 

energy surface and it is easily obtained by cleaving. For PbTe films on BaF2 (111) the growth starts in 

a 3D Vollmer-Weber growth mode, with triangular shaped pyramidal islands having (100) side 

facets34. This is a consequence of the (100) surface being the lowest energy surface for lead salt 

compounds. The lattice mismatch of 4% of BaF2 compared to PbTe does not play a major role for this 

nucleation behavior, since 3D nucleation on BaF2 (111) is also observed for ternary PbTe1-xSex layers 

lattice-matched to BaF2.  

However Fig. 2.10 shows that in this type of growth threading dislocations are presents, which form 

pinning centers for surface steps that form the center of growth spirals on the surface. Growing 

thicker layers will decreases the number of dislocations, increasing the mobilities found in transport 

measurements. Finally the BaF2-PbTe surface is 𝑝-type, which means that growing thicker layers also 

decreases the average 𝑝-type charge carrier density35-36. 

 

 
 

Fig. 2.10: STM images of PbTe growth on BaF2 (111) for deposit thicknesses of (a) 100 nm, (b) 

500 nm and (c) 3 μm. The arrow heads indicate the threading dislocations penetrating the epilayer 

surface.37 

 

Although they are not commercially available, also IV-VI substrates can be used in Pb1-xSnxTe growth. 

They are generally not suited for low-dimensional heterostructures due to high carrier densities 

(> 1017 cm−3). They are mechanically soft and oxides have to be removed before growth by for 

example bromine-based etching. Independent of the ternary composition and strain value growth 
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occurs in the 2D Frank van der Merwe (layer-by-layer) growth mode. Fig. 2.11 shows that for film 

growth of PbTe on PbSe, lattice mismatch between both materials results in a network of misfit 

dislocation defects. 

 

 
 

Fig. 2.11: STM surface images of PbTe on PbSe showing a highly ordered array of pure edge misfit 

dislocations caused by compressive strain38. 

 

Due to their (100) cleavage planes, KCl and NaCl can be used for growing (001) films. KCl has an 

even lower lattice mismatch than BaF2 of only 0.16%. However growth of IV-VI materials on these 

substrates results in high defect densities and therefore electrical properties inferior to the bulk 

material. For example Pb1-xSnxTe layers on KCl exhibit smooth surfaces but the 77 K mobilities are 

much lower than layers deposited on BaF2 (111) substrates39. A reason for this could be the high 

thermal strain caused by these substrates.  
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2.3.3  Nanowire growth and material aspects of SnTe 

 

Since SnTe nanowires are promising for Majorana devices the growth goal of this research is SnTe 

nanowires. In this section the basic growth concept of nanowires is discussed. Nanowires are often 

grown in the vapor-liquid-solid40 (VLS) growth mode. This method promotes growth to occur in one 

direction, so that the nanowire geometry instead of bulk growth is achieved. During VLS growth a 

seed particle, such as a gold particle of ~10 nm, is used to catalyze the growth of a nanowire. As Fig. 

2.12 shows first (1) seed particles are formed and (2) heated up to the growth temperature. Then (3) 

the growth materials are supplied in the gas phase and form liquid alloys with the seed particles. At 

some composition (4) the particles are supersaturated and pass the liquidus curve (transition from 

liquid to liquid + solid). Eventually (5) the solid nanowire phase nucleates and begins to grow. The 

role of the seed particles is to provide preferential sites for decomposition of growth precursors. The 

growth temperature should be low enough to prevent the decomposition of grown structures, 

however, for growth methods like MOVPE, high enough to crack growth precursors. For MBE 

however this means that growth can occur at much lower temperatures 

With a growth mechanism called vapor-solid-solid (VSS) growth, it is possible to grow nanowires 

with a growth temperature below the eutectic point41, so that the seed particle is solid.  

Finally one should keep in mind that phase diagrams only take into acount thermodynamics, while 

kintic processes could also play an important role during the growth.  

 

 
 

Fig. 2.12: An illustration of the VLS growth based on the temperature-composition phase diagram of 

the growth materials system. 𝑇𝑀
𝑃𝑎𝑟𝑡𝑖𝑐𝑙𝑒 , 𝑇𝑀

𝑁𝑎𝑛𝑜𝑤𝑖𝑟𝑒 and 𝑇𝐸𝑢𝑡𝑒𝑐𝑡𝑖𝑐denote the melting points of the seed 

particle, the nanowire material(s) and the eutectic point, respectively. The involved steps are also 

shown on the bottom of the phase diagram.40 
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Unfortunately the phase diagram for the gold catalyst and SnTe was not found. However Fig. 2.13 

shows related band diagrams. The AuSn-SnTe (Fig. 2.13a)) and AuTe2-SnTe (Fig. 2.13b)) phase 

diagrams could already give an idea for the Au-SnTe growth. The eutectic point for AuSn-SnTe is at 

𝑇𝐸 = 413 ℃ and a SnTe concentration of  𝑥𝐸 = 1.3%. For AuTe2-SnTe the eutectic point is at 

𝑇𝐸 = 402 ℃ and a SnTe concentration of 𝑥𝐸 = 32.5%. This indicates that if the gold droplet is first 

filled up with Sn or Te, nanowire growth can occur at high temperatures. 

Fig. 2.13c) and Fig. 2.13d) show the Au-Sn and Au-Te phase diagrams respectively. The eutectic point 

for the Au-Sn phase diagram is at 𝑇𝐸 = 232 ℃ and a Sn concentration of 𝑥𝐸 = 93.7%. However 

there is also a minimum in the liquidus line at 𝑇𝐸 = 290 ℃ and 𝑥𝐸 = 29.0. The phase diagram 

indicates that a Au-Sn liquid droplet can exist at temperatures under 419.3 ℃, but that the droplet 

will only be 50/50 Au-Sn for higher temperatures. For the Au-Te phase diagram 𝑇𝐸 = 416 ℃ and 

𝑥𝐸 = 88.0. So to have a Au-Te liquid alloy the temperature must be much higher than for a Au-Sn 

alloy. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

c) d) 

b) 

 

a) 

 

Fig. 2.13: Phase diagram of the (a) AuSn-SnT42, (b) AuTe2-SnTe42, (c) Au-Sn43 and (d) Au-Te44 lines.  
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2.3.4 The p-doping problem of SnTe and consequences 

 

The challenge for growing SnTe is to actually realize a low charge carrier density. Namely the special 

properties of the TCI are only available when the Fermi level is tuned within the band gap. However 

transport measurements on SnTe always find 𝑝-type conductance45-47, while for the non-topological 

material PbTe both 𝑛-type and 𝑝-type behavior are found46,48. As Fig. 2.14 shows the charge carrier 

density can be tuned by varying the Pb/Sn ratio in Pb1-xSnxTe. The carrier type of PbTe and 

compounds such as Pb0.8Sn0.2Te can also be controlled by controlling the temperatures of the 

effusion sources50. Finally the carrier type can be controlled by changing the IV/VI flux ratio. Excess 

group IV flux leads to 𝑛-type conductance, while excess group VI flux leads to 𝑝-type 

conductuctance. Te vacancies act as doubly charged donor states while Sn vacancies act as doubly 

charged acceptor states52-54. Carrier concentrations of IV-VI epilayers below 1016 cm−3 have not 

been achieved. 

 

 
Fig. 2.14: Temperature dependence of the resistivity in Pb1-xSnxTe epitaxial layers with different 𝑥 

values.49 
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Using first-principles calculations the microscopic origin of the 𝑝-type conductivity of SnTe is 

indentified51. Fig. 2.15 shows the result of the calculations of defect formation energies. The 

negatively charged Sn vacancy (𝑉𝑆𝑛
2−) dominates the electronic properties of SnTe: Regardless of the 

growth conditions, 𝑉𝑆𝑛
2− always has a negative formation energy within the band gap, which forces 

the Fermi level below the valence band maximum (VBM).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2.15: Defect formation energies as a function of Fermi level for native point defects in (a) SnTe 

and (b) PbTe under Sn/Pb-rich and Te-rich conditions. Zero of the Fermi level is set to the VBM of the 

host. The Fermi level range spans the bulk gap. Figures is reproduced from 51.  

 

It should be kept in mind that these calculations only hold in thermal equilibrium and in bulk. This is 

both not the case in MBE nanowire growth. No attempts were done yet to measure the charge 

carrier density of our samples. However plans are made to do this in nanowire field effect 

experiments. 
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2.3.5  SnTe nanowire growth by other growth methods 

 

SnTe nanowires are also grown by other methods than MBE60-64.  Most of these nanowires are grown 

in chemical vapor deposition methods and are Au or Sn62 catalyzed. Reported nanowires generally 

have {001} facets. Reported substrates include among other Si and mica62.  

Some papers suggest that topological phases of these SnTe nanowires are confirmed. For example it 

was shown in low temperature magnetotransport61 that PbTe nanowires exhibit the weak 

localization (WL) effect, whereas Pb0.5Sn0.5Te and Pb0.2Sn0.8Te nanowires display the weak 

antilocalization (WAL) effect. Consequently the WAL is attributed to the topological phase of the 

nanowires. However interpretation of these transport studies is very questionable. Namely while 

looking at the temperature dependence of the resistance it was also reported that the PbTe 

nanowires have semiconducting (probably n-type) characteristics, whereas the SnTe nanowires are 

highly metallic and probably 𝑝-type.  

 

Additionally papers report PbSnTe to have a higher thermoelectric figures of merit ZT compared to 

bulk samples, due to a high thermopower and low thermal conductivity. The thermopower of 

PbSnTe is suggested to be enhanced due to topological surface states, while the suppression of 

thermal conductivity is suggested to be due to increased phonon-surface scattering.  Attributing the 

high ZT to the topological surface states is again questionable, since the nanowires showed metallic 

behavior63. 
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3. Methods  

 

In this Chapter first the tight-binding approach is discussed that is used for the modelling of the 

normal and (induced) superconductive states of SnTe (section 3.1). In section 3.2 the technical 

aspects of the MBE setup and substrate processing are discussed. 

 

3.1 Tight-binding approach 

 

The properties of SnTe material such as band structure, (surface) density of states and conductance 

were calculated for different geometries using the tight binding approximation. In the tight binding 

approximation electrons are localized on the atoms and the overlapping of the atomic orbitals is 

studied. The eigenstate of one electron in the periodic lattice is approximated by a linear 

combination of atomic orbitals. 

The tight binding Hamiltonian is used in simulations executed using the quantum transport Python 

package Kwant1. Since Kwant can be used for any lattice and dimension, 1D, 2D and 3D periodic 

lattices are treated. Kwant takes the hopping and onsite terms of a tight binding model, which are 

defined for each crystal site, and constructs a Hamiltonian for the ensemble of lattice sites. 

 

All calculations are done using a tight binding Hamiltonian taken from C.S. Lent et al2. This tight 

binding model Hamiltonian contains onsite and hopping terms for the 𝑠, 𝑝 and 𝑑 orbitals of the 

cation (Sn) and anion (Te) of the system. The model can also be used to investigate other materials 

such as PbTe, GeTe, PbSe and PbS. Moreover using the virtual crystal approximation, the band 

structure of alloys such as Pb1-xSnxTe can be calculated. The model used here is also used in 

literature for most predictions on SnTe, such as for the prediction of the quantum spin Hall effect on 

its (111) surface6. A simpler 6 orbital model3,4 is used later in section 4.2. This model predicts the 

same number of Dirac cones for the investigated geometries, however shows qualitatively different 

band structures. Details of the 18 orbital model are further discussed below and section 4.1. 
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Bulk dispersion 

 

The SnTe dispersion calculations in this research were performed using a nearest-neighbor 18 orbital 

𝑠𝑝3𝑑5 tight-binding Hamiltonian acquired from C.S. Lent et al2. The parameters of the model of C.S. 

Lent are obtained by fitting the eigenvalues of Lent’s tight binding Hamiltonian to the energy bands 

published by F. Herman et al4. Both bulk dispersions of C.S. Lent and F. Herman are shown in Fig. 3.1.  

 

To calculate the SnTe 3D bulk dispersion a unit cell is chosen with one Sn and one Te atom, which 

are placed in a rocksalt structure on a cubic lattice with length 1 between the Sn and Te atom. 

Periodic boundary conditions are then applied in the (1,1,0), (1, −1,0) and (1,0,1) directions. These 

directions are non-orthogonal, but if orthogonal translation directions are used then the unit cell 

must contain 4 instead of 2 atoms at least, making calculations more computationally expensive. 

Next the translation directions and the tight binding Hamiltonian are passed to the Kwant Python 

package. Using the new (3D) �⃑� -dependent Hamiltonian that Kwant then generates the energy 

dispersion can be acquired by calculating the eigenvalues of this Hamiltonian for specific �⃑� -points.  

Since the SnTe primitive lattice is a face-centered cubic FCC lattice, the high symmetry �⃑� -points 

between which the energy bands are calculated are defined with respect to the BCC reciprocal 

lattice given by 

�⃑� = 𝑢𝑏1
⃑⃑  ⃑ + 𝑣𝑏2

⃑⃑⃑⃑ + 𝑤𝑏3
⃑⃑⃑⃑ ,      (3.1) 

Fig. 3.1: a) Energy band structure of SnTe calculated by Herman et al.5 b) Energy band structure of 

SnTe of calculated by Lent at al.2 using a tight-binding model. Dashed is the band structure of 

Herman et al. 
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Fig. 3.2: a) Calculated SnTe bulk dispersion with the parameters of Lent2. b) Zoomed representation 

of Fig. 3.2a) showing the bandgap. c) Calculated SnTe bulk dispersion with the parameters of 

Safaei7showing not much qualitative change with respect to 3.2a).  d) The 3D Brillouin zone of the 

FCC SnTe lattice. Figure d) is reproduced from ref. 12. 

 

where 𝑏1
⃑⃑  ⃑, 𝑏2

⃑⃑⃑⃑  and 𝑏3
⃑⃑⃑⃑  are the reciprocal primitive lattice vectors in the orthogonal basis. The high 

symmetry points (𝑢, 𝑣, 𝑤) are (0,0,0) and (1,1,1) for Γ, (
1

2
,
1

2
,
1

2
) for 𝐿, (0,

1

2
,
1

2
) for 𝑋 and (

1

4
,
3

4
,
1

2
) 

for 𝑊. To get the actual �⃑� -points for our model, which has non-orthogonal real lattice vectors, the 

original orthogonal real lattice vectors of an FCC lattice have to be transformed to the new non-

orthogonal real vectors. From there the expression for 𝑏1
⃑⃑  ⃑, 𝑏2

⃑⃑⃑⃑  and 𝑏3
⃑⃑⃑⃑  in the non-orthogonal lattice 

are obtained so that the �⃑� -points of the high symmetry points in the non-orthogonal lattice can be 

acquired.  

 

The band structures of Fig. 3.1b) and Fig. 3.2a) are calculated on the same �⃑� -points, same band 

parameters and the same model. One discrepancy seems to be that along the ∆ and Σ lines there are 

some points were the bands are crossing in Fig. 3.2a), while there is a small gap at those �⃑� -points in 

Fig. 3.1b). Fig. 3.2b) shows a zoomed graph of Fig. 3.2a) where the calculated band gap of 0.221 eV 

is shown, which agrees reasonably well with the value of 0.18 eV found in literature6. In Fig. 3.2c) 

d) c) 

a) 
b) 
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shows the bulk dispersion using the parameters of Safaei7. The bang gap is 0.188 eV. For the 

simulations in section 4.1 the tight-binding parameters corresponding to Fig. 3.2c) published by 

Safaei7 are used. These parameters use the correct signs for the parameters as defined by Slater and 

Koster8. As can be seen by comparing Fig. 3.2c) with Fig. 3.2a) this change of parameters doesn’t 

change the band structure qualitatively, especially not near the Fermi level. 
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3.2 Molecular beam epitaxy setup and sample preparation 

 

In this section all technical aspects of the MBE setup and substrate processing are discussed. Firstly 

in section 3.2.1 practical considerations are discussed such as the time frame in which could be 

grown and growth strategy. Then in section 3.2.2 substrate processing is discussed. Next the 

realization of UHV by different pumping methods is discussed in section 3.2.3. Then the reliable 

method of temperature measurement called BandiT is discussed in section 3.2.4. In section 3.2.5 the 

effusion flux calibration is discussed, as well as a discussion on substrate temperatures. 

 

3.2.1 Practical considerations 

 

Growth time in this research was limited since the IV-VI MBE chamber is new in our group and 

renovations were still ongoing at the start of the research. Therefore in the first half of the project, 

while the modelling of this research was done, several modifications were done to the machine. For 

example effusion cells were loaded and mounted and electronics such as effusion cell and substrate 

temperature controllers were installed. Moreover compartments of the system were baked (heating 

from the outside) and pumped to attain the UHV conditions. Also the system was down for some 

time due to maintenance on the substrate manipulator. Due to all of this the growth days were 

limited to about 40 growth days.  

Since to our knowledge no literature of SnTe MBE is available, different parts of the growth 

parameter space were discovered. Most notably growth runs with substrate temperatures between 

𝑇𝐵 = 190 ℃ and 𝑇𝐵 = 450 ℃ were done. Additionally differently processed substrates were loaded 

each growth run (about 5 to 10 samples per run).  

