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Abstract: Modern food production-distribution processes represent a critical stressor for the 

environment and for natural ecosystems. The rising flows of food across growing and consumption 

areas couple with the higher expectations of consumers for the quality of products and compel the 

intensive use of refrigerated rooms and transport means throughout the food supply chain. In order 

to aid the design of sustainable cold chains that incorporate such aspects, this paper proposes a 

mixed integer linear programming model to minimize the total energy consumption associated with 

the cold operations experienced by perishable products. This model is intended for food traders, 

logistics practitioners, retail managers, and importers collaboratively called to design and plan a 

cost and environmentally effective supply strategy, physical channels, and infrastructures for cold 

chains. The proposed model is validated with a case study inspired by the distribution of two 

example food products, namely fresh apples and ice cream, along the New Silk Road connecting 

Europe and China. The illustrated analysis investigates the effect of alternative routes and transport 

modes on the sustainability of the cold chain. It is found that the most energy-efficient route for ice 

cream is via rail over a northern route and, for apples, is via a southern maritime route, and, for 

these two routes, the ratios of the total energy consumed to the energy content of the food are 760 

and 913, respectively. By incorporating the energy lost due to the food quality decay, the model 

identifies the optimal route to adopt in accordance with the shelf life and the conservation 

temperature of each product. 
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1. Introduction 

Modern food production-distribution processes represent a critical stressor for the environment 

and for natural ecosystems [1]. In addition to the acknowledged environmental issues associated with 

the main food supply chain phases (i.e., packaging, processing, storage, transportation, waste 

management) [2,3], the distribution of perishable products requires further refrigeration during both 

storage and transportation to prevent product spoilage and losses [4]. Overall 15% of the world’s 

energy production is used to power cold chains and cooling systems [5], which still depend on fossil 

fuels. The rising flows of food across growing and consumption areas couple with the higher 

expectations of consumers for the quality of products and compel the intensive use of refrigerated 

rooms and transport means throughout the food supply chain [6]. For example, the supply of food 

throughout retail chains accounts for approximately one third of the UK’s total Greenhouse Gas 
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(GHG) emissions, with transport estimated to account for 1.8% of the total emissions [7]. Since global 

road freight transport is expected to keep growing in the future [8], implementing a new systemic 

approach to designing sustainable cold chains is mandatory.  

The increasing complexity of food supply chains and their attempt to match seasonal food 

production to a global demand has encouraged the adoption of more systemic planning [9,10]. 

Operations planning in food supply chains contributed undoubtedly to reducing the total costs but 

has neglected the associated environmental impacts. The adoption of integrated planning driven by 

sustainability purposes could lead to a reduction in the GHG emissions associated with cold storage 

and transport [11]. In the past, the availability of low-cost energy sustained the design of less efficient 

cold chains mostly powered by fossil fuels. For this reason, food supply chains are often built as 

inefficient transformation systems, which consume more energy than they provide (e.g., as 

nutritional value). A way to improve such efficiency is to reduce food losses and waste, which would 

result in reducing the unit consumption of energy per delivered product. Conversely, as a food 

product is wasted, it does not supply energy as nutritional value to the consumer. 

In order to aid the design of sustainable cold chains that incorporate such aspects, this paper 

proposes a mixed integer linear programming (MILP) model to minimize the total energy 

consumption associated with the cold operations experienced by perishable products. The energy 

consumption calculation includes harvesting, production, packaging, storage, and transport 

activities. This model is intended for food traders, logistics practitioners, retail managers, and 

importers collaboratively called to design and plan a cost and environmentally effective supply 

strategy, physical channels, and infrastructures for cold chains [12]. 

The proposed model is validated with a case study inspired by the distribution of food products 

along the New Silk Road connecting Europe and the Far East (i.e., China). The illustrated analysis 

investigates the effect of alternative routes and transport modes on the sustainability of the cold chain. 

This is measured through a properly defined performance index of sustainability. The selected case 

study is intended to assess the impact of an energy-driven optimization model on the design of global 

trans-national cold chains that are characterized by long distances and different climatic conditions 

and stresses or that incur the risk of product spoilage [13] during transportation. 

2. Literature Review  

Nowadays, the increasing complexity of the physical connections along food supply chains 

boosts the adoption of holistic and quantitative methodologies and tools by the Supply Chain 

Management (SCM), which attracts researchers and practitioners [14,15]. These approaches aim to 

manage the flow of materials throughout the network via data-driven planning and optimization 

[16,17]. In the food sector, the recent trend in SCM focuses on reaching a global optimum that 

incorporates actors and stakeholders [18], as well as economic, environmental, and social 

sustainability goals [19].  

In the last years, an increasing number of papers have been provided on the optimization of food 

supply chain operations. In order to benchmark the proposed model, a search for keywords on Web-

of-Science in the period from 2000 to 2018 has been conducted. Figure 1 illustrates the results, 

highlighting the intersections between the topics ‘optimization’, ‘supply chain’, ‘food’, and ‘energy’. 

Figure 1 reveals few relevant contributions addressing these aspects jointly. Furthermore, the 

systemic literature analysis outlines the lack of decision-support tools able to embrace the 

optimization of the whole food supply chain, rather than focusing on a specific stage and process (i.e., 

storage, delivery). The main relevant contributions are cited and described in the following in order 

to benchmark our proposal. 

The adoption of mathematical models to support the design and management of the different 

phases of food supply chains is widely diffused in the literature [20,21]. Bosona et al. [22] provide a 

hybrid approach to design integrated logistic networks, creating clusters of nodes to supply local 

food and enhance its traceability. According to their approach, once the optimal location for each 

cluster is set, each cluster is allocated to a retailer’s depot. Then the optimal routes for each delivery 

are calculated and provided. Amorim and Almada-Lobo [23] formulate a multi-objective vehicle 
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routing problem (VRP) with time windows to reduce the distribution costs while ensuring the highest 

freshness of the delivered food. Song and Ko [24] provide a nonlinear formulation of the VRP to 

design optimal routes for both refrigerated and standard vehicles and to preserve the freshness of the 

delivered food. Wang et al. [25] solve the VRP with time windows for cold chain deliveries in the 

presence of carbon tax constraints, which reflect the government’s efforts to control the GHG 

emissions associated with food distribution.  

 

Figure 1. Search strategy for the literature review.  

The increasing awareness of the environmental impacts associated with the food industry 

pushed researchers belonging to different disciplines (e.g., agriculture, economics, engineering) to 

study and formulate models, methods, tools, and technical pathways able to enhance the economic 

and environmental sustainability of the food ecosystem as a whole. The combination of 

environmental care strategies and the SCM practices in the food industry lead to the development of 

models that include the environmental issue in the planning objectives. Pipatprapa et al. [26] assess 

the key performances to measure the environmental sustainability of Thailand’s food supply chains 

through structural equation modeling and a fuzzy analytic hierarchy approach. Validi et al. [27] 

propose a multi objective model for the minimization of both the GHG emissions and cost associated 

with food distribution in an Irish supply chain. Yang et al. [28] explore quantitative green supply 

chain management methods and associated marketing strategies based on the temperature control of 

the distribution operations for perishable products. Accorsi et al. [29] develop a decision-support 

model to design carbon balanced agro-food supply chains through the optimal location of network 

nodes, carbon plantings, and renewable energy power systems. Savino et al. [30] illustrate a 

framework to evaluate sustainability improvements and the resulting economic impacts through a 

value chain approach. They validate this approach with a carbon footprint analysis of a fresh chestnut 

supply chain. Gwanpua et al. [31] design a tool for the optimization of the trade-off between food 

quality, energy use, and global warming impacts associated with a retail cold chain. This tool assesses 

the impact of alternative technologies, plants, and cold rooms on the overall energy costs and the 

quality of the supplied perishable products. Vanek and Sun [32] introduce an optimization model to 

explore the trade-off between the energy consumption for food distribution activities and the loss of 

energy in terms of nutritional values resulting from food spoilage. Their model is used to compare 

and assess the adoption of faster or slower transport modes from a twofold perspective, which looks 

at the energy efficiency and the food losses. Bortolini et al. [33] illustrate a three-objective tactical 

optimization problem to establish the thresholds of adoption for different transport modes in the 

distribution of fresh food products according to cost, carbon, and delivery time objective functions. 

