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Abstract: In recent years, the deployment of wireless sensor networks has become an imperative
requisite for revolutionary areas such as environment monitoring and smart cities. The en-route
filtering schemes primarily focus on energy saving by filtering false report injection attacks while
network lifetime is usually ignored. These schemes also suffer from fixed path routing and fixed
response to these attacks. Furthermore, the hot-spot is considered as one of the most crucial challenges
in extending network lifetime. In this paper, we have proposed a genetic algorithm based fuzzy
optimized re-clustering scheme to overcome the said limitations and thereby minimize the effect of
the hot-spot problem. The fuzzy logic is applied to capture the underlying network conditions. In
re-clustering, an important question is when to perform next clustering. To determine the time instant
of the next re-clustering (i.e., number of nodes depleted—energy drained to zero), associated fuzzy
membership functions are optimized using genetic algorithm. Simulation experiments validate the
proposed scheme. It shows network lifetime extension of up to 3.64 fold while preserving detection
capacity and energy-efficiency.

Keywords: wireless sensor networks; fuzzy logic systems; genetic algorithms; optimization; en-route
filtering; network lifetime; re-clustering

1. Introduction

One of the critical issues in wireless sensor networks (WSNs) is the hot-spot prob-
lem [1]. It occurs due to the fact that the rate of energy consumption at the nodes around
the base station (BS) and on critical paths is faster as compared to other nodes. The hot-spot
problem results in network partition since intermediate nodes not only transmitting their
information but also acting as a forwarder. A widespread placement of WSNs requires
mitigating security threats. One of the prevalent threats is false report injection attacks by
an adversary, resulting in energy drain of the nodes on the path. An example of the hot-spot
problem is shown in Figure 1. The first event sensing node sends its event report to the next
node on the path towards the BS. If the the second node senses an event, the node would
send not only its report, but also act as a forwarder for the report it received from the first
node. Consequently, the nodes closer to the BS and on critical paths experience more traffic
and thus more energy consumption occurs at these nodes, resulting in a hot-spot problem
that eventually creates partitions in the network.
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Furthermore, if these event reports are generated by an adversary, a significant amount
of energy is wasted with the draining of batteries of the nodes en-route. In this paper, we
therefore propose a genetic algorithm (GA) based fuzzy optimized re-clustering (GAFOR),
where the end user is informed about nonexistent event by triggering an alarm so that an
adversary cannot decode the complete message since event reports are transmitted via
multiple paths. In that way, GAFOR can be more robust in mitigating the said attacks.

Figure 1. An illustration of the hot-spot problem.

In general, existing en-route filtering schemes [2–6] exhibit similar limitations: (1)
underlying shortest fixed path routing, which is counter-intuitive from network lifetime
perspective, (2) fixed security response for varying degree of attacks, and the (3) hot-spot
problem. For example, the greedy perimeter-based stateless routing (GPSR) [7] is a shortest
path routing that follows the fixed path routing approach. Several energy-efficient routing
protocols [8–10] have been proposed in the past, but they do not focus on en-route filtering
schemes. Energy consumption analysis of a few existing en-route filtering schemes is
performed using the first order radio model [11,12]. However, various assumptions about
radio characteristics, such as amount of energy consumption in transmitters and receivers,
could be biased towards different protocols. In order to address this issue, a commonly
used radio model is used in GAFOR with an acceptable signal-to-noise ratio (i.e., Eb/N0).

Some of the major challenges hindering the widespread application of WSNs are
security, network lifetime, and energy-efficiency. Efforts have been made to extend the net-
work lifetime by improving underlying routing schemes [9]. To the best of our knowledge,
our study is one of the first attempts to increase the network lifetime while preserving
energy and security requirements of en-route filtering schemes. Generally, en-route filtering
schemes use the shortest path routing such as GPSR which is designed for ad-hoc networks
and does not perform well for WSNs. These limitations make it challenging to enhance
network lifetime in en-routing filtering schemes and thus become an interesting problem.
Therefore, the question arises as to whether it is possible to significantly improve network
lifetime while maintaining energy and detection capacity.

The aforesaid limitations-driven question thus motivates us to carry out this study.
This study is important to lay out the foundation of an optimized re-clustering scheme
to enhance network lifetime in en-route filtering scheme. For different network sizes
(i.e., number of nodes) and attack ratios, GAFOR extends network lifetime from 2.29 to 3.64
fold on an average without perturbing the energy efficiency and security level compared
to the existing schemes. Our main contributions are as follows:

• We employ a dynamic security solution against varying attack-intensity. As such, we
select a path with a higher number of verification nodes from multiple paths for larger
attacks and vice versa. Multiple paths with different numbers of verification nodes
are created using pre-deterministic key-dissemination.