In the 40 days of growth time, 51 growth runs were performed, since only 1 to 2 growth runs per day 

could be done. This is first of all because a lot of time is consumed by substrate processing, which 

needs to be done daily before loading the MBE machine. Moreover that preparing the MBE machine 

involves loading the sample, which involves venting and pumping down the loadlock, 

degassing/baking the substrates, heating the effusion cells, ramping up and stabilizing the substrate 

temperature etc.  

 

3.2.2 Substrate processing 

 

Several different substrates were mounted on the substrate holder during the different growth runs. 

Some of the substrates used are processed with a silicon nitride (SiNx) mask with holes. The strategy 

here is to eliminate parasitic layer growth on the substrate and to increase the incoming amount of 

molecules arriving at the gold particles in the holes. Holes are patterned into the mask in which the 

nanowires can selectively grow. Holes have sizes varying from 8 to 50 nm and distances between 

the holes range from 250 nm to 4 μm. The fabrication procedure is illustrated in Fig. 3.3 below. First 

(1) (10 nm) SiNx is deposited in a plasma-enhanced chemical vapor deposition (PECVD) reactor on 

the substrate, e.g. Ge(110) with 2 inch diameter. Then (2) a CSAR resist is spin-coated on the SiNx 

mask, which is a special resist that is compatible with reactive ion etching (RIE). Next a set of holes 

with different sizes and pitches (mutual distance) is patterned into the CSAR resist using electron-

beam lithography (EBL). Fig. 3.4 shows the EBL design with all the different hole-sizes and pitches. 

Each array is exposed to a different dose of electrons in the EBL to make sure that all the SiNx will be 

removed from the mask.  This design is repeated about 700 times over the wafer, where over each 6 
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copies of the design the EBL dose is varied. After developing (3) the by EBL exposed resist the wafer 

is put in the (4) nitride reactive ion etcher (RIE). Using pure CHF3 the etching rate is slow enough to 

etch away the thin 10 nm mask and not to damage the substrate and resist much. This step does 

deposit long teflon polymer chains, which could have a negative effect on the growth. This could be 

countered by using a CHF3 + O2 recipe. However this would damage the resist, making the lift-off 

process worse, and results in larger hole sizes than intended. Next the 8 nm layer of gold (5) is 

deposited in the electron beam evaporator filling only the etched holes with gold. Finally the 

remaining resist with superfluous gold on top is removed in a lift-off process using the chemical PRS. 

 

 
 

Fig. 3.3: Lithographic patterning using a SiNx mask and EBL for nanowire growth.  

 

 
 
Fig. 3.4: Design of the EBL patterning. Each array has a certain hole-size and pitch. The hole-size is 
varied in the horizontal direction, while pitch is varied in the vertical direction. 
 
Fig. 3.5 shows results after substrate processing of a GaAs substrate with a patterned SiNx mask for 

the smallest hole sizes of 8 nm and a 250 nm distance between the holes. In these scanning 

electron microscopy (SEM) pictures the same array of holes is shown for different EBL doses, 

Ge(110) substrate 
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however while in b) all holes are opens, in a) more than half of the holes is not. This means that in 

the EBL the same pattern is exposed with electrons, but each hole in the Fig. 3.5b) was exposed to 

more electrons than in Fig. 3.5a). The consequence is that some holes in Fig. 3.5a) are under-

exposed, due to the low dose of electrons, thereby not opening all holes.  

 

 
 
Fig. 3.5: SEM images of a EBL dose test of the patterned SiNx mask with Au particles on a GaAs 

substrate. A hole-array is shown with a (designed) 8 nm hole-size and 250 nm distance between the 

holes. In (a) the wafer is exposed to an EBL dose of  2010, while in (b) the wafer is exposed to an EBL 

dose of 3140. Magnifications are (a) 37 KX and (b) 150 KX. 

 
Fig. 3.6a) shows a close-up SEM of a GaAs substrate with patterned SiNx mask for a dose of 2850, a 

hole-size of 50 nm and a distance between the holes of 250 nm. The holes seem to be quite clean 

except for some small white dots in and around the holes which could indicate some SiNx residues. 

The dark rim around the high contrast gold particle presumably indicates that the SiNx layer is fully 

etched way in the hole, exposing the low contrast GaAs substrate. In Fig. 3.6b) the a similar SEM is 

shown for a Ge substrate. The same SiNx residues are found and also the dark rim is visible. A lot of 

dirt can be seen though on or under the SiNx which could imply that the Ge substrate was not as 

clean of oxides as the GaAs substrate was before depositing the SiNx layer. 

 

 
 

a) b) 

a) b) 
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Fig. 3.6: SEM images of (a) GaAs substrate and (b) Ge substrate with a patterned SiNx mask and Au 
particles. Magnifications are (a) 190 KX and (b) 190 KX. 
 
At some areas of the substrate larger amounts of gold are present, which will be important for the 
growth in section 4.2.2. Fig. 3.7a) and b) show the EBL dose markers. These are large areas (feature 
size ~5 μm) were the SiNx is etched away, but is probably under-etched. Besides that, within a 
marker but between the numbers also gold is deposited. This is due a collapse of the CSAR resist 
with Au on top of it during lift-off. This collapse during lift-off is also found at the hole arrays for 
50 nm hole sizes with 250 mutual distance, as shown in Fig. 3.7c). The result of these processes is 
the deposition of large amounts of gold. The morphology of this gold is much rougher than the gold 
in a hole, as can be seen in Fig. 3.7b) for a close-up of a dose number.  
 

 
 
Fig. 3.7: SEM images of a Ge substrate with a patterned SiNx mask showing large amounts of gold on 
EBL dose-markers (a-b) and patterns with bad-liftoff (c). The black areas in Fig. 6.4b) are due to 
carbon deposition by the SEM. Magnifications are (a) 2 KX, (b) 22 KX and (c) 19 KX. 
 
Another approached used is buffered hydrofluoric acid (BHF) gradient etching. Here a gradient in the 

SiNx mask is fabricated with a thickness ranging for 0 to 25 nm. Since the BHF does not etch the 

mask with exactly an equal rate, in the thin parts of the SiNx mask a rough texture in the SiNx is 

achieved. Here the substrate is only exposed at some place.  

Just before growth all substrates (except for some of the last runs and the substrates with stems) 

were cleaned and oxidized in a O2 plasma. To remove oxides finally the GaAs substrates were dipped 

in ammonia 10:1 (NH3) and ultra-pure water (UPW), while Si substrates were in some cases 

deoxidized in BHF 10:1 and UPW prior to growth. 

The substrates that are tested are GaAs (001), Ge(110), Si (001) and Si (111) with and without gold 

catalysts. The gold catalysts were evaporated in an electron beam evaporator or were deposited on 

the substrate by spin coating a 2 nm gold colloid solution. Also nanowire stems were used as 

substrates, such as catalyst free and gold catalyzed InAs, InP, InSb, GaAs and Ge nanowire stems. 

Finally after the substrate processing steps several samples are mounted onto an molybdenum 

sample holder by gluing the samples with indium at about 200 ℃. Next the samples are degassed at 

250 ℃ for 2 hours to remove all contaminants such as water. 

 

  

a) b) c) 
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3.2.3 UHV Pumping 

 

Reaching UHV conditions is very important in the growth process so that atoms can reach the target 

substrate and so that the impingement of air or other gas molecules at the target surface and 

therefore contamination is minimized. When all cell shutters and cracker valves are closed, the 

system has a pressure of about 2 ∙ 10−10 mbar. This is achieved by a combination of rough, turbo, 

cryo- and ion pumps, where the last two are essential. The rough pumps used can reach pressure of 

5 ∙ 10−3 to 5 ∙ 10−4 mbar. The turbo pumps used can reach pressures of 1 ∙ 10−8 mbar without 

baking the chamber, while pressures of 1 ∙ 10−9 mbar can be obtained after baking and engaging 

the ion pump. Baking the chamber strips water from the chamber walls so that the pumps can reach 

lower pressures. The last order of magnitude is delivered mostly by the ion and cryo pumps. 

 

The ion pumps in our system (MECA 2000) are a combination of titanium sublimation pumps and 

getter ion pumps of the type diode pump10. The ion pumps cannot pump noble gasses effectively. 

The titanium that is sublimated onto the walls of the chamber binds chemically to the gasses to be 

pumped. The ion getter pump, shown in Fig. 3.8a) below, is composed of an anode made of 

cylindrical cells in a honeycomb structure and two cathodes made of flat plates. Perpendicular to the 

plates is a 0.1 − 0.2 T magnetic field and between the anode (+) and cathode (−) a voltage of 4 to 

6 kv is applied. In the cells gasses are ionized and the electrons are trapped in the electromagnetic 

field thereby ionizing other gas molecules. The ions are then bombarded into the cathodes.  

 

The cryopumps in the system (CTI 8&10) have 80 K and 15 K cooling parts11 in them and a 80 K 

radiation shield to prevent warming up10. These parts are cooled by a helium refrigerator in which 

helium gas is cooled down in a closed circuit via adiabatic expansion. Under the low temperature the 

mutual binding energy of gas molecules condensates them. In first approximation the pressure in 

the system is determined by the vapor pressures of the gasses at the temperature of the cooling 

arrays. Fig. 3.8b) shows the vapor pressure curves for gasses typically found in a process chamber. 

The 80 K condensing array condenses water and hydrocarbon vapors. As can be concluded by Fig. 

3.8b) the 15 K cooling array condenses nitrogen, oxygen and argon. However helium, hydrogen and 

neon are not effectively condensed, because their vapor pressure at 15 K is too high. This is no 

problem for helium and neon, as they don’t naturally arise in the vacuum system. However the 

hydrogen in the residual gas is trapped by the layers of activated carbon that is mounted on the 15 K 

cooling array.  
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3.2.4 BandiT temperature measurements 

 

In our MBE system the substrate temperature is measured by a combination of a thermal couple in 

the neighborhood of the substrate and a BandiT12 temperature detector. The BandiT temperature is 

a very reliable read-out of the real temperature. The BandiT system is composed of a black body 

light source directed at a GaAs dummy sample and a detector directed at it under a different angle. 

From the slope of the band edge in the absorption spectrum the temperature can be calculated. An 

example of a BandiT spectrum, made after depostion of SnTe, is shown in Fig. 3.9a). For an empty 

substrate before growth the intensity would be much larger (up to ~6000 − 7000), however due to 

the deposition of metals or narrow-gap semiconductors like SnTe the BandiT signal is reduced. 

Therefore the intensity of the BandiT signal is a way to estimate the amount of deposited SnTe. 

 

 
 

Fig. 3.9: (a) BandiT spectrum after SnTe deposition on GaAs (001) (blue) with band edge slope fitting 

(red). (b) Temperature readout showing temperature oscillations of about 1.5 ℃ during rampup. 

 

Before growth the substrate is heated to a certain temperature, which is called the rampup stage. 

The samples rotates so that incoming material is divided evenly over the substrate. Fig. 3.9b) shows 

that the rotation causes an oscillation in the BandiT signal with an amplitude of about 1.5 ℃. The 

oscillation is there because in some point in the rotation the BandiT detector does not receive light 

(b) 

Fig. 3.8:  (a) Schematic of a getter ion pump, with A the anode cylinders, K the titanium cathodes and 

B the magnetic field10. (b) Vapor pressure curves for some gasses.10 

(a) 

a) b) 
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from the GaAs dummy samples but of different materials on the substrate holder. The oscillations 

can be reduced by correctly aligning the BandiT detector on the dummy samples. Alignment of the 

BandiT detector can be done by changing the tilt of the substrate holder or by directly changing the 

tilt of the BandiT detector. 

In Fig. 3.10a) a typical BandiT temperature measurement is showed. From 𝑡 = 0 to 𝑡 = 4230 s the 

substrate temperature is ramped up. The temperature has to stabilize to the growth temperature 

which at low substrate temperatures can take a long time. At 𝑡 = 4230 s the effusion shutters (Sn 

and Te) are opened which increases the temperature on the substrate by about 2 ℃ (Fig. 3.10b)). 

After about 7.8 min of deposition the BandiT read-out breaks down due to SnTe deposits. At around 

𝑡 = 2500 s there is a gap and a sudden increase in BandiT temperature. This is the result of closing 

the shutter on the BandiT detector and stopping the substrate rotation, so that the substrate holder 

can be repositioned in the manipulator. The manipulator namely has 3 rotations at which the 

substrate holder can be attached. It was found that the heating does not have the same efficiency 

for all 3 substrate holder positions. This is further investigated in Fig. 3.11. Here the temperature is 

first ramped up until it stabilizes. The thermal couple temperature was constantly 410 ℃, however 

different BandiT temperatures are found four the 3 positions, namely 207 ℃, 170 ℃ and 202 ℃. 

This means that for some positions the heating has a different efficiency (probably by heat 

conduction) than in other positions. Fig. 3.11 b) shows the substrate holder inside the carriage that 

transports the substrate to the degas heating station. The mounting on the manipulator is similar, as 

the same 3 metal pins on the substrate holder are used. 

 

 
 

Fig. 3.10: (a) BandiT signal during substrate rampup and growth, the substrate position was changed 

to match the required temperature. Growth starts at 𝑡 = 4230 s, which results in a temperature rise 

of about 2 ℃. After 7.8 minutes the BandiT read-out breaks down due to SnTe deposits. 

 

a) b) 
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Fig. 3.11: (a) BandiT signal during substrate rampup, after temperature stabilization at 207 ℃ the 

substrate holder (moly) is repositioned on its 3 different positions. Black represents position 1, red is 

position 2 and green is position 3. (b) Substrates on a substrate holder showing that the holder can 

be attached to a manipulator in 3 different ways. 

 

3.2.5 Effusion flux calibration and substrate temperature 

 

The material flux generated by an effusion cell (standard cell or cracker) depends on details of the 

MBE system, such as its geometry, the vapor pressure and temperature of the effused material, 

where the latter two are related. The beam equivalent flux 𝐹 in mbar can be estimated by 

𝐹 = 𝐾 ∙ 𝑝(𝑇),      (5.1) 

where 𝐾 is the geometrical constant and 𝑝(𝑇) is the vapor pressure of the material as a function of 

temperature 𝑇. 𝐾 is fixed for the standard Sn effusion cell, but for the Te cracker cell it depends on 

the valve opening. Namely the valve of the Te cracker can be openinged and closed by turning the 

valve open and closed. Our Te cracker is operated by hand so that the valve opening can be 

continuously varied from completely closed (0 turns) to completely open (16 turns). 

The vapor pressure is approximated by 

𝑝(𝑇) = 10
(𝐴 − 

 𝐵

𝑇
)
,    (5.2) 

where 𝐴 and 𝐵 are fitting parameters found in literature for Sn13 and Te14.  

The Sn and Te fluxes are calibrated by inserting a beam flux monitor in the effusion beams, which 

measures the beam equivalent pressure (BEP). The beam flux monitor is an ionization flux gauge15 

on a movable positioning system that allows to measure the beam equivalent pressure of a 

molecular beam near the substrate. The beam flux monitor broke down in the beginning of the 

experiments, however the calibration data was used to establish the desired material fluxes.  

The calibration data is plotted in Fig. 3.12 for Sn as a function of effusion cell temperature and for Te 

as a function of valve opening expressed in number of turns. Since the Sn cell is at much higher 

temperature than the Te cell it reacts much faster to temperature changes then the Te cell. 

Therefore the Te flux is generally not controlled by changing the base temperature, but by changing 

the valve opening. The fit for the Sn flux is made by inserting eq. 5.2 into eq. 5.3 and changing the 

geometrical constant 𝐾 until good correspondence with the data points is achieved. The fitting curve 

follows the data points well, except for low temperatures. During the calibration the chamber was 

not pumped by the cryopump yet and the background pressure was 0.030 ∙ 10−7 Torr. Therefore 

the low Sn fluxes generated at low effusion temperatures are not considerably larger than the 

a) b) 
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background and measured fluxes are higher than expected based on the fitting curve. The black 

curve through the data points in Fig. 3.12.b) is made by interpolation. The Te flux curves for different 

temperatures are acquired by multiplying the interpolation curve with a factor 𝑝(𝑇2)/𝑝(𝑇1). From 

Fig. 3.12b) it becomes clear that for a high valve opening ~14 turns the Te flux is the least sensitive 

with respect to the valve opening. Therefore, to decrease uncertainties in the Te flux, the valve is 

mostly set almost completely open during growth at a valve opening of 14 turns. 

 

 
Fig. 3.12: Beam flux monitor data and calibration curves of (a) Sn as a function of temperature and 

(b) Te as a function of valve opening.  

Another important growth parameter in IV-VI material growth, besides the effusion cell 

temperatures, is the substrate temperature. The growth rate and composition of the epitaxial layers 

should be determined by the beam fluxes and not by the substrate temperature. Therefore the 

substrate temperature must be low enough such that the reevaporation rate of the growth-

determining species is much lower than its impingement rate. The reevaporation rate of materials 

from the surface into the UHV environment is given by16 

𝐽𝑟𝑒𝑒𝑣𝑎𝑝 = 𝛼𝜈
𝑝

√2𝜋𝑚𝑘𝐵𝑇
,     (5.3) 

where 𝑚 is the mass of the molecule, 𝑘𝐵 is the Boltzmann constant, 𝑇 is the temperature and 𝑝 is 

the vapor pressure. 𝛼𝜈 is the evaporation coefficient, which is around 0.3 to 0.5 for smooth low 

index surfaces with strongly bound surface atoms and is close to one for rough high index surfaces 

or polycrystalline materials. 