Rong et al. [34] manage perishable food production and distribution planning through a MILP model 
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that controls the food quality decay. De Keizer et al. [35] formulate a MILP model for the distribution 

of fresh food under quality and perishability constraints, which is aimed at determining the optimal 

positioning of stocks and the order decoupling point throughout the supply chain. Saif and Elhedhli 

[36] provide and solve a bi-objective inventory-location model aimed at identifying the trade-off 

between the distribution and inventory costs and the GHG emissions caused by the refrigerants in a 

cold chain. Accorsi et al. [37] give an original formulation of the scheduling-routing problem to 

minimize the overall operational cost of a cold chain. These include the costs for food storage, 

transport, and refrigeration, which are sensibly affected by the experienced environmental conditions. 

They demonstrate how the climate conditions influence the optimal solution, and climate-driven 

optimization of the food delivery process is recommended.  

This paper extends the aforementioned research by providing an operational MILP model for 

the optimization of the energy consumption incurred during the production, storage, and 

distribution stages of a cold chain. The proposed model incorporates the climate conditions 

experienced along each route and by each transport vehicle with the purpose to increase the energy 

efficiency of the whole production-distribution cold chain and, consequently, its environmental 

sustainability. Compared to Rong et al. [34] and de Keizer et al. [35], who formulate the decrease in 

quality as influenced by the lead time at a certain conservation temperature, the model proposed in 

this paper incorporates the climate conditions experienced on each route and quantifies the product 

quality decay accordingly. Compared to Accorsi et al. [37], this paper (1) includes the agriculture-

farming stage in the designed food value chain; (2) optimizes an energy-based function; and (3) 

addresses a different research question, that is, how to sustainably distribute different fresh products 

throughout a long-ray cold chain. 

The remainder of this paper is organized as follows. Section 3 illustrates the cold-chain decision-

support operational MILP model. Section 4 illustrates the application of the proposed model to a case 

study inspired by the long-rail cold chain developed upon the New Silk Road that connects Europe 

and the Far East’s countries. Lastly, Section 5 summarizes the conclusions and suggests opportunities 

for further research developments. 

3. A Cold Chain Design-Support Model 

This section introduces a MILP model for the optimization of the overall energy consumption 

experienced throughout all the stages of a food supply chain. The energy contributions to be 

minimized include those for food processing/packaging, storage and refrigeration, and transport. A 

preliminary approach to formulate and solve this problem has been treated by the authors in a recent 

working paper [38]. That formulation has been evolved by introducing new continuous and integer 

variables that allow intra-stage connections (necessary to consider multi-modal transportation) and 

by calculating the energy consumption for refrigeration at each node and arc of the network on the 

basis of the external climatic conditions, which vary with the season and the region. Reasonably, such 

variances increase with the range of the cold chain and the overall distances between the growing 

and the consumption areas. 

3.1. Environmental Sustainability Assessment in Cold Chains 

According to Conforti and Giampietro [39], in terms of energy, a food supply chain is sustainable 

when it does not consume more energy than it supplies as the nutritional value of the delivered food 

products. In view of this, we assume the ratio between the energy supplied and the energy consumed 

for the production and distribution of a food product throughout the cold chain as a performance 

indicator of its environmental sustainability. This metric is also known as the index of sustainability 

(IS) [40], which is defined as follows: 

𝐼𝑆 =  𝐸𝑐𝑜𝑛𝑠𝑢𝑚𝑒𝑑/𝐸𝑠𝑢𝑝𝑝𝑙𝑖𝑒𝑑  (1) 

In Equation (1), Econsumed accounts for the overall energy consumed from the food growth to its 

consumption and Esupplied represents its energy content. The supplied energy is represented by the food 

energy value, generally expressed in kcal/gr, which is different to the energy required to power the 
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growing and harvesting phases, processing and transformation, packaging, storage, and distribution 

to the consumers. While the decisions about cold chain operations do not influence the food energy 

value, they affect significantly the energy consumed from farm to table. 

In order to aid and support the operations management in cold chains and the design of 

sustainable cold chain infrastructures, a MILP model, aimed to minimize the total energy consumed 

along the network, is thus defined. The obtained solutions identify the benchmark for a sustainable 

cold chain configuration and support strategic, tactical, and operational planning of the 

infrastructures to be established (e.g., where to locate a cold warehouse) and the routes to be chosen 

season by season, rather than the transport mode to be adopted for each product. This model 

enhances the environmental sustainability of a cold food supply chain by reducing the energy 

consumption and the associated GHG emissions. Nevertheless, since the objective function accounts 

for the total cold chain energy consumption, the cost of energy allows us to immediately turn the 

environmental aspects into economic concerns. 

3.2. Cold Chain Network Configuration 

The model involves four supply chain stages: 

• the Growers that supply raw food ready for transformation (i.e., crops, orchards, farms); 

• the Processing/Packaging nodes, which represent the plants where the raw products are 

transformed and packed, making them ready for distribution; 

• the Storage/Consolidation nodes are where products are conserved, stored, and consolidated 

before and during distribution. Given the short shelf lives of perishable products, they pause in 

the distribution pipeline as briefly as possible, although they it is still necessary to balance the 

offer and demand mismatch or to perform multi-modal transport; 

• the Demand nodes, where the food products meet the consumers. These include grocery shops, 

retail depots, wholesalers, or canteens. These nodes are usually located within high-density 

populated areas. 

Figure 2 shows the network configuration considered in the model formulation. 

 

Figure 2. Representation of the network configuration. 

The solution obtained by the optimization of the model provides: 
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• The quantity of each product that must be harvested/processed/packaged/stored at each node; 

• The proper transportation mode to adopt for each connection, route, and stage of the cold chain; 

• The temperature set-point for each vehicle and at each storage node, given the products stored 

and the external expected climatic conditions; 

• The production, processing, and delivery schedule for each product in order to meet the demand 

from the retailers. 

• These results need to be interpreted in view of the planning horizon and the considered 

granularity of the periods (e.g., a day).  

3.3. Energy Consumption Calculation 

The overall energy consumption calculated in the objective function includes the following 

contributions: 

• the energy to move products throughout the logistic network. This depends on the traveling 

distance, on the transportation mode, and the type of the vehicle. Transport inter-modality is 

allowed in the model. The considered flows are illustrated in Figure 1; 

• the energy to maintain vehicles and warehouses at the chosen temperature set-point. The closer 

the set-point is to the external temperature, the lower the energy consumption for refrigeration 

will be. However, the temperature set-point should respect the safe temperature range of the 

food products to avoid spoilage and quality decay; 

• the energy required by crops and farms to process and package the products and to handle the 

products at the storage nodes (which is often negligible); 

• the energy associated with food losses, which occur when a product’s quality decay is below the 

acceptance threshold. The quality decay of a product depends on the amount of time spent in 

the cold chain and the experienced environmental stresses (e.g., temperature rise). The minimum 

level of quality accepted at each stage determines the resulting flow of losses (i.e., those products 

that expire and are not accepted).  

3.4. Model Formulation 

The definitions of the parameters, sets of indices, and decision variables included in the 

following objective function and constraints are given as follows: 

Index sets  

i = 1, …, I  Set of products 

q = 1, …, qmax Set of quality levels 

k = 1, …, K Set of temperatures 

l = 1, …, L  Set of growers 

p = 1, …, P  Set of packaging nodes 

d = 1, …, D  Set of storage nodes 

s = 1, …, S  Set of retailer nodes 

m = 1, …, M  Set of vehicles and transportation modes 

t = 1, …, T  Set of periods 

𝑝𝑑𝑠 ∈ 𝑃𝐷𝑆 = 𝑃 ∪ 𝐷 ∪ 𝑆  Cluster of packaging, storage, and demand nodes 

𝑝𝑑 ∈ 𝑃𝐷 = 𝑃 ∪  𝐷  Cluster of packaging and storage nodes 

Input parameters  

demandi,s,t Demand of product i by the retailer s at period t, (units). 

cci,l,t Harvest of crop i from grower l at period t, (units). 

pci,p,t 
Packaging capacity of product i by packaging node p at period t, 

[units]. 

dcpd Storage capacity at packaging node p and storage node d, (units). 

