
Old Dominion University
ODU Digital Commons
Modeling, Simulation & Visualization Engineering
Theses & Dissertations Modeling, Simulation & Visualization Engineering

Fall 2017

Modeling Energy Consumption of High-
Performance Applications on Heterogeneous
Computing Platforms
Gary D. Lawson Jr.
Old Dominion University

Follow this and additional works at: https://digitalcommons.odu.edu/msve_etds

Part of the Computer Engineering Commons, and the Computer Sciences Commons

This Dissertation is brought to you for free and open access by the Modeling, Simulation & Visualization Engineering at ODU Digital Commons. It has
been accepted for inclusion in Modeling, Simulation & Visualization Engineering Theses & Dissertations by an authorized administrator of ODU
Digital Commons. For more information, please contact digitalcommons@odu.edu.

Recommended Citation
Lawson, Gary D.. "Modeling Energy Consumption of High-Performance Applications on Heterogeneous Computing Platforms"
(2017). Doctor of Philosophy (PhD), dissertation, Modeling Simul & Visual Engineering, Old Dominion University, DOI: 10.25777/
16pe-2f37
https://digitalcommons.odu.edu/msve_etds/12

https://digitalcommons.odu.edu?utm_source=digitalcommons.odu.edu%2Fmsve_etds%2F12&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.odu.edu/msve_etds?utm_source=digitalcommons.odu.edu%2Fmsve_etds%2F12&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.odu.edu/msve_etds?utm_source=digitalcommons.odu.edu%2Fmsve_etds%2F12&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.odu.edu/msve?utm_source=digitalcommons.odu.edu%2Fmsve_etds%2F12&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.odu.edu/msve_etds?utm_source=digitalcommons.odu.edu%2Fmsve_etds%2F12&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/258?utm_source=digitalcommons.odu.edu%2Fmsve_etds%2F12&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=digitalcommons.odu.edu%2Fmsve_etds%2F12&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.odu.edu/msve_etds/12?utm_source=digitalcommons.odu.edu%2Fmsve_etds%2F12&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalcommons@odu.edu

 MODELING ENERGY CONSUMPTION OF HIGH-PERFORMANCE

APPLICATIONS ON HETEROGENEOUS COMPUTING PLATFORMS

by

Gary D. Lawson Jr.
B.S. June 2010, Old Dominion University

M.S. December 2011, Old Dominion University

A Dissertation Submitted to the Faculty of
Old Dominion University in Partial Fulfillment of the

Requirements for the Degree of

DOCTOR OF PHILOSOPHY

MODELING AND SIMULATION

OLD DOMINION UNIVERSITY
October 2017

 Approved by:

 Masha Sosonkina (Director)

 Yuzhong Shen (Director)

 Duc Nguyen (Member)

Manwo Ng (Member)

Tal Ezer (Member)

ii

ABSTRACT

MODELING ENERGY CONSUMPTION OF HIGH-PERFORMANCE
APPLICATIONS ON HETEROGNEOUS COMPUTING PLATFORMS

Gary D. Lawson Jr.

Old Dominion University, 2017
Director: Masha Sosonkina

Director: Yuzhong Shen

Achieving Exascale computing is one of the current leading challenges in High

Performance Computing (HPC). Obtaining this next level of performance will allow more

complex simulations to be run on larger datasets and offer researchers better tools for data

processing and analysis. In the dawn of Big Data, the need for supercomputers will only

increase. However, these systems are costly to maintain because power is expensive. Thus,

a better understanding of power and energy consumption is required such that future

hardware can benefit.

Available power models accurately capture the relationship to the number of cores

and clock-rate, however the relationship between workload and power is less understood.

Thus, investigation and analysis of power measurements has been a focal point in this work

with the aim to improve the general understanding of energy consumption in the context of

HPC.

This dissertation investigates power and energy consumption of many different

parallel applications on several hardware platforms while varying a number of execution

characteristics. Multicore and manycore hardware devices are investigated in homogeneous

and heterogeneous computing environments. Further, common techniques for reducing

power and energy consumption are employed to each of these devices.

Well-known power and performance models have been combined to form the

iii

Execution-Phase model, which may be used to quantify energy contributions based on

execution phase and has been used to predict energy consumption to within 10%.

However, due to limitations in the measurement procedure, a less intrusive approach

is required.

The Empirical Mode Decomposition (EMD) and Hilbert-Huang Transform analysis

technique has been applied in innovative ways to model, analyze, and visualize power and

energy measurements. EMD is widely used in other research areas, including

earthquake, brain-wave, speech recognition, and sea-level rise analysis and this is

the first it has been applied to power traces to analyze the complex interactions

occurring within HPC systems.

Probability distributions may be used to represent power and energy traces, thereby

providing an alternative means of predicting energy consumption while retaining the fact

that power is not constant over time. Further, these distributions may be used to define the

cost of a workload for a given computing platform.

iv

Copyright, 2017, by Gary D. Lawson Jr., All Rights Reserved.

v

This dissertation is dedicated to my mother
for her passion, strength, and love for family and education

and for teaching me to read and write.

vi

ACKNOWLEDGMENTS

Throughout my dissertation, I have received support and encouragement from

numerous individuals. First, a special thanks to my committee members: Dr. Masha

Sosonkina, Dr. Yuzhong Shen, Dr. Duc Nguyen, Dr. Manwo Ng, and Dr. Tal Ezer. Then

a special thanks to my family, fiancée, friends, and colleagues.

I would like to thank Dr. Nguyen for introducing me to parallel computing,

Dr. Ng for introducing transportation modeling, and Dr. Ezer for introducing the EMD

time-series analysis method. Thank each of you for investing time and energy into my

education, and for your support and contributions to my dissertation and education.

 I would like to extend a special thanks to Dr. Yuzhong Shen who has been my

assiduous mentor throughout my entire graduate school career, both through my thesis and

this dissertation. His course in computer graphics and game design inspired me to pursue

graduate school. He has patiently devoted many years to my education by providing

direction, inspiration, support, and valuable advice. Thank you.

I would like to extend a special thanks to my mentor, Dr. Masha Sosonkina, for her

untiring devotion to me and my studies in high performance computing, and for the many

opportunities provided to me to conduct my research and further my dissertation. Her

course in HPC was captivating, and inspired me to pursue this dissertation. Thank you for

your guidance, instruction, patience, and dedication.

I would also like to thank Dana Hammond and Robert Baurle for the opportunity

to work with NASA in HPC, and to learn from experts in the field. Last but certainly not

least, I would like to thank my friends, family, and colleagues.

vii

To my parents, thank you for raising me to be independent and hard-working, and

for pushing me to pursue my dreams. Their patience is unparalleled and I thank them for

their wise advice, support, and love. To my brother and first best friend, thank you for all

the laughs over the years and for always being there for me. To Elizabeth, thank you for

your strength, love, and support; you truly are my other half. Finally, I want to thank my

friends and colleagues for the many conversations, research related and especially

otherwise, and for many more to come.

To all who have contributed to this dissertation and my education, sincerely, thank you.

viii

TABLE OF CONTENTS
 Page

LIST OF TABLES ... x
LIST OF FIGURES ... xi

1. INTRODUCTION ... 1
 1.1 Theoretical Formulations .. 1
 1.2 Purpose .. 2
 1.3 Problem ... 4
 1.4 Method and Procedure ... 4

2. BACKGROUND ... 7
 2.1 Literature Review .. 7
 2.2 Time and Power Model Definitions .. 14
 2.3 Parallel Applications ... 16
 2.4 Computing Platforms .. 18
 2.5 Power Measurement .. 20

3. EMPIRICAL MODE DECOMPOSITION.. 22
 3.1 Method ... 22
 3.2 EMD/HHT on Power Traces ... 24
 3.3 Ensemble Empirical Mode Decomposition ... 31
 3.4 Energy-Frequency-Time ... 33
 3.5 Modeling the EMD Residual Trend .. 40
 3.6 Trace Segmentation ... 48

4. INVESTIGATING ENERGY ON PLATFORMS
 FEATURING INTEL XEON PHI ... 55
 4.1 Thread Affinity on Intel Xeon Phi .. 55
 4.2 DVFS with Heterogeneous Executions ... 66
 4.3 Real-Time Power Limiting of the Xeon Phi ... 75

5. HETEROGENEOUS EXECUTION-PHASE MODEL .. 85
 5.1 System Characteristics .. 85
 5.2 Derivation of the Execution Phases ... 86
 5.3 Experiment .. 91
 5.4 Visualizing Phase for Heterogeneous Executions ... 102
 5.5 Conclusions ... 105

6. PREDICTING ENERGY CONSUMPTION ... 106
 6.1 Problem Size Definitions ... 108
 6.2 Measurements .. 110
 6.3 Predictions ... 111
 6.4 Analysis ... 118
 6.5 Relative Error Between Prediction Models ... 129

ix

7. MULTISOCKET AND MULTINODE ANALYSIS .. 132
 7.1 Multisocket Analysis ... 134
 7.2 Multinode Analysis ... 149
 7.3 Concluding Remarks ... 168

8. CONCLUSIONS.. 170
 8.1 Summary ... 170
 8.2 Findings ... 172
 8.3 Future Work .. 173

REFERENCES .. 175

VITA .. 186

x

LIST OF TABLES

Table Page

1. Hardware characteristics of the parallel computing platforms. 19

2. Intel Xeon Phi hardware specifications for KNC and KNL. 19

3. Best execution time, power, and energy across all the workloads
 in CoMD and GAMESS and DRAM memory types. .. 45

4. Model coefficients and calculated energy for all workloads of CoMD
 and GAMESS and DRAM memory types. .. 46

5. Execution time (seconds) of 59 and 236 threads for various
 benchmark problem-class sizes. ... 57

6. Lowest energy consumed when specifying the affinity modes as
 compared to the system-default setting. ... 65

7. Execution times on host in seconds and the associated
 goodness-of-fit metric R2 for all explored configurations. 69

8. Execution-time model parameters for Borges and Bolt. ... 95

9. Device power-model parameters found for the Borges and Bolt systems. 96

10. Minimum measured and modeled energy for Borges and Bolt 97

11. Predicted vs. measured energy, time, and average power for 3200 million atoms
 (CoMD) and class D (NPB – CG and LU) on Borges ... 115

12. Predicted vs. measured energy, time, and average power for 3200 million atoms
 (CoMD) and class D (NPB – CG and LU) on Marquez .. 115

13. Normal distribution coefficients of power for CoMD and
 NPB (CG and LU) on the Borges and Marquez platforms. 126

14. Bimodal distribution coefficients of energy for CoMD and
 NPB (CG and LU) on the Borges and Marquez platforms 126

xi

LIST OF FIGURES

Figure Page

1. Original power traces with EMD residual for CoMD and CG on
 Sandy-Bridge (Borges) and Haswell (Marquez) computing platforms. 25

2. Intrinsic mode functions for CoMD on the Borges platform. 26

3. Intrinsic mode functions for CoMD on the Marquez platform. 27

4. Intrinsic mode functions for CG on the Borges platform. 28

5. Intrinsic mode functions for CG on the Marquez platform. 29

6. Illustration of a residual with intermittent oscillations found
 using EMD and the same residual with EEMD (5 Watts, 100 Iterations). 32

7. Illustration of the EMD/HHT analysis procedure for CoMD and GAMESS
 power traces collected on the Intel Xeon Phi processor “Knights Landing”. 33

8. Illustration of EMD/HHT histograms generated and the
 influence of the first two modes on energy-frequency-time. 34

9. Comparison of EMD/HHT histograms generated for power traces collected
 by running CoMD on different systems and for different usage modes. 36

10. Comparison of EMD/HHT histograms generated for power traces
 collected by running CoMD and GAMESS on different systems
 while varying the number of cores or clock-rate. ... 39

