2,451 research outputs found

    Robot introspection through learned hidden Markov models

    Get PDF
    In this paper we describe a machine learning approach for acquiring a model of a robot behaviour from raw sensor data. We are interested in automating the acquisition of behavioural models to provide a robot with an introspective capability. We assume that the behaviour of a robot in achieving a task can be modelled as a finite stochastic state transition system. Beginning with data recorded by a robot in the execution of a task, we use unsupervised learning techniques to estimate a hidden Markov model (HMM) that can be used both for predicting and explaining the behaviour of the robot in subsequent executions of the task. We demonstrate that it is feasible to automate the entire process of learning a high quality HMM from the data recorded by the robot during execution of its task.The learned HMM can be used both for monitoring and controlling the behaviour of the robot. The ultimate purpose of our work is to learn models for the full set of tasks associated with a given problem domain, and to integrate these models with a generative task planner. We want to show that these models can be used successfully in controlling the execution of a plan. However, this paper does not develop the planning and control aspects of our work, focussing instead on the learning methodology and the evaluation of a learned model. The essential property of the models we seek to construct is that the most probable trajectory through a model, given the observations made by the robot, accurately diagnoses, or explains, the behaviour that the robot actually performed when making these observations. In the work reported here we consider a navigation task. We explain the learning process, the experimental setup and the structure of the resulting learned behavioural models. We then evaluate the extent to which explanations proposed by the learned models accord with a human observer's interpretation of the behaviour exhibited by the robot in its execution of the task

    Parallel molecular dynamics simulations of pressure-induced structural transformations in cadmium selenide nanocrystals

    Get PDF
    Parallel molecular dynamics (MD) simulations are performed to investigate pressure-induced solid-to-solid structural phase transformations in cadmium selenide (CdSe) nanorods. The effects of the size and shape of nanorods on different aspects of structural phase transformations are studied. Simulations are based on interatomic potentials validated extensively by experiments. Simulations range from 105 to 106 atoms. These simulations are enabled by highly scalable algorithms executed on massively parallel Beowulf computing architectures. Pressure-induced structural transformations are studied using a hydrostatic pressure medium simulated by atoms interacting via Lennard-Jones potential. Four single-crystal CdSe nanorods, each 44Å in diameter but varying in length, in the range between 44Å and 600 Å, are studied independently in two sets of simulations. The first simulation is the downstroke simulation, where each rod is embedded in the pressure medium and subjected to increasing pressure during which it undergoes a forward transformation from a 4-fold coordinated wurtzite (WZ) crystal structure to a 6-fold coordinated rocksalt (RS) crystal structure. In the second so-called upstroke simulation, the pressure on the rods is decreased and a reverse transformation from 6-fold RS to a 4-fold coordinated phase is observed. The transformation pressure in the forward transformation depends on the nanorod size, with longer rods transforming at lower pressures close to the bulk transformation pressure. Spatially-resolved structural analyses, including pair-distributions, atomic-coordinations and bond-angle distributions, indicate nucleation begins at the surface of nanorods and spreads inward. The transformation results in a single RS domain, in agreement with experiments. The microscopic mechanism for transformation is observed to be the same as for bulk CdSe. A nanorod size dependency is also found in reverse structural transformations, with longer nanorods transforming more readily than smaller ones. Nucleation initiates at the center of the rod and grows outward

    CDC: Convolutional-De-Convolutional Networks for Precise Temporal Action Localization in Untrimmed Videos

    Full text link
    Temporal action localization is an important yet challenging problem. Given a long, untrimmed video consisting of multiple action instances and complex background contents, we need not only to recognize their action categories, but also to localize the start time and end time of each instance. Many state-of-the-art systems use segment-level classifiers to select and rank proposal segments of pre-determined boundaries. However, a desirable model should move beyond segment-level and make dense predictions at a fine granularity in time to determine precise temporal boundaries. To this end, we design a novel Convolutional-De-Convolutional (CDC) network that places CDC filters on top of 3D ConvNets, which have been shown to be effective for abstracting action semantics but reduce the temporal length of the input data. The proposed CDC filter performs the required temporal upsampling and spatial downsampling operations simultaneously to predict actions at the frame-level granularity. It is unique in jointly modeling action semantics in space-time and fine-grained temporal dynamics. We train the CDC network in an end-to-end manner efficiently. Our model not only achieves superior performance in detecting actions in every frame, but also significantly boosts the precision of localizing temporal boundaries. Finally, the CDC network demonstrates a very high efficiency with the ability to process 500 frames per second on a single GPU server. We will update the camera-ready version and publish the source codes online soon.Comment: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 201