• We improvise the load-balancing over a larger number of participating nodes using a
dynamic energy-aware routing to overcome the limitation of a fixed path routing.
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• We improve the network lifetime by mitigating the hot-spot problem via appropriate
re-clustering. An optimized re-clustering threshold is achieved by modifying fuzzy
membership functions with the help of the Genetic Algorithm (GA) algorithm.

2. Background

In this section, we will illustrate en-routing filtering and shortest fix path routing.

2.1. Commutative Cipher Based En-Route Filtering

The verification process of CCEF based on query–response model is illustrated in
Figure 2. In this model, a session is established by sending a query message (Q) in an
area of interest from where the sensors transmits a message containing response (R) to
the cluster head (CH) which routes it towards the base station (BS). The BS transmits a
query message Q = [Qid, CHid, {ks}KnCH

] to the respective CH in that area. This message
is composed of the Query ID (Qid), CH ID (CHid) and session key (ks) encoded with the
CH′s node key (kn), i.e., {ks}KnCH

.
A session is established by dropping a copy of witness key (kw) on all en-route nodes.

By using (p = 1/αh)—a probabilistic method—a fixed number of nodes are selected as
verification nodes. Events including false reports are being generated randomly in a WSN.
The sensors encountering the event information form consensus about identity of the event
choose a CH and play their part in report generation.

Figure 2. Query-response model for en-route filtering schemes.

The neighbours, receiving the event’s report information, endorse and forward it to
the respective CH. As the query arrives at the CH, it uses the kn key to decode the ks key
to find if it was generated by the originating BS. The CH compresses the session key
(MACs), created by the event sensing nodes; E, F, G, and H with a simple XOR operation
and transmits a response including the MACs and the IDs of report endorsing nodes. In
turn, the CH transmits a response message [Qid, R, {Eid, Fid, Gid}, MACs, MACn] and, as
a result, a session is created. Consequently, reports created by the event sensing nodes are
transmitted to the BS by the respective CH.

After a session is established, reports are transmitted to the BS by the CH. The
sensors used kw keys to determine Qid to check the query validation. Consequently, kw
is used to validate the MACs without having ks with the help of the commutative cipher
property. The BS, after receiving the report in the response message, produces the MACn
and validates it along with MACs. In case both conditions are met, CH and all of the
report-endorsing nodes are validated. However, if the any of conditions are not validated,
either the CH or at least one of the endorsing nodes is taken over by an adversary.
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2.2. Greedy Perimeter Based Stateless Routing

GPSR, a widely used shortest path routing algorithm shown in Figure 3, is not suitable
for WSNs, which were designed for ad-hoc wireless networks. It is based on a query–
response communication model. Given the large number of nodes and mobility, it makes
excessive use of geography rendering it scaleable. It makes use of immediate neighbours
for greedy forwarding decisions and frequent topological changes are catered using local
topological information. The scalability is addressed using hierarchy and caching.

Figure 3. Shortest path routing.

The first method uses greedy forwarding where a packet is forwarded selecting a
closest node among Ni neighbour nodes at a closer distance to the BS. The second method
caters to a situation where greedy routing does not perform well. The right-hand rule
makes it possible to route around the perimeter using counter-clockwise motion. The
forwarding decisions should not only be distance based but energy aware in order to make
it essential for the WSNs.

3. Literature Review

Micro-electro-mechanical systems (MEMS) advancements [13] have triggered mush-
room growth of WSNs. WSNs have witnessed widespread application due to their low cost,
small size, wireless capability, and higher density characteristics. Network partitioning, a
consequent of the hot-spot problem [1], is a critical challenge in extending network lifetime.
En-route filtering schemes [2–6] save energy by filtering false reports as early as possible.

En-route filtering schemes, such as dynamic en-route filtering (DEF) [2] and commu-
tative cipher-based en-route filtering (CCEF) [3], offer improved security at the expense
of network lifetime. DEF employs the hill-climbing method for key distribution in order
to early detect false report(s). All nodes contain secret keys and a seed authentication key
which are loaded from a global key pool randomly. Authentication keys are broadcasted by
the CH to nodes on the path encrypted with secret keys before reports forwarding, which
will be used for validation. The event reports that are not approved by each en-route nodes
are dropped. DEF makes use of several keys with a key chain method, which renders it
less useful for large-size WSNs.

On the other hand, CCEF employs early detection of false reports to save energy.
A secret key association can be established within the nodes and the (BS) for a complete
session. Every node en-route contains its own witness. It is noteworthy that the symmetric
key among the en-route sensor nodes is not shared, resulting in stronger security protection
in comparison with existing symmetric key sharing schemes. In order to resist the attacks,
the security response in CCEF relies on probabilistic method p = 1/αh. The detection
probability is fixed response, since system parameters α and hop count h on a path are
constant. In contrast, GAFOR uses dynamic security response. Based on attack intensity,
this is dynamically carried out by selecting a path from multiple paths (i.e., with a varying
number of verification nodes).