𝑚𝑐𝑚   Transport capacity of transport mode m, (kg/vehicle). 

weighti Weight of handling unit of product i, (kg/unit). 
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cei,l Energy needed to crop one unit of product i by grower l, (kWh/unit). 

pei,p 
Energy required by packaging node p to process one handling unit of 

product i, (kWh/unit). 

storageei,pd 
Energy required to store one handling unit of product i at packaging 

node p and storage node d, (kWh/unit). 

𝑚𝑒𝑚   Energy required by transport mode m, (kWh/km). 

qmini,pds 
Minimum quality level accepted for product i at packaging node p, 

storage node d, and retailer s. 

wei Energy losses for product i decay (i.e., waste), (kWh/unit). 

coolemlpk,m,l,p 
Energy requirements to set the transport mode m at temperature k to 

move from the grower l to the packaging node p, (kW).. 

coolempdk,m,p,d 
Energy requirements to set the transport mode m at temperature k to 

move from the packaging node p to the storage node d, (kW). 

coolemddk,m,d,d′  
Energy requirements to set the transport mode m at temperature k to 

move from the storage node d to the storage node d′,  (kW). 

coolemdsk,m,d,s 
Energy requirements to set the transport mode m at temperature k to 

move from the storage node d to the retailer s, (kW). 

coolepdk,pd 
Energy requirements to set the facility temperature at k for both the 

packaging node p and the storage node d, (time/vehicle). 

timelpm,l,p 
Lead time to move products from the grower l to the packaging node 

p with the transportation mode m, (time/vehicle). 

timepdm,p,d 
Lead time to move products from the packaging node p to the storage 

node d with the transportation mode m, (time/vehicle). 

timeddm,d,d′ 
Lead time to move products from the storage node d to the storage 

node d′ with the transportation mode m, (time/vehicle). 

timedsm,d,s 
Lead time to move products from the storage node d to the retailer s 

with the transportation mode m, (time/vehicle). 

distlpl,p Travelling distance from the grower l to the packaging node p, (km). 

distpdp,d 
Routing distance from the packaging node p to the storage node d, 

[𝑘𝑚]. 

distddd,d′ Routing distance from the storage node d to the storage node d′, (km). 

distdsd,s Routing distance from the storage node d to the retailer s, (km). 

varqpdi,k,pd 
Degradation of the quality level of product i stored at packaging node 

p or storage node d at temperature k. 

varqmlpi,k,m,l,p 

Degradation of the quality level of product i transported by the 

transport mode m from the grower l to the packaging node p at 

temperature k. 

varqmpdi,k,m,p,d 

Degradation of the quality level of product i transported by the 

transport mode m from the packaging node p to the storage node d at 

temperature k.  

varqmddi,k,m,d,d 

Degradation of the quality level of product i transported by the 

transport mode m from the storage node d to the storage node d′ at 

temperature k 

varqmdsi,k,m,d,s 

Degradation of the quality level of product i transported by the 

transport mode m from the storage node d to the retailer s at 

temperature k. 

Decision variables  

inventoryi,q,k,pd,t 
Stock of product i stored within packaging node p or storage node d at 

temperature k and quality level q at period t, (units). 

transportlpk,m,l,p,t 
Number of transport vehicles m at temperature k used to move 

products from the grower l to the packaging node p at period t, (units). 
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transportpdk,m,p,d,t 

Number of transport vehicles m at temperature k used to move 

products from the packaging node p to the storage node d at period t, 

(vehicles). 

𝑡𝑟𝑎𝑛𝑠𝑝𝑜𝑟𝑡𝑑𝑑𝑘,𝑚,𝑑,𝑑′,𝑡  

Number of transport vehicles m at temperature k used to move 

products from the storage node d to the storage node d′ at period t, 

(vehicles). 

transportdsk,m,d,s,t 
Number of transport vehicles m at temperature k used to move 

products from the storage node d to the retailer s at period t, (vehicles). 

xlpi,q,k,m,l,p,t 
Flow of product i transported by vehicles m from the grower l to the 

packaging node p at quality q and temperature k at period t, (units). 

xpdi,q,k,m,p,d,t 

Flow of product i transported by vehicles m from the packaging node 

p to the storage node d at quality q and temperature k at period t, 

(units). 

𝑥𝑑𝑑𝑖,𝑞,𝑘,𝑚,𝑑,𝑑′,𝑡  
Flow of product i transported by vehicles m from the storage node d to 

the storage node d′ at quality q and temperature k at period t, (units). 

xdsi,q,k,m,d,s,t 
Flow of product i transported by vehicles m from the storage node d to 

the retailer s at quality q and temperature k at period t, (units). 

𝑧𝑘,𝑝𝑑,𝑡  {
1 if node 𝑝 or 𝑑 is set at temperature 𝑘 at period 𝑡

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 
  

wastei,pds,t 
Flow of expired/decayed product i at period t at any supply chain 

node, (units) 

The objective function (2) minimizes the overall energy consumed across the cold chain from the 

growers to the consumers. The contributions from Equations (2a)–(2d) account for the energy 

consumed by the transport activities as the sum of the energy required by the transport mode plus 

the energy required to maintain the temperature set-point k multiplied by the number of means 

required. The second set accounts for the energy consumptions due to agriculture in Equation (2e), 

packaging in Equation (2f), and storage stages in Equation (2g). The energy required to power the 

cold rooms at the processing and storage nodes is also considered in Equation (2h). Lastly, the energy 

contribution associated with the expired products is quantified in Equation (2i).  

𝑚𝑖𝑛 ∑ ∑ ∑ ∑ ∑(𝑚𝑒𝑚𝑑𝑖𝑠𝑡𝑙𝑝𝑙,𝑝 + 𝑐𝑜𝑜𝑙𝑒𝑚𝑙𝑝𝑘,𝑚,𝑙,𝑝𝑡𝑖𝑚𝑒𝑙𝑝𝑚,𝑙,𝑝 ) 𝑡𝑟𝑎𝑛𝑠𝑝𝑜𝑟𝑡𝑙𝑝𝑘,𝑚,𝑙,𝑝,𝑡

𝑇

𝑡=1

𝑃

𝑝=1

𝐿

𝑙=1

𝑀

𝑚=1

𝐾

𝑘=1

 (2a) 

+ ∑ ∑ ∑ ∑ ∑(𝑚𝑒𝑚𝑑𝑖𝑠𝑡𝑝𝑑𝑝,𝑑 + 𝑐𝑜𝑜𝑙𝑒𝑚𝑝𝑑𝑘,𝑚,𝑝,𝑑𝑡𝑖𝑚𝑒𝑝𝑑𝑚,𝑝,𝑑) 𝑡𝑟𝑎𝑛𝑠𝑝𝑜𝑟𝑡𝑝𝑑𝑘,𝑚,𝑝,𝑑,𝑡

𝑇

𝑡=1

𝐷

𝑑=1

𝑃

𝑝=1

𝑀

𝑚=1

𝐾

𝑘=1

 (2b) 

+ ∑ ∑ ∑ ∑ ∑(𝑚𝑒𝑚𝑑𝑖𝑠𝑡𝑑𝑑𝑑,𝑑′𝑐𝑜𝑜𝑙𝑒𝑚𝑑𝑑𝑘,𝑚,𝑑,𝑑′𝑡𝑖𝑚𝑒𝑑𝑑𝑚,𝑑,𝑑′) 𝑡𝑟𝑎𝑛𝑠𝑝𝑜𝑟𝑡𝑑𝑑𝑘,𝑚,𝑑,𝑑′,𝑡

𝑇

𝑡=1

𝐷

𝑑′=1

𝐷

𝑑=1

𝑀

𝑚=1

𝐾

𝑘=1

 (2c) 