    Efficient, concurrent Bayesian analysis of full waveform LaDAR data

    Get PDF
    Bayesian analysis of full waveform laser detection and ranging (LaDAR) signals using reversible jump Markov chain Monte Carlo (RJMCMC) algorithms have shown higher estimation accuracy, resolution and sensitivity to detect weak signatures for 3D surface profiling, and construct multiple layer images with varying number of surface returns. However, it is computational expensive. Although parallel computing has the potential to reduce both the processing time and the requirement for persistent memory storage, parallelizing the serial sampling procedure in RJMCMC is a significant challenge in both statistical and computing domains. While several strategies have been developed for Markov chain Monte Carlo (MCMC) parallelization, these are usually restricted to fixed dimensional parameter estimates, and not obviously applicable to RJMCMC for varying dimensional signal analysis. In the statistical domain, we propose an effective, concurrent RJMCMC algorithm, state space decomposition RJMCMC (SSD-RJMCMC), which divides the entire state space into groups and assign to each an independent RJMCMC chain with restricted variation of model dimensions. It intrinsically has a parallel structure, a form of model-level parallelization. Applying the convergence diagnostic, we can adaptively assess the convergence of the Markov chain on-the-fly and so dynamically terminate the chain generation. Evaluations on both synthetic and real data demonstrate that the concurrent chains have shorter convergence length and hence improved sampling efficiency. Parallel exploration of the candidate models, in conjunction with an error detection and correction scheme, improves the reliability of surface detection. By adaptively generating a complimentary MCMC sequence for the determined model, it enhances the accuracy for surface profiling. In the computing domain, we develop a data parallel SSD-RJMCMC (DP SSD-RJMCMCU) to achieve efficient parallel implementation on a distributed computer cluster. Adding data-level parallelization on top of the model-level parallelization, it formalizes a task queue and introduces an automatic scheduler for dynamic task allocation. These two strategies successfully diminish the load imbalance that occurred in SSD-RJMCMC. Thanks to the coarse granularity, the processors communicate at a very low frequency. The MPIbased implementation on a Beowulf cluster demonstrates that compared with RJMCMC, DP SSD-RJMCMCU has further reduced problem size and computation complexity. Therefore, it can achieve a super linear speedup if the number of data segments and processors are chosen wisely

    LBM and SPH Scalability Using Task-based Programming

    Get PDF
    Computational Fluid Dynamics encompasses a great variety of numerical approaches that approximate solutions to the Navier-Stokes equations, which generally describe the movements of viscous uid substances. While the objectives of these approaches are to capture related physical phenomena, the details of di erent methods lend them to particular classes of problems, and scalable solutions are important to a large range of scienti c and engineering applications. In this paper, we investigate the practical scalability of two proxy applications that are made to recreate the essential performance characteristics of Lattice-Boltzmann Methods (LBM) and Smoothed Particle Hydrodyamics (SPH), using the former to simulate the formation of vortices resulting from sustained, laminar ow, and the latter to simulate violent free surface ows without a mesh. The di ering scalability properties of these methods suggest di erent designs and programming methods in order to exploit extreme scale computing platforms. In particular, we investigate implementations that enable the use of task-based programming constructs, which have received attention in recent years as a means of enabling improved parallel scalability by relaxing the synchronization requirements of classical, bulk-synchronous execution that both LBM and SPH simulations exemplify. We nd that suitable adaptations of the central data structures suggest that scalable LBM performance can be improved by tasking constructs in situations that are determined by an appropriate match between the input problem and the platform's performance characteristics. This suggests an adaptive scheme to identify and select the highest performing implementation at program initialization. The SPH implementation admits a substantial performance gain by partitioning the physical domain into a greater number of independent tasks than the number of participating processors, but its performance remains dependent on a powerful node architecture to support conventional SMP workloads, suggesting that further algorithmic improvements beyond the bene ts of task programming are required to make it a strong candidate for exascale computing