11. QFR model of power over time. ... 42

12. Measured and modeled time vs power for (a) CoMD and
 (b) GAMESS with two memory types (DDR and MCDRAM)
 and three core counts (32, 48, and 63); and one subplot per workload. 44

13. Segmenting a power trace. .. 49

14. The STM method applied to complex power traces. ... 51

15. Energy consumption error for the STM and ASTM
 methods applied to complex power traces. ... 53

xii

16. The power profiles as obtained by Wattsup and micsmc for the CG
 benchmark with the compact affinity mode at 180 threads. 59

17. Normalized execution time for the EP, FT, IS, and MG benchmarks with
 different affinity modes and the thread granularity. ... 61

18. Benchmark total bandwidth (left) and average CPI (right) for each affinity
 mode with the granularity thread at thread counts from Table VI. 61

19. Normalized energy for the EP, FT, IS, and MG benchmarks
 with different affinity modes and the thread granularity. 62

20. Normalized energy (left) and execution time (right) for the CG
 benchmark with different affinity modes and the thread granularity. 62

21. Total execution time (left) and total memory transfer time per
 offload event (right) for two link-cell counts, 16 and 64. 72

22. Average power (left) and atom rate (right) for different clock-rate
 levels with and without DVFS for link-cell count of 16. .. 74

23. Total execution time (left) and energy consumed (right) for different
 frequencies with and without DVFS for link-cell count of 16................................. 74

24. Runtime power-threshold selection procedure for energy savings in Xeon Phi. 81

25. Baseline power draw compared to the online and offline
 power limiting methods (a), energy savings (b), and performance
 gain (c) for each workload investigated. ... 82

26. Relative energy-model error per Eq. (31) on Borges. ... 94

27. Relative energy-model error per Eq. (31) on Bolt. .. 94

28. Waterfall plots for Turing with 1–4 nodes (a–d), each with 1
 Xeon Phi, 236 threads with a CoMD problem size of 60 (864,000 atoms). 104

29. Waterfall plot on Borges with 1 node, 1 Xeon Phi, 236 threads
 with a CoMD problem size of 50 (500,000 atoms). ... 104

30. Measured energy, time, and average power of CoMD on Borges and
 Marquez for several problem sizes: 25.6, 50.0, & 86.4 million atoms. 113

31. Measured energy, time, and average power of CG and LU of the NPB on
 Borges and Marquez for two problem sizes: classes B and C. 114

xiii

32. Predicted vs. measured energy, time, and average power of
 CoMD on Borges and Marquez. ... 116

33. Predicted vs. measured energy, time, and average power of
 CG and LU of the NPB on Borges and Marquez. ... 117

34. Power traces for CoMD on Borges and Marquez at max problem
 size (3.2 billion atoms) with distribution of power samples normalized
 by the total number of samples in the respective trace. .. 122

35. Power traces for CG and LU on Borges and Marquez at max problem
 size (class D) with distribution of power samples normalized by the total
 number of samples in the respective trace. ... 123

36. Energy traces for CoMD on Borges and Marquez at max problem
 size (3.2 billion atoms) with distribution of energy samples normalized
 by the total number of samples in the respective trace. .. 124

37. Energy traces for CG and LU on Borges and Marquez at max
 problem size (class D) with distribution of energy samples normalized
 by the total number of samples in the respective trace. .. 125

38. EMD residual vs predicted QFR for CoMD on Borges and Marquez
 at max problem size (3.2 billion atoms). ... 127

39. EMD residual vs predicted QFR for CG and LU on Borges and
 Marquez at max problem size (class D). ... 128

40. Error in energy consumption for predicting energy using: average power,
 EMD residual, QFR model, power distribution, and energy distribution. 130

41. Duplicate of the measured energy, time, and average power of
 CoMD on Borges and Marquez for several problem sizes as presented
 in the previous chapter. ... 133

42. Power traces of GAMESS-1L2Y collected on Haswell showing
 total vs. per socket, per source traces while varying MPI thread affinity. 137

43. Power traces of GAMESS-20w collected on Haswell showing total vs.
 per socket, per source traces while varying MPI thread affinity. 138

44. Power traces of GAMESS-1L2Y collected on Sandy-Bridge showing
 total vs. per socket, per source traces while varying MPI thread affinity. 139

45. Power trace and the first half of the IMF’s for GAMESS-1L2Y
 collected on Haswell with the bunch affinity. ... 140

xiv

46. Residual and the second half of the IMF’s for GAMESS-1L2Y
 collected on Haswell with the bunch affinity. .. 141

47. Power trace and the first half of the IMF’s for GAMESS-1L2Y
 collected on Haswell with the scatter affinity. .. 142

48. Residual and the second half of the IMF’s for GAMESS-1L2Y
 collected on Haswell with the scatter affinity. .. 143

49. IMF reconstruction (first half) for GAMESS-1L2Y collected on
 Haswell with the bunch affinity. ... 144

50. IMF reconstruction (second half) for GAMESS-1L2Y collected on
 Haswell with the bunch affinity. ... 145

51. IMF reconstruction (first half) for GAMESS-1L2Y collected on
 Haswell with the scatter affinity. .. 146

52. IMF reconstruction (second half) for GAMESS-1L2Y collected on
 Haswell with the scatter affinity. .. 147

53. Power traces of GAMESS-1L2Y collected on 4 Ivy-Bridge nodes showing
 total vs. per socket, per source traces while varying MPI thread affinity. 151

54. Power traces of GAMESS-1L2Y collected on 4 Ivy-Bridge nodes showing
 total vs. per socket, per source traces while varying MPI thread affinity. 152

55. Power traces of GAMESS-20w collected on 4 Ivy-Bridge nodes showing
 total vs. per socket, per source traces while varying MPI thread affinity. 153

56. Power traces of GAMESS-20w collected on 4 Ivy-Bridge nodes showing
 total vs. per socket, per source traces while varying MPI thread affinity. 154

57. Power traces of GAMESS, 1L2Y and 20w, collected on 4 Ivy-Bridge nodes. 155

58. Total power traces for GAMESS, 1L2Y and 20w, collected on 4 Ivy-Bridge
 nodes after alignment and cropping. ... 156

59. (Node 1) Power trace and the first half of the IMF’s for GAMESS-1L2Y
 collected on 4 Ivy-Bridge nodes. .. 157

60. (Node 1) Residual and the second half of the IMF’s for GAMESS-1L2Y
 collected on 4 Ivy-Bridge nodes. .. 158

61. (Node 2) Power trace and the first half of the IMF’s for GAMESS-1L2Y
 collected on 4 Ivy-Bridge nodes. .. 159

xv

62. (Node 2) Residual and the second half of the IMF’s for GAMESS-1L2Y
 collected on 4 Ivy-Bridge nodes. .. 160

63. (Node 3) Power trace and the first half of the IMF’s for GAMESS-1L2Y
 collected on 4 Ivy-Bridge nodes. .. 161

64. (Node 3) Residual and the second half of the IMF’s for GAMESS-1L2Y
 collected on 4 Ivy-Bridge nodes. .. 162

65. (Node 4) Power trace and the first half of the IMF’s for GAMESS-1L2Y
 collected on 4 Ivy-Bridge nodes. .. 163

66. (Node 4) Residual and the second half of the IMF’s for GAMESS-1L2Y
 collected on 4 Ivy-Bridge nodes. .. 164

67. (Total) Power trace and the first half of the IMF’s for GAMESS-1L2Y
 collected on 4 Ivy-Bridge nodes. .. 165

68. (Total) Residual and the second half of the IMF’s for GAMESS-1L2Y
 collected on 4 Ivy-Bridge nodes. .. 166

1

CHAPTER 1

INTRODUCTION

Achieving Exascale computing is one of the current leading challenges in High

Performance Computing (HPC). Obtaining this next level of performance is important

because it allows more complex simulations to be run on larger datasets, current

simulations may be run faster, and offers researchers better tools for analysis. HPC systems

are commonly used for government, industry, and academic research projects. In the dawn

of Big Data, the need for supercomputers will only increase as more data becomes readily

available, and more conclusions can be made from these datasets1.

1.1 Theoretical Formulations

Current HPC systems are rated according to the Top500 list, which ranks

computing platforms by performance [99]. As of June 2017, the Sunway TaihuLight of

China is the top ranked platform with 93 petaflops performance. Titan, the top ranked US

platform installed in 2012, is ranked fourth with 17.6 petaflops [106].

The two systems differ significantly in architecture. Sunway is built with 256 processors

1.45GHz per node, each with 64KB scratchpad memory (16KB instruction), and

communicate via a network on chip [105]. Titan is built using heterogeneous nodes, each

contains a 16-core AMD Opteron CPU with 32 GB DDR3 ECC memory and an Nvidia

Tesla K20X GPU with 2,688 CUDA cores 732 MHz and 6GB GDDR5 ECC memory.

Nodes are interconnected using a 3D torus Gemini network.

1 IEEE Transactions and Journals style is used in this dissertation for formatting figures, tables, and
references.

2

The complexity of the two systems makes it difficult to pinpoint how specific

design differences impact the final performance result. For example, consider investigating

the differences in data transfer and power between the two systems.

• How much better is the scratchpad memory versus a cache memory hierarchy?

• What impact does the network on a chip have on data transfer performance?

• How well does each system perform with applications requiring more data than

 cache can hold?

• Where is all the power going?

To answer such questions, models may be used to better understand the system.

Power is one of the obstacles preventing Exascale performance. The Department of

Energy imposed a 20MW power cap for all US based systems [53]. Titan consumes 8.2

MW of power, and Sunway consumes 15.4 MW – thus for the 1,000-fold increase in

performance, power usage can at most double which is not feasible given current

technology. Thus, a better understanding of power consumption is required such that future

hardware can benefit. Furthermore, power usage is of great concern because typical

systems require 60% of total power for cooling, and only 40% goes towards performance,

and power is expensive. Thus, reducing power draw is important to reduce the long-term

costs of maintaining the system.

1.2 Purpose

It is well-known that the most basic functions of a processor are performing

computations, i.e., arithmetic operations, and moving data, whether it be from cache to

registers, DRAM to cache, hard disk to DRAM, or DRAM to network. At some point, the

3

processor must perform these basic operations, and the processor must consume power to

do so.

With newer generations of processors, these functions are expected to improve; both

the operation of computing and moving data, and the power consumed for these operations.

And with power becoming more adaptive for different components, i.e. core, DRAM,

uncore, peripherals, etc., power traces will be more important to the analysis of executions

because they will show more definitively how power is used for performance. This trend

is already present between three generations of Xeon CPU’s, as will be shown in this

dissertation, and is expected to continue into Exascale computing.

Power has gained attention in the literature over the past 5 years, however it is still

difficult to predict. While available models accurately capture the trend of power draw while

varying cores or clock-rate, the relationship between workload and power is not modeled

and must be measured. Workload, here, is not just a measure of floating-point operations

because data must be moved for computation to occur, and data movement incurs significant

penalties as the distance increases. Even cache misses present opportunities for inefficiency.

Although, this may be hidden by allowing multiple threads to access the same core, however,

this method only works when there is dedicated memory for these threads such that context

switches occur with low latency. Bottom line, the relationship between power, performance,

and workload needs to be better understood to improve future hardware.

Typically, power is summarized as an average. This is good when only a single value

is needed to represent a complex system for comparison to other systems. However, the

measurements show a distribution; and in order to better predict power draw, this distribution

needs to be evaluated and modeled. The purpose of this work is to investigate power draw and

4

energy consumption for modern multicore and manycore platforms, whether

heterogeneous or homogeneous, in order to more accurately predict power and energy

consumption while varying execution characteristics, including workload.

1.3 Problem

Power draw, and thus energy consumption, is the leading limitation to Exascale

performance. Although such a machine could be built in the present, the power draw of

such a system would exceed 20MW, and thus be in violation of the DOE standard in place.