+ ∑ ∑ ∑ ∑ ∑(𝑚𝑒𝑚𝑑𝑖𝑠𝑡𝑑𝑠𝑑,𝑠 + 𝑐𝑜𝑜𝑙𝑒𝑚𝑑𝑠𝑘,𝑚,𝑑,𝑠𝑡𝑖𝑚𝑒𝑑𝑠𝑚,𝑑,𝑠) 𝑡𝑟𝑎𝑛𝑠𝑝𝑜𝑟𝑡𝑑𝑠𝑘,𝑚,𝑑,𝑠,𝑡

𝑇

𝑡=1

𝑆

𝑠=1

𝐷

𝑑=1

𝑀

𝑚=1

𝐾

𝑘=1

 (2d) 

+ ∑ ∑ ∑ ∑ ∑ ∑ ∑ 𝑐𝑒𝑖,𝑙  𝑥𝑙𝑝𝑖,𝑞,𝑘,𝑚,𝑙,𝑝,𝑡

𝑇

𝑡=1

𝑃

𝑝=1

𝐿

𝑙=1

𝑀

𝑚=1

𝐾

𝑘=1

𝑞𝑚𝑎𝑥

𝑞=1

𝐼

𝑖=1

 (2e) 

+ ∑ ∑ ∑ ∑ ∑ ∑ ∑ 𝑝𝑒𝑖,𝑝 𝑥𝑝𝑑𝑖,𝑞,𝑘,𝑚,𝑝,𝑑,𝑡

𝑇

𝑡=1

𝐷

𝑑=1

𝑃

𝑝=1

𝑀

𝑚=1

𝐾

𝑘=1

𝑞𝑚𝑎𝑥

𝑞=1

𝐼

𝑖=1

 (2f) 

+ ∑ ∑ ∑ ∑ ∑ 𝑖𝑛𝑣𝑒𝑛𝑡𝑜𝑟𝑦𝑖,𝑞,𝑘,𝑝𝑑,𝑡  𝑠𝑡𝑜𝑟𝑎𝑔𝑒𝑒𝑖,𝑝𝑑

𝑇

𝑡=1𝑝𝑑∈𝑃𝐷

𝐾

𝑘=1

𝑞𝑚𝑎𝑥

𝑞=1

𝐼

𝑖=1

 (2g) 
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+ ∑ ∑ ∑ 𝑐𝑜𝑜𝑙𝑒𝑝𝑑𝑘,𝑝𝑑 𝑧𝑘,𝑝𝑑,𝑡

𝑇

𝑡=1𝑝𝑑∈𝑃𝐷

𝐾

𝑘=1

 (2h) 

+ ∑ ∑ ∑ 𝑤𝑎𝑠𝑡𝑒𝑖,𝑝𝑑𝑠,𝑡  𝑤𝑒𝑖

𝑇

𝑡=1𝑝𝑑𝑠∈𝑃𝐷𝑆

𝐼

𝑖=1

 (2i) 

Subjected to: 

∑ 𝑖𝑛𝑣𝑒𝑛𝑡𝑜𝑟𝑦𝑖,𝑞,𝑘,𝑝,𝑡 =  ∑ 𝑖𝑛𝑣𝑒𝑛𝑡𝑜𝑟𝑦𝑖,𝑞+𝑣𝑎𝑟𝑞𝑝𝑑𝑖,𝑘,𝑝,𝑘,𝑝,𝑡−1𝑘𝑘   

+ ∑ ∑ ∑ 𝑥𝑙𝑝𝑖,𝑞+𝑣𝑎𝑟𝑞𝑚𝑙𝑝𝑖,𝑘,𝑚,𝑙,𝑝,𝑘,𝑚,𝑙,𝑝,𝑡−𝑡𝑖𝑚𝑒𝑙𝑝𝑚,𝑙,𝑝

𝑙𝑚𝑘

− ∑ ∑ ∑ 𝑥𝑝𝑑𝑖,𝑞,𝑘,𝑚,𝑝,𝑑,𝑡

𝑑𝑚𝑘

 ∀𝑖, 𝑝, 𝑞 

≥ 𝑞(min)i,p
, 𝑡 

(3) 

∑ 𝑖𝑛𝑣𝑒𝑛𝑡𝑜𝑟𝑦𝑖,𝑞,𝑘,𝑑,𝑡 =  ∑ 𝑖𝑛𝑣𝑒𝑛𝑡𝑜𝑟𝑦𝑖,𝑞+𝑣𝑎𝑟𝑞𝑝𝑑𝑖,𝑘,𝑑 𝑖𝑛 𝐷,𝑘,𝑑 𝑖𝑛 𝐷,𝑡−1𝑘𝑘   

+ ∑ ∑ ∑ 𝑥𝑝𝑑𝑖,𝑞+𝑣𝑎𝑟𝑞𝑚𝑝𝑑𝑖,𝑘,𝑚,𝑝,𝑑,𝑘,𝑚,𝑝,𝑑,𝑡−𝑡𝑖𝑚𝑒𝑝𝑑𝑚,𝑝,𝑑𝑝𝑚𝑘 + ∑ ∑ ∑ 𝑥𝑑𝑑𝑖,𝑞+𝑣𝑎𝑟𝑞𝑚𝑑𝑑𝑖,𝑘,𝑚,𝑑′,𝑑,𝑘,𝑚,𝑑′,𝑑,𝑡−𝑡𝑖𝑚𝑒𝑑𝑑𝑚,𝑑′,𝑑𝑑′𝑚𝑘   

− ∑ ∑ ∑ 𝑥𝑑𝑠𝑖,𝑞,𝑘,𝑚,𝑑,𝑠,𝑡

𝑠𝑚𝑘

− ∑ ∑ ∑ 𝑥𝑑𝑑𝑖,𝑞,𝑘,𝑚,𝑑,𝑑′,𝑡

𝑑′𝑚𝑘

 ∀𝑖, 𝑑, 𝑞 ≥ 𝑞(min)i,d
, 𝑡 

(4) 

∑ ∑ ∑ ∑ 𝑥𝑑𝑠𝑖,𝑞,𝑘,𝑚,𝑑,𝑠,𝑡−𝑡𝑖𝑚𝑒𝑑𝑠𝑚,𝑑,𝑠

𝑑𝑚𝑘𝑞≥𝑞(𝑚𝑖𝑛)𝑖,𝑠 𝑖𝑛 𝑃𝐷𝑆

≥ 𝑑𝑒𝑚𝑎𝑛𝑑𝑖,𝑠,𝑡 ∀𝑖, 𝑠, 𝑡 (5) 

∑ ∑ ∑ ∑ 𝑥𝑙𝑝
𝑖,𝑞,𝑘,𝑚,𝑙,𝑝,𝑡

𝑝𝑚𝑘𝑞

≤ 𝑐𝑐𝑖,𝑙,𝑡 ∀𝑖, 𝑙, 𝑡 (6) 

∑ ∑ ∑ ∑ 𝑥𝑝𝑑
𝑖,𝑞,𝑘,𝑚,𝑝,𝑑,𝑡

𝑑𝑚𝑘𝑞

≤ 𝑝𝑐
𝑖,𝑝,𝑡

 ∀𝑖, 𝑝, 𝑡 (7) 

∑ ∑ ∑ ∑ ∑ 𝑥𝑙𝑝
𝑖,𝑞,𝑘,𝑚,𝑙,𝑝,𝑡−𝑡𝑖𝑚𝑒𝑙𝑝𝑚,𝑙,𝑝

𝑤𝑒𝑖𝑔ℎ𝑡𝑖𝑙𝑚𝑘𝑞𝑖 ≤ 𝑑𝑐𝑝 𝑖𝑛 𝑃  

− ∑ ∑ ∑ ∑ ∑(𝑖𝑛𝑣𝑒𝑛𝑡𝑜𝑟𝑦𝑖,𝑞,𝑘,𝑝 𝑖𝑛 𝑃,𝑡−1 − 𝑥𝑝𝑑𝑖,𝑞,𝑘,𝑚,𝑝,𝑑,𝑡)𝑤𝑒𝑖𝑔ℎ𝑡𝑖

𝑑𝑚𝑘𝑞𝑖

 ∀ 𝑝, 𝑡 
(8) 