Novel statistical en-route filtering (SEF) [4] first countered the en-route filtering issue
and calculated the number of compromised nodes. This en-route filtering scheme forms
the basis of later schemes. However, energy is saved using early filtering of false reports.
Network lifetime extension using underlying routing is not catered to in the design.
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Given no more than t compromised nodes, the interleaved hop-by-hop authentication
scheme (IHA) [5] successfully detect false data reports. It determined hops count upper
bound that a false report may travel before being detected and dropped in the presence of
t conspiring nodes. Similar to CCEF, IHA underlying routing is also based on shortest path
routing and faced similar issues.

The authors [6] presented a bandwidth-efficient cooperative authentication (BECAN)
method for filtering injected fabricated report attacks. Furthermore, during filtering, it
utilized a cooperative neighbor router (CNR)-based approach that not only achieves high
filtering capacity but high reliability as well. GPSR [7] forwards packets using a greedy
approach by selecting a node from the candidate nodes that is closest to the destination.
While making forwarding decisions, only distance is considered while residual energy of
the nodes in the routing process is ignored, which is an important criterion. Several works
on routing [8–10] present energy-efficient and lightweight routing protocols.

The work [11,12] presented radio transmission models. In this work, we used a
first order radio model for energy consumption and comparison in the WSNs. Research
works [14–17] present various attack types and their counter measures in en-route filtering
schemes. Some interesting works exist for improving network lifetime [18–24] and energy
efficiency [25–29]. Re-clustering based schemes to increase network lifetime [30–36] have
been found effective in minimizing the hot-spot problem.

The underlying sensing platform is assumed to be Crossbow Mica2 [37] for energy
measurement and management. An energy-efficient time synchronization protocol for
wireless sensor networks (ETSP) [38] is assumed for clock synchronization of sensor nodes.
A network localization component [39] is used for location discovery of sensor nodes. Ana-
lyzing the behavior of crossover operators in NSGA-III for large-scale optimization prob-
lems [40] is another example area where soft computing-based optimization approaches
might be useful. The work presented in [41] designed and developed a monitoring system
for smart cities from an optimization viewpoint.

Authors in [42] proposed a novel memetic GA to solve the traveling salesman prob-
lem. Boltzmann probability selection and a multi-parent crossover technique with the
known random mutation are combined to achieve a good performance. Another applica-
tion of GA and fuzzy logic is presented in [43] to introduce a priority-based fuzzy goal
programming method for defending against the congestion management issue in electric
power transmission lines. These GA applications imply their efficacies in solving different
computer science problems. However, we apply these methods to solve a network lifetime
optimization problem in en-route filtering schemes.

4. Proposed System Overview and Models
4.1. System Overview
4.1.1. Assumptions

The BS and the sensor nodes are assumed to be secured in the network setup phase.
The network is composed of static homogeneous nodes. The sensor nodes have a limited
amount of energy, whereas the BS have sufficient enough resources and cannot be com-
promised. The communication links are bidirectional, i.e., a node A can send a message to
node B and vice versa. Nodes can adjust transmission power and range. Sensor network
have few compromise nodes capable of sending false reports.

4.1.2. Network Setup

A sensor network is initialized with 1000 randomly deployed sensor nodes in an area
of (500× 500) m2 . The unique IDs and kn keys are assigned to the sensor nodes. Sensor
nodes have their own locations and the BS knows the location and distance of each sensor
from itself.
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4.1.3. Key Dissemination

A selected number of random sensor nodes are chosen to have the kw key before the
establishment of a session in the network according to the false traffic ratio (FTR). In a
query message, the kw is transmitted securely to the CH. In contrast to, e.g., CCEF, kw
keys are disseminated on all nodes on a route. In response, the scheme designates the
verification nodes with a probability p = 1/αh; α is a design parameter and h represents
hops. As both variables are fixed for a given route, therefore, a current FTR with a fixed
number of verification nodes can only be granted in CCEF.

In contrast, a proposed scheme consisting of more than a single path selected a path
with a proportionate number of verification nodes based on current FTR. This helps in
responding dynamically to different levels of response to in real time, which is a realistic
scenario. As a result, the proposed method can dynamically select a less or more secure
path based on changing attack information.

4.1.4. Path Setup Phase

The forwarding node selection method in addition to distance, energy, and FTR are
also taken into account. This enables the proposed scheme to respond dynamically to
variation in attack density by choosing a path having more verification nodes in case of
higher attacks and vice versa. The BS sends a query message to the CH in an area of
interest to establish a path. As the events randomly occur in any area or cluster for the
matter at hand, multiple sessions are possible between the BS and CHs.