The evaporation rates for IV-VI materials calculated from vapor pressure data, assuming an 

evaporation coefficient 𝛼𝜈 = 0.5, is shown in Fig. 3.13. As can be seen the reevaporation rates of the 

PbX and SnX compounds as well as of Pb are quite comparable and are exceeding 1 ML/s at around 

440 ℃. Therefore when the fluxes are set so that 1 ML/s arrives at the substrate, no layer deposition 

occurs at temperatures above 440 ℃. For the same fluxes, to attain the condition that the epitaxial 

growth rates are independent of substrate temperature, the reevaporation rates should be well 

below 0.01 ML/s, as indicated by the horizontal line in Fig. 3.13, which is fulfilled below about 380 ℃ 

for SnTe. Based on these considerations the MBE process window in Fig. 3.13 shows the range of 

substrate temperatures in which IV-VI materials can be grown. Note also that for substrate 

temperatures above about 200 ℃, the reevaporation rate of Te is high. The reevaporation rate of 

𝑇 = 310℃ 

𝑇 = 320℃ 

𝑇 = 330℃ 
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Sn, which is not shown in Fig. 3.13, is negligible (< 10−4) for temperatures lower than about 

700 ℃. Therefore at temperatures above 200 ℃ all Te that is not incorporated into the SnTe growth 

is reevaporated again, leaving droplets of Sn on the substrate. 

 

 
 

Fig. 3.13: Process window17 for IV-VI MBE (shaded region) based on the reevaporation rates of the 

various components of IV-VI epilayers as a function of substrate temperature using an evaporation 

coefficicent of 𝛼𝑣 = 0.5.  
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4. Results and discussion 

 

4.1 Normal state SnTe tight binding simulations 

 

In this section the quantum transport properties of different SnTe structures are investigated. The 

goal is to study the topologically protected gapless surface states and edge states that are predicted 

for bulk surfaces1-2 and thin films3-4 and to gain confidence in the tight binding model that is used. 

Sections 2.2, 2.3 and 2.4 will mostly reproduce results from literature. In section 2.5 SnTe nanowires 

are studied. SnTe nanowire energy dispersions are to our knowledge not yet reported in literature. 

Calculating the nanowire dispersions is an important step to find out whether these nanostructures 

are suitable for Majorana devices. 

 

4.1.1 Surface state dispersion 

 

The reason for which SnTe has regained interest since about 2012 is the existence of topologically 

protected gapless states on its surface. The appearance of these states can be seen in studying the 

3D bulk, by studying the band inversion and mirror Chern number topological invariant of the bulk as 

mentioned in section 2.1, but can also be obtained by studying the 2D surface band structure. Here 

the surface band structure calculations are treated, where the results using an eigenvalue 

calculation method are shown. Appendix 6.1 shows that the same results can be achieved by using a 

surface density of states method. 

 

As was done in section 3.1 for the bulk band dispersion, again the translation directions with 

periodic boundary conditions have to be chosen. Here the translation vectors are chosen so that the 

first two are parallel to the surface under investigation and the third is chosen in a direction out of 

this plane. For the different surfaces that are mirror symmetric with respect to the {110} plane the 

chosen translation directions are given by 

[001] plane: (1,1,0), (1,-1,0) and (1,0,1), 

[110] plane: (0,0,2), (1,-1,0) and (1,0,1)   and                     (2.2) 

    [111] plane:  (1,-1,0), (1,0,-1) and (0,1,1).  

Then the same tight binding Hamiltonian as in section 3.1 is passed together with one of the above 

sets of translation vectors to the Kwant Python package. Kwant then applies periodic boundary 

conditions in the directions of the first two vectors of the vector set and applies open boundary 

conditions to the third vector. The thickness in the direction perpendicular to the simulated plane 

can be set by specifying the open boundary conditions. 

 

The band structure is plotted as a function of �⃑� -points in the surface Brillouin zone corresponding to 

the surface facet that is studied, for which the [001] , [110] and [111] planes are the most relevant. 

The high symmetry points in the surface Brillouin zone are chosen by looking at the surface Brillouin 

zones corresponding to a real FCC lattice. The BCC Brillouin zone, which is the reciprocal counterpart 

of the real FCC lattice, is shown in Fig. 2.3, together with the 2D projections on the various surface 

facets. The �⃑� -vectors shown here are in the original orthogonal basis.  
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The band structures that are obtained for the different surface facets are shown in Fig. 4.3 and 4.4. 

The surface Brillouin zone corresponding to the simulated surface facet, are shown in the insets of 

the figures. They correspond to the surface Brillouin zones marked in green in Fig. 4.1. The parts of 

high symmetry lines along which the eigenvalues of the system are calculated are marked red in the 

insets.  

 

 
 

Fig. 4.1: The Brillouin zone corresponding to the FCC lattice of SnTe. The 2D surface Brillouin zones 

are shown in green for the (a)  [001] , (b) [110] and (c) [111] surface facets. The  [110] mirror 

planes are marked in yellow. Figures reproduced from ref. 2. 

 

Each point in the band structure also shows a color which represents the contribution of the orbitals 

of the Sn atom (the cation) to the wave function corresponding to that point in the band structure. 

The colors clearly show the band inversion for the (001) and (110) surfaces. The top of the valence 

band (the bottom of the conduction band) clearly shows that the wave functions corresponding to 

these states are dominated by the Sn atom (Te atom), whereas the rest of the valence band 

(conduction band) states are dominated by the Te atom (Sn atom).  

 

The surface state dispersions show four Dirac cones in the Brillouin zone. A distinction of two types5 

of surface states can be made which have qualitatively different properties. The first type is found 

for the (001) and (110) surface facets, for which the surface state dispersions are shown in Fig. 

4.3a) and b) respectively. For these the Dirac cones are not located exactly on the high symmetry 

points, which are the time-reversal-invariant momenta, but are displaced from it along the {110} 

mirror planes. This type of surface states exhibit a Lifshitz transition5 as a function of Fermi energy, 

which is accompanied by a Van Hove singularity in the density of states arising from saddle points in 

the band structure.  

The (001) surface state dispersion shown in Fig. 4.3a) shows a Dirac cone on the X̅ − Γ̅ line located 

displaced but close to the X̅-point. 4 Dirac cones emerge near the two inequivalent X̅-points in the 

(001) Brillouin zone. The shift away from the X̅-point is due to the interaction between different 𝐿 

valleys in the 3D Brillouin zone. Displaced off the X̅-point along the X̅ − M̅ is a anticrossing with a gap 

of 0.037 eV. The reason why there is a Dirac cone (crossing) at the X̅ − Γ̅ line, but not at the X̅ − M̅ 

line is that the  X̅ − Γ̅ line coincides with a {110} symmetry plane, while the X̅ − M̅ line does not.  

The (110) surface state dispersion shown in Fig. 4.3b) shows a Dirac cone close to the Y̅-point, and a 

anticrossing close to the S̅-point. This is again because the first is located in the {110} symmetry 

plane, while the latter is not. 

a) b) c) 
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The second type of surface states is found on the {111} facets. Here the 4 Dirac cones are located 

exactly at the Γ̅ and M̅ points. Choosing an odd number of atomic monolayers enables to study 

separately slabs with surfaces consisting of only Sn or Te. This polar behavior of the {111} facets is 

shown in Fig. 4.2. For the slab with only Sn terminations the Dirac point, which is the point where 

the gapless states actually cross, merges with the top of the valence band as is shown in Fig. 4.4a). 

For the slab with only Te terminations the Dirac points merges with the bottom of the valence band, 

which is shown in Fig. 4.4b).  

 

 
 

  

Fig. 4.2: Rod-stick model of the polar {111} surface. 
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Fig. 4.3: Energy dispersion of SnTe for the (a) (001) and (b) (110) surface facets. The (001) slab is 

141 atomic monolayers (atml) or 44 nm thick, were an inter-layer distance of half a lattice constant 

𝑎 per atomic monolayer is used. The simulated (110) slab, which has a different inter-layer distance 

of 
𝑎

2
√2, is 159 atml or 71 nm thick. In the bottom-left of a) is a white area where there should also 

be states, but this could be optimized by raising the number of calculated eigenvalues or using the 

density of states method discussed in appendix 6.1. 

 

 

  

b) 

a) 
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Fig. 4.4: Energy dispersion of SnTe for the (111) surface facets with (a) Sn and (b) Te terminated 

surfaces. The Sn-terminated slab is 141 atomic monolayers (atml) or 77 𝑛𝑚 thick, while the Te-

terminated slab is 143 atomic monolayers (atml) or 78 nm thick, were an inter-layer distance of  
𝑎

2
√3 

per atomic monolayer is used. For the (111) surface facets no band inversion in the surface state 

dispersion was observed. 

 

 

 

 

 

 

 

 

 

 

 

 

 

a) 

b) 
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4.1.2 Demonstration of edge states in thin films 

 

This section will look into similar simulations as section 4.1.1, but looking into much thinner slabs of 

SnTe. In section 4.1.1, for example for the [001] facet, a unit cell of 2 × 139 atoms was used, 

corresponding to a thick slab of 71 nm thickness. In appendix 6.1 it is shown that the resulting 

(surface) dispersion is the same for a semi-infinite slab. So we can conclude that the films in section 

4.1.1 are in the thick slab regime. This means that the surface states on both sides of the film do not 

overlap. However when the film thickness is decreased to about 50 atoms or 16 nm, the wave 

functions of the surface states on both sides of the thin film start to overlap. This overlapping or 

interaction of the wave functions results in the opening of a gap in the Dirac cone. In Fig. 4.5 the 

energy of the opened gap is plotted in red for [001] thin films consisting of an odd or even number 

of layers6. The graph shows an oscillation of the energy gap in addition to an exponential decay as 

function of the thickness. The damped oscillation is also known for the TI Bi2Se3
7-8, as shown in blue. 

In green the bandgap (not induced bandgap) of PbTe is shown. This bandgap does not oscillate, it 

only decays exponentially for small thicknesses and stabilizes after 60 atomic monolayers. Besides 

the oscillations and exponential decay an even-odd effect appears for SnTe. The top and bottom 

layers are the same for odd numbers of layers of the [001] film, while they are different for an even 

number of layers. This results in different symmetries of the odd and even systems, and therefore 

different topological invariants have to be defined for both.  The consequence is the different 

dependencies of the energy gap on the film thickness. Similar dependencies of the energy gap are 

found for [111] thin films3. 

 

 
Fig. 4.5: Induced energy gap dependence on the thin film thickness. Figure reproduced from ref. 6. 

 

To illustrate the opening of a gap in the Dirac cone of the [001] surface facet, its band structure is 

plotted for different film thicknesses in Fig. 4.5 above. By reducing the slab thickness from 61 to 31 

atomic monolayers (atml) a gap clearly opens up. Additionally, by reducing the slab thickness even 

further from 31 to 23 does not raise the induced gap, but lowers it somewhat again. This indicates 

the oscillating behavior of the induced gap as a function of film thickness. For lower film thickness 

the induced gap gets even larger, however the overall gap seems to be limited by the 40 meV gap of 



52 
 

the anticrossing along the �̅� − �̅� line. This  40 meV limit of the gap seems to be in contrast to Fig. 

4.5 were the SnTe energy gap raises further to 300 meV, however probably only the induced energy 

gap 𝐸𝑔,𝑖𝑛𝑑 is plotted, not the overall gap which is smaller. 

 

Fig. 2.8: Energy dispersion of a 2D film without edges for different thicknesses of (a) 444 Å , (b) 

192 Å , (c) 98 Å , (d) 72 Å , (e) 35 Å , (f) 28 Å. Under each plot the induced gap 𝐸𝑔,𝑖𝑛𝑑 (left of the �̅�-

point) is given as well as the overall gap 𝐸𝑔 that is calculated by taking into account the gaps at both 

sides of the �̅�-point. For 9 atml or 28 Å the induced gap is merged with the valence and conduction 

bands. The color bars represents the |Ψ|𝑐𝑎𝑡𝑖𝑜𝑛/𝑆𝑛
2 . 

𝑡 = 141 atml or 444 Å, 𝐸𝑔,𝑖𝑛𝑑 = 0 meV, 𝐸𝑔 = 0 meV 𝑡 = 61 atml or 192 Å, 𝐸𝑔,𝑖𝑛𝑑 = 1 meV, 𝐸𝑔 = 0 meV 

𝑡 = 31 atml or 98 Å, 𝐸𝑔,𝑖𝑛𝑑 = 29 meV, 𝐸𝑔 = 5 meV 𝑡 = 23 atml or 72 Å, 𝐸𝑔,𝑖𝑛𝑑 = 15 meV, 𝐸𝑔 = 0 meV 

𝑡 = 11 atml or 35 Å, 𝐸𝑔,𝑖𝑛𝑑 = 87 meV, 𝐸𝑔 = 4 meV 𝑡 = 9 atml or 28 Å, 𝐸𝑔,𝑖𝑛𝑑 = 244 meV, 𝐸𝑔 = 40 meV 

a) b) 

c) d) 

e) f) 
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While it can be seen in Fig. 4.5 that the Dirac cones on the 2D infinite surface start to gap out for 

very thin films (≲ 16 nm), this is not true for the edges of a 2D surface. In literature this was first 

found for the [001]9 surface and was later extended to [111]3 and [110]6 surfaces. In this section 

the dispersion of such thin films with edges are calculated. The dispersion is calculated using an 

eigenvalue method by defining a unit cell with a thin side in the direction perpendicular to the 

surface facet and a long side parallel to the surface facet. Next periodic boundary conditions are 

applied in the direction perpendicular to this 2D cross-section. 

It turns out that the details of the dispersion depend strongly on the number of layers. However 

overall it can be stated that if edge states are present we can make the following observations: The 

[001] facet will have 2 Dirac cones per BZ near 𝑘 = ±𝜋 at its [100] or [010] edge. An example of 

the band structure is shown in Fig. 4.7 for a thin film with a 79 × 9 atml cross-section. The example 

is for a [100] surface facet, with the edge is along the [001] direction and the long 79 atml side in 

the [010] direction. The same cross-section is modeled in appendix 6.1 using a density of states 

method. In Fig. 4.6 the wave function probability |Ψ|2 summed over the lowest 4 states near the 

Dirac point is plotted, where Ψ is the wave function. The eigenvalues are 2 times degenerate, 

because both edges of the thin slab contribute one Dirac cone shifted right from 𝑘 = 𝜋 and one 

shifted left from 𝑘 = 𝜋. 

 

The [110] surface will have 2 Dirac cones per BZ, where one is located at 𝑘 = ±𝜋 and one is located 

at 𝑘 = 0. An example of the band structure is shown in Fig. 4.8 for a thin film with a 151 × 11 atml 

cross-section. The example is for a [110] surface facet, with the edge is along the [1-10] direction 

and the long 151 atml side in the [001] direction. 

The [111] surface will have 1 Dirac cone per BZ located at 𝑘 = 0. An example of the band structure 

is shown in Fig. 4.9 for a thin film with a 301 × 16 atml cross-section. The example is for a [111] 

surface facet, with the edge is along the [-1-12] direction and the long 151 atml side in the [1 − 10] 

direction.  

The [111] surface facet has only 1 Dirac cone on its edge, therefore its ℤ2 topological invariant has a 

non-trivial value and can therefore be classified as a quantum spin Hall (QSHI) insulator. It is shown 

in literature3 that for a thin film with an even number of layers, which does not have inversion 

symmetry, the topological phase can be found by directly calculating the edge states. For thin films 

with an odd numbers of layers the ℤ2 topological invariant can be calculated. The ℤ2 topological 

invariant is non-trivial (topological) if the parity of the occupied Bloch wave functions is odd at an 

odd number of time-reversal invariant (TRIM) points in the Brillouin Zone. Therefore to calculate ℤ2 

these parities are calculated at (𝑘𝑥 , 𝑘𝑦) = (0,0), (0, 𝜋), (𝜋, 0) and (𝜋, 𝜋). For certain thicknesses and 

Fig. 4.6: Plot of sum of the lowest 4 states near the Dirac point for a 79 × 9 atml (249 × 28 Å) 

and a 157 × 9 atml (495 × 28 Å) slab. 
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surface terminations of the [111] surface (infinite in the two directions perpendicular to [111]) the 

parities are found to be odd at  (𝑘𝑥 , 𝑘𝑦) = (0,0), (0, 𝜋) and (𝜋, 0), but even at (𝜋, 𝜋) which makes 

ℤ2 non-trivial. It is reported that the bandgap in the QSHI phase can reach 18 meV at 25 layers for 

Sn termination and 66 meV at 19 layers for Te termination. This was checked but smaller gaps were 

found of 6 meV and 10 meV respectively. This could be due to a different choice in edges, namely 

we choose the edges [1-10] and [-1-12] with a width of 601 atml in the [1-10] direction. Only the 

fact that the edges were of armchair-type was reported in literature, not their directions. 