∑ ∑ ∑ ∑ ∑ 𝑥𝑝𝑑𝑖,𝑞,𝑘,𝑚,𝑝,𝑑,𝑡−𝑡𝑖𝑚𝑒𝑝𝑑𝑚,𝑝,𝑑
𝑤𝑒𝑖𝑔ℎ𝑡𝑖𝑝𝑚𝑘𝑞𝑖 + ∑ ∑ ∑ ∑ ∑ 𝑥𝑑𝑑𝑖,𝑞,𝑘,𝑚,𝑑′,𝑑,𝑡−𝑡𝑖𝑚𝑒𝑑𝑑𝑚,𝑑′,𝑑

𝑤𝑒𝑖𝑔ℎ𝑡𝑖𝑑′𝑚𝑘𝑞𝑖 ≤  

𝑑𝑐𝑑 𝑖𝑛 𝐷 −  ∑ ∑ ∑ ∑ ∑ ∑(𝑖𝑛𝑣𝑒𝑛𝑡𝑜𝑟𝑦𝑖,𝑞,𝑘,𝑑 𝑖𝑛 𝐷,𝑡−1 − 𝑥𝑑𝑑𝑖,𝑞,𝑘,𝑚,𝑑,𝑑′,𝑡 − 𝑥𝑑𝑠𝑖,𝑞,𝑘,𝑚,𝑑,𝑠,𝑡)𝑤𝑒𝑖𝑔ℎ𝑡𝑖

𝑠𝑑′𝑚𝑘𝑞𝑖

 ∀ 𝑑, 𝑡 
(9) 

∑ ∑ ∑ 𝑥𝑝𝑑𝑖,𝑞,𝑘,𝑚,𝑝,𝑑,𝑡 ≤  ∑ 𝑖𝑛𝑣𝑒𝑛𝑡𝑜𝑟𝑦𝑖,𝑞+𝑣𝑎𝑟𝑞𝑝𝑑𝑖,𝑘,𝑝,𝑘,𝑝 𝑖𝑛 𝑃,𝑡−1

𝑘𝑑𝑚𝑘

+ ∑ ∑ ∑ 𝑥𝑙𝑝𝑖,𝑞+𝑣𝑎𝑟𝑞𝑚𝑙𝑝𝑖,𝑘,𝑚,𝑙,𝑝,𝑘,𝑚,𝑙,𝑝,𝑡−𝑡𝑖𝑚𝑒𝑙𝑝𝑚,𝑙,𝑝

𝑚𝑙𝑘

 ∀𝑖, 𝑞 ≥ 𝑞𝑚𝑖𝑛𝑖,𝑝 𝑖𝑛 𝑃
, 𝑝, 𝑡 

(10) 

∑ ∑ ∑ 𝑥𝑑𝑠𝑖,𝑞,𝑘,𝑚,𝑑,𝑠,𝑡𝑠𝑚𝑘 ≤  ∑ 𝑖𝑛𝑣𝑒𝑛𝑡𝑜𝑟𝑦
𝑖,𝑞+𝑣𝑎𝑟𝑞𝑑𝑠𝑖,𝑘,𝑑,𝑘,𝑑 𝑖𝑛 𝐷,𝑡−1𝑘 + 

∑ ∑ ∑ 𝑥𝑝𝑑𝑖,𝑞+𝑣𝑎𝑟𝑞𝑚𝑝𝑑𝑖,𝑘,𝑚,𝑝,𝑑,𝑘,𝑚,𝑝,𝑑,𝑡−𝑡𝑖𝑚𝑒𝑝𝑑𝑚,𝑝,𝑑𝑚𝑝𝑘   

+ ∑ ∑ ∑ 𝑥𝑑𝑑𝑖,𝑞+𝑣𝑎𝑟𝑞𝑚𝑑𝑑𝑖,𝑘,𝑚,𝑑′,𝑑,𝑘,𝑚,𝑑′,𝑑,𝑡−𝑡𝑖𝑚𝑒𝑑𝑑𝑚,𝑑′,𝑑

𝑚𝑑′𝑘

− ∑ ∑ ∑ 𝑥𝑑𝑑𝑖,𝑞,𝑘,𝑚,𝑑,𝑑′,𝑡

𝑑′𝑚𝑘

 ∀𝑖, 𝑞 ≥ 𝑞𝑚𝑖𝑛𝑖,𝑑 𝑖𝑛 𝐷
, 𝑑, 𝑡 

(11) 

𝑤𝑎𝑠𝑡𝑒𝑖,𝑝𝑑,𝑡 = ∑ ∑ 𝑖𝑛𝑣𝑒𝑛𝑡𝑜𝑟𝑦𝑖,𝑞,𝑘,𝑝𝑑,𝑡−1

𝑞<𝑞𝑚𝑖𝑛𝑖,𝑝𝑑𝑓 𝑖𝑛 𝑃𝐷𝑆+𝑣𝑎𝑟𝑞𝑝𝑑𝑖,𝑘,𝑝𝑑
𝑘

 ∀𝑖, 𝑝𝑑, 𝑡 (12) 

𝑤𝑎𝑠𝑡𝑒𝑖,𝑠 𝑖𝑛 𝑆,𝑡 = ∑ ∑ ∑ ∑ 𝑥𝑑𝑠𝑖,𝑞,𝑘,𝑚,𝑑,𝑠,𝑡

𝑑𝑚𝑞<𝑞𝑚𝑖𝑛𝑖,𝑠 𝑖𝑛 𝑆+𝑣𝑎𝑟𝑞𝑚𝑑𝑠𝑖,𝑘,𝑚,𝑑,𝑠
𝑘

 ∀𝑖, 𝑠, 𝑡 (13) 

𝑡𝑟𝑎𝑛𝑠𝑝𝑜𝑟𝑡𝑙𝑝𝑘,𝑚,𝑙,𝑝,𝑡 ≥ ∑ ∑
𝑥𝑙𝑝𝑖,𝑞,𝑘,𝑚,𝑙,𝑝,𝑡𝑤𝑒𝑖𝑔ℎ𝑡𝑖

𝑚𝑐𝑚
𝑞𝑖

 ∀ 𝑘, 𝑚, 𝑙, 𝑝, 𝑡 (14) 

𝑡𝑟𝑎𝑛𝑠𝑝𝑜𝑟𝑡𝑝𝑑𝑘,𝑚,𝑝,𝑑,𝑡 ≥ ∑ ∑
𝑥𝑝𝑑𝑖,𝑞,𝑘,𝑚,𝑝,𝑑,𝑡𝑤𝑒𝑖𝑔ℎ𝑡𝑖

𝑚𝑐𝑚
𝑞𝑖

 ∀ 𝑘, 𝑚, 𝑝, 𝑑, 𝑡 (15) 

𝑡𝑟𝑎𝑛𝑠𝑝𝑜𝑟𝑡𝑑𝑑𝑘,𝑚,𝑑,𝑑′,𝑡 ≥ ∑ ∑
𝑥𝑑𝑑𝑖,𝑞,𝑘,𝑚,𝑑,𝑑′,𝑡𝑤𝑒𝑖𝑔ℎ𝑡𝑖

𝑚𝑐𝑚
𝑞𝑖

 ∀ 𝑘, 𝑚, 𝑑, 𝑑′, 𝑡 (16) 
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𝑡𝑟𝑎𝑛𝑠𝑝𝑜𝑟𝑡𝑑𝑠𝑘,𝑚,𝑑,𝑠,𝑡 ≥ ∑ ∑
𝑥𝑝𝑑𝑖,𝑞,𝑘,𝑚,𝑑,𝑠,𝑡𝑤𝑒𝑖𝑔ℎ𝑡𝑖