In order to create a path, the forwarding node (Fn) method that chooses the fittest
node among the candidates nodes is illustrated by Equation (1) as

Fn=argmax

{
k×

(
1− β

2

)
+α× (d + e)

}
, (1)

where α and β are the system parameters, d is the node with the shortest distance in the
neighbors, e is the remaining energy, and k is the kw presence. These variables are normal-
ized. The highest fitness value node is chosen as the next forwarding node. Eventually,
a path is created by repeating this process. There could be multiple paths dynamically
created and utilized. The sessions remain active for their time duration or one of the
en-route nodes is depleted.

4.1.5. Clustering and Re-Clustering

With the passing of time, the number of nodes lowers, due to uneven energy usage,
and some nodes are left unused in the communication due to the hot-spot problem or
network partition. After a while, the average number of sensors declines before it reaches a
predefined threshold time t in a cluster. It makes an adversary task easier, requiring less
keys in order to compromise a node. Moreover, in addition to the increased probability of
node compromise, it may also have undesirable effects on network lifetime. Aforemen-
tioned issues render it challenging to maintain the number of t nodes in a given cluster.

In order to reach these nodes, topological parameters (i.e., cluster size and transmission
range) need to be adjusted to maintain the ñc in a cluster. In order to determine the time
for the next re-clustering, we obtained threshold (thr) for re-clustering using fuzzy logic.
The fuzzy logic system (FLS) uses network conditions (number of depleted nodes, FTR,
and energy of a node). In order to obtain optimal threshold value, we use GA for optimized
fuzzy membership functions. Thus, with every thr decrease in nodes (i.e., one step) with
an initial n = 1000 sensor nodes, the cluster size and range are increased to maintain ñc and
the coverage (i.e., transmission range).

Deployment of replacement nodes could easily solve this problem; however, physically
deploying these nodes is costly, hazardous, and a generally impractical task. Alternatively,
we dynamically adjust cluster size and and sensor range to maintain the t nodes inside
a cluster.
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Here, t is defined as a nodes density (ñc) threshold that should be fixated for a cluster.
We assume equal heights and widths for the sensor field and clusters. Let’s suppose ñc
is our budget for the number of desired nodes per cluster and Nnk is the number of total
nodes in the field at the kth step. The number of CHs in a row NCHsr or column NCHsc is
presented by Equation (2),

NCHsc = NCHsr =

√
Nnk
ñc

. (2)

The cluster, k height (Ckh) or width (Ckw) in sensor field F having height Fh and width
Fw are defined by Equations (3) and (4), respectively, as

Ckh =
Fh

NCHs r
(3)

and
Ckw =

Fw

NCHs c
. (4)

Therefore, the cluster size at the Kth step with height Ckh and width Ckw can be
represented by Equation (5) as

Csizek = Ckh × Ckw =
Fh
Nr
× Fw

Nc
=

ñcF2
h

Nnk
. (5)

Similarly, the new range, represented by Rk at the kth step, is defined by Equation (6) as

Rk=
Ckh
∂

, (6)

where ∂ = Cih/Ri is defined as the system design parameter.
Our proposed method can adjust these parameters to maintainNCHsc. At the network

setup phase, all nodes are assigned the same fixed amount of energy without any depleted
nodes. The proposed scheme keeps track of remaining nodes. We assume that, after a
certain number of communications, a number of nodes are declared as depleted as their
energy reaches zero. After depletion of Thr of the total sensors in the network, it resets
range Ri and Csizek along with Kth, height, and width i.e., Ckh and Ckw are also readjusted
based on the current status of the network.

4.1.6. Fuzzy Rule Based System

In order to drive the fitness value of Thm, the fuzzy system considers three inputs:
(a) HC, (b) EV, (c) AF, and returns (d) FV. The fuzzy system for re-clustering threshold
membership functions, their associated fuzzy sets, and rules are highlighted in Figure 4.
The number of fuzzy sets determines the level of granularity or degree of a membership
function. Moreover, the range of the fuzzy sets is set based on their importance. For the
three input factors, there are two, three, and four fuzzy sets, so there are 24 combinations
or rules for fitness value.

The membership functions, boundary values, and ranges of corresponding fuzzy sets
are highlighted with different colors. The vertical height of each membership function
is one. The details of fuzzy membership functions, fuzzy sets, and horizontal values are
defined below:

• HC represents the hop count for a report from 0 to 100. It has two fuzzy sets, namely
less (L) and enough (E).

• EV is the number of events being generated in the sensor network from 0 to 7. The
higher the number, the more the communication overhead is associated, and vice
versa. This fuzzy membership function has three fuzzy sets, namely small (S), medium
(M), and large (L) from 0 to 100.
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• AF refers to average FTR which has four fuzzy sets; these are very low (VL), low (L),
high (H), and very high (VH). This has more fuzzy membership sets due to its relative
importance for security to counter different ratios of attacks.