The ℤ2 topological invariant is also calculated for topological [001] and [110] thin films with odd 

number of layers. For the [001] thin film the parity was odd on all 4 TRIMs, while for the [110]  film 

the parity of even for all 4 TRIMS. Since the parity is thus not odd of an odd number of TRIMs, these 

films cannot be identified as a quantum spin Hall Insulator. However this does not necessarily mean 

that these films cannot be applied in Majorana devices. Since there are no proposals yet of these 

films in Majorana devices, their potential for generating Majoranas is investigated in section 4.2.3, 

where the focus is on comparing the [001] and [111] thin films. 

 

  

Fig. 4.7: Thin film dispersion for a [100] surface facet with 79 × 9 atml or 249 × 28 Å cross-section, 

with the edge along the [001] direction and the long 79 atml side in the [010] direction. The chemical 

potential is set at 𝜇 = −0.12. For the calculations where the chemical potential is not mentioned 𝜇 =

0. 
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As noted above, the details of the dispersion depend strongly on the number of layers. Moreover it 

matters whether the thin slab has an even or odd number of atomic layers. For example the 

topological regions for odd and even number of layers of a [001] thin film are shown in Fig. 4.10. For 

an odd number of layers the thin film is topological between 3 and 51 number of layers, as (Fig. 

4.10a)), while for the even number of layers this is between 12 and 38 number of layers (Fig. 4.10a)). 

For the odd number of atomic layers holds that if the mirror Chern number 𝑁𝑀 has a value of +2 or 

−2 , the thin film is topological and has edge states. If 𝑁𝑀 = 0 it is non-topological and has no edge 

states. For the even number of atomic layers holds that if the winding number 휁𝑀 has a value of 2, 

the thin film is topological, while if 휁𝑀 = 0 it is not14. 

  

a) b) 

Fig. 4.8: Thin film dispersion for a [110] surface facet with 151 × 11 atml or 476 × 49 Å cross-

section, with the edge is along the [1 − 10] direction and the long 151 atml side in the [001] 

direction. (a) around 𝑘 = 0 and (b) around 𝑘 = 𝜋. 

 

Fig. 4.9: Thin film dispersion for a [111] surface facet with 301 × 16 atml or 1340 × 87 Å cross-

section, with the edge is along the [-1-12] direction and the long 301 atml side in the  1-10  

direction. 
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Fig. 4.10: (a) Topological phase diagram in odd number of layers of a [001] thin film of SnTe. TCI with 

|𝑁𝑀| = 2 is realized in the shaded regions. The energy gap is denoted by the open circles, closed 

squares, and open squares for a nontopological insulator 𝑁𝑀 = 0, a TCI with 𝑁𝑀 = 2, and a TCI 

with𝑁𝑀 = −2, respectively. (b) Topological phase diagram in even number of layers of a [001] thin 

film of SnTe. Energy gap and topological invariant 휁𝑀 are shown. |휁𝑀| = 2 is denoted by the closed 

square in the shaded region. Figures reproduced from ref. 6. 
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4.1.3 Simulating non-superconducting SnTe Nanowires 

 

In this section, in a similar way as in section 4.1.2 the dispersions of SnTe nanowires are modeled. 

Nanowires are quasi-1D systems having a cross-section within the range of 10 to 100 nm. The SnTe 

nanowires show quite different dispersions for nanowires with different facets. In Fig. 4.11 below 

the nanowire dispersions for a nanowire with a [001] translation direction, with [010] and [100] 

facets are shown for different sizes of its cross-section.  

As is discussed in section 2.2.2 no Dirac cones are to be expected, only gapped Dirac cones. Indeed 

no gapless surface states are found in the dispersions of the [001] oriented nanowire. Only in Fig. 

4.11b) for a 13 × 13 nm cross-section there are features in the dispersion close to 𝐸 = 0 and 𝑘 = 𝜋 

that look like gapped Dirac cones, so Dirac physics seems to be present. However, what was not 

expected, the bandgap seems to close for cross-section larger than about 13 × 13 nm. For these 

cross-section the Dirac cones seem to be buried in the bulk bands. A possible explanation is that the 

bandgap is filled up with trivial surface states.  

The nanowire dispersions for nanowires with certain [111] and [110] facets are plotted in Fig. 4.12 

and 2.16 respectively for different cross-sections. Fig. 4.12 shows the dispersion for a rectangular 

[1-10] oriented nanowire with [001] and [110] side-facets. In Fig. 4.13 the nanowire dispersions for 

a rectangular [-1-12] oriented nanowire with [-110] and [111] side-facets are plotted for different 

cross-section. Both sets of figures show that the gap is closing for increasing size of the nanowire 

cross-section.  In Fig. 4.13a) for a [-1-12] oriented nanowire with [-110] and [111] side-facets a 

nicely gapped spectrum is plotted. However the Dirac cone has a small gap and the cross-section is 

unrealistically small. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4.11: Nanowire dispersions for a square [001] oriented nanowire with [010] and [100] side-

facets for (a) 21 × 21 or 66 × 66 Å,  (b) 41 × 41 or 129 × 129 Å and (c) 81 × 81 or 255 × 255 Å 

cross-sections. The chemical potential is set at 𝜇 = −0.12. 

a) b) 

c) 
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Fig. 4.12: Nanowire dispersions for a rectangular [1-10] oriented nanowire with [001] and [110] 

side-facets for (a) 21 × 21 or 66 × 93 Å,  (b) 41 × 41 or 129 × 183 Å and (c) 81 × 81 or 255 ×

361 Å cross-sections.  

Fig. 4.13: Nanowire dispersions for a rectangular [-1-12] oriented nanowire with [-110] and [111] 

side-facets for (a) 21 × 21 or 94 × 115 Å, (b) 41 × 41 or 182 × 224 Å and (c) 81 × 81 or 

361 × 442 Å cross-sections. 

a) b) 

c) 

a) b) 

c) 
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4.1.4 Modelling the Magnetic fields in SnTe 

 

As discussed in section 2.2.2 a magnetic field parallel to the nanowire is needed to make sure 

surface states are present. The magnetic field is realized in the model by the introduction of a 

Zeeman term in the Hamiltonian that deals with the effect of the magnetic field on spin of the 

electron and the by introduction of a Peierls substitution to deal with the magnetic effect on the 

orbital part of the momentum of the electrons. 

 

Zeeman Hamiltonian 

 

The Zeeman splitting is chosen the same for both the anion and cation, but different for the each 

orbital. In the following the derivation of the Zeeman Hamiltonian for the 18 orbital sp3d5 model is 

given. For the 6-orbital p3 model the derivation is similar but only for the p orbitals. 

 

The Zeeman Hamiltonian of a particular orbital is given by  

𝐻𝑍 = �⃑� ∙ �⃑⃑� ,      (2.3) 

where �⃑�  is the magnetic field and �⃑⃑�  is the orbital’s magnetic moment 

 �⃑⃑� = (

𝑀𝑥

𝑀𝑦

𝑀𝑧

) ,      (2.4) 

where 𝑀𝑖 are magnetic moment matrices for each component 𝑥, 𝑦 and 𝑧. 

 

The derivation for 𝑀𝑧 is given below. 𝑀𝑧 is an 18 × 18 matrix. Assuming that the electron behaves 

as a free electron in a magnetic field, it is given by  

𝑀𝑧 = 𝜇𝐵(2𝑆𝑧 + 𝐿𝑧),      (2.5) 

where 𝜇𝐵 = 5.79 ∙ 10−5eV ⋅ T−1 is the Bohr magneton and 𝑆𝑧 and 𝐿𝑧 are the spin and orbital 

momentum matrices of the orbitals. 

 

Since the 𝑠-orbitals do not have an angular component 𝐿𝑧 (the angular momentum quantum 

number 𝑙 = 0), the 2 × 2 magnetic moment matrix of the 𝑠-orbitals is given by 

 𝑀𝑠,𝑧 = 2𝜇𝐵𝑆𝑧 =  2𝜇𝐵𝜎𝑧 = 2𝜇𝐵 (
1 0
0 −1

),    (2.6) 

where 𝜎𝑧 is the Pauli matrix for the 𝑧-component of the spin. The 𝑀𝑠,𝑥 and 𝑀𝑠,𝑦 components are 

acquired by replacing 𝜎𝑧 by 𝜎𝑥 and 𝜎𝑦. 

 

The 𝑖-th component of magnetic moment matrix of the 𝑝-orbitals is given by 6 × 6 matrix 

𝑀𝑖,𝑑 = 𝜇𝐵(2𝑆𝑖 ⊗ 𝐼3 + 𝐼2 ⊗ 𝐿𝑖),    (2.7) 

where 𝐼𝑛 is the 𝑛 × 𝑛 unit matrix and 𝑆𝑧 = 𝜎𝑖 is again the Pauli matrix corresponding to the 

component of the magnetic moment. The derivation of the 𝐿-matrices for the 𝑝-orbitals is given in 
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appendix 6.2.2. The magnetic moment matrix of the 𝑑-orbitals is calculated similarly, where also the 

derivation of the 𝐿-matricces for the 𝑑-orbitals is given in appendix 6.2.3. 

 

Peierls substitution 

 

The Peierls substitution10 is a method to deal with the effect of the magnetic field on the orbital 

motion of electrons. For example the Aharonov-Bohm effect can be simulated by using a Peierls 

substitution. The gauge-invariance of the Schrodinger equation requires to transform the wave-

function amplitude or equivalently the creation operator of an electron at a site as 

𝑐𝑗
† → 𝑐𝑗

†𝑒−𝑖
𝑒

ℏ
Λ(𝑟𝑗)     (2.8) 

where Λ(𝑟𝑗) generates at site 𝑗 the gauge transformation of the vector potential 𝐴 (𝑟 ) → 𝐴 (𝑟 ) +

∇𝐴 (𝑟). If there is no magnetic field then the vector potential can locally be set to 𝐴 = 0 by an 

appropriate gauge choice of Λ. The hopping term in the absence of a vector potential is written as 

𝐻𝑡 = 𝑡𝑗𝑙𝑐𝑗
†𝑐𝑙 + ℎ. 𝑐., where ℎ. 𝑐. is the Hermitian conjugate, which must gauge transform to 

 

𝐻𝑡 = 𝑡𝑗𝑙𝑒
−𝑖

𝑒

ℏ𝑐
(Λ(𝑟𝑗)−Λ(𝑟𝑙))𝑐𝑗

†𝑐𝑙 + ℎ. 𝑐. = 𝑡𝑗𝑙𝑒
−𝑖

𝑒

ℏ
(∫ 𝑑𝑟′∙𝐴(𝑟′𝑟𝑗

𝑟𝑙
)
𝑐𝑗
†𝑐𝑙 + ℎ. 𝑐.  (2.9) 

 

While this expression is derived for zero magnetic field it is used to include magnetic fields in lattice 

models by choosing the integration path to be the shortest distance over nearest neighbor bond. 

 

The vector potential is not unique, but is chosen in our model to be 

𝐴 (𝑟 ) = (

(𝑧 − 𝑧0)𝐵𝑦 − (𝑦 − 𝑦0)𝐵𝑧

0
(𝑦 − 𝑦0)𝐵𝑥

),    (2.10) 

where (𝑥0, 𝑦0, 𝑧0) is the origin of the system and (𝑥, 𝑦, 𝑧) is the difference vector of the start vector 

of a nearest-neighbor hopping. Therefore  

𝐴 ∙ 𝑟 = (

(𝑧 − 𝑧0)𝐵𝑦 − (𝑦 − 𝑦0)𝐵𝑧

0
(𝑦 − 𝑦0)𝐵𝑥

) ∙ (

𝑥𝑗 − 𝑥𝑙

𝑦𝑗 − 𝑦𝑙

𝑧𝑗 − 𝑧𝑙

).  (2.11) 

The transformation of the hopping terms is then 

𝑐𝑗
† → 𝑐𝑗

†𝑒−𝑖
𝑒

ℏ
𝐴 ∙𝑟 .      (2.12) 
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4.2 Modelling SnTe Majorana devices 

 

In this section the potential of SnTe nanostructures for Majorana devices is  investigated. Section 

2.2.2 introduced that a TI nanowire can host Majorana fermions (in combination with a parallel 

magnetic field and induced superconductivity). Besides that section 4.1.2 showed that SnTe thin 

films host topological phases, where the [111] thin film is particularly interesting due to its quantum 

spin Hall phase. To generate the Majorana fermions typically magnetic fields and induced 

superconductivity are needed. Simulating the magnetic fields in SnTe was already discussed in 

section 4.1.4. In section 4.2.1 the introduction of superconductivity to the model is treated. While 

we were not able to show any Majorana fermions in SnTe nanowires yet, in section 4.2.2 the 

potential of this method is discussed. In section 4.2.3 another approach of generating Majorana 

fermions using SnTe thin films is discussed, which is supported by simulations including 

superconductivity. Indications of Majorana fermions in SnTe thin films are discussed. 

 

4.2.1 Modelling superconductivity 

 

The 𝑠-wave superconductive coupling is applied to the original model hamiltonian 𝐻 by transforming 

it into a Bogoliubov-de Gennes Hamiltonian11 given by 

𝐻𝐵𝑑𝐺 = (
𝐻 Δ

−Δ∗ −𝐻∗),     (3.2) 

where Δ is the superconducting order parameter. 

𝐻𝐵𝑑𝐺  has a higher symmetry than 𝐻, since 𝐻𝐵𝑑𝐺  is conserved under applying the particle-hole 

symmetry operator 𝑃, i.e. 

𝑃𝐻𝐵𝑑𝐺𝑃−1 = −𝐻𝐵𝑑𝐺.     (3.3) 

Because of the minus sign in the particle-hole symmetry, the spectrum of 𝐻𝐵𝑑𝐺  must be symmetric 

around zero energy.  

 

  



62 
 

4.2.2 Majorana fermions in SnTe nanowires 

 

As discussed in section 3.2, TI nanowires, which have a single Dirac cone can host Majorana 

fermions. A magnetic field has to be applied parallel to the nanowire growth axis to make sure 

surface states are running over the nanowire as shown in Fig. 3.4 for the non-superconductive state. 

Then inducing 𝑠-wave superconductivity to the wire will produce Majorana fermions at each of its 

ends. We have not been able to show yet the existence of Majoranas in the SnTe, which is a TCI 

(section 2.3) and not a TI (section 2.2). To show the existence of Majoranas in SnTe nanowires the 

following steps have to be taken:  

 

First of all the existence of topologically protected surface states on the nanowire geometry have to 

be demonstrated. Therefore the dispersions for different nanowire cross-section (sizes and surface 

facets) have been calculated in section 2.4. While Dirac cones on these nanowires were expected, 

the bandgaps of these nanowires seemed to close for larger nanowire cross-sections. While there 

were indications of Dirac physics (mostly in Fig. 2.16a)) no full Dirac cones (without a gap in the Dirac 

cone) where found, located in a considerably sized gap in the energy dispersion. 

 

Secondly to show the existence of Majorana fermions in SnTe nanowires it would be a huge 

improvement if the model would be reduced to an effective model. Quite big nanowire cross-

sections had to be simulated in section 3.4, which makes computations very expensive. Also the 

surface state spectrum kept changing when changing the nanowire cross-section, which indicates 

that the simulated nanowire cross-sections were not even big enough. If it can be shown that the 

SnTe nanowire for a certain type of surface facets (such as {001}) has a specific number of Dirac 

cones on specific �⃑� -points, then maybe such an effective model can be formulated. In this effective 

model the units cell could then be decreased to a much smaller size than the one used now for a full 

nanowire crossection. 

 

Finally here we convey our thoughts on the different surface facets of SnTe nanowires. The results of 

section 3.4 showed a closing of the bandgap for increasing nanowire diameter. However if it is 

assumed that the bandgap would stay open still some conclusions can be done. First of all, except 

for the simulations which have [111] surfaces, the number of Dirac cones (if the gap would not 

close) seems to be 2. This is the same as was found for the [001] and [110] thin films in section 3.3. 

Since the original TI Majorana nanowire proposal discussed in section 3.2 has only 1 Dirac per BZ it is 

not clear whether this proposal would work for a TCI with 2 Dirac cones on its surface. With an 

effective model this could be investigated. Such a model was not found yet since for example the 

[001] wires the Dirac cones seem to be close to 𝑘 = ±𝜋, while most effective models in literature 

produce Dirac cones at 𝑘 = 0. 
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4.2.3 SnTe thin film superconducting junctions 

 

The SnTe [111] QSHI slab is simulated in the 𝜋-junction geometry discussed in section 2.2.3 (Fig. 2.7) 

to check whether these Majorana fermions are also generated in SnTe. A schematic of the simulated 

geometry is shown in Fig. 4.14. This geometry is basically only the part of the superconducting ring 

near the junction, but in our simulation the width of the junction is set to 𝐿 = 0. Besides that the 

superconducting phase difference of the junction in our simulation is not implemented by a 

magnetic field, but by directly implementing the superconducting phase into the superconducting 

part of the Hamiltonian of the system.  

 

For the simulation of the thin film geometry of Fig. 4.14 a different model12-13 is used then was used 

for all the previous simulations. The model used is a 6 orbital model that only simulates the 𝑝-

orbitals of SnTe. The model is not derived from the 18 orbital model used above and it also does not 

produce the exact same energy dispersions. Still it reproduces most characteristics such as the 

number of Dirac cones quite well, however mostly for different (often smaller) dimensions of the 

geometry as for the 18 orbital model. This model is used to make computations less expensive, since 

by introducing superconductivity into the model the size of the Hamiltonian is increased from 𝑁 × 𝑁 

to 2𝑁 × 2𝑁. Also the computations to confirm the existence of Majorana fermions such as 

conductance calculations are slower than energy dispersion calculations. 