𝑚𝑐𝑚
𝑞𝑖

 ∀ 𝑘, 𝑚, 𝑑, 𝑠, 𝑡 (17) 

∑ ∑ 𝑖𝑛𝑣𝑒𝑛𝑡𝑜𝑟𝑦
𝑖,𝑞,𝑘,𝑝𝑑,𝑡

≤ 𝑀 𝑧𝑘,𝑝𝑑,𝑡 ∀𝑘, 𝑝𝑑, 𝑡

𝑞𝑖

 (18) 

∑ 𝑧𝑘,𝑝𝑑,𝑡 = 1 ∀𝑝𝑑, 𝑡

𝑘

 (19) 

𝑖𝑛𝑣𝑒𝑛𝑡𝑜𝑟𝑦𝑖,𝑞,𝑘,𝑝𝑑,𝑡 ≥ 0 ∀ 𝑖 = 1, … , 𝐼, 𝑞 = 1, … , 𝑞𝑚𝑎𝑥 , 𝑘 = 1, … , 𝐾, 𝑝𝑑 ∈ 𝑃𝐷, 𝑡 = 1, … , 𝑇 (20) 

𝑡𝑟𝑎𝑛𝑠𝑝𝑜𝑟𝑡𝑙𝑝𝑘,𝑚,𝑙,𝑝,𝑡  𝜖 𝑍+ ∀ 𝑘 = 1, … , 𝐾, 𝑚 = 1, … , 𝑀, 𝑙 = 1, … , 𝐿, 𝑝 = 1, … , 𝑃, 𝑡 = 1, … , 𝑇 (21) 

𝑡𝑟𝑎𝑛𝑠𝑝𝑜𝑟𝑡𝑝𝑑𝑘,𝑚,𝑝,𝑑,𝑡  𝜖 𝑍+ ∀ 𝑘 = 1, … , 𝐾, 𝑚 = 1, … , 𝑀, 𝑝 = 1, … , 𝑃, 𝑑 = 1, . . , 𝐷, 𝑡 = 1, … , 𝑇 (22) 

𝑡𝑟𝑎𝑛𝑠𝑝𝑜𝑟𝑡𝑑𝑑𝑘,𝑚,𝑑,𝑑′,𝑡 𝜖 𝑍+ ∀ 𝑘 = 1, … , 𝐾, 𝑚 = 1, … , 𝑀, 𝑑 = 1, … , 𝐷, 𝑑′ = 1, . . , 𝐷, 𝑑 ≠ 𝑑′, 𝑡 = 1, … , 𝑇 
(23) 

𝑡𝑟𝑎𝑛𝑠𝑝𝑜𝑟𝑡𝑑𝑠𝑘,𝑚,𝑑,𝑠,𝑡  𝜖 𝑍+ ∀ 𝑘 = 1, … , 𝐾, 𝑚 = 1, … , 𝑀, 𝑑 = 1, … , 𝐷, 𝑠 = 1, . . , 𝑆, 𝑡 = 1, … , 𝑇 
(24) 

𝑥𝑙𝑝𝑖,𝑞,𝑘,𝑚,𝑙,𝑝,𝑡  ≥ 0  ∀ 𝑖 = 1, … , 𝐼, 𝑞 = 1, … , 𝑞𝑚𝑎𝑥, 𝑘 = 1, … , 𝐾, 𝑚 = 1, … , 𝑀, 𝑙 = 1, … , 𝐿, 𝑝 = 1, … , 𝑃, 𝑡 =

1, … , 𝑇 

(25) 

𝑥𝑝𝑑𝑖,𝑞,𝑘,𝑚,𝑝,𝑑,𝑡  ≥ 0  ∀ 𝑖 = 1, … , 𝐼, 𝑞 = 1, … , 𝑞𝑚𝑎𝑥 , 𝑘 = 1, … , 𝐾, 𝑚 = 1, … , 𝑀, 𝑝 = 1, … , 𝑃, 𝑑 =

1, . . , 𝐷, 𝑡 = 1, … , 𝑇 

(26) 

𝑥𝑑𝑑𝑖,𝑞,𝑘,𝑚,𝑑,𝑑′,𝑡  ≥ 0  ∀ 𝑖 = 1, … , 𝐼, 𝑞 = 1, … , 𝑞𝑚𝑎𝑥 , 𝑘 = 1, … , 𝐾, 𝑚 = 1, … , 𝑀, 𝑑 = 1, … , 𝐷, 𝑑′ =

1, . . , 𝐷, 𝑑 ≠ 𝑑′, 𝑡 = 1, … , 𝑇 

(27) 

𝑥𝑑𝑠𝑖,𝑞,𝑘,𝑚,𝑑,𝑠,𝑡  ≥ 0  ∀ 𝑖 = 1, … , 𝐼, 𝑞 = 1, … , 𝑞𝑚𝑎𝑥 , 𝑘 = 1, … , 𝐾, 𝑚 = 1, … , 𝑀, 𝑑 = 1, … , 𝐷, 𝑠 =

1, . . , 𝑆, 𝑡 = 1, … , 𝑇 

(28) 

𝑧𝑘,𝑝𝑑,𝑡 𝜖 {0,1} ∀ 𝑘 = 1, … , 𝐾, 𝑝𝑑 ∈ 𝑃𝐷, 𝑡 = 1, … , 𝑇 (29) 

𝑤𝑎𝑠𝑡𝑒𝑖,𝑝𝑑𝑠,𝑡 ≥ 0 ∀ 𝑖 = 1, … , 𝐼, 𝑝𝑑𝑠 ∈ 𝑃𝐷𝑆, 𝑡 = 1, … , 𝑇 (30) 

Constraints (3) and (4) balance the stock of product i at quality level q stored in the packaging 

nodes p and in the storage nodes d with temperature k and period t. The inventory at period t equals 

the inventory level at period t − 1 with a quality level of q + varqpd, plus the incoming flows minus 

the outgoing flows. Constraint (5) enforces that the demand of product i at the retailer s must be 

satisfied within the due period t. Constraints (6)–(9) guarantee the observation of, respectively, the 

harvest capacity of growers, the packaging capacities at processing nodes, the storage capacity at 

packaging facilities, and the storage capacity at warehouses. Constraints (10) and (11) ensure that the 

flows balanced across the supply chain stages. Constraints (12) and (13) account for the waste of 

product i at period t due to expiration or decay across the supply chain. Constraints (14)–(17) account 

for the minimum integer number of means of transport mode m necessary to ship products across 

the supply chain stages. Constraint (18) imposes that the temperature of the inventory in packaging 

node p and in storage node d at period t is equal to the temperature set point defined by Constraint 

(19). Constraints (19) sets a single set-point temperature at packaging node p and at storage node d 

during period t. Lastly, Constraints (20)–(30) are a mix of non-negativity, integer, or binary 

restrictions on the decision variables. 

4. A Case of Long-Ray Cold Chain Design: The New Silk Road Belt 

In this section, the proposed MILP model is validated through a case study of a long-range cold 

chain inspired by the initiative of the Chinese Government to foster the creation of the New Silk Road. 

As claimed by the Chinese president during his speech at Nazarbayev University in 2013 [41], the 

Chinese project is to build a network of transport infrastructures such as railways, highways, and 

power and water grids that enables economic development along the ancient Silk Road. A second 

goal of the Chinese Government is to further develop the maritime routes that connect Far East 

countries with Europe [42]. Both projects aim to significantly reduce travelling distances and time for 

freight transportation, enabling faster and safer routes between Europe and Asia, crossing 65 
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countries and touching about 63% of the world’s population. In ancient times, the Silk Road was a 

commercial trade channel stretching along the Eurasian regions connecting China and India with the 

Mediterranean area. Its name origination from the trade of silk and other precious goods (e.g., spices) 

transported along that pathway during the Han dynasty in the Second Century BC. For centuries, the 

Silk Road has been the major communication link between East and West, enabling the integration of 

different cultures, and has played a crucial role in the development of civilization along its pathways [43].  