• FV or fitness value has four fuzzy sets of lower (L), normal (N), and upper (U) from 0
to 100.

Figure 4. Fuzzy members, fuzzy sets, and rules for re-clustering.

4.1.7. GA-Based Optimization

In order to determine optimized fuzzy membership functions, a GA-based mem-
bership function optimizer for re-clustering is illustrated in Figure 5. A chromosome
represented one trial set of fuzzy membership functions. The optimizer consists of the GA
unit (GAU), the simulation unit (SU), and the fitness evaluation unit (FEU), as illustrated
in Figure 6.
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• GAU: The GA-based optimization process begins, and the GAU initiates the popu-
lation. It randomly generates and maintains a population. Chromosomes from the
population are evaluated by the simulation and their fitness value is computed using
simulation results.

• SA: SU starts simulations using chromosomes from the population, and the chro-
mosomes are generated by the population of randomly generated bit strings. The
bit string representation of chromosomes render it feasible to employ mutation and
crossover operations. The performance parameters or membership function as high-
lighted in the corresponding fuzzy system are measured in the simulation process.

• FEU: Based on the simulation results for all chromosomes being finished, the fitness
value representing the threshold value is computed by the FEU. The fitness value of
the re-clustering threshold (FRT) of chromosomes is shown in Equation (7),

FRT = DN ×
(

1− α

2

)
+ (TE + AF)×

(
1− β

2

)
, (7)

where DN is the total number of depleted nodes, TE is the total energy consumed in the
sensor network, AF is average FTR, and α, β are weighted factors for these parameters.

Based on the current fitness value, the GA unit evolves the current population. In
order to produce the next generation of chromosomes, selection, crossover, and mutation
operations are applied to the population in GA. The optimization process in GAFOR—(1)
simulation, (2) evaluation, and (3) evolution—is repeated until the exit condition becomes
true. In order to avoid local optimal, a high mutation probability or tolerance are beneficial
for a globally optimized solution. The entire optimization process is processed within the
simulation experiments. There is one simulation setup for optimization and three different
and diverse experimental evaluation setups to apply our method.

After the threshold calculations are completed, the new values of membership function
are obtained based on these optimized membership functions being calculated. Based
on these new membership functions, the corresponding final (Thm) is optimized for the
best performance based on network conditions, not guesses or experiences. It does not
require many resources as, after optimization, the optimizer is terminated and the threshold
obtained for re-clustering is used on wards.

Terminating condition: The terminating condition is satisfied when the fitness value
of the highest ranking solution has reached a steady state such that further iteration no
longer produces better results. For that purpose, we used tolerance τ=10 for optimization.
Therefore, when there is no significant performance improvement after 10 consecutive
iterations, we terminate the optimization.

4.2. System Models
4.2.1. Sensor Network Model

There are N sensor nodes denoted by a set {S1, S2, S3, . . . ,Sn} that are evenly and
randomly distributed within a squared field of an area AF = Fh×Fw as illustrated in
Figure 7. The BS location is at the middle bottom edge of the field. Encompassing this are
the k clusters that are denoted by a set {C1, C2, C3, . . . ,Ck}, such that k = Hn ×Wn, where
Hn = Wn represents the number of rows and columns. At the startup phase, C number of
clusters, represented by AC=Ch×Cw are generated. There are an equal number of nodes
dispersed, represented by node density ñ of clusters.
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4.2.2. Energy Consumption Model

For sensor node energy usage management, the first order radio model [11,12], a
channel model with a free space (i.e., d2 ), has been used. In this paper, energy dissipation
of radio components and circuitry was considered as illustrated in Figure 8.
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Figure 8. First order radio model.

A packet consisting b bits is transmitted at a d distance between the transmitter (Tx)
and receiver (Rx), using transmission energy ETx (b, d), illustrated by Equation (8) as

ETx (b, d)=Eelec×b+Eamp×b×dλ, (8)

where Eelec represents the energy consumed by the electronics circuitry, whereas Eelec×b
represents the energy needed by the Tx electronics to propagate b bits. Furthermore, Eamp
is the amplifier energy, and the path loss constant is represented by λ. The required energy
to receive b-bits is denoted by ERx (b) as shown in Equation (9),

ERx (b)=Eelec×b. (9)

The energy for transmission used by the Tx amplifier is Eamp= 100pJ/b/m2. More-
over, required energy by circuitry of Tx and Rx is 50 nJ/b. The values of Eelec and Eamp are
chosen in such way that they result in an acceptable Eb/N0 [12].

4.2.3. Attack Information Model

The BS can determine the expected event reports generated by the CH for a query–
response session. Upon receiving legitimate reports at the CH, the counter for such reports
is incremented by one at the BS. Here, no extra cost for the messages or energy is needed
at the sensors.