 

 
 

Fig. 4.14: A simplified geometry used in the simulations to recreate the physics of the geometry in 

Fig. 3.6a). 

 
Firstly the eigenvalues and eigenvectors of a thin film with open boundary conditions in 3 

dimensions are calculated. Using a sparse matrix diagonalization method, only the eigenvalues close 

to the Fermi level are calculated. In the 6 orbital model a 7 atml thick [111] thin film and a 3 atml 

thick [001] thin film were simulated. By calculating the dispersions it was checked that these thin 

films also have 1 and 2 Dirac cones per BZ respectively, as was already found using the 18 orbital 

model in section 2.4. Since the whole geometry is made superconductive by the method discussed in 

section 3.3.1 no states should exist in the superconducting gap, except in the case of Majorana 

states. Fig. 4.15a) and 4.16a) show the energy dispersions of the normal states of the [111] and 

[001] thin films as calculated with the 8 orbital model. For the [111] thin film there is a discrepancy 

∆ 

 

∆𝑒𝑖𝜑 
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compared to the 18 orbital calculations (section 2.4) in that the bandgap is much smaller at 𝑘 = ±𝜋. 

Therefore care must be taken that the Fermi level is set within this gap.  

 

In Fig. 4.15b) and 4.16b) the energy dispersion are shown for the superconductive state. Δ = 2 meV 

was set for the [111] film and Δ = 20 meV for the [100] film, which are both much bigger values 

than for typical induced superconductivity (see table 2.1). It was found that large superconductive 

order parameters ∆ are needed so that the Majorana wavefunctions are less delocalized. Since the 

width of the thin film is only finite the Majorana wavefunctions can overlap, resulting in a 

energysplitting in the spectrum. This energy splitting can thus be decreased by either increasing the 

width of the thin film (which is computationally expensive) or by increasing ∆. In Fig. 4.15c) and Fig. 

4.16c) zoom-ins of the dispersion near the Dirac points are shown. On top of that the eigenvalues of 

a thin film finite in 3D is plotted, where the finite thin film has the same cross-section as was used 

for the dispersion calculation. It seems that Majorana states exist in the middle of the 

superconducting gap.  

 

For the [111] thin film there are 4 states in the gap (two degenerate states at positive and two 

degenerate states at negative energy). This can be understood because at both sides of the QSHI, 

which has 1 Dirac cone, two Majorana fermions exist at the 𝜋-junction. For the [001] film 8 states 

are present inside the superconducting gap, which is because there are 2 Dirac cones on the edge of 

the thin film, which is double the number of Dirac cones compared to the [111] thin film. In Fig. 

4.15d) and 4.16d) the wave function probability density summed over the 4 and 8 midgap states are 

shown respectively. For the [111] thin film the Majorana seems to be located on the two ends of the 

𝜋-junction (top and bottom of the figure), however probably since the geometry and the 

superconducting order parameter ∆ are not big enough the Majorana wavefunctions are not well 

localized. Therefore the Majorana fermions also extended partly over the edge of the thin film. For 

the [001] thin film a larger ∆ was chosen, therefore more localized Majoranas, 4 at each end, seem 

to exist on the ends of the 𝜋-junction. The 8 midgap states consist of 4 states at positive and 4 states 

at negative energies. The 4 states are not all degenerate, but degenerate in pairs of two. 
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Fig. 4.15: [111] thin film dispersion without (a) and with (b) superconductivity with order parameter 

Δ = 2 meV. (c) In black a zoom-in of the dispersion of Fig. 4.15b) near zero energy and 𝑘 = 0 and in 

red the eigenvalues of a thin film finite in 3D of 121 × 241 × 7 atml (d) Wave function probability 

density summed over the 4 midgap states. 

a) b) 

c) d) 

|Ψ2| 
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Fig. 4.16: [001] thin film dispersion without (a) and with (b) superconductivity with order parameter 

Δ = 20 meV. (c) In black a zoom-in of the dispersion of Fig. 4.16b) near zero energy and 𝑘 = 0 and in 

red the eigenvalues of a thin film finite in 3D of 51 × 51 × 3 atml (d) Wave function probability 

density summed over the 8 midgap states. 

 

Further evidence that the actual states plotted in Fig. 4.15d) and Fig. 4.16d) really are Majorana 

fermions could have been acquired in two ways. First of all a topological invariant can be defined 

and calculated to check whether the system is in a topological Majorana state. For Rashba-spinorbit 

nanowires the existence of Majorana fermions on its two ends is verified by calculating the product 

of the Pfaffians at 𝑘 = 0 and 𝑘 = 𝜋, i.e. 

 Pf[𝑖𝐻(0)]Pf[𝑖𝐻(𝜋)].      (3.4) 

If this so-called Majorana topological invariant is equal to −1 the system is topological, while for a 

value of 1 the system is trivial. The Pfaffian computes the fermion parity at a particular 𝑘-value. 

Therefore if a band inversion is present at one of the 𝑘 = 0 or 𝑘 = 𝜋 this induces a parity switch 

resulting in a change of sign of the Majorana topological invariant. The topological invariant was 

calculated for the geometry shown in Fig. 4.17, both for the [111] and [001] thin films. A cross-

section of the thin film including the 𝜋-junction with periodic boundary applied in the direction 

|Ψ2| 

a) b) 

c) d) 
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perpendicular to the cross-section is simulated. For both films Pf[𝑖𝐻(0)]Pf[𝑖𝐻(𝜋)] = 1, indicating a 

trivial system.  

However, this does not necessarily mean that no Majorana fermions are present. Similarly to the 

situation investigated in ref. 14, multiple Majorana modes located at the same position may be 

topologically protected by mirror symmetries of the system. The fact that these modes are 

degenerate to a high precision hints at such a scenario. We leave the question of defining a different 

topological invariant that captures the non-trivial nature of the 2 or 4 Majorana modes at each end 

of the junction to future work. 

  
Fig. 4.17: Simulated geometry for the Majorana topological invariant of a thin film. 

 

Another approach to prove the existence of the Majoranas would be to do conductance calculations. 

This could be done in a tunneling geometry similar as is shown in Fig. 3.1. A different approach 

proposed in literature proves the existence of Majorana fermions by calculating the conductance 

through a normal metal/QSHI/superconductor junction. As Fig. 4.18 shows a Andreev quantum dot 

is created by a gate electrode at the edge of a QSHI in a prependicular magnetic field 𝐵. A current 𝐼 

is passed between metallic and superconducting contacts, and the differential conductance 

𝐺 = 𝑑𝐼/𝑑𝑉 is measured as a function of the bias voltage 𝑉 for different gate voltages. By averaging 

𝐺 over the different gate voltages a zero-bias peak appears with a height of 4𝑒2/ℎ above a 

(
2

3
𝜋2 − 4) 𝑒2/ℎ background. 

  

 
Fig. 4.18: (a) Andreev quantum dot setup. (b) Conductance as a function of bias voltage 𝑉 for a gate 

voltage of 𝐸𝑐 = −1.5 meV (black line), conductance as a function of bias voltagae 𝑉 averaged over 

different gate voltage (red line) and conductance curve without gate electrode (green line). 

Reproduced from ref. 15. 

∆ 

 

∆𝑒𝑖𝜑 
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To calculate the conductance of a thin film in the Kwant python package, leads are connected to a 

scattering region, which for the [111] thin films is taken to be of size 61 × 7 × 3 atml. First Kwant’s 

conductance calculation would not converge, which was solved by applying a small electric field of 

0.1 meV/atml perpendicular to the tin film. Fig. 4.19 shows the both the result of the conductance 

calculation in units of 𝑒2/ℎ as well as the energy dispersion of the corresponding 61 × 7 × ∞ atml 

thin film. The conductance calculation took about 355s per calculation point to converge, while 

identical but superconducting thin film would take about 2790s per calculation point. If then also an 

ensemble average over these calculations would have to be done then this would be a too expensive 

calculation given the limited time on the multi-user cluster on which the computation was 

performed. 

 

Fig 4.19: Conductance calculation of a [111] film of 61 × 7 atml (blue dotted line) on top of the film’s 
dispersion. 
 
Due to the long computation times of the conductance, the thin film conductance was not further 
investigated. An effective model should be formulated to reduce the computation times. 
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4.3. SnTe nanowire growth results 

 

4.3.1 High temperature growth (𝟐𝟓𝟎 ≤ 𝑻𝑩 ≤ 𝟒𝟓𝟎 ℃)  

 

This section discusses the growth results of the first 18 growth runs, in which BandiT temperatures 

were between 𝑇𝐵 = 250 ℃ and 𝑇𝐵 = 450 ℃. For growth runs at 400 ℃ the Sn flux was mostly set 

at 𝑝𝑆𝑛 = 3.5 ∙ 10−7 Torr, while a Te series was done in the range 𝑝𝑇𝑒 = 2.8 ∙ 10−7 − 22 ∙ 10−7Torr. 

The growth time was 30 min for most growth runs. As the SEM images in Fig. 4.20 show, at this 

temperature mostly droplets of material were deposited. These droplets contain mostly Sn and, at 

places where there is Au present, a AuxSny alloy. SnTe is probably not deposited, at least not in big 

quantities, since not much characteristics of crystalline  growth are found. From Fig. 4.20 it is clear 

that for low Te fluxes much more material is deposited than for the high Te fluxes. This could be due 

two effects. First of all due to a high Te flux, more SnTe can be formed, depositing effectively less 

elemental Sn. As can be seen in Fig. 5.1, at 400 ℃ the reevaporation rate of SnTe is about 0.02 ML/

s, while Sn has a negligible reevaporation rate. However, because this reevaporation rate is small,  a 

more influential effect could be due to a possible surfactant effect of Te. It could be that Te actually 

passivates the substrate, so that Sn cannot stick to it and in total less material is deposited.  

Finally from Fig. 4.20c is can be seen that nucleation seems to occurs for the high Te fluxes. Here the 

gold particles in the lithographic array of holes clearly have picked up material, which could be Sn or 

SnTe. 

Fig. 4.21 shows the result of growth runs at the slightly lower temperature of 𝑇𝐵 = 340 ℃. At this 

temperature and 𝑝𝑇𝑒 = 5.0 ∙ 10−7Torr a Sn series was done in the range of 𝑝𝑆𝑛 = 3.5 ∙ 10−7 −

0.77 ∙ 10−7Torr. The results are very similar as at 400 ℃, namely droplets of probably mostly Sn are 

deposited. Besides that decreasing the Sn flux has a similar effect as increasing the Te flux. 

Moreover, as can be seen in Fig. 7.2, nucleation occurs again for the lowest Sn fluxes at 340 ℃, 

similarly as was the case for the high Te fluxes at 400 ℃ in Fig. 4.20. 

 

 
 

 

 

 

a) b) c) 

Fig. 4.20: SEM images of SnTe growth runs at 400 ℃. The Sn flux 𝑝𝑆𝑛 = 3.5 ∙ 10−7 Torr and the Te 

flux is varied such that a) 𝑝𝑇𝑒 = 2.8 ∙ 10−7 Torr b) 𝑝𝑇𝑒 = 8.0 ∙ 10−7 Torr and c) 𝑝𝑇𝑒 = 22 ∙

10−7 Torr.  (a) is on a patterned SiNx mask on GaAs substrate, while (b) and (c) are on a a patterned 

SiNx mask on Ge substrate. Magnifications are (a) 50 KX, (b) 70 KX, (c) 112 KX.  

400 nm 800 nm 400 nm 
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A big difference in surface morphology can be seen for even lower growth temperatures, as is shown 

in Fig. 4.22. More film-like, but polycrystalline growth is observed for temperatures of 250 ℃ and 

300 ℃.  

 

 
 
  

Fig. 4.21: SEM images of SnTe growth runs at 340 ℃. The Te flux 𝑝𝑇𝑒 = 5.0 ∙ 10−7 Torr and the Sn flux 

is varied such that a) 𝑝𝑇𝑒 = 3.5 ∙ 10−7 Torr b) 𝑝𝑇𝑒 = 2.2 ∙ 10−7 Torr and c) 𝑝𝑇𝑒 = 0.77 ∙ 10−7 Torr. (a) 

and (b) are on a patterned SiNx mask on GaAs substrate, while (c) is on a a patterned SiNx mask on Ge 

substrate. Magnifications are (a) 10 KX, (b) 70 KX, (c) 200 KX. 

 

a) b) c) 

Fig. 4.22: SEM images of SnTe growth runs at (a) 303 ℃, 𝑝𝑆𝑛 = 3.5 ∙ 10−7 Torr, ℃, 𝑝𝑇𝑒 = 3.1 ∙

10−7 Torr (b) 300 ℃, 𝑝𝑆𝑛 = 1.3 ∙ 10−7 Torr, ℃, 𝑝𝑇𝑒 = 5.0 ∙ 10−7 Torr (c) 250 ℃, 𝑝𝑆𝑛 = 0.77 ∙

10−7 Torr, ℃, 𝑝𝑇𝑒 = 5.0 ∙ 10−7 Torr. (a) and (c) are on a SiNx gradient on GaAs substrate, while b) is 

on a patterned SiNx mask on a Ge substrate. (a) has a growth time of 60 min, while (b) and (c) have a 

growth time of 30 min. Magnifications are (a) 50 KX, (b) 100 KX, (c) 100 KX. 

a) b) c) 

800 nm 800 nm 400 nm 

6 μm 800 nm 400 nm 



71 
 

4.3.2 Low temperature Au-catalyzed SnTe nanowires 

 

Growth 19 with 𝑇𝐵 = 210 ℃  was the first growth run on which a considerable amount of nanowires 

was produced. The growth time was 30 minutes and the fluxes 𝑝𝑆𝑛 = 7.7 ∙ 10−8 Torr and 

𝑝𝑇𝑒 = 5.00 ∙ 10−7 Torr. The nanowires are found on Ge (110) and GaAs (001) substrates with a 

patterned 10 nm SiNx mask with 8 nm thick gold particles. However the nanowires do not grow on 

the patterned gold particles in the holes of the mask. The nanowires only grow in specific areas of 

the substrate, namely on the EBL dose markers and on the hole arrays with lift-off problems. These 

areas contain a larger density of gold (but approximately equal thickness) with a rough morphology.  

The growth procedure was simple: The substrate is heated up to 210 ℃, then the Te and Sn cells are 

opened for 30 min and after closing them again the substrate is cooled down to room temperature. 

It could be that the wires grow during cooldown, due to strain effects. However this is not likely 

because not a closed film is grown under the wires as reported for PbTe wires16, but a polycrystalline 

layer that can easily relax stresses. Similar results were obtained for a substrate temperature of 

230 ℃, while for 250 ℃ less nanowires where found.  

 

The results after growth are shown in the SEM images in Fig. 4.23. In Fig. 4.23a) a zoom-out view is 

shown of a collection of hole-arrays. In the top the overgrown EBL dose-marker is shown. On the 

bottom the 2 hole-arrays (one for a hole-size of 50 nm and one for 40 nm) show overgrown bad-

liftoff (resist stripping) areas where a large density of gold is present. As could be seen from the EBL 

design in Fig. 6.2, between the dose marker and these array are also arrays of holes, but these are 

fully overgrown. A zoom-in of the bottom 50 nm hole-size /250 nm pitch array is shown in Fig. 

4.23b). Typically tens of nanowire can be found per field, only growing in the white areas where Au 

is present. SEM images of wire are shown in Fig. 4.23c) to Fig. 4.23f). Nanowires are in the range of 

20 − 50 nm in diameter and have lengths varying from several nanometers to about 2 μm, of which 

an example is shown in Fig. 4.23f). The height of structures should be taken about 2 times as high as 

measured in the SEM image. This is because the sample holder in the SEM is tilted 30°. However 

since nanowires are growing under an angle the actual length should be scaled by a factor somewhat 

smaller than 2. Some nanowires seems to nucleate at the substrate, which can be on the Ge or GaAs 

substrate and on the SiNx mask, as shown in Fig. 4.23c). Others are growing along the facet of a SnTe 

single crystal, as is shown in Fig. 4.23d) and e). The length of the wires varies a lot, as can be seen in 

Fig. 4.23f) where a long wire of about 2 μm can be seen and wires of about  200 nm.  
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Fig. 4.23: SEM images of the first SnTe nanowires grown in MBE. (a-b) Zoomed-out view of the areas 

where nanowires grown. (c) Nanowire emerging from the substrate. (d-e) Nanowires emerging from 

SnTe single crystals. (f) SEM image showing the size non-uniformity. Magnifications are (a) 390 X, (b) 

6.51 KX, (c) 178 KX, (d) 190 KX, (e) 170 KX and (f) 56 KX. 

 

Next transmission electron microscopy (TEM) was done to determine the amount of defects and the 

stochiometry or chemical composition of the nanowires.Therefor some of the wires were 

transferred to a holey carbon TEM grid, as Fig. 4.24 shows for a wire which has a crystal at its base. 

In Fig. 4.24b) a zoomed-out TEM image shows that the wire is heavily bended, which happened 

while putting it on the TEM grid. The bending is indicated by dark interference fringes on the 

nanowire. In Fig. 4.24c) and d) it can be seen that the holes are present in the wire. Outside of the 

holes a seemingly defect free single crystal is observed. From Fig. 4.24d) the lattice constant is 

estimated to be 0.635 nm, which corresponds very well to the value of 0.633 nm found in 

literature17.  