Nowadays, the new Silk Road will be built along new railways, roadways, and maritime 

transport corridors. This logistics network requires the establishment of multi-modality transport 

infrastructures [44] and associated transit and consolidation depots for any sort of freight, which, 

together, would aid the development of new cities and urban areas. Furthermore, the availability of 

primary resources as water and energy to power and fuel this network should be guaranteed. Water 

scarcity already limits urban growth along the existing Eurasian distribution channels [45]. Similarly, 

the need for energy affects the design of new transport and storage infrastructures. Xu et al. [46] 

highlight how the availability of renewable energy resources such as solar and wind in the Xinjiang 

region could power the Silk Road’s facilities. 

The proposed model might indeed be used to analyze the energy requirements of cold chains 

built upon alternative routes and corridors that connect Europe with China, to obtain the most 

effective freight route from an energy perspective, and to assess the impact of new logistics 

infrastructures on the overall energy consumption of the cold chain. 

To this purpose, the illustrated case study focuses on the assessment of the energy requirements 

of new potential cold corridors for the trade of food and perishable products throughout the new Silk 

Road Belt. Among the evaluated corridors (see Figure 3), three (i.e., the northern, central, and 

southern corridors) are travelled by train, and the fourth is mainly maritime.  

The case study is based on a cold chain built on ten logistics nodes that delivers two perishable 

products, apples and ice-cream, from a Northern Italian city to the Chinese market located in 

Zhengzhou. The selected network draws some potential routes and connections between the main 

cities along the Silk Road Belt. These cover not yet existing transport infrastructures that are planned 

to be realized within the ‘Belt and Road Initiative’. Other nodes might be considered in order to widen 

the set of potential connections available for the distribution planning. This might be useful to 

identify the optimal connections to establish a strategic perspective on an energy effective cold chain. 

Nevertheless, given the planning horizon and the high granularity of the time periods chosen for this 

case study (i.e., each period is a day), the complexity of the problem increases significantly, even with 

few nodes.  

We selected two products with different characteristics in terms of energy value, shelf life, and 

optimal conservation temperature to stress how these factors together influence the selection of the 

energy effective route. As an example, we consider an order of 35 tons of products processed and 

packed in Italy to be delivered to the Chinese retail market within 40 days. The proposed model is 

used to identify the energy effective corridor for each product and the most sustainable transport 

mode and to quantify and assess its sustainability performances in terms of the IS metric. Table 1 

summarizes the input dataset in terms of the network’s nodes and products’ characteristics. 

The selected planning horizon, i.e., 40 days, involves the summer season, between July and 

August, when the external temperatures rise and the refrigeration system is stressed. Given the high 

perishability of ice cream, its conservation temperature and the resulting shelf life are key drivers for 

the identification of the specific route and transport mode to adopt. 
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Figure 3. Alternative cold chain corridors along the Silk Road Belt. 

Table 1. Nodes of the supply chain’s network and demanded products. 

Logistics Network Food Products 

Node Country Type 
Average 

Temp. (°C) 
Product 

Weight 

(g/Unit) 

Energy Content 

(kWh/Unit) 

Vignola Italy Grower-Farmer 26 Ice cream 125 0.30073 

Valsamoggia Italy Packaging node 26 Apple 155 0.09423 

Beihai China Storage node 25    

Ürümqi China Storage node 27    

Venice Italy Storage node 25    

Kazan Russia Storage node 22    

Moscow Russia Storage node 20    

Novosibirsk Russia Storage node 20    

Istanbul Turkey Storage node 27    

Zhengzhou China Retailer 28    

4.1. Energy Parameters Formulation 

The negative energy contribution associated with the delivered food products equals their 

energy content in terms of nutritional value (i.e., kcal or kwh) for the consumers. These values, 

reported in Table 1, also quantify the energy loss associated with a unit of food i sent to waste (wei) 

because they overcame the minimum acceptable quality level. 

The positive contributions in the objective function (Equations (2.a)–(2.i)) include the energy 

used for power harvesting and farming equipment, the energy used for fuel processing-packaging 

lines, and the energy required to keep the product temperature at the safe set-point during the cold 

storage and along the transport activities. Specifically, the energy for refrigeration is affected by the 

difference between the environmental temperatures and the temperature set point k chosen at the 

storage facility and during transportation. This contribution can be calculated with well-known 

thermodynamic equations [47,48], as recently formulated in [37]. 

4.2. Shelf Life Formulation 

The quality decay of a food product i in the period t that is conserved at temperature k (varqi,k) is 

quantified in terms of integer levels of quality lost. The level of quality degradation is determined by 

considering the differences between the temperature set-point k, chosen at a storage facility or in a 
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reefer container during transportation, and the temperature T0 in the cold room. The integer quality 

decay is thus calculated through the well-known Q10 factor method [49]: 

𝑄10 = 𝑒
𝐸𝑎(𝑖)

𝑅
(

10
(𝑇0+10)𝑇0

)
 (31) 

where Ea(i) is the activation energy of product i and T0 is the temperature corresponding to a known 

shelf life.  

4.3. Results 

The MILP model is written in AMPL and solved via Gurobi with a computer configured with 

Quad Core 2.4 GHz processors and 8 GB of RAM within 5 min. The instance of the model involved 

2,107,085 continuous variables, 15,480 integer variables, of which 840 are binary, and 84,608 

constraints. The obtained solution enables us to calculate the energy consumption of the long-ray 

cold chain from Italy to China and to quantify the IS metric for the two products. Since the goal is to 

assess the sustainability of alternative routes and transport modes for food distribution along the new 

Silk Road, some assumptions on the capacities of the nodes have been made: 

• The selected grower/farmer (respectively for apples and milk) is able to satisfy completely the 

order from the retailer; 

• The processing/packaging node is able to process all the incoming products; 

• The capacity constraint at the storage nodes is relaxed. 

The optimal solutions in terms of route and transport mode vary with the product, as illustrated 

in Figure 4. The maritime route is not suitable for the ice cream, since its shelf life is shorter than the 

required travelling time. Ice cream should be shipped by train via the northern route, which requires 

less than three weeks, compared to more than five along the maritime route. It is worth noting that 

the optimal route for ice cream from an energy perspective passes from the Novosibirsk’s node, 

instead of from Kazan and Ürümqi, even though the latter would last one day less. The motivation 

for such behavior must be found in the different expected external temperatures experienced by the 

shipment across different regions. The northern route is indeed, on average, colder than the central 

one, and thus requires less energy for refrigeration to deliver the consumer a given product. 

Conversely, apples are characterized by a higher conservation temperature set-point. As a 

consequence, they are shipped by a vessel that needs more time to reach the Chinese markets but is 

less energy consuming. 

According to the optimal solution, the unit (i.e., per-package) energy consumption to supply 

both ice cream and apples from a Northern Italian producer (i.e., Vignola) to a southern Chinese 

Market (i.e., Zhengzhou) is 314.86 kWh. The corresponding sustainability metric calculated for the 

transnational cold chain of ice cream is ISicecream = 760, while, for apples, it is is ISapple = 913. These food 

items consume, along their cold chain from farm to fork, seven and nine hundred times the energy 

they provide to the consumer. These results confirm the findings in the literature that certify the 

tremendous growth of the IS metric of agro-food products from values around 10 at the beginning of 

1970s to values greater than 100 nowadays [40].  

The exemplifying result would lead to changes in the paradigm underlying the design of 

sustainable supply chains for fresh food products. The energy consumption and the associated 

environmental impacts have to be involved at the planning and design stages, and renewable energy 

sources might be established for powering the food operations from farm to table toward climate-

stability goals [29]. Indeed, the adoption of renewable energy sources would decrease the reliance of 

cold chains on conventional fossils and would reduce the associated environmental impacts and 

climate change effects.  
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Figure 4. Optimal routes for the distribution of (a) ice cream and (b) apples along the Silk Road. 