However, more importantly, beyond 20MW a computer center will face significant costs

— cooling, maintenance, etc. Thus, the problem remains, how to achieve more efficient

power and energy consumption without sacrificing performance?

The relationship of power is well known to voltage, current, and the characteristics

of interest to performance, such as clock-rate and cores, however less is known about the

relationship between power and workload. There is a need for a new analytical model to

describe the relationship between power and workload.

1.4 Method and Procedure

This dissertation investigates power and energy consumption on a number of

hardware platforms with many different parallel applications while varying a number of

execution characteristics. Homogeneous and heterogeneous executions are considered, as

well as techniques for reducing energy consumption (such as dynamic voltage and

frequency scaling) on CPU and Xeon Phi accelerators.

5

Available power and performance models are also investigated in this work, and

applied to these applications and hardware combinations. A combination of these models

was united to create the Execution Phase model, that models the relationship in power and

performance for heterogeneous executions based on dividing the execution into

computation or communication phases.

The Empirical Mode Decomposition and Hilbert-Huang Transform analysis

technique is used to analyze power traces. Execution characteristics such as the number of

cores, clock-rate, number of nodes, thread mapping, and device configuration are varied to

capture as many different variations of execution, and therefore power draw, as available

for analysis. The approach has been used to visualize power traces using the relation of

energy, frequency, and time; frequency here relating to the physical system and not clock-

rate (GHz). The approach has also been used to analyze segmented power measurements,

and model the general trend of an execution. It is shown in this work that the EMD method

is commutative, and may be applied to a sum of time-series, or individual time-series

representing the same system (e.g. multiple sockets, nodes).

Probability distributions are used in this work to represent power and energy traces,

thereby providing an alternative means of modeling power and energy consumption. The

distribution models retain the fact that power is not constant over time, and also retains the

fact that average power is an excellent approximation for most workloads and systems.

Also, they may be used to define the explicit costs of a workload for a given computing

platform.

The remainder of the dissertation has been separated into the following chapters.

Chapter 2 presents the review of relevant literature that has motivated this work, an

6

introduction to the parallel applications and hardware used throughout this work, and the

measurement tools required for power measurements. Chapter 3 presents the Empirical

Mode Decomposition and Hilbert-Huang Transform analysis method, and the applicability

of this method to power traces. Chapter 4 presents investigations on power and energy for

hardware applications with Intel Xeon Phi, and discusses thread mapping strategies,

applicability to DVFS for heterogeneous executions, and power limiting on the Xeon Phi.

Chapter 5 presents the execution phase model where computation and data movement are

modeled according to well-known power and performance models in order to predict

energy for specific phases and devices. Chapter 6 presents methods for predicting energy

while varying workload, and including EMD and probability distributions. Chapter 7

presents an analysis for power traces obtained on multiple sockets and nodes. Finally,

Chapter 8 concludes this dissertation.

7

CHAPTER 2

BACKGROUND

This chapter provides the background and motivation for the remainder of this

work. A review of the literature has been performed; performance, power, and energy

investigations and models are reviewed. The models are then formally defined. The parallel

applications, computing platforms, and measurement software and procedures used

throughout this work are then introduced.

2.1 Literature Review

This section presents an analysis of literature for hardware-software modeling with

a focus placed on Intel Xeon Phi co-processor and processor. This review is motivated by

the following factors:

• Future systems are expected to be power constrained, which makes power

 capping an upper-bound on application performance,

• Future systems are susceptible to dark silicon — system resources must be turned

 off because of power constraints,

• Time, Power, and Energy modeling improves the understanding of hardware-

 software interactions, which are used to improve resource utilization, overall

 performance, and energy-efficiency,

• Scalability modeling is crucial for developing future Exascale systems and

 applications because data movement is also an upper-bound on computational

 performance.

8

2.1.1 Xeon Phi Performance, Power, and Energy Investigations

Computational throughput was the dominating performance bottleneck through the

rise of Petascale computing platforms. However, as systems surpass Petascale and

advanced towards Exascale performance, data movement has become an overwhelming

bottleneck. The trend in computing platforms has migrated to heterogeneous computing

platforms with processor and accelerators on each node. Accelerators require steep power

draw requirements, but the advantage is a device with 50+ small, low clock-rate processors

for highly-parallel computational workloads.

This section presents a comparison of papers investigating performance, power,

and/or energy for the Intel Xeon Phi. Comparisons are made between competitive hardware

(GPU and CPU where applicable), and Xeon Phi usage modes: offload, native, and

symmetric. The offload usage mode uses a host + accelerator strategy, where

computational tasks are “offloaded” to the Xeon Phi co-processor over the PCI bus. An

application run only on the Xeon Phi is deemed “native” mode. Symmetric mode treats the

CPU and Xeon Phi as separate nodes, thus MPI tasks are distributed between devices.

In most of the literature, the GPU outperforms the Xeon Phi co-processor in

compute performance and energy-efficiency, as noted in: [6], [7], [37], [68], [70], and [98].

Only in the case of sparse matrix multiplication does the Xeon Phi outperform the GPU as

found in [85]. Comparing the Xeon Phi to the CPU, however, most works find the Xeon

Phi superior. This finding has been noted in the following 12 works: [4], [6], [7], [37], [39],

[52], [69], [78], [83], [84], [85], and [98].

9

Although the Xeon Phi doesn’t outperform the GPU for all applications, additional

factors may influence users to choose the Xeon Phi over the GPU. The Xeon Phi uses the

x86 architecture, which makes it compatible with x86 instruction sets – newer devices

support all legacy instruction sets. Support for legacy compilers is important, since many

codes have been created and maintained since the 80’s and 90’s; this is especially true for

government projects. The GPU uses the CUDA programming model which requires code

refactoring. The newer Xeon Phi (“Knights Landing”) is available as a processor and is

more energy-efficient than the prior generations of Xeon Phi.

Comparing Xeon Phi usage modes, the literature shows a trend towards native and

offload execution. In [4], [6], [70], [83], and [108], the offload execution mode has been

found to outperform the native execution mode. The opposite is found in [7], [54], [77],

and [83]. Note the authors in [83] presented two evaluations of performance – one on the

NASA Parallel Benchmarks (NPB) and one on the Weather Research and Forecasting real-

world application. The NPB performed best under the native execution mode, and the

Weather Research and Forecasting application performed best with offload.

Symmetric execution is rarely investigated ([72], [83], [78]), and has not been

found to be better than native execution. Further, symmetric mode execution is sensitive to

load balancing issues and data movement bottlenecks over the PCI bus which limits the

usefulness of this mode. Offload execution also suffers from data movement over the PCI

bus and from load balancing between the host and accelerator. Native mode execution is

limited by the capabilities of a single Xeon Phi which only has 8-16GB of DRAM as a co-

processor. The processor supports 16 GB of multi-channel DRAM, as well as conventional

DDR3 DRAM off-chip.

10

In general, Xeon Phi performance depends on vectorization and cache performance,

which is especially critical on this device since it only has 2 levels of cache, and each MB

of L2 is shared between two cores. The smaller cache is also found on the newer Xeon Phi

processor, which can be cumbersome for applications that do not optimize cache

performance.

2.1.2 Modeling Multicore and Heterogeneous Computing Platforms

Aside from testing all permutations of the execution space, few methods exist to

determine the optimal configuration (cores, clock-rate, etc.) for a given hardware-software

combination. One such method is auto-tuning [47, 48], where many different compiled

versions of a code are tested according to a search algorithm to find the best version

(configuration). Although there are many flavors of auto-tuning, and often the results are

very promising, there is one dominating drawback of the method: all permutations must be

tested to measure performance. This leads to using time, power, and energy models for

configuration space exploration. The difficulty here is that execution performance is not

easily quantified into available models.

Analytical models are derived as an abstraction of the system in the form of a set

of equations [71]. In this work, analytical models are further divided into the following

categories: performance, energy, and scalability.

2.1.2.1 Scalability

Scalability has been an important area of research since the beginning of parallel

computing. A difficult challenge in scalability is to determine the efficiency of an algorithm

11

on different hardware platforms, or when varying parameters such as the number of cores

or problem size. Currently a method does not exist to determine the scalability of an

application beyond what is measured.

Isoefficiency is a metric for measuring scalability that relates problem size to the

number of cores required to maintain efficiency. Efficiency is the ratio of speedup vs the

number of processors used. An introduction to the basics on isoefficiency and scalability

can be found in [31, 80].

True heterogeneous models are few and far between, however the authors in [49]

present an extension to Amdahl’s Law to investigate the trade-off between energy and

performance for heterogeneous systems. This model incorporates serial and parallel phases

of execution and relative architecture complexity to compare architectures, which is an

important concept in scalability.

The authors in [102] present a novel approach to determining the best configuration

for energy-efficient computation for a given application and hardware pair. The work uses

scalability concepts, such as speedup, concurrency, and work defined by the serial and

parallel portions of the application to devise an empirical model for scalability. Although

the model is excellent for selecting a best configuration for the hardware-software

combination tested, the model parameters cannot be used to predict usage on another

hardware platform.

Additional details on iosefficiency may be found on Georg Hager’s personal blog

[34] which discusses the Z-plot presented by Thomas Zeiser. In short, performance is

dependent on the number of cores, clock-rate, and performance on a single core. The

12

findings presented here are consistent with the Execution-Cache-Model developed by

Georg Hager and others, to be discussed shortly.

2.1.2.2 Performance

Performance models generally focus on defining computational throughput and/or

data movement (communication) overhead as a result of parallelizing a sequential

application. One of the earliest models is a communication performance model—known as

“LogP”—for parallel architectures and applications which was proposed at the dawn of

parallel computing [19]. LogP uses communication latency, memory transfer overhead, the

reciprocal of per-processor communication bandwidth, and the number of available

processor/memory modules to calculate the application performance. Following in the

footsteps of the LogP model, the “roofline” model [107] has also been proposed as a

general way to model parallel application runtime performance. It describes the

relationship between the data movement and computational throughput, which helps to

identify performance bottlenecks with respect to the theoretical performance of the

hardware.

Many works investigate communication performance [74, 3, 33, 81, 92], because

communication is an overhead of parallel execution. Sequential codes do not have

communication because all of the data is readily available for computation, however

sequential execution is too slow for real-world use. Therefore, communication overhead is

a necessary penalty and these models aim to identify performance degradation due to

communication. Computational throughput is linearly dependent on clock-rate, as found in

[16].

13

This model is easily applied to any type of application (kernel, proxy-app, and real-

world); however, the method is not applicable to all hardware — specifically the Xeon Phi.

The time on- and off-chip model [16] requires clock-rate to be varied in order to determine

the ratio of time on- and off-chip. This is useful because this ratio can be used to determine

the compute- or memory-boundedness of an application without analysis of the source

code. However, hardware such as the Xeon Phi does not allow user-defined control over

the voltage/clock-rate states and so this model is not easily applied. This is especially true

for the Knights Landing generation of Xeon Phi where clock-rate varies significantly with

execution and is not controllable by the user.

2.1.2.3 Power and Energy

The models discussed thus far do not consider the combined effects of performance

and power on the energy consumption of a software-hardware combination. Building upon

the roofline model, [14, 15] include power and energy contributions of the parallel

architecture. Introduced in [42], the roofline model has been extended to incorporate cache-

memory performance in addition to data transfers between LLC and DRAM. This

improvement to the model allows for more fine-grained power and performance

investigations, although operational intensity must be known.

Instruction-level modeling [87] is another way for characterizing the hardware, but

is not easily extended to real-world applications. Instruction-level models are very specific

to a particular hardware device, in this case the Xeon Phi, but this specificity makes the

model impractical for comparing hardware platforms or even analyzing large-scale

14

application behavior. These models are best used for theoretical foundations and

benchmarking hardware performance.

The execution-cache-memory (ECM) model [35, 38] extends the Roofline model

to incorporate performance degradation due to scaling clock-rate, and maintains the upper-

bound on performance due to data movement. In addition, the model provides a new take

on power where clock-rate has a quadratic relationship with power draw.