To further investigate the vacancies in the nanowire energy-dispersive X-ray spectroscopy (EDX) is 

performed on the same area. Fig. 4.25a-d) show the EDX maps for Sn, Te, Au and O. EDX has 

different sensitivities for each element. Therefore the relative contrast between elements in Fig. 

4.25 does not give any information. However non-uniformities in the distribution of each element 

can be observed. First of all it is clear that Au is spread all over the nanowire. Secondly in the 

vacancy of Fig. 2.4d) it can be seen in Fig. 4.25 a) and c) that in these areas there is a very low density 

of Sn and Au. Moreover the densities of Te and O seem to be distributed uniformly, they are not 

lower in the ‘vacancies’. This means that the vacancies are probably actually not empty, but filled 

with Te and O. 

Besides that from Fig. 2.24d) it can be seen that there is a rocksalt structure, but that the crystal is 

rotated 45° with respect to the direction out of the paper. From this we can derive that the 

nanowire is actually growing in the (1 − 10) direction. The TEM is then taken by looking in the 

(001) direction and the facets on the left and right would be (110) facets. That is, if the crossection 

of nanowire is rectangular and if the nanowire actually has clear facets. In SEM the crosssection 

a) b) c) 

d) e) f) 

400 nm 400 nm 800 nm 

100 μm 8 μm 200 nm 
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a) b) 

c) d) 

could not be checked due to the small cross-section and random orientation of the nanowires.The 

observation that the nanowire grows in the {110} direction is peculiar, since the (001) facet is 

reported to be the lowest energy surface. Finally, to our knowledge no SnTe nanowires with (partial) 

{110} side facets have been reported. Therefore we would expect that the nanowire would have 

(001) facets.  

From this could also be understood why the vacancies are actually forming. The vacancies seem to 

form facets within the nanowire under an angle of 45° compared to the growth direction. This 

means that the facets within the vacancy are actually {001} facets. The vacancies could thus be 

formed because they expose facets which minimize energy compared to the {110} facets. However 

the uniform distribution of Te in 4.25b) is puzzling. 

 

  
 
 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4.24: (a) SEM image of a Au catalyzed SnTe nanowire transferred to a holey carbon TEM grid. (b-

d) TEM images of some of the SnTe nanowires. 

  

1 μm 



74 
 

a) b) 

c) d) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4.25: EDX maps in arbitrary unit (AU) of the area of Fig. 4.24d) showing a uniform distribution of 

Te and O2 at this section of the wire. But a vacancy in the wire with low concentrations of Sn and Au.  

 

In TEM images of different nanowires from the same sample it can also be seen that Au is spread 

over the surface of the wire. This gold would completely break the symmetry of lattice, thereby 

destroying the TCI gapless surface states on the surface facets of the nanowire (if facets can be 

grown). This is illustrated by Fig. 4.26. In Fig. 4.26a) the nanowire is shown with the growth direction 

downwards. Fig. 4.26b) show a high constrast in the bottom part of the wire, which is most probably 

a Au particle. The Au diffuses along the edge of the nanowire indicates by the black rim originating 

at the Au particle. Besides that on the top of the wire shown in Fig 4.26c) the black contrast at the 

right side corresponds to gold, as confirmed by the EDX map in Fig. 4.26d). Fig. 4.26e-f) show that 

the Sn concentration is reduced at the location of the gold, while this effect is less clear for the Te.  

 

The spreading of Au over the surface of the nanowire is probably caused by interaction of the gold 

particle at the top of the nanowire with the parasitic SnTe growth around the nanowire. For example 

the parasitic growth could destabilize the gold particle at the top of the growing nanowire, thereby 

incorporating the gold in its surface.  
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Fig. 4.26: TEM images of a different nanowire of growth 19, showing (b) the bottom of the wire and 

(c) the top of the wire. The EDX maps of the top of a nanowire for (d) Au, (e) Sn and (f) Te are shown. 

 

  

a) b) c) 

d) e) f) 
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4.3.3 Growth time series 

 

In this section the effect of changing the growth time is studied, while keeping the other growth 

parameters of growth run 19 the same. Besides a growth time of 30 minutes, growth times of 2, 5, 

10 and 120 minutes were studied, for which Fig. 4.27 shows SEM image taken from patterned Ge 

substrates. From Fig 4.27c) for 10 minutes can be seen that for shorter growth times the parasitic 

growth is still there to an almost equal extent as for 30 minutes growth, as shown in for example Fig. 

7.4f). However a big difference is that the numbers of wires is much bigger for 10 minutes of growth. 

Moreover that the wires are much smaller than for 30 minutes growth, having lengths no longer 

than about 400 nm. As Fig 4.27b) shows, for 5 minutes growth the nanowire are even smaller and 

appear again in larger numbers. For 2 minutes growth parasitic growth is observed again, but no 

nanowires are grown as shown in Fig. 4.27a). The amount of deposited material is minimal, as the 

Au particles in the EBL dose marker are still clearly visible. Finally for 2 hour growth no nanowires 

are found. This is probably because the nanowires are completely covered by the parasitic growth, 

as can be seen in Fig. 4.27d). The substrate is coved with a polycrystalline SnTe layer.  

 

  
 

Fig. 4.27: SnTe growth for different growth time (a), 2 (b) 5, (c) 10 and (d) 120 minutes. The substrate 

temperature is the same as growth run 19 210 ℃, likewise for the fluxes again 𝑝𝑆𝑛 = 7.7 ∙ 10−8 Torr 

and 𝑝𝑇𝑒 = 5.00 ∙ 10−7 Torr. Magnifications are (a) 136 KX, (b) 166 KX, (c) 229 KX and (d) 33 KX. 

 

 

 

 

 

 

 

a) b) 

c) d) 

400 nm 400 nm 

200 nm 1 μm 
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4.3.4 Sn and Te flux series 

 

This section discusses the effect of changing the Sn and Te fluxes with respect to the growth 

parameters of run 19 (discussed in section 7.2). The 210 ℃ substrate temperature of growth 19 was 

pursued, where eventually all substrate temperatures were in the range of 𝑇𝐵 = 193 − 224 ℃. For 

growth 19 𝑝𝑆𝑛 = 7.7 ∙ 10−8 Torr and 𝑝𝑇𝑒 = 5.00 ∙ 10−7 Torr (
IV

VI
= 0.15), however now fluxes 

were varied in the range of 𝑝𝑆𝑛 = 5.4 ∙ 10−9 − 1.3 ∙ 10−7 Torr and 𝑝𝑇𝑒 = 2.2 ∙ 10−6 − 5.4 ∙

10−9 Torr. Mostly a growth time of 30 min was maintained so that parasitic growth does not 

dominate over nanowire growth. In Fig. 4.28 results are shown of changing one of the fluxes with 

respect to growth 19. Increasing the Sn flux and/or decreasing the Te flux does not result in 

nanowires, as is shown in Fig. 4.28b) and c), however decreasing the Sn flux or increasing the Te flux 

gives a low density of nanowires, similarly as was observed in growth 19. This suggests that a low 

IV/VI ratio promotes nanowire growth.  

 

 

 

 

 

 

 

 

 

 

 

Fig. 4.28: The effect of changing the Sn and Te fluxes with respect to growth run 19. Substrate 

temperatures are in the range of 193 − 224 ℃. Fluxes and IV/VI ratios are indicated. a) less Sn b) 

more Sn c) less Te d) more Te. Magnifications are (a) 72 KX, (b) 91 KX, (c) 14 KX, (d) 111 KX. 

 

The growth changed considerably when the IV/VI ratio was lowered even more to a range of 

IV/VI = 0.035 − 0.077. Now the nanowire growth is not only limited to substrate parts where gold 

is present, like the EBL dose markers and the lithographically patterned arrays, but nanowire growth 

is present equally everywhere on the substrate. The edges of a Au/SiNx lithographic pattern (4.29a)) 

and edge of a EBL dose marker with gold (4.29b)) show that nanowires occur independently of the 

availability of gold (growth time is still 30 mi. In Fig. 4.29c) similar results are shown as in 4.29a) but 

then for a slightly different Te flux.  

 

a) pSn= 4.4E-08 

pTe=5.0E-07 

IV/VI=0.088 

b) pSn= 1.30E-08 

pTe=5.0E-07 

IV/VI=0.260 

c) pSn= 7.7E-08 

pTe=1.70-07 

IV/VI=0.453 

d) pSn= 7.7E-08 

pTe=8.3-07 

IV/VI=0.0928 

600 nm 600 nm 4 μm 600 nm 
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Fig. 4.29: Nanowire growth for low IV/VI ratios (a) at the edge of a Au/SiNx lithographic pattern, (b) 

at the edge of a EBL dose marker with gold. Fluxes for (a) and (b) are 𝑝𝑆𝑛 = 1.0 ∙ 10−8 Torr, 

𝑝𝑇𝑒 = 2.90 ∙ 10−7 Torr and IV/VI = 0.035. For (c) 𝑝𝑆𝑛 = 1.0 ∙ 10−8 Torr, 𝑝𝑇𝑒 = 1.3 ∙ 10−7 Torr 

and IV/VI = 0.077. The growth time is 30 minutes. 

 

More growth times were investigated, using the same fluxes as Fig. 4.29c. For 30 min (Fig. 4.29c)) 

and 1 hour (Fig. 4.30a)) the density of nanowires per area is quite small. Lengths of the nanowires 

for 1 hour growth are typically 300 − 500 nm and diameters are found to be 10 − 20 nm. With a 

longer growth time of 2 hours (Fig. 4.30b) the density is even lower. Parasitic deposits of SnTe bury 

the wires during growth. Still nanowires were found with a much bigger size (Fig. 4.30d)) than for 

shorter growth times. These nanowires unfortunately did not grow everywhere, as they grew in 

areas that seemed to be scratched before growth (Fig. 4.30c)), either during cleaving, substrate 

processing or mounting. The scratches can be recognized by a different morphology is the parasitic 

film growth and a higher contrast in SEM. The film in the scratch is polycrystalline instead of 

monocrystalline islands. For these samples no intentional catalyst was deposited on the Si (111) 

substrate. Except for BHF cleaning of 30 s no wet chemistry or plasma cleaning was done to 

minimize the amount of contaminants. However particles may still have been deposited on the 

substrate during the cleaving process, tweezer handling or during substrate mounting (indium).  

 

a) b) c) 

800 nm 800 nm 600 nm 
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Fig. 4.30: Nanowire growth for growth times of (a) 1 hour and (b-c-d) 2 hours for 𝑝𝑆𝑛 = 1.0 ∙

10−8 Torr, 𝑝𝑇𝑒 = 1.3 ∙ 10−7 Torr and IV/VI = 0.077. 𝑇𝐵 is in the range 205 − 216 ℃. On (a) 

unprocessed Si (111) and (b-c) on Si (111) cleaned with BHF for 30 s. (c-d) Wires found at a 

scratched part of the sample, indicated by a red marker. 

 

 

  

a) b) 

c) d) 

800 nm 200 nm 

1 μm 600 nm 
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The nanowires, grown with a flux ratio of IV/VI = 0.077 and growth times of 1 and 2 hours, are 

investigated in TEM and EDX. Multiple images were taken in TEM. In TEM the viewing angle is 

aligned with a certain crystalline direction called the zone axis. Since the TEM projects the 3D crystal 

along the viewing line onto one 2D image it is hard to see whether facets are presents or not, 

however different zone axes can be observed. From Fourier transformation of the TEM images the 

growth direction of some investigated wires was found to be {110}, also a growth direction of {112} 

was found. SEMs along different directions were taken such as {001}, {112}, {1-11} and {0-2 2} 

zone axes. For example the {0-2 2} and {1-11} and zone axes were studied, for which the TEMs 

images are shown in Fig. 4.31a) and b) respectively. The difference in viewing angle is 35.26° with 

respect to the {011} axes.  The insets show a 3 × 3 cube of SnTe which is rotated so the zone axis of 

the crystal structure is the same as the viewing angle of the TEM. Finally Fig. 4.31c) shows a TEM 

image of the same nanowire showing areas with different contrast which indicate defected regions. 

 

 
 

Fig. 4.31: SnTe nanowires grown for 2 hours under low fluxes and low temperature. The growth 

direction is {112} and the zone axis are (a) {0-2 2} and (b) {1-11} the former can be obtained from 

the latter by rotating the viewing angle of the TEM 35.26° with respect to the {011} axes. (c) Defects 

present in the same nanowire. 

 

In EDX it was observed that within an uncertainty of order 1% the composition of the nanowires 

were Sn: Te = 50: 50. No traces of gold, indium or others metals than Sn were found inside the 

wires in contrast to the smaller nanowires (see Fig. 4.26d)) . However, after more elaborate 

investigation of the deposited polycrystalline SnTe film (more specifically the film in the area marker 

red in Fig. 4.30c)), gold was found in SEM/EDX investigation. The gold could have been deposited 

unnoticed because cleaving of gold-free substrates and substrates with gold were cleaved with the 

same tools. In EDX investigation of the small (1 hour grown) nanowires was found that they have a 

thick SnOx shell. Moreover the Sn concentration seems to be higher in the shell of the nanowire than 

in the core, while the Te concentration seems to be uniform. Fig. 4.32 shows an EDX mapping of a 

small nanowire. From 4.32 we suspect that the Sn actually diffuses out of the core and for an oxide 

at the shell.  

a) b) c) 
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The oxide formation found in EDX certainly destroys the TCI behaviour of the nanowires. First of all 

the surface is not mirror symmetric anymore which is needed for the TCI surface states. Besides that, 

if Sn diffuses out of the core, the stochiometry of the bulk is rich of Te and poor of Sn. This means 

that there are a high amount of defects that disrupt the lattice symmetry and therefore the TCI 

behavior. 

 

 Fig. 4.32: EDX images of a small SnTe nanowire grown for 1 hour from which can be seen that the 

core is Te rich, while the shell is SnOx rich. 

 
  

a) b) c) 

d) e) 
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4.3.5 Thermal annealing and positive T-gradients 

 

Besides growth under constant temperature also different temperature profiles were tried. First off 

all annealing for 30 min at 𝑇𝐵 = 430 ℃ after growth for 30 min at 𝑇𝐵 = 210 ℃ was performed. The 

results was that all SnTe was reevaporated again, some traces of Sn and/or Au remained. Besides 

that, annealing at 𝑇𝐵 = 513 ℃ for 30 min before growth was done with no change in growth results. 

Additionally high temperature Sn deposition before low temperature (~210℃) growth was 

performed as well as annealing under Te after growth, which both did not improve growth results.  

Another approach was to apply a positive temperature gradient during growth. Growth was started 

at 190℃, while the temperature rises for 30 min ending at temperatures of 𝑇𝐵 = 300 − 370℃. The 

idea here is that nucleation can occurs at low temperature, while growth occurs at higher 

temperatures so that parasitic growth may be suppressed. For low end temperatures the growth 

results were similar as constant low temperature growth (Fig. 4.33c-d)), while for an end 

temperature of 𝑇𝐵 = 330 ℃ (Fig. 4.33c)) no nanowires were found. For high end temperatures only 

droplets remain on the substrate (Fig. 4.33a-b)).  

 

Fig. 4.33: Growth results at Ge/SiNx/Au patterns for growth for 30 min under a positive temperature 

gradient. For end temperatures of 𝑇𝐵 = 370 ℃, 𝑇𝐵 = 360 ℃, 𝑇𝐵 = 330 ℃ and 𝑇𝐵 = 300 ℃. Where 

for the first 3 the temperature kept rising for 30 min, but for the latter the temperature was already 

stable after 10 min. Fluxes were the same as growth 19: 𝑝𝑆𝑛 = 7.7 ∙ 10−8 Torr and 𝑝𝑇𝑒 = 5 ∙

10−7 Torr. Magnifications are (a) 72 KX, (b) 20 KX, (c) 79 KX, (d) 100 KX. 

 

  

a) b) c) d) 

600 nm 3 μm 600 nm 800 nm 



83 
 

4.3.6 Substrate processing 

 
From all the different substrates that were loaded in the MBE none of them showed particularly 

better growth than others. Most of the nanowires that were grown in the first attemps (around 

growth 19) also did not show a preference for growing on bare substrate or on top SiNx. It can be 

concluded that, under the growth conditions that were explored, the SnTe growth is not effected by 

the SiNx mask. There is no selectivity to grown within the lithographically etched holes. The early 

nanowire grown at low temperatures and intermediate fluxes (growth 19) did depend though on the 

presence of gold at the substrate. The growth did only occur at EBL dose markers and lithographical 

patterns with lift-off problem.  

 

To have growth on the whole substrate attempts were made to recreate these  gold-rich regions on 

the whole substrate. It was found that simply covering the whole substrate with Au did not recreate 

this, as the number of nanowires found was much lower. Also attempts were made to recreate the 

rough surface of the EBL dose markers, which is RIE etched and can contain some SiNx residues. This 

was done by depositing SiNx on the substrate, RIE (under-)etching the samples and depositing a layer 

of Au. Also these attempts did not reproduce the growth behavior found on the defective EBL-Au-

pattern.  