Similarly, fabricated event reports are filtered in the path or at the BS. If a fabricated
report was dropped on the path, the BS can know after a predefined was time elapsed. In a
second case, the fabricated event report will finally be dropped at the BS if it fails to be
detected by en-route filtering nodes.
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Therefore, the BS knows the total of fabricated and legitimate reports by exploiting
respective counter information without using extra energy or messages on the sensor
nodes. Using this information at counters, the current value of FTR can be calculated.
The computational cost at the BS can be justified because of a sufficient amount of resources.

For m events in the WSN, the current FTR can be calculated by Equation (10) as

FTR =

m
∑

i=1
(1× Fi)

m
∑

i=1
{1× Fi + 1× Li}

, (10)

where Fi ∈ [0, 1], Li depicts legitimate reports, and Fi indicates the fabricated, defined
as follows:

Fi =
{

1 if the ithreport is false,
0 if the ithreport is valid. (11)

In Equation (11), i represents the total event count from 1 to m.

5. Experiment Environment

For fair evaluation of the proposed scheme, different setups were employed for
training and testing.

5.1. Experimental Setup for Optimization

The simulations’ setup parameters for GA-based fuzzy optimization are illustrated in
Table 1. The fuzzy membership optimization using GA is performed on the BS. Since the BS
has sufficient enough processing and computational power and simulation are performed
by the software, the cost of optimization is not considered. After optimization, we apply
our method using fitness thresholds for when to perform successive sink re-locations and
re-clustering.

Table 1. Simulation parameters setup for optimization.

Parameters Values

Sensors nodes 800
Sensor field size (500× 500) m×m

BS location (250, 0) m
Ri 50 m

Cluster h/w 50 m
Eelec for Tx and Rx 50 nJ/bit

Eamp 100 pJ/bit/m2

Node energy 1 Joules
MAC verification 20 mJ

Data packet 32 bytes
Round 800 bits

FTR 60%
Path loss constant (λ) 2

5.2. Experimental Setup for Performance Evaluation

In this work, we consider a 100k-node (k = 10, 7, 4) randomly disseminated in WSN
with an area of (500× 500)m×m with kc = 100 clusters. In each cluster, a fixed number of
nodes ηc are distributed randomly. All of the sensors have a range, Ri = 50 m± ε, where
ε = 10% perturbation is introduced, as, due to obstacles, all sensors’ actual ranges may
vary. Range is used for neighbors selection, choosing candidates, and forwarding nodes.
The variation in initial energy levels of sensor nodes is also accommodated by introducing
ε = 5% noise. Furthermore, different network sizes and FTRs are used to test the robustness
of our approach on diverse setups and environments.
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The experimental evaluation setup parameters with network size 1000, 700, and 400
sensor nodes are shown in Table 2. The BS is located at (250 m, 0 m) and knows node IDs,
locations, and kn keys of each node. At start-up, the boot-up process with localization is
initialized. In the simulation, we execute the model of the proposed system as described in
Section 4. Table 3 highlights the equations along with the respective context used in the
simulation modeling.

Table 2. Experimental parameters for Performance Evaluations.

Parameters Values

Sensors nodes 1000, 700, 400
Sensor field size (500× 500) m×m

BS location (250, 0) m
Ri 50 m± ε, where ε = 10%

Cluster h/w 50 m
Eelec for Tx and Rx 50 nJ/bit

Eamp 100 pJ/bit/m2

Node energy 1Joules± ε, where ε = 5%
MAC verification 20 mJ

Data packet 200 bits
Round 800 bits

FTR 50%, 70%, 90%
Path loss constant (λ) 2

The simulation experiments have been carried out building a C++ simulator using
Microsoft Visual Studio 2010 (Redmond, Washington, USA).

Table 3. Calculations involved in simulation modeling.

Subjects to Be Calculated Mathematical Expressions

Fitness evaluation for path selection Equation (1)
Finding re-clustering parameters Equations (2) to (6)

Fitness evaluation for re-clustering Equation (7)
Modeling false injection attack Equations (10) and (11)

6. Performance Evaluation

Performance measurement, analysis, and experimental results are presented in this section.

6.1. Performance Measurement

The performance is compared using first node depleted (FND) and percentage nodes
depleted (PND) performance metrics for network lifetime results. FND is the number of
communication rounds needed for the first node’s energy level reaching zero. PND is the
percentage of nodes having zero energy after no more communication is possible due to
network partition. The higher the percentage of nodes depleted, the better the scheme is in
balancing communication loads and thus the better at avoiding the hot-spot problem and
hence extending network lifetime.

Energy-efficiency is determined using average energy consumption per round by a
given scheme. The detection capacity is measured using the percentage of attacks detection.
These performance measures are evaluated for three different network sizes and three
attacks ratios as explained earlier.