2.2 Time and Power Model Definitions

Several models are considered in this work: linear regression power, the Roofline

model for execution time, and the ECM model for both time and power. The models are

defined here for reference throughout the document.

2.2.1 Roofline

In the Roofline performance model, time is described as the maximum between

computation and data movement (between DRAM and LLC), and is defined as:

𝑇 = max (𝑁 × 𝑇 , 𝑁 × 𝑇), (1)

where 𝑇 is total execution time, 𝑁 is the total number of floating-point operations, 𝑇

is the time per flop, 𝑁 is the total number of memory operations, and 𝑇 is the time

per memory operation. Typically, the model is applied to micro-benchmarks which are

custom built for a hardware architecture to stress-test performance. Applying the model to

a larger application can be more difficult if the number of FLOPs and MOPs is not well

defined.

15

2.2.2 Linear Power Model

The power model assumes a linear relationship between workload, cores, clock-

rate, and power draw, and is defined as

 𝑃 = 𝑃 + 𝑘𝑐𝑓 (2)

where 𝑃 is the total power, 𝑃 is the static power draw, and dynamic power is defined

by the workload constant 𝑘, number of cores 𝑐, and clock-rate 𝑓 . Clock-rate is cubed

because power is proportional the product of dynamic capacitance, voltage squared, and

clock-rate; however some assumptions can be made. The influence of voltage and clock-

rate on power draw are proportional, hence power is defined as clock-rate cubed [111] and

dynamic capacitance is factored into the workload constant k in the linear model.

2.2.3 Execution-Cache-Memory

The Execution-Cache-Memory (ECM) energy model is defined using novel

performance and power models. The time model assumes a linear relationship between

performance exists between floating-point operations, cores and clock-rate defined as:

𝑇 = min 𝑐𝑁 1 + , 𝑁 , (3)

where 𝑁 is the performance in FLOPs for one core, 𝑁 is the maximum achievable

performance given all bottlenecks, 𝑐 is the number of cores, 𝑓 is the current clock-rate, and

𝑓 is the baseline clock-rate.

The power model assumes a quadratic relationship to clock-rate, a linear

relationship to the number of cores (independent of static power), and is defined as:

𝑃 = 𝑊 + 𝑐(𝑊 𝑓 + 𝑊 𝑓), (4)

16

where W0 is static power draw, W1 is the coefficient for the linear term of power draw,

and W2 is the quadratic term. Dynamic power, defined by the linear and quadratic terms,

scales with the number of cores.

2.3 Parallel Applications

Parallel applications are commonly used in academic, government, and industry

research. Each application requires specific resources which varies how the software

utilizes the hardware, therefore it is of interest to test many different applications to better

understand hardware power draw. Below, the following parallel applications are

introduced: GAMESS, CoMD, and NPB.

2.3.1 GAMESS

The General Atomic and Molecular Electronic Structure System (GAMESS)

[30, 86] is a widely used quantum chemistry package capable of performing molecular

structure and property calculations by a rich variety of ab initio methods finding an

(approximate) solution of the Schrödinger equation for a given molecular system. An

approximate (uncorrelated) solution is initially found using the Hartree-Fock (HF) method

via an iterative self-consistent field (SCF) approach, and then is improved using various

electron-correlated methods, such as second-order Møller-Plesset perturbation theory

(MP2).

To reduce the computational complexity for large molecular systems, a

fragmentation approach, such as Fragment Molecular Orbital (FMO) method [29], is used,

which divides the system into fragments and applies a quantum chemical method to each

17

fragment, followed by the consideration of fragment interactions. The inputs used in this

work are calculated using the MP2 method. Specifically, they are 20w, a cluster

of 20 water molecules; 1L2Y, a synthetic protein tryptophan cage; S256, a

1-trichloromethylsilatrane (TCMS) molecule with 6-31G(d) basis set (265 basis functions),

and S301, a TCMS molecule with 6-31G(d,p) basis set (301 basis functions). The inputs

20w and 1L2Y also use FMO approximations of short-range interactions up to trimers

(when triples of fragments considered as a single fragment). OpenMP is not available in

GAMESS, so half of the total MPI (Message Passing Interface) tasks are dedicated to

computation and the remaining half to data movement via the generalized Distributed Data

Interface (GDDI) [27].

2.3.2 CoMD

Co-design Molecular Dynamics (CoMD) is a proxy application developed as part

of the Department of Energy co-design research effort [22] at the Extreme Materials at

Extreme Scale (ExMatEx) center. CoMD is compute-intensive, where approximately

85– 90% of the execution time is spent computing forces. In this work, both force kernels

are used: the more accurate Embedded Atom Model (EAM) force kernel for short-range

material response simulations, such as uncharged metallic materials [23], and the less

accurate Lennard-Jones (LJ) force kernel. The LJ force kernel consists of one compute

loop, whereas EAM consists of three compute loops and a small halo data exchange

between the second and third loop.

Problem size is expressed as the number of atoms along an axis of the material; the

default material is copper. In this work, each axis is equivalent (in atoms) which defines

18

the material shape is a cube. A problem size of 40 equates to 4 × 403 = 256,000 atoms.

CoMD is available as a hybrid of MPI and OpenMP, thus each may be measured separately

or in combination.

2.3.3 NPB

The NAS Parallel Benchmarks [76] is a collection of programs used to evaluate the

performance of parallel supercomputers, which was derived from computational fluid

dynamics applications. This work considers all its five kernels: EP (embarrassingly

parallel), CG (conjugate gradient), FT (discrete 3D fast Fourier Transform), IS (integer

sort), and MG (multi-grid solver on a sequence of meshes). Note that EP is compute-

intensive, CG and MG are memory-intensive (see [96]), IS uses random memory access

patterns, and FT performs all-to-all communication. Additionally, four pseudo-

applications have been tested: BT (block tri-diagonal solver), SP (scalar penta-diagonal

solver), and LU (lower-upper Gauss-Seidel solver), and UA (an unstructured adaptive

mesh which imposes dynamic and irregular memory accesses). The NPB applications are

available for MPI or OpenMP, although few are also offered as a hybrid. Problem sizes are

defined by “class”, ranging from S, W, A, B, C, D, and E as specified in [75].

2.4 Computing Platforms

The computing platforms used in this work are organized as follows: Borges, Bolt,

Turing, Marquez, and Rulfo. The computing architectures include Intel Sandy-Bride, Ivy-

Bridge, and Haswell CPU’s and Intel Xeon Phi KNC and KNL generations. The CPU

hardware specifications are provided in Table I for Borges, Bolt, Turing, and Marquez.

19

TABLE I

HARDWARE CHARACTERISTICS OF THE PARALLEL COMPUTING
PLATFORMS

 Borges Bolt Turing Marquez

Microarchitecture Sandy Sandy Ivy Haswell
Model E5-2650 E5-1650 E5-2670 v2 E5-2630 v3

Nodes 1 3 10 1
Sockets (p Node) 2 1 2 2
Cores (p Socket) 8 6 10 8
Clock-Rate (GHz) 2.0-1.2 3.2-1.2 2.5-1.2 2.4-1.2

LL Cache (MB) 32 12 25 20.5
DRAM (GB) 64 64 64 64
TDP (Watts) 95 130 115 85
Location ODU Ames Lab ODU - HPC ODU

TABLE II

INTEL XEON PHI HARDWARE SPECIFICATIONS FOR KNC AND KNL

 Knights-Corner Knights-Landing

Device Co-processor Processor

Model 5110p 7210

Cores 60 64

Threads (p Core) 4 4

Clock-Rate (GHz) 1.053 1.3-1.0

LL Cache (MB) 30 32

DRAM (GB) 8 16

VPU (bits) 512 512 x2

FMA (ops/cyc) 2 2

TDP (Watts) 245 215

20

The Intel Xeon Phi hardware specifications are provided in Table II. The Borges, Bolt, and

Turing systems are equipped with 2 KNC per node, in addition to the CPU specified in

Table I. For Bolt, the compute nodes are QDR-connected with Infiniband. For Turing,

nodes are FDR-connected with Infiniband. To avoid confusion with the EMD/HHT

analysis method, which calculates a physical frequency, clock-rate is used to reference the

operating frequency of any hardware platform in this work.

2.5 Power Measurement

The Sandia National Labs PowerAPI [55] is used to measure energy via the Linux

Power Capping Framework (LPCF) [2] plugin which reads energy from the Running

Average Power Limit (RAPL) [103, 20] counters. The PowerAPI uses the hardware

locality (hwloc) API [79, 9] to detect the underlying hardware and is very portable.

Power measurements are collected every 5ms, and measurements are collected for

five seconds before and after the application is executed to establish the idle power draw.

Although most of computing platforms support up to 1ms resolution for sampling power

using RAPL, it has been found empirically that 1ms sampling is unreliable on most

systems. A more modest 5ms sampling rate is used in this work; however, the sampling

rate is closer to 10ms when the system is loaded. Sampling rate is reported as 5ms

throughout this work. In the case of the KNC, a 20ms sampling rate is used because this is

the minimum achievable sampling rate for the device (and RAPL is not available). Power

is read using the micmgmt API or by reading the power file hosted on the device at:

/sys/class/micras/power. KNL supports RAPL and the LPCF, and is compatible

with the PowerAPI.

21

 For the Intel Xeon Phi, user-defined clock-rate scaling is not available; instead, the

clock-rate may be changed indirectly by setting power limit thresholds for the device. The

Xeon Phi System Management Controller (SMC) varies operating clock-rate as power

surpasses the designated thresholds. Specifically, the Xeon Phi uses two power threshold

values—low and high—each with a designated time window. By default, the low power

threshold is set to the TDP with a time window of 100ms and the high threshold at 120%

of the TDP and a time window of 10ms. When power exceeds the low threshold for the

duration of the time window, clock-rate is decreased until power consumption is less than

that of the threshold. When power exceeds the high threshold for the duration of the time

window, the thermal throttling mechanism is engaged, which forces the device to the

lowest operating clock-rate of around 500 MHz, as seen experimentally. More on Xeon

Phi power limiting can be found in the datasheet [43].

22

CHAPTER 3

EMPIRICAL MODE DECOMPOSITION

The Empirical Mode Decomposition and Hilbert-Huang Transform (EMD/HHT)

method [40, 109] is used for non-parametric non-stationary time-series analysis and

calculates instantaneous amplitude and frequency, and is applied to real-world systems to

uncover underlying physical interactions. This method has been already successfully

applied in a variety of fields, such as medicine, finance, engineering, and more recently in

geosciences — analysis of sea level data [26] and climate change studies [25]. The main

advantage of EMD/HHT over standard spectral methods is that it detects oscillating modes

with time-dependent amplitudes and frequencies, so it is useful for analyzing irregular data

with unknown frequencies. On the other hand, the interpretation of the EMD/HHT results

is not straightforward since individual modes do not necessarily represent particular

execution characteristics.

EMD/HHT has been adopted to analyze an execution as a whole as opposed to its

division into phases based on specific resources used in each phase. Phase refers to a

computation or data-movement type operation, such as RAM to cache data transfers or

communication on the node or over the network; the phases often overlap to optimize

performance. Such a division was considered in [66] in order to model each phase

differently, which has proven to be difficult in general for correlating phases with power

readings. See Chapter 5 for additional details on the phase method.

3.1 Method

 EMD is used to decompose a power trace into oscillating intrinsic mode functions

23

(IMF) and a residual trend. An IMF is a function that satisfies two criteria [40]. First, the

number of extrema and number of zero-crossings must be equal or differ by no more than

one. Second, the mean value of the envelope defined by the local maxima and minima is

zero. IMF’s are recovered from the time-series until none remain — the resulting time-

series is the residual trend. This may be described as:

 ℎ(𝑡) = 𝑐 (𝑡) + 𝑟(𝑡) (5)

where ℎ(𝑡) is the original time-series, in this work the power trace, 𝑐 (𝑡) is the i-th IMF of

a total of 𝑁 IMF’s, and 𝑟(𝑡) is the residual.