    Data analytics for mobile traffic in 5G networks using machine learning techniques

    Get PDF
    This thesis collects the research works I pursued as Ph.D. candidate at the Universitat Politecnica de Catalunya (UPC). Most of the work has been accomplished at the Mobile Network Department Centre Tecnologic de Telecomunicacions de Catalunya (CTTC). The main topic of my research is the study of mobile network traffic through the analysis of operative networks dataset using machine learning techniques. Understanding first the actual network deployments is fundamental for next-generation network (5G) for improving the performance and Quality of Service (QoS) of the users. The work starts from the collection of a novel type of dataset, using an over-the-air monitoring tool, that allows to extract the control information from the radio-link channel, without harming the users’ identities. The subsequent analysis comprehends a statistical characterization of the traffic and the derivation of prediction models for the network traffic. A wide group of algorithms are implemented and compared, in order to identify the highest performances. Moreover, the thesis addresses a set of applications in the context mobile networks that are prerogatives in the future mobile networks. This includes the detection of urban anomalies, the user classification based on the demanded network services, the design of a proactive wake-up scheme for efficient-energy devices.Esta tesis recoge los trabajos de investigación que realicé como Ph.D. candidato a la Universitat Politecnica de Catalunya (UPC). La mayor parte del trabajo se ha realizado en el Centro Tecnológico de Telecomunicaciones de Catalunya (CTTC) del Departamento de Redes Móviles. El tema principal de mi investigación es el estudio del tráfico de la red móvil a través del análisis del conjunto de datos de redes operativas utilizando técnicas de aprendizaje automático. Comprender primero las implementaciones de red reales es fundamental para la red de próxima generación (5G) para mejorar el rendimiento y la calidad de servicio (QoS) de los usuarios. El trabajo comienza con la recopilación de un nuevo tipo de conjunto de datos, utilizando una herramienta de monitoreo por aire, que permite extraer la información de control del canal de radioenlace, sin dañar las identidades de los usuarios. El análisis posterior comprende una caracterización estadística del tráfico y la derivación de modelos de predicción para el tráfico de red. Se implementa y compara un amplio grupo de algoritmos para identificar los rendimientos más altos. Además, la tesis aborda un conjunto de aplicaciones en el contexto de redes móviles que son prerrogativas en las redes móviles futuras. Esto incluye la detección de anomalías urbanas, la clasificación de usuarios basada en los servicios de red demandados, el diseño de un esquema de activación proactiva para dispositivos de energía eficiente.Postprint (published version

    Visual Quality Assessment and Blur Detection Based on the Transform of Gradient Magnitudes

    Get PDF
    abstract: Digital imaging and image processing technologies have revolutionized the way in which we capture, store, receive, view, utilize, and share images. In image-based applications, through different processing stages (e.g., acquisition, compression, and transmission), images are subjected to different types of distortions which degrade their visual quality. Image Quality Assessment (IQA) attempts to use computational models to automatically evaluate and estimate the image quality in accordance with subjective evaluations. Moreover, with the fast development of computer vision techniques, it is important in practice to extract and understand the information contained in blurred images or regions. The work in this dissertation focuses on reduced-reference visual quality assessment of images and textures, as well as perceptual-based spatially-varying blur detection. A training-free low-cost Reduced-Reference IQA (RRIQA) method is proposed. The proposed method requires a very small number of reduced-reference (RR) features. Extensive experiments performed on different benchmark databases demonstrate that the proposed RRIQA method, delivers highly competitive performance as compared with the state-of-the-art RRIQA models for both natural and texture images. In the context of texture, the effect of texture granularity on the quality of synthesized textures is studied. Moreover, two RR objective visual quality assessment methods that quantify the perceived quality of synthesized textures are proposed. Performance evaluations on two synthesized texture databases demonstrate that the proposed RR metrics outperforms full-reference (FR), no-reference (NR), and RR state-of-the-art quality metrics in predicting the perceived visual quality of the synthesized textures. Last but not least, an effective approach to address the spatially-varying blur detection problem from a single image without requiring any knowledge about the blur type, level, or camera settings is proposed. The evaluations of the proposed approach on a diverse sets of blurry images with different blur types, levels, and content demonstrate that the proposed algorithm performs favorably against the state-of-the-art methods qualitatively and quantitatively.Dissertation/ThesisDoctoral Dissertation Electrical Engineering 201