 

One approach that did somewhat recreate the growth behavior of the defective EBL-Au-pattern on 

bigger scales was achieved as follows. On a Si (100) substrate 50 nm SiNxwas deposited. By doing a 

BHF gradient etch (see section 3.3) and RIE etching a rough surface was created with different SiNx 

thickness on different parts of the substrate. After depositing 8 nm of gold, the whole samples of 

submerged in BHF for 5 s. The result was a rough surface with big flakes of gold on certain areas of 

the samples with thicker SiNx. The rough morphology of these areas promoted the growth of all 

kinds of nanowires in different sizes and shape, as shown in Fig. 4.34. The same growth parameters 

as growth 19 were used.  

 

  
Fig. 4.34:  Nanowire growth on a rough surface with gold. Magnifications are (a) 52 KX, (b) 180 KX 

and (c) 0.1 KX.  

a) b) c) 

800 nm 400 nm 400 nm 
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5. Conclusion and outlook 

 

In this research the potential of SnTe in the application of the topological qubit was investigated. 

This was approached from a modelling and a materials science perspective.  

 

The main results from the modelling parts are that tight binding calculations done in literature could 

be reproduced well in most cases. This includes the modelling of energy dispersions of SnTe bulk 

surfaces and thin films. Due to confidence gained by these calculations the model was used to 

calculate nanowire dispersions. The nanowire energy dispersions are not comprehensive and leave 

room for follow-up studies. However indications of Dirac physics were observed. 

Moreover Majorana fermions were found when superconductivity was applied to SnTe thin films, 

where at each end of a superconducting 𝜋-junction 2 and 4 Majorana fermions were found for the 

[111] and [001] thin films respectively. Here the [001] thin film is the most special, not only 

because it has the lowest energy of formation in growth, but also since the [001] surface is not a 

conventional quantum spin Hall insulator. 

 

In the growth part, SnTe nanowires grown in MBE were discussed, which has not been reported in 

literature yet. We managed to grow SnTe nanowires at low temperatures (𝑇𝐵 ≈ 210℃) at low 

material fluxes; 𝑝𝑆𝑛 = 1.0 ∙ 10−8 − 7.7 ∙ 10−8 Torr and 𝑝𝑇𝑒 = 2.90 ∙ 10−7 − 5 ∙ 10−7 Torr. The 

nanowires are monocrystalline and, when grown under low fluxes, no traces of Au are detected in 

EDX. Different sizes of SnTe nanowires can be grown from about 300 nm up to 5 μm long and from 

15 nm up till 100 nm in diameter. Nanowires in {110} and {112} growth directions were found, 

which is in contrast to literature were mostly {001} wires are found. The surface facets seem to be 

mostly {001} and {110}, if it is assumed that the nanowires lie on one of their flat facets in TEM. 

Finally layers of Ox and SnOx are present on the surfaces of the wires, which could perturb the TCI 

surface states on its surface. 

 

For further research multiple experiments can be done. First of all the charge carrier density of the 

nanowires should be investigated, using field effect measurements. The reason is that the SnTe 

should be grown as intrinsic as possible to be able to utilize the special properties of the TCI. A field 

effect setup is shown in Fig. 5.1. 

Besides that the surface of the nanowire should be protected against oxidation. This could be done 

by capping the nanowire with an amorphous layer of AlOx. 

Moreover the rocksalt II-VI semiconductor CaTe could be used to make SnTe-CaTe heterostructures. 

In the growth of SnTe thin films it could be used as a lattice matched large bandgap barrier material 

to keep charge carrier confined to the SnTe layer. However interface charges between the II-VI and 

the IV-VI materials should then be investigated. 

Next to confirm the TCI state of the SnTe nanowires an Aharonov-Bohm experiment2 could be 

performed. Namely, if the TCI follows the behavior of a TI, applying a magnetic field through the 

cross-section of the nanowire should result in a conductance which oscillates while varying the 

magnetic field. For a TI the period of this oscillation should then be equal to the magnetic flux 

quantum ℎ/𝑒. 
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Finally to confirm the existence of Majorana fermions in SnTe nanowires further research of the 

normal state dispersions have to be done. This could be done in first instance by formulating a 

effective model so that smaller system can be simulated.  
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6. Appendix 

 

6.1 Surface density of states method 

 

We calculate the surface density of states through the Green's function of a semi-infinite lead, using 

Kwant1-3. For surface states of 3D samples we use an infinite slab geometry with two translation 

invariant directions parallel to the surface and semi-infinite boundary condition in the perpendicular 

direction. Similarly, for edge states of thin films we use one translation invariant direction along the 

edge, finite boundary condition for the thickness of the film and semi-infinite boundary condition in 

the third direction. This effectively reduces the problem to solving a semi-infinite one dimensional 

chain for every surface or edge momentum 𝑘||. The Hamiltonian consists of on-site terms 𝐻0 (𝑘||)  

and hopping terms 𝑉(𝑘||). 

To get the momentum-dependent surface density of states, we evaluate the Green's function of the 

end site of the chain 𝑔0(𝑘||, 𝐸) as function of the surface momentum and energy. The projections of 

the bulk bands onto the surface Brillouin zone appear as continuous weights, while the surface 

bands are sharp peaks. The momentum-dependent surface density of states is experimentally 

accessible using ARPES measurements. 

 

 

 
 

Fig. 6.1: Density of states calculations of the the (a) [001], (b) [110], (c) Sn-terminated [111] and (d) 

Te-terminated [111] surface facets. 

  

 

a) b) 

c) d) 
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 Fig. 6.2: Density of state calculations of (a)  [001] and  (b-c) [110] thin films. 

 

   

b) 
c) 

a) 
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6.2 Derivation of Angular momentum matrices 

 

6.2.1 Derivation Angular momentum matrices 𝒑-orbitals 

 

The 𝐿 matrix for the 𝑝-orbitals can be derived directly using the orbitals themselves. The diagonal 𝐿-

matrix is written in the basis of 𝑚 (or 𝐿𝑧) eigenstates, but it is different from the 𝑝𝑥, 𝑝𝑦, 𝑝𝑧 basis. 

These eigenfunctions look like  

𝑝𝑥(𝑟) = 𝐴𝑥𝑒−|𝑟 |/𝜌,      (6.1) 

where 𝐴 and 𝜌 are constants, 𝑟 is the distance to the origin and 𝑥 is the 𝑥-component of 𝑟 . The 

wavefunction 𝑝𝑦(𝑟) and 𝑝𝑧(𝑟) are similar, only the 𝑥 is replaced by 𝑦 and 𝑧. 

The relevant wave functions in the basis in which the 𝐿𝑧-matrix is diagonal are given by4: 

Ψ21+1 = −𝐴𝑟𝑒
−

|𝑟 |
𝜌 sin휃 𝑒+𝑖𝜑, 

Ψ210 = 𝐴𝑟𝑒−|𝑟 |/𝜌 cos 휃,     (6.2) 

Ψ21−1 = +𝐴𝑟𝑒−|𝑟 |/𝜌 sin휃 𝑒−𝑖𝜑. 

The 𝑝𝑧 state is the same as the 𝑚 = 0 state, but the 𝑝𝑥  and 𝑝𝑦 states are linear combinations of the 

𝑚 = +1 and 𝑚 = −1 states so that 

𝑝𝑧 = Ψ0      (6.3) 

𝑝𝑥 =
1

√2
(−Ψ211 + Ψ21−1),     (6.4) 

and 

𝑝𝑦 =
𝑖

√2
(Ψ211 + Ψ21−1).     (6.5) 

In the old basis the 𝑝-orbital angular momentum matrix in the 𝑧-direction is given by  

𝐿𝑧,𝑝′ = ℏ(
1 0 0
0 0 0
0 0 −1

).     (6.6) 

The change of basis to the new basis of 𝑝𝑥, 𝑝𝑦 and 𝑝𝑧 orbitals is achieved by the transformation 

𝐿𝑧,𝑝 = 𝑇−1𝐿𝑧,𝑝′𝑇,      (6.7) 

where, by equations 6.3-6.5, 

𝑇 = (

−
1

√2

𝑖

√2
0

0 0 1
1

√2

𝑖

√2
0

).      (6.8) 

 

Therefore in the new basis 

 𝐿𝑧,𝑝 = ℏ(
0 −𝑖 0
𝑖 0 0
0 0 0

).      (6.9) 

Following the same steps (with different matrices for 𝐿𝑥,𝑝′ and 𝐿𝑦,𝑝′ obtained by using the ladder 

operators5) the 𝑥 and 𝑦 components are acquired: 

𝐿𝑥,𝑝 = ℏ(
0 0 0
0 0 −𝑖
0 𝑖 0

)  and 𝐿𝑦,𝑝 = ℏ(
0 0 𝑖
0 0 0
−𝑖 0 0

).    (6.10) 
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6.2.2 Derivation Angular momentum matrices 𝒅-orbitals 

 

Also the 𝐿 matrix for the 𝑑-orbitals can be derived directly using the orbitals themselves. The 

diagonal 𝐿-matrix is written in the basis of 𝑚 (or 𝐿𝑧) eigenstates, but it is different from the basis of 

𝑑-orbitals. These eigenfunctions look like  

𝑑𝑥2−𝑦2 = 𝐴(𝑥2 − 𝑦2)𝑒−|𝑟 |/𝜌, 

𝑑3𝑧2−𝑟2 = 𝐴(𝑧2 − 𝑟2)𝑒−|𝑟 |/𝜌, 

𝑑𝑥𝑦 = 𝐴𝑥𝑦𝑒−|𝑟 |/𝜌,      (6.11) 

𝑑𝑦𝑧 = 𝐴𝑦𝑧𝑒−|𝑟 |/𝜌, 

𝑑𝑧𝑥 = 𝐴𝑧𝑥𝑒−|𝑟 |/𝜌, 

where 𝐴 and 𝜌 are constants, 𝑟 is the distance to the origin and 𝑥 is the 𝑥-component of 𝑟 . 

   

The relevant wave functions in the basis in which the 𝐿-matrix is diagonal are given by: 

Ψ322 = 𝐴𝑟2𝑒−|𝑟 |/𝜌 sin2 휃 𝑒+𝑖2𝜑 

Ψ321 = 𝐴𝑟2𝑒−|𝑟 |/𝜌 sin휃 cos 휃 𝑒+𝑖𝜑 

Ψ320 = 𝐴𝑟2𝑒−|𝑟 |/𝜌(3 cos2 휃 − 1)    (6.12) 

Ψ32−1 = 𝐴𝑟2𝑒−|𝑟 |/𝜌 sin 휃 cos 휃 𝑒−𝑖𝜑 

Ψ32−2 = 𝐴𝑟2𝑒−|𝑟 |/𝜌 sin2 휃 𝑒−𝑖2𝜑 

 

Therefore the 𝑑 states can be expressed in the new basis using the following relations 

𝑑𝑥2−𝑦2 =
1

√2
(Ψ322 + Ψ32−2) 

𝑑3𝑧2−𝑟2 = Ψ320 

𝑑𝑥𝑦 =
𝑖

√2
(−Ψ322 + Ψ32−2)     (6.13) 

𝑑𝑦𝑧 =
−𝑖

√2
(Ψ32−1 + Ψ321) 

𝑑𝑧𝑥 =
1

√2
(Ψ321 − Ψ32−1) 

 

In the old basis the angular momentum matrix is given by  

𝐿𝑧,𝑑′ = ℏ

(

 
 

2 0
0 1

0 0 0
0 0 0

0 0
0
0

0
0

0 0 0
0
0

−1
0

0
−2)

 
 

.     (6.14) 

 

The change of basis is achieved by the transformation 

𝐿𝑧,𝑑 = 𝑇−1𝐿𝑧,𝑑′𝑇,      (6.15) 

where, by equation 6.13, 
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𝑇 =

(

 
 
 
 

1

√2
0

0 0

−𝑖

√2
0 0

0
−𝑖

√2

1

√2

0 1
0
1

√2

0
0

0 0 0
0
𝑖

√2

−𝑖

√2

0

−1

√2

0 )

 
 
 
 

    (6.16) 

 

Therefore the angular momentum matrix 𝐿𝑧 of the 𝑑-orbtibals in the new Lent’s basis 𝑑𝑥2−𝑦2, 

𝑑3𝑧2−𝑟2, 𝑑𝑥𝑦, 𝑑𝑦𝑧, 𝑑𝑧𝑥 is given by 

𝐿𝑑,𝑧 =

(

 
 

0 0
0 0

−2𝑖 0 0
0 0 0

2𝑖 0
0
0

0
0

0 0 0
0
0

0
−𝑖

𝑖
0 )

 
 

.    (6.17) 

Now using  

⟨𝑙𝑚′|𝐿±|𝑙𝑚⟩ = √𝑙(𝑙 + 1) − 𝑚(𝑚 ± 1)ℏ𝛿𝑚′(𝑚±1)  (6.18) 

the ladder operators are derived, such that 

𝐿+ =

(

 
 

0 2
0 0

0 0 0

√6 0 0
0 0
0
0

0
0

0 √6 0
0
0

0
0

2
0 )

 
 

, 

and  

𝐿− =

(

 
 

0 0
2 0

0 0 0
0 0 0

0 √6
0
0

0
0

0 0 0

√6
0

0
2

0
0)

 
 

. 

 

The 𝐿𝑥 and 𝐿𝑦 matrices for the 𝑑-orbitals in the old basis are obtained as 

𝐿𝑑,𝑥
′ =

1

2
(𝐿+ + 𝐿−) =

(

 
 
 

0 1
1 0

0 0 0

√3/2 0 0

0 √3/2

0
0

0
0

0 √3/2 0

√3/2

0

0
1

1
0 )

 
 
 

   (6.19) 

and 

𝐿𝑑,𝑦
′ =

1

2𝑖
(𝐿+ − 𝐿−) =

(

 
 
 

0 −𝑖
𝑖 0

0 0 0

−𝑖√3/2 0 0

0 𝑖√3/2

0
0

0
0

0 −𝑖√3/2 0

𝑖√3/2

0

0
𝑖

−𝑖
0 )

 
 
 

.  (6.20) 

 

Therefore using equation 6.15 we also get:    

𝐿𝑑,𝑥 =

(

 
 

0 0
0 0

0 −𝑖 0
0 −𝑖√3 0

0 0
𝑖
0

𝑖√3
0

0 0 𝑖
0
−𝑖

0
0

0
0 )

 
 

,    (6.21) 
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and  𝐿𝑑,𝑦 =

(

 
 

0 0
0 0

0 0 −𝑖
0 0 𝑖√3

0 0
0
𝑖

0

−𝑖√3

0 −𝑖 0
𝑖
0

0
0

0
0 )

 
 

. 
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6.3 Python code 

 

Multiple Python codes were written for this report. Here an example is given for the calculation of 

the energy dispersion of a  41 × 41 or 129 × 129 Å nanowire with {001} side facets. Additionally 

the code for a calculation of the eigenvalues for a finite 3D [001] thin film is given. 

