210 research outputs found

    Gafor : Genetic algorithm based fuzzy optimized re-clustering in wireless sensor networks

    Get PDF
    Acknowledgments: The authors are grateful to the Deanship of Scientific Research at King Saud University for funding this work through Vice Deanship of Scientific Research Chairs: Chair of Pervasive and Mobile Computing. Funding: This research was funded by King Saud University in 2020.Peer reviewedPublisher PD

    Mutation Based Hybrid Routing Algorithm for Mobile Ad-hoc Networks

    Get PDF
    Mobile Adhoc NETworks (MANETs) usually present challenges such as a highly dynamic topology due to node mobility, route rediscovery process, and packet loss. This leads to low throughput, a lot of energy consumption, delay and low packet delivery ratio. In order to ensure that the route is not rediscovered over and over, multipath routing protocols such as Adhoc Multipath Distance Vector (AOMDV) is used in order to utilize the alternate routes. However, nodes that have low residual energy can die and add to the problem of disconnection of network and route rediscovery. This paper proposes a multipath routing algorithm based on AOMDV and genetic mutation. It takes into account residual energy, hop count, congestion and received signal strength for primary route selection. For secondary path selection it uses residual energy, hop count, congestion and received signal strength together with mutation. The simulation results show that the proposed algorithm gives better performance results compared to AOMDV by 11% for residual energy, 45% throughput, 3% packet delivery ratio, and 63% less delay

    Optimization of vehicular networks in smart cities: from agile optimization to learnheuristics and simheuristics

    Get PDF
    Vehicular ad hoc networks (VANETs) are a fundamental component of intelligent transportation systems in smart cities. With the support of open and real-time data, these networks of inter-connected vehicles constitute an ‘Internet of vehicles’ with the potential to significantly enhance citizens’ mobility and last-mile delivery in urban, peri-urban, and metropolitan areas. However, the proper coordination and logistics of VANETs raise a number of optimization challenges that need to be solved. After reviewing the state of the art on the concepts of VANET optimization and open data in smart cities, this paper discusses some of the most relevant optimization challenges in this area. Since most of the optimization problems are related to the need for real-time solutions or to the consideration of uncertainty and dynamic environments, the paper also discusses how some VANET challenges can be addressed with the use of agile optimization algorithms and the combination of metaheuristics with simulation and machine learning methods. The paper also offers a numerical analysis that measures the impact of using these optimization techniques in some related problems. Our numerical analysis, based on real data from Open Data Barcelona, demonstrates that the constructive heuristic outperforms the random scenario in the CDP combined with vehicular networks, resulting in maximizing the minimum distance between facilities while meeting capacity requirements with the fewest facilities.Peer ReviewedPostprint (published version
    corecore