112,312 research outputs found

    Energy from waste and the food processing industry

    Get PDF
    The provision of a secure, continuous energy supply is becoming an issue for all sectors of society and the foodprocessingindustry as a major energy user must address these issues. This paper identifies anaerobic digestion as an opportunity to go some way to achieving energy security in a sustainable manner. However, a number of energy management and waste reduction concepts must also be brought into play if the environmental, social and economic aspects of sustainability are to be balanced. The reporting of such activity will help to promote the green credentials of the industry. Cleaner production, supply chain and life cycle assessment approaches all have a part to play as tools supporting a new vision for integrated energy and waste management. Our reliance on high-energyprocessing, such as canning and freezing/chill storage, might also need re-assessment together with processing based on hurdle technology. Finally, the concepts of energy and power management for a distributed energy generation system must be brought into the foodprocessingindustry

    Life cycle assessment (LCA) applied to the process industry: a review

    Get PDF
    Purpose : Life cycle assessment (LCA) methodology is a well-established analytical method to quantify environmental impacts, which has been mainly applied to products. However, recent literature would suggest that it has also the potential as an analysis and design tool for processes, and stresses that one of the biggest challenges of this decade in the field of process systems engineering (PSE) is the development of tools for environmental considerations. Method : This article attempts to give an overview of the integration of LCA methodology in the context of industrial ecology, and focuses on the use of this methodology for environmental considerations concerning process design and optimization. Results : The review identifies that LCA is often used as a multi-objective optimization of processes: practitioners use LCA to obtain the inventory and inject the results into the optimization model. It also shows that most of the LCA studies undertaken on process analysis consider the unit processes as black boxes and build the inventory analysis on fixed operating conditions. Conclusions : The article highlights the interest to better assimilate PSE tools with LCA methodology, in order to produce a more detailed analysis. This will allow optimizing the influence of process operating conditions on environmental impacts and including detailed environmental results into process industry

    Eco Global Evaluation: Cross Benefits of Economic and Ecological Evaluation

    Get PDF
    This paper highlights the complementarities of cost and environmental evaluation in a sustainable approach. Starting with the needs and limits for whole product lifecycle evaluation, this paper begins with the modeling, data capture and performance indicator aspects. In a second step, the information issue, regarding the whole lifecycle of the product is addressed. In order to go further than the economical evaluations/assessment, the value concept (for a product or a service) is discussed. Value could combine functional requirements, cost objectives and environmental impact. Finally, knowledge issues which address the complexity of integrating multi-disciplinary expertise to the whole lifecycle of a product are discussing.EcoSD NetworkEcoSD networ

    Design Principles for Closed Loop Supply Chains

    Get PDF
    In this paper we study design principles for closed loop supply chains. Closed loop supply chains aim at closing material flows thereby limiting emission and residual waste, but also providing customer service at low cost. We study 'traditional' and 'new' design principles known in the literature. It appears that setting up closed loop supply chains requires some additional design principles because of sustainability requirements. At the same time however, we see that traditional principles also apply. Subsequently we look at a business situation at Honeywell. Here, only a subset of the relevant design principles is applied. The apparent low status of reverse logistics may provide an explanation for this. To some extent, the same mistakes are made again as were 20 years ago in, for instance, inbound logistics. Thus, obvious improvements can be made by applying traditional principles. Also new principles, which require a life cycle driven approach, need to be applied. This can be supported by advanced management tools such as LCA and LCC.reverse logistics;case-study;closed loop supply chains

    Designing sustainable cold chains for long-range food distribution: Energy-effective corridors on the Silk Road Belt

    Get PDF
    Modern food production-distribution processes represent a critical stressor for the environment and for natural ecosystems. The rising flows of food across growing and consumption areas couple with the higher expectations of consumers for the quality of products and compel the intensive use of refrigerated rooms and transport means throughout the food supply chain. In order to aid the design of sustainable cold chains that incorporate such aspects, this paper proposes a mixed integer linear programming model to minimize the total energy consumption associated with the cold operations experienced by perishable products. This model is intended for food traders, logistics practitioners, retail managers, and importers collaboratively called to design and plan a cost and environmentally effective supply strategy, physical channels, and infrastructures for cold chains. The proposed model is validated with a case study inspired by the distribution of two example food products, namely fresh apples and ice cream, along the New Silk Road connecting Europe and China. The illustrated analysis investigates the effect of alternative routes and transport modes on the sustainability of the cold chain. It is found that the most energy-efficient route for ice cream is via rail over a northern route and, for apples, is via a southern maritime route, and, for these two routes, the ratios of the total energy consumed to the energy content of the food are 760 and 913, respectively. By incorporating the energy lost due to the food quality decay, the model identifies the optimal route to adopt in accordance with the shelf life and the conservation temperature of each product