EMD extracts IMFs through a process called sifting. To sift, the minimum and

maximum extrema of the time-series are used to calculate the average; the difference

between the average and time-series is then treated as the time-series for the next sift. This

process continuously refines the data set until the standard deviation of the resulting time-

series is less than 0.2 (see [40]). Once this standard deviation is obtained the resulting time-

series is accepted as an IMF and is subsequently removed from the original time-series.

This process is repeated until the residual is found from which no other IMFs may be

obtained. One potential use for the residual trend is to construct a non-linear model to relate

power and time-to-solution, as proposed by the authors [60]. Note that the total number of

IMFs is an output of EMD and depends on the trace characteristics. For instance, more

IMF modes are found in longer traces because low-frequency oscillations are more likely

to be detected.

HHT is then applied to each IMF, except the residual, to calculate instantaneous

frequency: the time derivative of the oscillation phase for any time-step of the signal [40].

24

The maximum frequency that may be obtained using HHT is determined by the sampling

rate 𝑟 in the expression 1/5𝑟, where 5 is the minimum number of data points required to

accurately define instantaneous frequency [40]. Modern HPC systems are able to sample

power at a maximum rate of 1ms, but to ensure consistency between measurements across

computing platforms, a more modest sampling rate of 5ms is used throughout this work.

At 5ms, the maximum frequency obtainable by EMD is 40Hz. Sampling rate significantly

impacts the utility of the EMD/HHT method.

The implementation of the EMD/HHT method used here is based on the original

one from [40, 109], as adapted in [25, 26]. Source code for EMD/HHT analysis in Matlab

is available at [24]. A talk given by Donghoh Kim is an excellent aid for understanding the

EMD procedure, see [51].

3.2 EMD/HHT on Power Traces

Figure 1 presents power traces for CoMD and CG executed on the Borges and

Marquez computing platforms, Sandy-bridge and Haswell respectively. Power samples are

shown as black circles and the residual trend of the trace is shown as a solid red curve. The

residual has been obtained using the EMD procedure above and will be of importance later

in this chapter. The traces include measurements for idle (static) power draw and active

(dynamic) power draw, and some comparisons between systems and applications may be

established.

First note that static power for the Sandy-Bridge system is between 40-50W,

whereas the Haswell system is between 20-30W. Already the Haswell system has an

energy advantage over Sandy. Notice also that CoMD runs faster on Haswell than Sandy,

25

(a) CoMD on Sandy-Bridge

(b) CoMD on Haswell

(c) CG on Sandy-Bridge

(d) CG on Haswell

Fig. 1. Original power traces with EMD residual for CoMD and CG on Sandy-Bridge

(Borges) and Haswell (Marquez) computing platforms.

but CG runs faster on Sandy. Interestingly, all applications use roughly 80-120W while

active and power samples are observed over the range with few outliers. Outliers near idle

power draw show moments when the execution encountered an idle period, possibly due

to a severe latency penalty in data movement.

The power traces in Fig. 1 serve as input to the Empirical Mode Decomposition

(EMD) and Hilbert-Huang Transform (HHT) analysis method. Figure 2 presents the

26

Amplitude for CoMD on Sandy-Bridge

Frequency for CoMD on Sandy-Bridge

Fig. 2. Intrinsic mode functions for CoMD on the Borges platform. The power trace de-

composed into 13 modes and the residual trend, with amplitude (Watts) on the left and

frequency (Hertz) on the right.

27

Amplitude for CoMD on Haswell

Frequency for CoMD on Haswell

Fig. 3. Intrinsic mode functions for CoMD on the Marquez platform. The power trace

decomposed into 13 modes and the residual trend, with amplitude (Watts) on the left and

frequency (Hertz) on the right.

28

Amplitude for CG on Sandy-Bridge

Frequency for CG on Sandy-Bridge

Fig. 4. Intrinsic mode functions for CG on the Borges platform. The power trace de-

composed into 13 modes and the residual trend, with amplitude (Watts) on the left and

frequency (Hertz) on the right.

29

Amplitude for CG on Haswell

Frequency for CG on Haswell

Fig. 5. Intrinsic mode functions for CG on the Marquez platform. The power trace de-

composed into 13 modes and the residual trend, with amplitude (Watts) on the left and

frequency (Hertz) on the right.

30

intrinsic mode functions for the power trace of CoMD on Borges, shown in Fig. 1a.

Figure 3 presents the IMF’s for CoMD on Marquez, shown in Fig. 1b. Figure 4 presents

the IMF’s for CG on Borges, shown in Fig. 1c. Figure 5 presents the IMF’s for CG on

Marquez, shown in Fig. 1d.

The sifting process removes the highest frequency oscillations from the source

time-series first, hence the low modes of amplitude correspond to the high-frequency

oscillations and as the number of modes increases the frequency of oscillations decreases.

This pattern may be observed in the amplitude of IMF’s for all four traces. Note here that

the frequency of oscillations in amplitude, as described here, is different from the

instantaneous frequency calculated using HHT. Instantaneous frequency describes the

frequency of the system, in this case the execution (application running on a computing

platform).

By observing the patterns in the amplitude of the IMF’s, some features become

visible. Most obvious is the start and end of execution which can be identified in most of

the IMF modes for any given trace. In the lower modes, the high-frequency oscillations do

not begin until execution starts which is to be expected. The hardware platform is idle until

a workload is executed on the system, and this is reflected well by EMD.

Beyond identifying the bounds of execution with respect to the trace, it is difficult

to discern much from the IMFs. It is evident that the IMF’s relate to workload and

performance characteristics, but it is not immediately discernible how the IMF’s relate to

computation or data movement. Consider IMF modes 1-7 for each of the four traces and

observe the frequency of oscillations in amplitude while varying hardware platforms and

applications. There are different patterns corresponding to different applications/platforms

31

which likely correlate computation or data movement, since these are the most basic

workloads of any application. The difficulty is in establishing the correlation, since it is not

feasible to instrument a large-scale application with output markers to identify computation

and communication phases.

Due to the difference in power sampling rate and clock-rate, it is difficult to relate

instantaneous frequency to the power trace. However, certain modes show interesting

results; consider modes 6, 7, & 9 for CG on the Haswell platform (Fig. 5). Similar patterns

in frequency may be observed in the other traces.

3.3 Ensemble Empirical Mode Decomposition

It may happen, however, that an intermittent mode cannot manifest under the

standard deviation constraint and “contaminates” the residual trend with a spurious IMF.

To alleviate this problem and obtain a more reliable shape of the residual, the Ensemble

EMD (EEMD) method [109] may be applied.

EEMD works by introducing white noise to the time-series to exhaust the sifting

process. While in EMD, the sifting processes the original time-series once to extract each

IMF, in EEMD, white noise and the sifting process are applied to the time-series multiple

times, such that the white noise is averaged out and only the trace itself remains. As

explained in [109], IMFs obtained from different series of white noise have no correlation

with each other, and therefore the means of each IMF (of white noise) will cancel out. This

way, EEMD may avoid the residual contamination, as seen, e.g., in Fig. 6, which illustrates

the difference between residuals found using EMD and EEMD.

32

Fig. 6. Illustration of a residual with intermittent oscillations found using EMD and the

same residual with EEMD (5 Watts, 100 Iterations).

It is important to note that the number of modes produced by EEMD and EMD are

the same for the traces explored in this work and possibly in general. The difference

between the EEMD and EMD is in the shape of the resulting IMFs and residual, where

modes now include intermittent oscillations otherwise missed. The error introduced by

EEMD can be calculated as:

 𝜀 =
𝜎

𝑁
 (6)

where 𝜀 is the standard deviation of error introduced to by the white noise, 𝜎 is the

specified amplitude of white noise, and 𝑁 is the specified number of iterations [109]. Based

on this equation, applying EEMD with 5 Watts and 100 iterations yields a standard

deviation of error of 0.5. Indeed, this error is high but has been shown to improve the result

of EEMD as shown in Fig. 6 and in [60].

33

 EMD/HHT Analysis Output

C
oM

D

(a) Power Trace

(b) IMF Amplitude

(c) IMF Frequency

G
A

M
E

S
S

(d) Power Trace

(e) IMF Amplitude

(f) IMF Frequency

Fig. 7. Illustration of EMD/HHT procedure on CoMD (top row) and GAMESS (bottom

row). The original power trace (a & d) is decomposed into intrinsic mode functions (IMFs)

with respect to amplitude (b & e) and instantaneous frequency (c & f). Each trace is

collected while executing CoMD or GAMESS with 59 cores at the maximum computer

clock- rate.

3.4 Energy-Frequency-Time

Consider for this section the following power traces, IMF amplitudes and

frequencies shown in Fig. 7. Once a power trace has been analyzed using EMD/HHT

34

(a) Raw Trace

(b) IMF Amplitude

(c) IMF Frequency

(d) All IMF Modes

(e) Mode 1 Removed

(f) Modes 1 & 2 Removed

Fig. 8. Illustration of EMD/HHT histograms generated using a power trace (a) collected

on Bolt-CPU running CoMD-50 with maximum cores and clock-rate. The EMD/HHT

analysis produced IMFs shown as amplitudes (b) and frequencies (c), which were then

used to generate histograms (c–e); Histogram (c) was created with all available IMF

modes, (d) all modes minus mode 1, and (e) all modes minus modes 1 and 2.

(see Fig. 7), the amplitude and instantaneous frequency may be combined into a 2-

dimensional histogram. Time and frequency make up the x- and y-axes, respectively, and

amplitude is collected in bins and represented as intensity using color from blue to red for

low to high, respectively. Hence, intensity is the sum of all amplitudes for a given

35

time/frequency bin. Intensity is used to show the concentration of power draw with respect

to time and frequency. The histogram uses bin sizes of 100ms (time) and 2Hz (frequency).

A feature of these histograms is a band, which is a range of frequencies having a consistent

intensity throughout execution.

Figure 8 presents a power trace collected on the Bolt system while running CoMD

on the CPU with maximum cores and clock-rate for a problem size of 50 (500,000 atoms).

The power trace (a) has been analyzed using EMD/HHT to produce IMFs (b and c), which

were then combined to form the 2D histograms (d–f), of time and frequency, where

intensity is the sum of all amplitudes for a given time/frequency bin. To better understand

the histogram, consider Fig. 8d to Fig. 8f. In Fig. 8d, where all the IMF modes are included,

notice the moderate-to-high intensity (in yellow) from 24 to 36Hz. In Fig. 8e, which is the

same as Fig. 8d but without mode #1, the yellow band of moderate intensity has shrunk

and only encompasses 24–30Hz. Therefore, one may conclude that the first mode contains

high frequency oscillations from the original trace (in Fig. 8a).

One step further, in Fig. 8f, the band of moderate intensity has vanished.

Comparing with the IMF data shown in Fig. 8b and Fig. 8c, it is now more apparent that

the “high-frequency” modes (modes 1 and 2) contain a large portion of the total power

draw for CoMD. Similarly, for GAMESS, modes 1, 2, and 3 contribute the most to total

power draw (see Fig. 7e). Hence, in this way, it is possible to quantify a significant amount

of power is used by high-frequency interactions. It is also of importance to note that the

highest intensity is shown at frequency close to zero (see Fig. 8d), which can be explained

by static power draw or low-frequency operations, such as data I/O.