 

Code 1: [𝟎𝟎𝟏] Nanowire energy dispersion (normal state) code 

 
1. %%px --local   
2.    
3. %matplotlib notebook    
4.    
5. #import packages locally (also do this on cluster)   
6. import gc   
7. import numpy as np   
8. import kwant   
9. import pickle   
10. from __future__ import division   
11. import matplotlib.pyplot as plt   
12. from matplotlib.colors import LinearSegmentedColormap   
13. from scipy.optimize import minimize_scalar   
14. import scipy.linalg as la   
15. import scipy   
16. import sys   
17. import scipy.sparse.linalg as sla   
18. import itertools as it   
19. import functools as ft   
20. from pandas import *   
21. from combine import combine   
22. from sntefunc import sntepar   
23. import operator   
24. import gc   
25. import kwant.linalg.mumps as mumps   
26. from scipy.sparse import identity   
27. from sntefunc import sntepar   
28. from matplotlib.colors import LogNorm   
29.    
30. %%capture   
31. gc.collect()   
32. # kwant stable unit cell choice [100] surface   
33. lat = kwant.lattice.general(np.eye(3))   
34. translations = kwant.lattice.TranslationalSymmetry([1, 1, 0], [1, -

1, 0], [1, 0, 1])   
35. syst = kwant.Builder(symmetry=translations)   
36.    
37. #Specifiy/import onsite and hopping terms of the Hamiltonian   
38. SnX=1   
39. mu=-0.12   
40. def onsitea(site):   
41.     return sntepar(SnX,mu,1)[6]   
42. def onsitec(site):   
43.     return sntepar(SnX,mu,1)[7]   
44. def Hoacxp(site1, site2):   
45.     return sntepar(SnX,mu,1)[0]   
46. def Hoacxm(site1, site2):   
47.     return sntepar(SnX,mu,1)[1]   
48. def Hoacyp(site1, site2):   
49.     return sntepar(SnX,mu,1)[2]   
50. def Hoacym(site1, site2):   
51.     return sntepar(SnX,mu,1)[3]   
52. def Hoaczp(site1, site2):   
53.     return sntepar(SnX,mu,1)[4]   
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54. def Hoaczm(site1, site2):   
55.     return sntepar(SnX,mu,1)[5]   
56. # Populate the builder using the cubic lattice sites   
57. # Use different on-sites for the two sublattices   
58. syst[lat(0, 0, 0)] = onsitea   
59. syst[lat(0, 0, 1)] = onsitec   
60. # Use different hoppings depending on the type   
61. syst[(lat(0,0,0), lat(1, 0, 0))] = Hoacxp   
62. syst[(lat(0,0,0), lat(-1, 0, 0))] = Hoacxm   
63. syst[(lat(0,0,0), lat(0, 1, 0))] = Hoacyp   
64. syst[(lat(0,0,0), lat(0, -1, 0))] = Hoacym   
65. syst[(lat(0,0,0), lat(0, 0, 1))] = Hoaczp   
66. syst[(lat(0,0,0), lat(0, 0, -1))] = Hoaczm   
67.    
68. #    
69. film = kwant.Builder(kwant.lattice.TranslationalSymmetry([0,0,2]))   
70. def shape(site):   
71.     return (-20.5 < (np.dot(site.tag, [0,1,0])) < 20.5 and -

20.5 < (np.dot(site.tag, [1,0,0])) < 20.5)   
72. film.fill(syst, shape, start=np.zeros(3));   
73. wrapped = kwant.wraparound.wraparound(film)      
74. sysf = wrapped.finalized()   
75. #   
76.    
77. def ndlinspace(start, end, N):   
78.     start, end = np.array(start), np.array(end)   
79.     return np.array([start + (end - start) * x   
80.                      for x in np.linspace(0, 1, N)])   
81.    
82. kd= 40   
83. Nk = 250   
84. Egap = 0.0   
85.    
86. #Set k_1,k_2,k_3:   
87. k_1, k_2 = [np.pi-1,0, 0], [np.pi+1,0,0]   
88. ks = ndlinspace(k_1, k_2, Nk)   
89.    
90. class LuInv(sla.LinearOperator):   
91.     def __init__(self, A):   
92.         inst = mumps.MUMPSContext()   
93.         inst.analyze(A, ordering='pord')   
94.         inst.factor(A)   
95.         self.solve = inst.solve   
96.         sla.LinearOperator.__init__(self, A.dtype, A.shape)   
97.     def _matvec(self, x):   
98.         return self.solve(x.astype(self.dtype))   
99.    
100. def y2(ks):   
101.     params={'k_x':ks[0]}   
102.     H = scipy.sparse.coo_matrix(sysf.hamiltonian_submatrix(params=params, sparse=Tr

ue))   
103.     opinv = LuInv(H - Egap * identity(H.shape[0]))   
104.     E = sla.eigsh(H,k=kd, sigma=Egap, return_eigenvectors=False,OPinv=opinv)   
105. #     wfi = []   
106. #     for i in range(kd):   
107. #         T = W[:,i];   
108. #         W2= []   
109. #         for j in range(len(T)):   
110. #             if int(j/18) % 2==1:   
111. #                 W2.append(T[j])   
112. #         abswfi = [abs(x)**2 for x in W2]   
113. #         wft = sum(abswfi)    
114. #         wfi.append(wft)   
115.     EW=E #[E,wfi]   
116.     gc.collect()   
117.     return EW   
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118.    
119. x=ks   
120. y2 = lview.map_async(lambda x : y2(x),x)   
121. y2.wait_interactive()   
122. y2 = y2.get()   
123.    
124. #Set k_1,k_2,k_3:   
125. y3 = []   
126. for x in y2:   
127.     y3.append(x)   
128. # y4 = []   
129. # for x in y2:   
130. #     y4.append(x[1])   
131. x=np.repeat(np.linspace(np.pi-0.3,np.pi+0.3,len(ks)),kd)   
132. y5 = np.ndarray.flatten(np.array(y3))   
133. #y6 = np.ndarray.flatten(np.array(y4))   
134. fig = plt.figure()   
135. fig.set_size_inches(8,5)   
136. plt.scatter(x,y5,s=0.2)   
137. ax = plt.gca()   
138. plt.ylabel('Energy [eV]', fontsize=12)   
139. plt.xlabel('k ($1/a$)', fontsize=12)   
140. # plt.xticks([0,Nk/2,Nk,3*Nk/2,2*Nk],['-1/4','-1/2','0','1/2','$1/4$'])   
141. ax.set_xlim([np.pi-0.3,np.pi+0.3])   
142. ax.set_ylim([-0.15,0.15])   
143. # plt.axvline(x=Nk,c='k',linewidth=0.8)   
144. # ax.annotate('$\overline{\Gamma} \Leftarrow$',xy=(0,0.40))   
145. # ax.annotate('$\overline{X}$',xy=(Nk-4,0.40))   
146. # ax.annotate('$\Rightarrow \overline{M}$',xy=(2*Nk-22,0.40))   
147. # ax.annotate('$\Psi$',xy=(3.1*len(ks)/3,0.05))   
148. # cbar=plt.colorbar()   
149. # cbar.set_label('                 $|\Psi^2|_{cation/Sn}$', rotation=0)   

 
 

Code 2: Finite [𝟎𝟎𝟏] Thin film (superconducting) eigenvalue calculation 

 
1. %%px --local   
2.    
3. def spin_matrices(s, include_0=False):   
4.     """Construct spin-s matrices for any half-integer spin.  
5.     If include_0 is True, S[0] is the identity, indices 1, 2, 3  
6.     correspond to x, y, z. Otherwise indices 0, 1, 2 are x, y, z.  
7.     """   
8.     d = np.round(2*s + 1)   
9.     assert np.isclose(d, int(d))   
10.     d = int(d)   
11.     Sz = 1/2 * np.diag(np.arange(d - 1, -d, -2))   
12.     # first diagonal for general s from en.wikipedia.org/wiki/Spin_(physics)   
13.     diag = [1/2*np.sqrt((s + 1) * 2*i - i * (i + 1)) for i in np.arange(1, d)]   
14.     Sx = np.diag(diag, k=1) + np.diag(diag, k=-1)   
15.     Sy = -1j*np.diag(diag, k=1) + 1j*np.diag(diag, k=-1)   
16.     if include_0:   
17.         return np.array([np.eye(d), Sx, Sy, Sz])   
18.     else:   
19.         return np.array([Sx, Sy, Sz])   
20.    
21. def L_matrices(d=3):   
22.     """Construct rotation generator matrices in d=2 or 3 dimensions.  
23.     To generate finite rotations, use 'spin_rotation(n, 1j * L)'.  
24.     """   
25.     if d == 2:   
26.         return np.array([[[0, -1],   
27.                           [1, 0]]], dtype=int)   
28.     elif d == 3:   



96 
 

29.         return np.array([[[0, 0, 0],   
30.                            [0, 0, -1],   
31.                            [0, 1, 0]],   
32.                           [[0, 0, 1],   
33.                            [0, 0, 0],   
34.                            [-1, 0, 0]],   
35.                           [[0, -1, 0],   
36.                            [1, 0, 0],   
37.                            [0, 0, 0]]], dtype=int)   
38.     else:   
39.         raise ValueError('Only 2 and 3 dimensions are supported.')   
40.    
41. S = spin_matrices(1/2)   
42. L = L_matrices(3)   
43. Ld = np.array([np.zeros((5, 5)), np.zeros((5, 5)), la.block_diag(2j*L[1], -

2*S[1])])   
44.    
45. # %%px --local   
46. mu_B = 5.788381755*10**-5 ##eV/T   
47.    
48. Mp = mu_B * np.array([np.kron(np.eye(2), L) +  2 * np.kron(s, np.eye(3))   
49.                for L, s in zip(1j*L, spin_matrices(1/2))])   
50.    
51. Mz = mu_B * 2 * 0.5 * (Mp[0]+Mp[1]+Mp[2]) #np.array([[1,1j,0,0,0,0],[-

1j,1,0,0,0,0],[0,0,1,0,0,0],[0,0,0,-1,1j,0],[0,0,0,-1j,-1,0],[0,0,0,0,0,-
1]]) #la.block_diag(Ms[2], Mp[2], Md[2])   

52.    
53. # Define bulk model   
54.    
55. # Misc definitions   
56. eijk = np.zeros((3, 3, 3))   
57. eijk[0, 1, 2] = eijk[1, 2, 0] = eijk[2, 0, 1] = 1   
58. eijk[0, 2, 1] = eijk[2, 1, 0] = eijk[1, 0, 2] = -1   
59. sigma = np.array([[[1, 0], [0, 1]], [[0, 1], [ 1, 0]], [[0, -

1j], [1j, 0]], [[1, 0], [0, -1]]])   
60. #print(eijk)   
61.    
62. # Define cubic lattice that contains both sublattices   
63. lat = kwant.lattice.general(np.eye(3))   
64. # Define Builder with FCC translational symmetries.   
65. # Note that the primitive vectors are chosen so the first two are in the xy plane    
66. # so they can be used for the slab   
67. translations = kwant.lattice.TranslationalSymmetry([1, -1, 0], [1, 0, -

1], [0, 1, 1])   
68. syst = kwant.Builder(symmetry=translations)   
69.    
70. # Array for hopping types   
71. a=1 #0.98   
72. b=1 #0.98   
73. c=1 #1.035   
74. t = 2*np.array([[-a*0.25, b*0.45], [b*0.45, a*0.25]])   
75. mu=-0.008119   
76. m = np.array([-c*1.65+mu, c*1.65+mu])   
77. # Array for onsite SOC   
78. lam = np.array([-0.3, -0.3]) #new   
79.    
80. def onsite(site,B_z,ef):   
81.     # which sublattice   
82.     a = np.sum(site.tag) % 2   
83.     os = m[a] * np.eye(6)   
84.     #os = os + 1j * lam[a] * np.sum([np.kron(eijk[:, :, i], sigma[i + 1]) for i in r

ange(3)], axis=0) #- B_z * Mz   
85.     spinorb = [[0, -1j*lam[a], 0, 0, 0, lam[a]], [1j*lam[a], 0, 0, 0, 0, -

1j*lam[a]], [0, 0, 0, -lam[a], 1j*lam[a], 0], [0, 0, -
lam[a], 0, 1j*lam[a], 0], [0, 0, -1j*lam[a], -
1j*lam[a], 0, 0], [lam[a], 1j*lam[a], 0, 0, 0, 0]]   
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86.     #os = os + 1j * lam[a] * np.sum([np.kron(eijk[:, :, i], sigma[i + 1]) for i in r
ange(3)], axis=0) #- B_z * Mz #new   

87.     x, y, z = site.pos   
88.     os = os + spinorb + np.eye(6)*ef*np.dot(site.tag,[1, 1, 1])#- B_z * Mz#-

 B_z * Mz #new #added B_z Zeeman!]   
89.     return os   
90.        
91. def hopping(site1, site2, B_z):   
92.     # which sublattice   
93.     a = np.sum(site1.tag) % 2   
94.     b = np.sum(site2.tag) % 2   
95.     d = np.array(site1.tag - site2.tag)   
96.     d = d / np.sqrt(d @ d)   
97.     dtd = np.outer(d, d)   
98.     #dtd = np.kron(dtd, np.eye(2))   
99.     dtd = np.kron(np.eye(2),dtd) #new   
100.     hop = t[a, b] * dtd   
101.     # print(hop)   
102.     return hop   
103.        
104. # Populate the builder using the cubic lattice sites   
105. # Use different on-sites for the two sublattices   
106. syst[lat(0, 0, 0)] = onsite   
107. syst[lat(0, 0, 1)] = onsite   
108.    
109. # Use different hoppings depending on the type   
110. syst[lat.neighbors(1)] = hopping   
111. syst[lat.neighbors(2)] = hopping   
112.    
113. ## Peierls and s-wave superconductivity (BdG) ##Defineer de richtingen juist!   
114.    
115. def apply_peierls_to_template(template, xyz_offset=(0, 0, 0)):   
116.     """Adds p.orbital argument to the hopping functions."""   
117.     x0, y0, z0 = xyz_offset   
118.     # hack to extract lattice constant   
119.     a = 0.63*np.max(list(syst.sites())[0].family.prim_vecs) # lattice constant [nm]

   
120.        
121.     def phase(site1, site2, B_x, B_y, B_z, e, hbar):   
122.         x,y,z = site1.pos   
123.         direction = site1.tag - site2.tag         
124.         A = [B_y * (z - z0) - B_z * (y - y0), 0, B_x * (y - y0)]          
125.         A = np.dot(A, direction) * a**2 * 1e-18 * e / hbar   
126.         #if -25<x<25:   
127.         if (np.dot(site1.tag, [1,-1,0])) < 0.0:   
128.             phase = np.exp(-1j * A)   
129.         else:       
130.             phase =1   
131.         return phase   
132.    
133.     for (site1, site2), hop in template.hopping_value_pairs():   
134.         template[site1, site2] = combine(hop, phase, operator.mul, 2)   
135.     return template   
136.    
137. #tr = la.block_diag(np.kron(2 * S[1], np.eye(1)), np.kron(2 * S[1], np.eye(3)), np.

kron(2 * S[1], np.eye(5)))   
138. tr = la.block_diag(np.kron(2 * S[1], np.eye(3)))   
139. #tr = la.block_diag(np.kron(np.eye(3),2 * S[1])) #Why not the one above, like in th

e 18-orb model? => Conseq. for B?   
140.    
141. def add_sc_to_template(template, tr, pairing=None):   
142.     """Adds onsite s-wave superconductivity to template"""   
143.     sc_template = kwant.Builder(symmetry=template.symmetry)  # Needed because kwant

.Builder is mutable   
144.     lat = list(template.sites())[0].family   
145.    
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146.     if pairing is None:   
147.         # Use the same diagonal pairing for every orbital by default   
148.         pairing = np.eye(6)   
149.            
150.     def paired_os(os, delta_f):   
151.         pairing_mat = np.kron([[0, 1], [0, 0]], delta_f * pairing)   
152.         pairing_mat += pairing_mat.conj().T   
153.         os_mat = la.block_diag(os, -tr @ os.conj() @ la.inv(tr))   
154.         return os_mat + pairing_mat   
155.        
156.     def delta_f(site, delta):   
157.         if (np.dot(site.tag, [0,1,0]))<0.0:   
158.             return delta   
159. #         elif -0 < (np.dot(site.tag, [1,-1,0]))<20:   
160. #             return 0   
161.         else:   
162.             return -delta #delta!   
163.     for site, os in template.site_value_pairs():   
164.            
165.         sc_template[site] = combine(os, delta_f, paired_os, 1)   
166.     for (site1, site2), hop in template.hopping_value_pairs():   
167.         sc_template[site1, site2] = combine(hop, lambda site1, site2: 0, paired_os,

 2)   
168.     return sc_template   
169.    
170. syst_B = apply_peierls_to_template(syst)   
171. syst_sc = add_sc_to_template(syst_B, tr)   
172.    
173. %%px --local   
174. film3 = kwant.Builder() #kwant.lattice.TranslationalSymmetry([0,0,2]))   
175. def shape(site):   
176.     return (-25.5 < (np.dot(site.tag, [1,0,0])) < 25.5 and -

1.5 < (np.dot(site.tag, [0, 0, 1])) < 1.5 and -
25.5 < (np.dot(site.tag, [0,1,0])) < 25.5)   

177. film3.fill(syst_sc, shape, start=np.zeros(3));   
178. wrapped3 = film3      
179. sysf = wrapped3.finalized()   
180.    
181. %%px --local   
182. # %%px --local   
183. ##Calculate eigenvalues and eigenvectors   
184. B_x = 0.0 #200 #1.0   
185. B_y = 0.0 #200 #1.0   
186. B_z = 0.0 #200 #1.0   
187.    
188. class LuInv(sla.LinearOperator):   
189.     def __init__(self, A):   
190.         inst = mumps.MUMPSContext()   
191.         inst.analyze(A, ordering='pord')   
192.         inst.factor(A)   
193.         self.solve = inst.solve   
194.         sla.LinearOperator.__init__(self, A.dtype, A.shape)   
195.    
196.     def _matvec(self, x):   
197.         return self.solve(x.astype(self.dtype))   
198.    
199. def matrix(k, Bx, By, Bz):   
200.     #params = {'k_x': 0, 'B_x': B_x, 'B_y': B_y, 'B_z': B_z, 'p':None, 'hbar': 1.05

4571800*10**-34, 'e':1.6021766208*10**-19, 'delta': 0.0025}   
201.     params = {'ef':0*0.005,'k_x': k, 'B_x': Bx, 'B_y': By, 'B_z': Bz, 'p':None, 'hb

ar': 1.054571800*10**-34, 'e':1.6021766208*10**-19, 'delta': 0.02}   
202.     return sysf.hamiltonian_submatrix(params=params, sparse=True)   
203.    
204. def y2(kx, sigma=0, Bx=0, By=0, Bz=0):   
205.     #try:   
206.     mat = matrix(kx, Bx, By, Bz)   
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207.     opinv = LuInv(mat - sigma * identity(mat.shape[0]))   
208.     E = sla.eigsh(mat, k=80, sigma=sigma, return_eigenvectors=True, OPinv=opinv)   
209.     gc.collect()   
210.     #except:   
211. #         E = None   
212. #         gc.collect()   
213.     return E   
214.    
215. x=[0]   
216. y2 = lview.map_async(lambda x : y2(x),x)   
217. y2=y2   
218. y2.wait_interactive()   
219. y2 = y2.get() #580;7 760;43   
220.    
221. plt.figure()   
222. x=np.zeros(len(y2[0][0]))   
223. plt.scatter(x,y2[0][0],s=5)   
224. plt.show()   
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