    Feasibility of Warehouse Drone Adoption and Implementation

    Get PDF
    While aerial delivery drones capture headlines, the pace of adoption of drones in warehouses has shown the greatest acceleration. Warehousing constitutes 30% of the cost of logistics in the US. The rise of e-commerce, greater customer service demands of retail stores, and a shortage of skilled labor have intensified competition for efficient warehouse operations. This takes place during an era of shortening technology life cycles. This paper integrates several theoretical perspectives on technology diffusion and adoption to propose a framework to inform supply chain decision-makers on when to invest in new robotics technology

    Inventory drivers in a pharmaceutical supply chain

    Get PDF
    In recent years, inventory reduction has been a key objective of pharmaceutical companies, especially within cost optimization initiatives. Pharmaceutical supply chains are characterized by volatile and unpredictable demands –especially in emergent markets-, high service levels, and complex, perishable finished-good portfolios, which makes keeping reasonable amounts of stock a true challenge. However, a one-way strategy towards zero-inventory is in reality inapplicable, due to the strategic nature and importance of the products being commercialised. Therefore, pharmaceutical supply chains are in need of new inventory strategies in order to remain competitive. Finished-goods inventory management in the pharmaceutical industry is closely related to the manufacturing systems and supply chain configurations that companies adopt. The factors considered in inventory management policies, however, do not always cover the full supply chain spectrum in which companies operate. This paper works under the pre-assumption that, in fact, there is a complex relationship between the inventory configurations that companies adopt and the factors behind them. The intention of this paper is to understand the factors driving high finished-goods inventory levels in pharmaceutical supply chains and assist supply chain managers in determining which of them can be influenced in order to reduce inventories to an optimal degree. Reasons for reducing inventory levels are found in high inventory holding and scrap related costs; in addition to lost sales for not being able to serve the customers with the adequate shelf life requirements. The thesis conducts a single case study research in a multi-national pharmaceutical company, which is used to examine typical inventory configurations and the factors affecting these configurations. This paper presents a framework that can assist supply chain managers in determining the most important inventory drivers in pharmaceutical supply chains. The findings in this study suggest that while external and downstream supply chain factors are recognized as being critical to pursue inventory optimization initiatives, pharmaceutical companies are oriented towards optimizing production processes and meeting regulatory requirements while still complying with high service levels, being internal factors the ones prevailing when making inventory management decisions. Furthermore, this paper investigates, through predictive modelling techniques, how various intrinsic and extrinsic factors influence the inventory configurations of the case study company. The study shows that inventory configurations are relatively unstable over time, especially in configurations that present high safety stock levels; and that production features and product characteristics are important explanatory factors behind high inventory levels. Regulatory requirements also play an important role in explaining the high strategic inventory levels that pharmaceutical companies hold

    The potential of additive manufacturing in the smart factory industrial 4.0: A review

    Get PDF
    Additive manufacturing (AM) or three-dimensional (3D) printing has introduced a novel production method in design, manufacturing, and distribution to end-users. This technology has provided great freedom in design for creating complex components, highly customizable products, and efficient waste minimization. The last industrial revolution, namely industry 4.0, employs the integration of smart manufacturing systems and developed information technologies. Accordingly, AM plays a principal role in industry 4.0 thanks to numerous benefits, such as time and material saving, rapid prototyping, high efficiency, and decentralized production methods. This review paper is to organize a comprehensive study on AM technology and present the latest achievements and industrial applications. Besides that, this paper investigates the sustainability dimensions of the AM process and the added values in economic, social, and environment sections. Finally, the paper concludes by pointing out the future trend of AM in technology, applications, and materials aspects that have the potential to come up with new ideas for the future of AM explorations
    • …
    corecore