5 research outputs found

    Optimal design of negative emission hybrid renewable energy systems with biochar production

    Get PDF
    To tackle the increasing global energy demand the climate change problem, the integration of renewable energy and negative emission technologies is a promising solution. In this work, a novel concept called “negative emission hybrid renewable energy system” is proposed for the first time. It is a hybrid solar-wind-biomass renewable energy system with biochar production, which could potentially provide energy generation, carbon sequestration, and waste treatment services within one system. The optimization and the conflicting economic and environmental trade-off of such system has not yet been fully investigated in the literature. To fill the research gap, this paper aims to propose a stochastic multi-objective decision-support framework to identify optimal design of the energy mix and discuss the economic and environmental feasibilities of a negative emission hybrid renewable energy system. This approach maximizes energy output and minimizes greenhouse gas emissions by the optimal sizing of the solar, wind, combustion, gasification, pyrolysis, and energy storage components in the system. A case study on Carabao Island in the Philippines, which is representative of an island-mode energy system, is conducted based on the aim of achieving net-zero emission for the whole island. For the island with a population of 10,881 people and an area of 22.05 km2, the proposed optimal system have significant negative emission capability and promising profitability with a carbon sequestration potential of 2795 kg CO2-eq/day and a predicted daily profit of 455 US$/day

    Comparative sustainability study of energy storage technologies using data envelopment analysis

    Get PDF
    The transition to energy systems with a high share of renewable energy depends on the availability of technologies that can connect the physical distances or bridge the time differences between the energy supply and demand points. This study focuses on energy storage technologies due to their expected role in liberating the energy sector from fossil fuels and facilitating the penetration of intermittent renewable sources. The performance of 27 energy storage alternatives is compared considering sustainability aspects by means of data envelopment analysis. To this end, storage alternatives are first classified into two clusters: fast-response and long-term. The levelized cost of energy, energy and water consumption, global warming potential, and employment are common indicators considered for both clusters, while energy density is used only for fast-response technologies, where it plays a key role in technology selection. Flywheel reveals the highest efficiency between all the fast-response technologies, while green ammonia powered with solar energy ranks first for long-term energy storage. An uncertainty analysis is incorporated to discuss the reliability of the results. Overall, results obtained, and guidelines provided can be helpful for both decision-making and research and development purposes. For the former, we identify the most appealing energy storage options to be promoted, while for the latter, we report quantitative improvement targets that would make inefficient technologies competitive if attained. This contribution paves the way for more comprehensive studies in the context of energy storage by presenting a powerful framework for comparing options according to multiple sustainability indicators

    Aportaciones al dimensionamiento y gestión de energía de un tren de potencia eléctrico híbrido para vehículos industriales con ciclos de conducción repetitivos y agresivos

    Get PDF
    Currently, the interest for helping mitigate the emission of greenhouse gases caused by high fuel consumption in industrial vehicles has increased. In order to the reduction of fuel consumption in an industrial vehicle, it has been proposed to incorporate into the powertrain a system capable of storing and supplying electrical energy. Consequently, the design of a hybrid electric powertrain is required, based on the interconnection of the elements (topology), the sizing of the elements and/or the energy management strategy of the powertrain. This paper presents a methodology for the design of a hybrid electric vehicle for refuse collection, which presents a repetitive and aggressive drive cycle as a result of work activity. The proposed methodology consists in modeling the behavior of a hybrid electric powertrain, considering the electrical behavior of various energy accumulation elements (batteries and supercapacitors). An embedded system is used to perform the experimental characterization of a cell and a commercial supercapacitor, in order to approximate the behavior through an electric model. In accordance with a real drive cycle of a refuse collection vehicle, the energy demand for a hybrid electric refuse collection vehicle is determined. On the other hand, the fuel consumption is calculated from a hybrid electric powertrain that integrates an energy storage system or a hybrid energy storage system. A bio-inspired metaheuristic based on a stochastic population (particle swarm optimization and genetic algorithm) is developed, in order to determine an optimal solutions space. Subsequently, the optimal sizing of an energy storage system (batteries) and a hybrid energy storage system (batteries and supercapacitors) is performed, considering different mono-objective and multi-objective optimization problems. Based on the results of each optimization problem, a comparative analysis is carried out with an element of commercial accumulation. Considering a hybrid electric powertrain that integrates a hybrid energy storage system (batteries and supercapacitors), an energy management strategy based on fuzzy logic is developed. This includes the identification of the vehicle status from a real drive cycle. Finally, the validation of the energy management strategy is carried out through the model of a hybrid electric vehicle for refuse collection.Actualmente, se ha incrementado el interés por mitigar la emisión de gases de efecto invernadero que se produce por un elevado consumo de combustible en vehículos industriales. Con la intención de contribuir en la reducción del consumo de combustible de un vehículo industrial, se ha propuesto incorporar al tren de potencia un sistema capaz de almacenar y suministrar energía eléctrica. En consecuencia, surge la necesidad de realizar el diseño de un tren de potencia eléctrico híbrido, a partir de la interconexión de los elementos (topología), el dimensionamiento de los elementos y/o la estrategia de gestión de energía del tren de potencia. En el presente trabajo se presenta una metodología para realizar el diseño de un vehículo eléctrico híbrido de recolección de basura, que presenta un ciclo de conducción repetitivo y agresivo como resultado de la actividad laboral. La metodología propuesta consiste en modelar el comportamiento de un tren de potencia eléctrico híbrido, considerando el comportamiento eléctrico de diversos elementos de acumulación de energía híbrido (baterías y supercapacitores). Se emplea un sistema embebido para realizar la caracterización experimental de una celda y un supercapacitor comercial, con el propósito de aproximar el comportamiento a través de un modelo eléctrico. En función de un ciclo de conducción real de un vehículo de recolección de basura se determina la demanda de energía para un vehículo eléctrico híbrido de recolección de basura. Por otra parte, se calcula el consumo de combustible a partir de un tren de potencia eléctrico híbrido que integra un sistema de almacenamiento de energía o un sistema de almacenamiento de energía híbrido. Se desarrolla una metaheurística bio-inspirada basada en una población estocástica) para determinar un espacio de soluciones óptimas. Posteriormente, se realiza el dimensionamiento óptimo de un sistema de almacenamiento de energía (baterías) y un sistema de almacenamiento de energía híbrido (baterías y supercapacitores), considerando diferentes problemas de optimización mono-objetivo y multi-objetivo. Con base en los resultados de cada problema de optimización, se procede a realizar un análisis comparativo con un elemento de acumulación comercial. Considerando un tren de potencia eléctrico híbrido que integra un sistema de almacenamiento de energía híbrido (baterías y supercapacitores), se desarrolla una estrategia de gestión de energía basada en lógica difusa, que incluye la identificación del estado del vehículo a partir de un ciclo de conducción real. Finalmente, se realiza la validación de la estrategia de gestión de energía a través del modelo de un vehículo eléctrico híbrido de recolección de basura.Postprint (published version