    Modeling Energy Consumption of High-Performance Applications on Heterogeneous Computing Platforms

    Get PDF
    Achieving Exascale computing is one of the current leading challenges in High Performance Computing (HPC). Obtaining this next level of performance will allow more complex simulations to be run on larger datasets and offer researchers better tools for data processing and analysis. In the dawn of Big Data, the need for supercomputers will only increase. However, these systems are costly to maintain because power is expensive. Thus, a better understanding of power and energy consumption is required such that future hardware can benefit. Available power models accurately capture the relationship to the number of cores and clock-rate, however the relationship between workload and power is less understood. Thus, investigation and analysis of power measurements has been a focal point in this work with the aim to improve the general understanding of energy consumption in the context of HPC. This dissertation investigates power and energy consumption of many different parallel applications on several hardware platforms while varying a number of execution characteristics. Multicore and manycore hardware devices are investigated in homogeneous and heterogeneous computing environments. Further, common techniques for reducing power and energy consumption are employed to each of these devices. Well-known power and performance models have been combined to form the Execution-Phase model, which may be used to quantify energy contributions based on execution phase and has been used to predict energy consumption to within 10%. However, due to limitations in the measurement procedure, a less intrusive approach is required. The Empirical Mode Decomposition (EMD) and Hilbert-Huang Transform analysis technique has been applied in innovative ways to model, analyze, and visualize power and energy measurements. EMD is widely used in other research areas, including earthquake, brain-wave, speech recognition, and sea-level rise analysis and this is the first it has been applied to power traces to analyze the complex interactions occurring within HPC systems. Probability distributions may be used to represent power and energy traces, thereby providing an alternative means of predicting energy consumption while retaining the fact that power is not constant over time. Further, these distributions may be used to define the cost of a workload for a given computing platform

    Feature-based Time Series Analytics

    Get PDF
    Time series analytics is a fundamental prerequisite for decision-making as well as automation and occurs in several applications such as energy load control, weather research, and consumer behavior analysis. It encompasses time series engineering, i.e., the representation of time series exhibiting important characteristics, and data mining, i.e., the application of the representation to a specific task. Due to the exhaustive data gathering, which results from the ``Industry 4.0'' vision and its shift towards automation and digitalization, time series analytics is undergoing a revolution. Big datasets with very long time series are gathered, which is challenging for engineering techniques. Traditionally, one focus has been on raw-data-based or shape-based engineering. They assess the time series' similarity in shape, which is only suitable for short time series. Another focus has been on model-based engineering. It assesses the time series' similarity in structure, which is suitable for long time series but requires larger models or a time-consuming modeling. Feature-based engineering tackles these challenges by efficiently representing time series and comparing their similarity in structure. However, current feature-based techniques are unsatisfactory as they are designed for specific data-mining tasks. In this work, we introduce a novel feature-based engineering technique. It efficiently provides a short representation of time series, focusing on their structural similarity. Based on a design rationale, we derive important time series characteristics such as the long-term and cyclically repeated characteristics as well as distribution and correlation characteristics. Moreover, we define a feature-based distance measure for their comparison. Both the representation technique and the distance measure provide desirable properties regarding storage and runtime. Subsequently, we introduce techniques based on our feature-based engineering and apply them to important data-mining tasks such as time series generation, time series matching, time series classification, and time series clustering. First, our feature-based generation technique outperforms state-of-the-art techniques regarding the accuracy of evolved datasets. Second, with our features, a matching method retrieves a match for a time series query much faster than with current representations. Third, our features provide discriminative characteristics to classify datasets as accurately as state-of-the-art techniques, but orders of magnitude faster. Finally, our features recommend an appropriate clustering of time series which is crucial for subsequent data-mining tasks. All these techniques are assessed on datasets from the energy, weather, and economic domains, and thus, demonstrate the applicability to real-world use cases. The findings demonstrate the versatility of our feature-based engineering and suggest several courses of action in order to design and improve analytical systems for the paradigm shift of Industry 4.0
    corecore