6.2. Performance Analysis

We analyze the performance of our scheme for network lifetime and energy effi-
ciency analysis.



Mathematics 2021, 9, 43 13 of 18

6.2.1. Network Lifetime

Three paths are denoted by p1, p2, and p3, fixed FTR (or f ), and a constant key ratio (t)
(i.e., total keys over total nodes en-route) as in Figure 9a. In greedy routing, the forwarding
node is determined by distance only. This results in a single or fixed path which would be
used unless it is broken by depletion of a node on the path or a session is expired.

Figure 9. Network Performance analysis: (a) lifetime and (b) energy-efficiency.

Considering p2 as the shortest path, intuitively disconnect first. In contrast, the
proposed scheme has multiple paths to select from since remaining energy varies with time,
therefore resulting in alternative path selection, thus resulting in more events reported to
the BS from source CH. Thus, if lifetime is defined by first node depletion, the proposed
scheme results in extended network lifetime.

Example: For the sake of simplicity, let us assume that required energy for one Tx or
Rx is 0.1 J, whereas 1J the total energy of a node. Consequently, after five Tx and five Rx,
the fixed path p2, will be disconnected as the first node is depleted in ten communications.
On the contrary, in the proposed scheme, energy aware and dynamic routing are employed
using energy and attack information instead of distance only. Hence, it can alternatively
traverse various paths among p1, p2, and p3.

As the energy consumption for communication will be distributed among three paths,
the energy consumption will be more balanced among these three routes. Therefore,
theoretically, the lifetime would be prolonged up to three-fold if events are evenly using
all three paths alternatively in GAFOR. Therefore, the proposed method can prolong the
network lifetime regardless of the FTR.

6.2.2. Energy-Efficiency Analysis

Now, consider three paths represented by p1, p2, and p3 having different FTR f1, f2,
f3 and key ratios t1, t2, t3 as illustrated in Figure 9b.

In order to select the forwarding node, a compromise is required between the kw
keys’ existing en-route nodes and the energy. By the number of kw on en-route nodes,
verification nodes as nodes with keys consequently assume verification responsibility. In
the case of higher attacks, a path with more verification nodes is selected to save energy by
dropping fabricated reports at minimum hops in the proposed scheme. Whereas, in the
lower attacks case, a path with a proportionally lower number of verification nodes would
be selected—since, in this case, legitimate nodes have to concur with a lower number of
verification, hence saving energy.

Example: In the case of a higher number of attacks (e.g., f3), a path is chosen (i.e., p3)
having a proportionally higher number of verification nodes, which results in dropping
more fabricated reports earlier, hence saving energy. Similarly, for a lower number of
attacks (e.g., f1), a path is chosen (i.e., p2) having a lower number of verification nodes;
as a result, legitimate reports would need less verifications that save energy. Therefore,
dynamically selecting based on attack information, energy could be saved in both cases.
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6.3. Performance Results
6.3.1. Network Lifetime

A network lifetime performance comparison of GAFOR with existing schemes such
as DEF [2], CCEF [3], and CCEF with re-clustering (CCEF-RC) using FND is shown in
Figure 10. The reasons for choosing DEF and CCEF schemes to compare the performances
of the proposed technique can be explained as follows. The DEF addresses false report
injection attacks in WSNs and adopts multipath routing to deal with the topology changes
of the networks. Because of its faster false reports’ dropping rate with a low memory
requirement, the DEF is still regarded as the benchmark en-route filtering strategy against
false report injection attacks. Like DEF, the CCEF also drops fabricated reports en-route,
but it does not require symmetric key sharing. In CCEF, the source node sets up a secret
association with the BS for each session. Because of this stronger security protection, CCEF
is also widely considered a representative en-route filtering scheme. In addition to DEF
and CCEF, we have also considered CCEF with fixed time-instant-based re-clustering for
a fair comparison. The x-coordinate represents network size in terms of the number of
sensor nodes in a squared sensor field of fixed area. The y-coordinate is the number of
communication rounds. The margin of improvement varies with network size and FTR.
The performance of CCEF and CCEF-RC is similar since re-clustering is performed after
a certain number of nodes are depleted. In terms of performance, GAFOR outperforms
existing schemes.
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Figure 10. Network lifetime (FTR 50, 70, and 90% at first node depleted (FND)).

In the case of performance metric PND, proposed schemes also perform best among
compared schemes in all three setups with different FTR as shown in Figure 11. In the
case of PND, CCEF-RC performs better than CCEF due to re-clustering. A margin of
improvement is observed for network sizes of 400 and 1000 nodes compared to 700 nodes.
Although GAFOR performs better in all cases, the margin of improvement decreases with
an increase in FRT. GAFOR shows 2.71 to 2.92 fold improvement using FND and 2.29 to
2.34 times using PND. A summary of network lifetime performance using FND and PND
is shown in Table 4.
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Figure 11. Network lifetime (PND).
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Table 4. Network Lifetime—FND and PND.