Figure 9 presents the EMD/HHT histograms generated for power traces collected

36

CPU-Only Offload Xeon Phi-Only

(a) Bolt

(e) Turing

(b) Bolt-CPU (c) Bolt-KNC

(f) Turing-CPU (g) Turing-KNC

(d) Rulfo-KNL

(h) Bolt-KNC

Fig. 9. Comparison of EMD/HHT histograms generated for power traces collected by

running CoMD on different systems and for different usage modes. From left to right, the

first column presents the histogram on the Bolt (a) and Turing (e) systems. The following

two columns present the offload histograms, with the CPU output on the left and KNC

output on the right for Bolt (b & f) and Turing (c & g). The final column presents the

histograms for the two Xeon Phi systems, KNL on Rulfo (d) and KNC on Bolt (h).

by running CoMD on different systems and for different usage modes. From left to right,

the first column presents the histogram on the Bolt (Fig. 9a) and Turing (Fig. 9e) systems.

The following two columns present the offload histograms, with the CPU output on the left

and KNC output on the right for Bolt (Fig. 9b & Fig. 9c) and Turing (Fig. 9f & Fig. 9g).

37

The final column presents the histograms for the two Xeon Phi systems, KNL on Rulfo

(Fig. 9d) and KNC on Bolt (Fig. 9h). Comparisons of the histograms in Fig. 9a and Fig. 9e

provide insights on how the different hardware platforms respond to a similar workload—

CoMD on the CPU with maximum cores and clock-rate for a problem size of 50. The

histogram for Bolt (Fig. 9a) shows a concentrated band of moderate-to-high intensity

(yellow) above 24Hz, suggesting that the hardware is approaching performance

bottlenecks. Specifically, an operation that occurs at 28Hz causes high intensity throughout

the Bolt execution and may be indicative of a performance bottleneck. Turing (Fig. 9e), on

the other hand, shows a moderate-to-low intensity (cyan) throughout execution, and this

intensity band spans the entire spectrum from 0 to 40Hz. From such comparisons, it may

be deduced that a more consistent intensity over frequency and time suggests the

application performs more optimally. Indeed, Turing is able to solve the problem almost

twice as fast as Bolt thanks to having increased parallelism of 20 cores versus 6 cores on

Bolt.

By comparing Bolt and Turing, and the CPU and Offload usage modes, the

following findings may be observed. Comparing CPU executions (Fig. 9a vs Fig. 9b) and

(Fig. 9e vs Fig. 9f), data transfer over the PCI bus can be observed. This is the critical

difference between CPU-only and Offload usage modes, since data must be shared between

the host CPU and KNC devices. In particular, an increase in intensity is found for

frequencies below 10Hz throughout execution. Data transfer over the PCI bus is a form of

I/O, which is considered low-frequency because data is often transferred in large chunks

that experience varying degrees of performance. High-frequency data transfers include

RAM and cache memory because these subsystems operate more frequently than PCI bus

38

transfers. The KNC histograms (Fig. 9c and Fig. 9g) also provide insights with the

frequency limit of 10Hz. The low intensity on Bolt suggests the KNC device was prone to

latency due to load balance problems between the CPU and KNC. Bolt suffers from a lack

of parallelism, whereas Turing can achieve better load balancing due to the increased

parallelism. Note that obtaining frequencies above 10Hz, as in Fig. 9h, for a sampling rate

of 20ms suggests that the sampling resolution is not sufficient for EMD/HHT analysis.

Figure 9d presents another example of an optimal execution performance, as is explained

further using Fig. 10.

Figure 10 presents the EMD/HHT histograms generated for power traces collected

by running CoMD and GAMESS on different systems while varying the number of cores

or clock-rate. From left to right, the first two columns present the histograms on the Rulfo

for CoMD and GAMESS with 63 cores (Fig. 10a & Fig. 10b) and with 32 cores (Fig. 10d

& Fig. 10e). The final column presents the histograms for the Turing system with

maximum clock-rate (Fig. 10c) and minimum clock-rate (Fig. 10f). Consider two numbers

of cores, 63 and 32, as shown for CoMD in Fig. 10a and Fig. 10d, and for GAMESS, in

Fig. 10b and Fig. 10e, respectively. For the smaller number of cores, the intensity of the

trace decreased over the entire time-frequency domain. Although this an expected

behavior, the histograms are telling because they show that the processor power draw

impacts at all frequencies.

In particular, CoMD is a compute-intensive application that achieves optimal

performance with the maximum number of cores. The intensity for the maximum number

of cores is moderate, and for the minimum number of cores the intensity is moderate-to-

low; factoring time-to-solution with this difference, it is apparent that a moderate intensity

39

Rulfo Turing
CoMD GAMESS CoMD

(a) 63 Cores

(d) 32 Cores

(b) 63 Cores

(e) 32 Cores

(c) Maximum Clock-Rate

(f) Minimum Clock-Rate

Fig. 10. Comparison of EMD/HHT histograms generated for power traces collected by

running CoMD and GAMESS on different systems while varying the number of cores or

clock- rate. From left to right, the first two columns present the histograms on the Rulfo

for CoMD and GAMESS with 63 cores (a & b) and with 32 cores (d & e). The final

column presents the histograms for the Turing system with maximum clock-rate (c) and

minimum clock-rate (f).

coincides with the more optimal execution. It has been observed earlier [60] that GAMESS

is a memory-intensive application that achieves optimal performance with half of the

40

maximum number of cores on Rulfo because of the limited L2 cache size (32 MB for 64

cores). Indeed, for GAMESS, a moderate intensity is seen in the 32-core trace (Fig. 10e)

while the plot for 63-core trace exhibit high intensity, notably between 50 and 200 seconds

(Fig. 10b). Such a high intensity for larger frequencies suggests that performance

bottlenecks have been encountered by the execution.

Figures 10c and 10f present comparisons of the maximum and minimum clock-rate

(P-state) for Turing. Similarly, to decreasing the number of cores, smaller clock-rate

reduces the intensity across the entire time-frequency domain. A smaller clock-rate,

however, did not impact the bands found in the Turing trace for frequencies from 18 to

34Hz.

3.5 Modeling the EMD Residual Trend

The residual produced by EMD may be used to describe power as a function of

time [60]. The model is obtained by first applying EMD to a complete power trace and then

fitting a quadratic equation (see Eq. (7)) to the residual.

𝑃(𝑡) = 𝑎𝑡 + 𝑏𝑡 + 𝑐 . (7)

Denote this model as the quadratic-fit residual (QFR) model.

3.5.1 Constructing the QFR

The first step is to obtain a power trace. In this work, power measurements are

sampled at a rate of 5ms, which is close to the maximum available sampling rate of 1ms.

A sampling rate of 5ms ensures all samples return a reliable measurement as well as allows

for a significant number of IMF modes to be extracted from the trace to get an accurate and

41

reliable residual. Lower sampling rates, even on the order of hundreds of milliseconds,

would suffice for producing a residual trend. However, the higher the sampling rate, the

more IMF components that may be extracted since each IMF component resembles a

particular time-scale (defined as the time between successive extrema). The residual is on

the largest time-scale obtained by EMD.

The next step is to apply EEMD to the power trace. For a more reliable fit, EEMD

may be applied to power traces collected for several duplicate runs and then fit the

quadratic model to the collection of residuals. In [60], a total of 5 duplicate runs was

considered, and a white noise of 5 W was applied to the time-series and averaged over 50

EEMD passes. These are the smallest values, which were found to be sufficient to remove

the final residual contamination, and fit the model to the residuals with

R2 > 0.95. Note that several traces are used due to the variability in execution

characteristics (e.g., memory stalls and conflicts).

The shape of the residual is consistent between power traces because idle power is

measured for several seconds before and after the execution. These “cool” periods

influence the EMD residual to start at and return to the idle power draw, forming a concave-

down quadratic. Therefore, the maximum power draw appears towards the center of the

entire trace with minima at the ends (see Fig. 1 for examples).

Once the quadratic model is obtained, the execution parameters, such as the total

time, average power, and total energy may be quite easily defined as follows:

• Total time is difference in the start and end times, the start time is always zero for

 the model, and the end time is taken as the time when the power draw equals or is

 less than power at the start (zero) time.

42

Fig. 11. QFR model of power over time.

 𝑇 =
−𝑏

𝑎
 (8)

 𝑃 =
−𝑏 + 4𝑎𝑐

4𝑎
 (9)

 𝑎 =
−𝑏

𝑇
 (10)

 𝑏 =
4𝑃

𝑇
 (11)

• Average power is an average of the power draw as defined by the model.

• Energy is found by integrating the model between start and end times.

An example QFR model is shown in Fig. 11. Power is shown on the y-axis, and

time is the x-axis in Fig. 11. The power model describes the trend in power draw over time

where power draw always returns to idle. The coefficients relate to time in maximum power

draw as shown in Eq. (8) and Eq. (9). To obtain these definitions, assume that c=0 and

static power draw is removed from the trend; then time may be described as the x-intercept

greater than zero, see Eq. (8). Power is defined at the apex, or axis of symmetry [104], as

43

shown in Eq. (9). Notice that power, even defined as a quadratic, has a static and dynamic

component, where static power is coefficient c. Conversely, the coefficients may then be

defined using these definitions; a is shown in Eq. (10) and b is shown in Eq. (11). The QFR

shown in Fig. 11 was created for a time of 450s, static power of 80W, and dynamic power

of 90W - the coefficients are then a = −0.0018, b = 0.80, and c = 80. Using the QFR to

model energy, it has been shown that measured energy for traces longer than 100 seconds

has an error of 10% or less [60].

3.5.2 Modeling Energy using the QFR

Table III and Fig. 12 present the measured and modeled time-to-solution and

average power draw for each workload, memory type, and number of cores. First, notice

that the power limiting has a larger impact for CoMD than GAMESS. In particular, CoMD

shows a linearly decreasing pattern as power draw increases while GAMESS shows a

marginal decrease in the execution time as power draw increases and a large range of time-

to-solution values, depending on the number of cores.

These results may be explained by a general observation that, for CoMD, the

maximum number of cores is always preferred while, for a GAMESS workload, smaller

numbers of cores may lead to the best execution time, which is less affected by the power

limiting and L2 cache saturation. Also, recall that the minimum power limit tested is 90 W,

yet the resulting minimum measured power for CoMD or GAMESS is 105W as indicated

in Fig. 12, which is in line with authors’ previous findings in [67]. When comparing

modeled and measured values in Fig. 12 observe that the model calculates reasonably well

both the time and average power usage for each configuration, even though power trends

44

(a) CoMD

(b) GAMESS

Fig. 12. Measured and modeled time vs power for (a) CoMD and (b) GAMESS with two

memory types (DDR and MCDRAM) and three core counts (32, 48, and 63); and one subplot

per workload.

45

TABLE III

BEST EXECUTION TIME, POWER, AND ENERGY ACROSS ALL THE WORKLOADS IN COMD AND

GAMESS AND DRAM MEMORY TYPES.

 DRAM Memory
 Best Config DDR MCDRAM

Application Workload # Cores, PLimit(W) Time(s) Power(W) Energy(J) Time(s) Power(W) Energy(J)

CoMD

LJ (60) 63, 120 19 141 2654 18 138 2528
LJ (80) 63, 120 41 142 5830 40 138 5549
LJ (100) 63, 120 82 142 11664 82 138 11279

EAM (60) 63, 120 35 142 5007 35 138 4776
EAM (80) 63, 120 75 143 10681 73 138 10153
EAM (100) 63, 120 140 142 19906 137 138 18921

GAMESS

1L2Y 32, 215 130 130 16862 127 128 16190
20w 32, 215 212 125 26332 201 123 24708
S265 32, 215 35 126 4444 31 125 3865
S301 32, 215 44 127 5534 39 126 4905

46

TABLE IV

MODEL COEFFICIENTS AND CALCULATED ENERGY FOR ALL WORKLOADS OF COMD AND GAMESS

AND DRAM MEMORY TYPES.