4.4. Discussion 

The obtained solution suggests that the maritime route allows the overall energy consumed for 

food transportation to be reduced. However, it requires about five weeks to reach the Chinese market, 

which might not be suitable for all perishable products. To meet both economic and ecological issues, 

avoiding food losses along the supply chain is essential. By incorporating the energy loss associated 

with food waste, the model identifies the optimal route in accordance with the shelf life and the 

conservation temperature of each product. For products with a short shelf life, the selection of the 

optimal route is time-driven, instead of temperature-driven, since the product is distributed as 

quickly as possible to avoid losses. Although reducing the time to consumer allows us to supply 

products of higher quality and with longer residual shelf life, on the other hand, it can enhance the 

overall energy requirements for storage and distribution. Conversely, a longer shelf life allows the 

model to choose a temperature-driven optimal route that minimizes the energy consumption affected 

by the external temperatures experienced during the distribution phase. Given the longer shelf life of 

apples in comparison with ice cream, the resulting optimal routes are, respectively, temperature-

driven and time-driven, and apples account for less energy consumption than ice cream.  

Figure 5 reports the energy consumption attributed to each alternative route in the case of the 

distribution of apples. The dots are the nodes touched by the route. The slope of the line connecting 
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two nodes represents the energy consumption rate. The maritime corridor i.e., the blue line, is the 

most energy effective, and the adoption of the vessel between Venice and Beihai contributes to 

significantly contain the energy consumption of the cold chain. Figure 5 also highlights that the first 

arc travelled by truck has the highest energy consumption rate out of the four alternatives. 

 

Figure 5. Cumulative energy consumption of the alternative routes of the apple cold chain. 

Notwithstanding with the most energy efficient distribution strategy, a trade-off between the 

energy consumption and the quality and freshness of the food products at the consumer’s place 

should be identified in future research developments. Controlling the level of the quality of delivered 

products would allow the exporter-importer to charge extra for a load (i.e., a pallet or a container) 

route by route (and season by season) in accordance with the experienced environmental conditions 

during the distribution operations, the resulting quality, and the higher energy costs. 

According to the proposed model, the optimal solution for the cold chain results from a 

combination of many factors that can be summarized as follows: 

• The energy consumption of the vehicles used to travel along the route; 

• The total distance traveled and the travel time, including the fixed setup time of multi-modal 

transport; 

• The need for refrigeration power along the routes. 

Another consideration involving the different climate conditions experienced during mid-range 

and long-range cold chains comes from interpreting the results. Typically, the sea provides a thermal 

mitigation and keeps the temperature stationary, avoiding those peaks experienced upon roads and 

railways during daily sun hours [50,51]. As a consequence, despite the longer travel, the maritime 

path is chosen by a temperature-driven solution to minimize the energy consumption for distribution 

(i.e., as in the case of apples).  

These consumptions are increasingly predominant along global cold chains, and their reduction 

is crucial to the provision of sustainable food. Therefore, the decision on the route and the transport 

mode to adopt is of extreme importance in designing energy effective cold chains. 
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This aspect is explored in Figure 6, which shows the trade-off between the best route via railways 

(i.e., the route through Novosibirsk) and the maritime route (i.e., the route through Beihai). Figure 5 

summarizes the results obtained by a sensitivity analysis conducted on the external temperatures 

experienced during the journey. By maintaining all the other parameters as fixed, the line in Figure 5 

represents the points at which the two alternative routes and transport modes are equivalent, in terms 

of the energy consumption for refrigeration, considering the external temperature stresses they will 

experience. For example, when the average external temperature experienced along the railway route 

is around 22 °C, the maritime route is preferable for energy minimization if the average external 

temperature measured by the vessel is below 25 °C. This abacus can be provided for each route, food 

product, and season by solving the model with different datasets.  

 

Figure 6. Trade-off analysis between rail and maritime routes from a temperature-driven perspective. 

In the view of this, the proposed model can support decision-making on the operational 

management of the distribution activities throughout the whole cold chain, as well as, from a strategic 

and long-term perspective, on the strategic design of the cold network, in terms of where to locate a 

logistic node or a multi-modality exchange infrastructure, according to the existing connections 

between offer and demand [52], the climatic conditions experienced along the routes [37], and the 

costs and availability of energy.  

The proposed model provides estimates of both the energy consumption and the refrigeration 

power required for the distribution of fresh food through long-range cold chains. The first estimate 

might contribute to the calculation of a logistic-driven selling price for each potential final market. 

The estimated power might support the planning and establishment of cold logistics facilities (e.g., 

cold hubs), as well as the required energy of plants and grid infrastructures throughout a distribution 

corridor. 

This model might also contribute to a three-fold taxonomy of fresh food products. The first 

driver is of a regulatory nature. The control, planning, and optimization of the distribution flows 

throughout the supply chain, which results in identifying the most sustainable corridor for food 

transportation. As a consequence, the exporter might be interested in complying with the food safety 

rules in each country involved in the corridor between origin and destination, as well as 

strengthening commercial agreements with those authorities. The second driver is infrastructural. 

The identified optimal corridor can be used as a map for the establishment of new multi-modal 

logistics infrastructures that aid the export of a given class of fresh food. The third driver deals with 

the quality of food at the consumer’s place. The model allows the assessment of the maximum level 

of quality of the delivered product when the energy consumption for refrigeration is taken into 

account. Thus, the supply of food might be planned in accordance with the consumers’ expectations 
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for different destination markets, the level of quality perceived, and the consumers’ willingness to 

pay for it. 

At last, this paper is a preliminary attempt to aid the overall mapping, design, planning, and 

control of distributed hyper-connected food supply chains [53] that meet the three pillars of 

sustainability.  

5. Conclusions 

Modern food supply chains are identified as one of the main stressors of the environment, and 

the resulting GHG emissions, energy consumption, and waste should be minimized to make the food 

supply finally sustainable. 

This paper illustrates a decision-support MILP model for the design and management of energy 

effective long-ray cold chains. It minimizes the total energy consumption of the supply chain 

operations (i.e., growing, processing, packaging, storage, transport, and refrigeration), involving the 

product’s shelf life and its optimal conservation temperature set-point. The model can support 

operational decisions about which route and transport mode to choose and also aids strategic 

considerations on where to locate a logistics node or infrastructure along a long-ray cold chain. The 

presented model has been applied to a case study inspired by the New Silk Road Belt project. The 

sustainability performance of the cold chain is evaluated through the IS metric that measures the ratio 

between the energy consumed and supplied by a product. The cold chains for two different food 

products, i.e., apples and ice cream, have been studied and optimized. The obtained solutions result 

from the trade-off between the conservation temperature set point, the travelling time and external 

temperatures of the alternative routes, and the shelf life of each product. As a consequence, different 

products may optimally choose different routes and transport modes to save energy. Lastly, a 

sensitivity analysis built on the external temperatures experienced by the railways and maritime 

routes shows how the climate conditions need to be incorporated in the operations management of 

efficient and sustainable long ray cold chains.  

The obtained results pave the way for the resulting geo-policy considerations. The design and 

organization of sustainable trans-national distribution strategies might be a potential application of 

the proposed model. The specificity of a geographic area, including macro- and micro-economic 

metrics (e.g., transactional costs, customs fees, costs of energy, money values), may influence the 

identification of the optimal routes, and a trade-off between the costs and energy consumption of 

food distribution must be identified. An extensive data collection project to map the economic and 

infrastructural characteristics of the countries involved along the Silk Road corridors could 

reasonably enhance the applicability of the model.  

Further developments of this research are expected in terms of the design of optimal approaches 

for the storage of perishable products along a cold chain’s warehouses, as well as in terms of the 

incorporation of other multidisciplinary metrics of performance (e.g., quality, pathogens growth) 

[54,55] as a driver for decision-making on effective, profitable, safe, and sustainable food supply 

chains. Other research efforts could include the minimization of the overall food distribution costs, 

together with the environmental impacts, through a multi-objective formulation. 
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