FND PND

FTR CCEF-RC DEF GAFOR CCEF-RC DEF GAFOR

50% 1.02 2.92 3.64 1.8 2.18 2.29
70% 0.98 2.81 3.38 1.88 2.18 2.31
90% 1.00 2.71 3.10 1.79 2.21 2.34
Avg. 1.00 2.81 3.37 1.82 2.19 2.31

6.3.2. Energy-Efficiency

The energy-efficiency performance of GAFOR and existing schemes is shown in
Figure 12. The x-coordinate illustrates network size while average energy consumed per
round in joules is represented on the y-coordinate. The less energy that is used, the better
the energy-efficiency performance of that scheme. We save more energy in proposed
schemes at lower FTR. It is observed that, as the FTR increases, the relative gain in the
energy-efficiency decreases as evident in Table 5 and Figure 12.

Table 5. Energy efficiency.

FTR CCEF-RC DEF GAFOR

50% 1.42 8.12 3.83
70% −1.47 5.84 −1.2
90% 0 4.39 −6.5
Avg. −0.02 6.12 −1.3

GAFOM average energy-efficiency is similar as compared to CCEF and CCEF-CR,
while DEF performs better since it does not employ re-clustering, which saves energy.
There is re-clustering and optimization cost associated with the proposed scheme that
results in a decrease in energy saving. However, GAFOR has comparable energy efficiency
in comparison to CCEF and CCEF-RC.
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Figure 12. Energy-efficiency.

6.3.3. Detection Capacity

In this section, performance of GAFOR in terms of detection capacity (also referred
as filtering capacity or detection power) is compared to existing schemes as shown in
Figure 13. The network size is represented with the x-coordinate while detection capacity
by the y-coordinate. The robustness of the our scheme is evaluated using different network
sizes and FTRs. The detection capacity is defined in Equation (12) as

DetectionCapacity=
Numbero f FilteredAttacks

Numbero f Attacks
. (12)
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Figure 13. Detection capacity.

It is observed that, on average, the detection capacity of compared schemes is similar
with trivial differences, while significantly extending network lifetime.

7. Conclusions and Future Works
7.1. Concluding Remarks

As outlined, several security schemes have the potential to extend network lifetime for
routing. However, the en-route filtering scheme saves energy at the cost of network lifetime.
The proposed scheme addresses the issue of extending network lifetime while preserving
energy and security of the existing schemes by the joint consideration of network conditions
and re-clustering. This study is the first of its kind to address underlying limitations of
exiting en-route filtering schemes to extend network lifetime. The proposed scheme is
novel in the sense that it introduces a GA and FLS based re-clustering optimizer that
effectively determines the time-instance for the next re-clustering.

Major performance improvement occurs due to the application of FLS on routing
and filtering node selection. This results in balancing energy load management and
thus prolonging network lifetime. The proposed re-clustering further contributes to the
extended network lifetime by estimating the time-instant of the next re-clustering using
the GA. The GA basically optimizes the supplied standard fuzzy membership function to
reflect various network parameters such as hop count, number of events, and FTR more
precisely and eventually returns the exact number of events after which it is the best time
to do the next re-clustering.

7.2. Limitations and Future Directions

A number of possible improvements of this study can be possible, which can be
subjected to future works. Some of them are as follows:

• The study presented in this paper is solely simulation based, and we have not ported
the proposed algorithm onto a real sensor based embedded system and thus not
tested it in a real environment. Whereas a simulation environment can assume perfect
channel estimation and network synchronization, the real environment introduces
various challenging tasks.

• If a WSN can run for an enhanced lifetime, it will definitely be cost effective in the
long run because various network elements such as sensor nodes and batteries will be
utilized for a longer period of time, and the number of fresh network deployments
will be reduced. However, the cost estimation from an economical viewpoint was
beyond the scope of our present study. A complete cost analysis can be performed to
get better insights into the relationship between an extended network lifetime from an
en-route filtering perspective and overall network cost.

• In addition to effective re-clustering, optimized sink mobility can further enhance
the network lifetime. An interesting question in sink mobility is when and where to
relocate the sink. In order to answer “when”, the time-instant, in terms of how many
nodes were depleted (or events), can be determined by optimizing fuzzy membership
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functions for the sink relocation fuzzy system using GA. To address the "where" issue,
we would evaluate the aforementioned trajectory as well as the energy-aware sink tra-
jectory. Determining the optimal trajectory under a particular network condition, e.g.,
size of a network, sparse, or dense networks, would also be worthy of investigation

• In addition to re-clustering and optimized sink mobility, balanced dynamic rout-
ing can be investigated with the aim of a generalized framework to maximize the
network lifetime.
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