 DRAM Memory
DDR MCDRAM

Application Workload a b c Energy (J) a b c Energy (J)

CoMD

LJ (60) -0.432 12.161 63.461 3388 -0.401 11.202 64.754 3267
LJ (80) -0.105 5.340 84.493 6561 -0.102 5.145 83.051 6362
LJ (100) -0.026 2.414 96.495 12297 -0.025 2.298 95.328 11933

EAM (60) -0.134 6.138 80.571 5844 -0.133 5.940 80.123 5537
EAM (80) -0.030 2.548 97.848 11321 -0.029 2.481 95.512 10866
EAM (100) -0.008 1.134 108.488 20461 -0.008 1.130 104.974 19512

GAMESS

1L2Y -0.009 1.381 90.230 18109 -0.010 1.406 88.682 17565
20w -0.003 0.599 99.350 27176 -0.003 0.640 95.837 25944
S265 -0.107 4.912 76.968 5286 -0.128 5.428 73.563 4746
S301 -0.075 4.128 80.108 6454 -0.088 4.400 79.125 5768

47

are underestimated and further model tuning may be warranted. In particular, for CoMD

(Fig. 12a), the model closely matches the measured values with power underestimated by

approximately 5–10 W. For GAMESS (Fig. 12b), on the other hand, the power is

underestimated by almost 15 W in some cases.

Using the constructed model, the same best configurations, specified by the

(# Cores, Power Limit(W)) pair, were found as those observed with measurements (see

column Best Config in Table III). For these best configurations, Table IV provides the

modeled energy values and quadratic model coefficients a, b, and c. Observe that the model

acceptably calculates the total energy consumption (cf. columns Energy(J) in Tables III

and IV). Specifically, the modeling error is within 10% for longer executions, i.e., for those

taking greater than 100s, while the error increases up to 30% for shorter ones. For CoMD,

which contains shorter traces, the overall average error has been found to be 15%. CoMD

problem size of 100 shows the least error of 5–10%, whereas the problem size of 60 shows

the largest error of 15–30%. For GAMESS, workloads 1L2Y and 20w result in the smallest

error (less than 10%), but the errors in S265 and S301 are in the 15–25% range. Large

model errors may be attributed, in part, to fitting the quadratic model into the outcome

(residuals) of the EEMD procedure, which itself may incur errors of up to 10% [26], as

verified empirically in the course of this work. Note that fitting into the raw traces is

practically an impossible task, circumventing which is a principal objective of the current

work. It may be possible to decrease the errors by increasing the power sampling rate,

which is set to 5ms in this work.

It may be also observed in Table IV that, for the test cases with MCDRAM, the

model predicts always less energy consumption than that predicted for the cases with the

48

DDR memory, which is in line with the measured results. From Table IV, some tendencies

of the model coefficients may be noticed. In particular, as problem size increases, the

coefficients a and b decrease for both CoMD and GAMESS. Also, a is always negative,

which is a trait of a concave-down shape of the quadratic residual. Finally, the coefficient

c always increases with problem size. Further testing is necessary to observe how these

tendencies hold across other platforms.

3.6 Trace Segmentation

This method, denoted here as segmented trace modeling (STM), uses segments of

the power trace to approximate the QFR on the entire trace, thereby reducing the amount

of measured data required for the model construction.

STM approximates the QFR using a power trace of only a fraction of total execution

time, which speeds up the entire EMD modeling process, and makes the power trace

handling manageable. In particular, the modeling with EMD is dominated by the number

of times the EMD is applied to the trace, which increases non-linearly with the number of

samples. For example, a 30-second segment at 5ms (6,000 samples) the processing time is

about 24s, and after 60 seconds of the trace, the time for processing is already about two

times greater than the segment length. Thus, only small-size segments may be processed in

at the runtime. Segment trace modeling becomes possible because EMD can be applied to

a time-series of any length as long as there are enough measurement samples (as few as

five).

49

Fig. 13. Segmenting a power trace: the original power trace (left), set of residuals when

EMD was applied to each 10-second segment (center), and a comparison of residuals for

the trace with missing segments (right).

3.6.1 Segmenting Power Traces

In this work, 2,000 measurement samples are used per segment. EMD is sensitive

to the sampling rate; the more fine-grained the samples, the more information EMD can

yield. However, the more fine-grained, the more space required to store such a trace. Note

that modern systems are also limited in the maximum sampling rate allowed, which is about

1ms. For a realistically stable sampling rate, a value of 5ms is used, which leads to 10-

second trace segments. A 10-second segment may also fit the experimentally found

durations of the pre- and post-execution measurements, which span five seconds each. See

[60] for a discussion of the importance of these measurements.

Figure 13 shows a power trace and the result of applying EMD to a series of

segments (center). The trace was collected for the CoMD proxy application on an Intel

Xeon E5-2650 v1 with 16 cores. Notice that EMD closely mimics the trend of each segment

with respect to the original power trace. This shows that EMD can be applied to segments,

and also that the resulting residual will accurately represent the trace segments. The next

50

step is to investigate the residual with missing segments, as is shown in Fig. 13 (right) where

every other segment is considered for the STM. The difference between the STM with every

other segment missing and the QRF, which is done on the entire (non-segmented) trace, is

within 1% (cf. red and blue curves, respectively, in Fig. 13 (right), which essentially

overlap). This shows that STM with missing segments is a good candidate for

approximating QFR.

The STM method requires a minimum of three key segments, broadly denoted as

start, end, and workload. The start and end segments are required to capture power draw

at the start and end of the application with respect to idle power. Generally, an application

begins by allocating memory and reading data from the hard-drive; this causes a large spike

in power draw which is captured by the start segment. Likewise, when the application exits

and memory is released, a large drop in power draw is observed which is captured by end.

The workload segment depends on the application; at least one segment must be provided.

Applications with large variations in power draw may require additional segments to more

accurately estimate workload power draw. In this work, only one workload segment is used,

for the sake of simplicity of exposition. The number of workload segments, however, may

depend of the nature of the application power trace, and its determination is left as future

work.

3.6.2 EMD on Partial Trace

 Figure 14 presents two examples of the STM method applied to complex power

traces. The two applications, CG [76] and GAMESS [30, 86], were chosen because their

power traces exhibit much variability, which may hinder their modeling if relied on the

51

 (a) CG-D (b) Segment Residuals (c) Raw Segments

 (d) GAMESS-1L2Y (e) Segment Residuals (f) Raw Segments

Fig. 14. The STM method applied to complex power traces. The QFR is shown as a

dashed line in each plot (white and blue), the STM is a solid red line, and segments in

black.

periodicity in traces, e.g. Fig. 14a and Fig. 14d show the original power trace for CG and

GAMESS, respectively, as well as their QFRs (white dashed lines). Fig. 14b, Fig. 14c, Fig.

14e, and Fig. 14f compare the corresponding QFRs and STMs with only three segments,

chosen in a certain way. Specifically, the workload segment is composed of one 10-second

interval taken from the absolute center of the trace. This segment was chosen to keep the

end of execution which impacts the resulting STM. This may be desired to more accurately

model the power draw of an application that ends with a higher power draw than that when

52

starting the application (cf. CG in Fig. 14Fig. 14a).

Observe the differences between the QFR and STM model curves in Fig. 14b and

Fig. 14c and Fig. 14e and Fig. 14f, respectively. When EMD is applied to each of the three

chosen segments, the error between QFR and STM is within 5% of the measured energy

as shown in Fig. 14b and Fig. 14e, while the error is greater than 10% when using the raw

traces of the three key segments for the quadratic fit as in Fig. 14c and Fig. 14f. Hence, the

STM method, which employs EMD on the key segments followed by the quadratic fit, is

beneficial.

 Next observe that the QFR model more closely mimics the power trend since it

follows closely the entire trend. On the other hand, the STM method accuracy may be

improved by adding more workload segments, and thus, capturing various trace spikes.

Hence, a trade-off between the STM method accuracy and speed of processing with EMD

may be sought and tailored to the particular needs and resource availability.

3.6.3 STM with Segment Approximations

Recall that the STM requires three key segments: start, workload, and end. The

start segment can be measured easily by the user, since only one segment is needed, and

the time for each segment is relatively short compared to the total execution time.

Assuming that average power is known, an artificial segment, where every sample is equal

to the average power, may then be created as substitute for the workload segment. The end

segment may be approximated also, if assumed that the “cool-down” period mirrors the

start-up one—corresponding to the start segment—with a negative slope. Hence, the start

segment characteristics may be used in place of those for the end with the samples in

53

 (a) CG-D (b) GAMESS-1L2Y

Fig. 15. Energy consumption error for the STM and ASTM methods applied to complex

power traces.

reverse order (with respect to time). The STM with the start segment mirroring and the

artificial segment creation is denoted henceforth as approximating STM (ASTM).

3.6.4 Relative Modeling Error

 Figure 15 shows the relative error in energy consumption for three pairs of models—

(QFR, STM), (QFR, ASTM), and (STM, ASTM)—and for measured energy vs STM and

ASTM with the increase in the number of samples used. CG class D and GAMESS IL2Y

were run on the Rulfo system (KNL) with 48 and 63 cores respectively.

All but one error curves approach zero as the segment size increases, although errors

between STM and measured or QFR-modeled errors continue to grow beyond 30-second

segments. The error in the energy consumption between the STM and ASTM exhibits a

54

horizontal trend, stating from zero and leveling at about 3% of difference. This indicates

that the ASTM is a good approximation of the STM. In general, the overall small magnitude

of errors demonstrates that the segmented trace modeling STM as well as its variant ASTM

approximate QFR of the entire trace with an acceptable accuracy. Note that, although Fig.

15 only depicts CG and GAMESS modeling errors, these errors were computed for all the

applications tested and were found to be of magnitudes and trends comparable to the ones

in Fig. 15.

55

CHAPTER 4

INVESTIGATING ENERGY ON PLATFORMS FEATURING INTEL XEON PHI

In this chapter, several methods for investigating energy are presented. First, an

evaluation of thread affinity and the impact of thread mapping is conducted for the Xeon

Phi. Then, DVFS has been applied to heterogeneous executions featuring offload

execution. Finally, a real-time strategy has been applied to the Xeon Phi with power

limiting to attempt DVFS on the device, although not in the same manner as traditional

CPU’s. Power limiting is closely related to power capping strategies. The investigations in

this chapter motivate further investigation and analysis of power and performance

modeling for applications and hardware.

4.1 Thread Affinity on Intel Xeon Phi

The work in this section investigates both the performance and energy effects of

thread affinity on the NASA Advanced Supercomputing (NAS) Parallel Benchmarks,

which are compiled to run natively on the Intel Xeon Phi (KNC). Specifically, the

execution time and energy consumed by the Intel Xeon Phi are evaluated under different

thread affinity modes. Going beyond measuring the execution time, other performance

metrics relevant for Xeon Phi are explored, such as average cycles per instruction (CPI)

per thread, memory bandwidth, and vectorization intensity. The energy and approximate

execution time are computed based on measurements captured using the MIC System

Management and Configuration micsmc utility tool [8].

The Xeon Phi coprocessor (KNC) is composed of 50+ cores at approximately

1GHz. Each core is capable of concurrently processing four hardware threads [45]. It is not

56

possible to execute instructions from a single thread in back-to-back cycles; therefore, a

minimum of two hardware threads per core is suggested. Threads may be mapped to cores

through the affinity environment variable that governs six possible modes: balanced,

compact, scatter, none, disabled, and explicit [44, 32]. The “disabled-affinity” setting

provides no thread affinity interface, while the “explicit-affinity” setting allows the user to

manually assign each thread to any core. These two affinity settings are not considered here

however.

The balanced affinity mode evenly distributes threads among the cores. This mode

attempts to use all the available cores while keeping the thread neighboring logical IDs

physically close to one another. The scatter affinity also evenly distributes threads among

the cores but it does so in a round-robin fashion. Hence, threads with the adjacent IDs are

not guaranteed to be physically adjacent. The compact affinity distributes threads by

assigning the maximum number of threads (which is 4) to a core before assigning threads

to another core. This mode keeps the threads grouped tightly together and uses fewer cores

than other affinity modes unless the maximum thread count is set, at which point the

balanced and compact thread mappings are identical. When the thread affinity is not

specified explicitly, the system-default setting is none.