    Aportaciones al dimensionamiento y gestión de energía de un tren de potencia eléctrico híbrido para vehículos industriales con ciclos de conducción repetitivos y agresivos

    Get PDF
    Currently, the interest for helping mitigate the emission of greenhouse gases caused by high fuel consumption in industrial vehicles has increased. In order to the reduction of fuel consumption in an industrial vehicle, it has been proposed to incorporate into the powertrain a system capable of storing and supplying electrical energy. Consequently, the design of a hybrid electric powertrain is required, based on the interconnection of the elements (topology), the sizing of the elements and/or the energy management strategy of the powertrain. This paper presents a methodology for the design of a hybrid electric vehicle for refuse collection, which presents a repetitive and aggressive drive cycle as a result of work activity. The proposed methodology consists in modeling the behavior of a hybrid electric powertrain, considering the electrical behavior of various energy accumulation elements (batteries and supercapacitors). An embedded system is used to perform the experimental characterization of a cell and a commercial supercapacitor, in order to approximate the behavior through an electric model. In accordance with a real drive cycle of a refuse collection vehicle, the energy demand for a hybrid electric refuse collection vehicle is determined. On the other hand, the fuel consumption is calculated from a hybrid electric powertrain that integrates an energy storage system or a hybrid energy storage system. A bio-inspired metaheuristic based on a stochastic population (particle swarm optimization and genetic algorithm) is developed, in order to determine an optimal solutions space. Subsequently, the optimal sizing of an energy storage system (batteries) and a hybrid energy storage system (batteries and supercapacitors) is performed, considering different mono-objective and multi-objective optimization problems. Based on the results of each optimization problem, a comparative analysis is carried out with an element of commercial accumulation. Considering a hybrid electric powertrain that integrates a hybrid energy storage system (batteries and supercapacitors), an energy management strategy based on fuzzy logic is developed. This includes the identification of the vehicle status from a real drive cycle. Finally, the validation of the energy management strategy is carried out through the model of a hybrid electric vehicle for refuse collection.Actualmente, se ha incrementado el interés por mitigar la emisión de gases de efecto invernadero que se produce por un elevado consumo de combustible en vehículos industriales. Con la intención de contribuir en la reducción del consumo de combustible de un vehículo industrial, se ha propuesto incorporar al tren de potencia un sistema capaz de almacenar y suministrar energía eléctrica. En consecuencia, surge la necesidad de realizar el diseño de un tren de potencia eléctrico híbrido, a partir de la interconexión de los elementos (topología), el dimensionamiento de los elementos y/o la estrategia de gestión de energía del tren de potencia. En el presente trabajo se presenta una metodología para realizar el diseño de un vehículo eléctrico híbrido de recolección de basura, que presenta un ciclo de conducción repetitivo y agresivo como resultado de la actividad laboral. La metodología propuesta consiste en modelar el comportamiento de un tren de potencia eléctrico híbrido, considerando el comportamiento eléctrico de diversos elementos de acumulación de energía híbrido (baterías y supercapacitores). Se emplea un sistema embebido para realizar la caracterización experimental de una celda y un supercapacitor comercial, con el propósito de aproximar el comportamiento a través de un modelo eléctrico. En función de un ciclo de conducción real de un vehículo de recolección de basura se determina la demanda de energía para un vehículo eléctrico híbrido de recolección de basura. Por otra parte, se calcula el consumo de combustible a partir de un tren de potencia eléctrico híbrido que integra un sistema de almacenamiento de energía o un sistema de almacenamiento de energía híbrido. Se desarrolla una metaheurística bio-inspirada basada en una población estocástica) para determinar un espacio de soluciones óptimas. Posteriormente, se realiza el dimensionamiento óptimo de un sistema de almacenamiento de energía (baterías) y un sistema de almacenamiento de energía híbrido (baterías y supercapacitores), considerando diferentes problemas de optimización mono-objetivo y multi-objetivo. Con base en los resultados de cada problema de optimización, se procede a realizar un análisis comparativo con un elemento de acumulación comercial. Considerando un tren de potencia eléctrico híbrido que integra un sistema de almacenamiento de energía híbrido (baterías y supercapacitores), se desarrolla una estrategia de gestión de energía basada en lógica difusa, que incluye la identificación del estado del vehículo a partir de un ciclo de conducción real. Finalmente, se realiza la validación de la estrategia de gestión de energía a través del modelo de un vehículo eléctrico híbrido de recolección de basura
    corecore