Thread granularity specifies the way various affinity modes are applied. On the

KNC, there are three levels of granularity: fine, thread, and core. The fine and thread levels

are similar in that they bind threads to a single context when the thread is assigned to a

core. The core granularity binds threads to a core, such that the threads may float within

the context of the physical core [44, 5]. Using the former may improve reproducibility of

the results and avoid the overhead from thread context switch. The system-default

57

TABLE V

EXECUTION TIME (SECONDS) OF 59 AND 236 THREADS FOR

VARIOUS BENCHMARK PROBLEM-CLASS SIZES.

 59 Threads 236 Threads
NPB A B C D E A B C D E

EP 1.97 7.83 28.94 455.84 — 1.05 4.18 16.44 268.69 4229.20
CG 0.49 49.61 206.82 † † 0.21 12.98 53.31 † †
FT 0.93 12.54 52.50 † † 0.71 10.57 45.15 † †
IS 0.17 0.52 3.26 † NA 0.39 0.59 1.99 † NA
MG 0.26 1.41 8.28 † † 0.24 1.19 8.14 † †

 — - Did not test NA - Class size not available † - Out of memory

granularity setting is core.

4.1.1 Measuring Time and Energy

Table V presents execution time required to complete each benchmark for the

various classes at 59 and 236 threads. Only the EP benchmark was able to execute class

sizes larger than C on the Xeon Phi. This is due to the small memory footprint required for

EP. Therefore, each benchmark is executed with class C problem sizes.

Energy consumption is calculated by the approximation of power timeslices

provided by the Intel utility tool, micsmc. From the command line, micsmc can output a

wealth of data including clock-rate, power, temperature, memory usage, and CPU

utilization per core [50]. However, as additional types of data are requested, the delay

between calls increase. Hence, to capture the energy readings in the smallest timeslice

available, only clock-rate and power data are recorded (both are printed when the same

input parameter is given). The micsmc tool measured and reported every 22–28ms, which

is sufficient for a detailed evaluation. Data are collected from each unit on the device via

58

the performance monitoring unit (PMU) [45, 18]. Each core contains an independently

programmable PMU, which supports four hardware threads, two hardware counters per

thread, and 40-bit precision per hardware counter.

Dynamic Voltage and Frequency (Clock-Rate) Scaling (DVFS) involves changing

the voltage and clock-rate levels of the processor to reduce or increase power, which may

be performed in application software. This technique generally requires a careful

implementation to reduce potentially severe performance penalties. When applied

judiciously, however, it may yield as much energy savings as 14% with a modest

performance loss of 2% on certain NAS parallel benchmarks as was shown by the authors

in [94].

Unfortunately, Xeon Phi does not allow user-controlled DVFS. The hardware

performance levels (P-states) are selected and set through the coprocessor OS kernel.

P-states may change depending on the thermal or power readings. A new P-state is selected

by the OS upon crossing a high thermal threshold or approaching one of the upper power

limits [45]. Additionally, the Intel Xeon Phi may perform DVFS selectively for inactive

cores. Hence, varying power consumption is explored here by varying the active core count

under the compact affinity mode, in which it is possible to leave some cores idle when

mapping threads numbered greater than the total core count. These idle cores may allow

the device to save power with a certain performance loss.

To demonstrate the accuracy of the data obtained by micsmc, its output is compared

to that collected by the Wattsup power meters, having a sampling rate of 1 Hz, which does

not affect the measurements considerably since the benchmark used here has a sufficient

59

Fig. 16. The power profiles as obtained by Wattsup and micsmc for the CG benchmark

with the compact affinity mode at 180 threads.

execution time. Wattsup meter records the total power for the computing system to which

it is connected; two meters are used here because the system has two power outlets.

Fig. 16 presents the power profiles, averaged over three runs, for micsmc alone (curve

Micsmc), for the sum of the two Wattsup power (curve Wattsup) meters, and for the

Wattsup power meters during Micsmc (curve Micsmc-Wattsup) when the CG benchmark

is executed at 180 threads in the compact affinity mode. From Fig. 16, it is clear that

micsmc and Wattsup are reporting power traces of similar patterns, with fluctuations

appearing at the same time points. However, from the difference between the “pure”

Wattsup and Micsmc-Wattsup power profiles, it may be observed that micsmc incurs a

substantial overhead, which is caused by the fact that micsmc always puts the device cores

into a rather high energy state (around 100 watts, as seen near time 0 in Fig. 16), even if

they are idle, when polling each core for the power data.

60

4.1.2 Results

 The experiments were conducted on Borges computing platform. The execution

time is obtained from the NPB output, and Intel VTune Amplifier XE software samples the

hardware event counters. The Intel Xeon Phi power was measured with micsmc to compare

the energy of different affinity modes used on the device only.

Figure 17 presents the average normalized execution time observed for the EP, FT,

IS, and MG benchmarks with different affinity modes and thread granular ity. The

execution time shown is an average over four runs, which is normalized against the default

test. (Thus, values less than one are an improvement over the default case.) Recall that the

default case uses the core granularity and none affinity. Figure 17 provides several

examples of applications that perform better with a specified affinity and granularity. IS and

MG under the compact affinity perform exceptionally well after 180 threads when compared

to the default test.

However, it also provides several examples of applications which under-perform

when fewer cores are utilized: All four benchmarks perform worse (value less than 1) while

using the compact affinity for thread counts fewer than 180. In EP and FT, the balanced,

scatter, and none affinities chaotically shift between being more or less efficient than the

default. However, after 180 threads, each affinity observes a boost in performance, except

for the scatter one. Thus, NPB perform best when each Intel Xeon Phi core is running at

least three threads per otherwise empty core, which is in agreement with the general

optimization guideline of running four threads per core. After 236 threads, the performance

of each affinity dramatically increases or decreases, depending on how well the threads are

able to compete with the OS for resources, which occupy one core. Generally, the scatter

61

Fig. 17. Normalized execution time for the EP, FT, IS, and MG benchmarks with different

affinity modes and the thread granularity. Each value is the average of four runs for each

benchmark, and is normalized for each affinity against the default test, which has the

affinity none and granularity core. The data for compact affinity are shown starting at the

number of threads greater than for the other affinities to permit good scaling of the plots.

Fig. 18. Benchmark total bandwidth (left) and average CPI (right) for each affinity mode

with the granularity thread at thread counts from Table VI.

62

Fig. 19. Normalized energy for the EP, FT, IS, and MG benchmarks with different affinity

modes and the thread granularity. Each value is the average of four runs for each

benchmark, and is normalized for each affinity against the default test, which has the

affinity none and granularity core.

Fig. 20. Normalized energy (left) and execution time (right) for the CG benchmark with

different affinity modes and the thread granularity. Each value is the average of four runs

& is normalized against the default test, which has the affinity none and granularity core.

and none affinities perform better at 240 threads.

63

4.1.3 Performance Metrics

 To gain further insights into the performance of each benchmark, this work

considers certain performance metrics as obtained from the hardware event counters

provided by the Intel VTune Amplifier XE 2013 [101]. In particular, these metrics are

average CPI per thread, vectorization intensity (VI) and memory bandwidth. The average

CPI per thread (CPI) is the average number of CPU cycles required to retire an instruction,

averaged per thread. It can be used to detect latency in the system which affects the

applications execution. VI provides an indicator for how well the entire code maps to the

VPU. For double-precision and single-precision operations, the VI ideally should be close

to 8 and 16, respectively. The memory bandwidth metric describes the average streaming

memory bandwidth achieved during execution.

After running the Intel VTune Amplifier, it was observed that VI did not vary when

varying affinity for any of the benchmarks. The EP, CG, FT, IS, and MG benchmarks

exhibited a VI of 3.2, 3.0, 8.0, 1.33, and 6.4, respectively. This is attributed to the NPB

benchmarks applications using 64-bit precision and the VPU length is 512-bit. FT and MG

are observed with high vectorization utilization, suggesting few or no data dependencies

within the vectorized loops. The total bandwidth (Fig. 18 left) is much lower than the peak

value of 320 GB/s or even than the observable 140 GB/s, as presented in [12]. The measured

CPI (Fig. 18 right) is much closer to the expected value of four, except for CG which

incurs around 26 cycles per instruction on average. In general, FT, with over 70 GB/s and

a low CPI, utilizes the resources of the Xeon Phi well compared to the other benchmarks.

MG features moderate bandwidth, acceptable CPI, and high VI.

64

4.1.4 Energy

For the executions shown in Fig. 17, Fig. 19 presents the average normalized energy

observed for the EP, FT, IS, and MG benchmarks, which is averaged and normalized as in

Fig. 17. From Fig. 19, it is seen that, for the thread counts greater than 180, specifying

affinity and granularity can decrease energy consumption. It is not until after 180 threads that

the energy savings of using fewer cores outweigh the loss of the performance. Consecutively,

EP results in almost 8% of energy savings with the compact affinity, FT results in 6%, IS

results in 13%, and MG results in almost 23% energy savings.

For the CG benchmark (Fig. 20 left), energy savings may be observed already for

fewer cores under the compact affinity mode, starting at 28 threads even though execution

time is larger than the default test (normalized value greater than one in Fig. 20, right) and

larger than other affinity modes until 180 threads. Since CG is the most memory-accessing

application among the ones considered here as was shown in [94], this situation may be

explained by the findings in [14] that Intel Xeon Phi uses less energy for memory accesses.

Under the compact affinity mode, the neighboring threads, which are more likely to access

memory simultaneously, are located in the same core. Hence, an entire core may be

considered as memory-accessing to enjoy the lower energy usage, while the execution time

is high because of thread contention.

 After 180 threads, which was the same threshold observed in every other bench-

mark, the CG performance increases drastically leading to substantial energy savings. At

the 180-thread count, better thread load balancing takes place as threads are evenly

distributed to cores, at three per core. Good load balancing occurs at other thread counts as

well, such as 60, 120, and 240. In particular, after 120 threads (two per core), one of the

65

TABLE VI

LOWEST ENERGY CONSUMED WHEN SPECIFYING THE AFFINITY MODES AS

COMPARED TO THE SYSTEM-DEFAULT SETTING.

 EP CG FT IS MG
E Default (J) 3,173.16 17,005.39 8,274.34 1,042.97 1,813.89
E Test (J) 2,986.20 8,787.69 8,386.27 892.59 1,731.50
Aff Mode compact compact scatter compact balanced
Thread Count 236 236 104 232 180
E Saved +5.89% +48.32% -1.35% +14.42% +4.54%

two compute cycles will gain the option to switch between threads during execution and an

increase in the performance is observed. An even greater increase is observed when the

fourth thread is added and the second cycle has an additional thread (after 180 threads).

Such performance increases, which lead to energy savings, are noticeable for all the user-

specified affinity modes with the thread granularity considered here.

Fig. 17, Fig. 19, and Fig. 20 indicate that the DVFS was not applied during the

benchmark executions since the performance and energy correlate so closely in all the

cores. Further, this is supported by the output from the micsmc that shows that clock-rate

did not change during any of the benchmark executions.

For each benchmark, Table VI provides the lowest energy (row E Test) along with

the affinity mode (row Aff Mode) and thread count (row Thread Count) at which it was

observed. The corresponding energy value of the default case is in row E Default and

the difference in the energy consumption is in row E Saved. CG features the highest

energy saving, a staggering 48% with respect to the default test. The FT benchmark was

the only benchmark to consume more energy as a result of specifying affinity. It may be

66

due to the granularity difference with the default case because the energy consumed by the

none, scatter, and balanced affinities are almost the same (within 0.1% of one another).

4.2 DVFS with Heterogeneous Executions

This section investigates the impact on performance and energy when CoMD is

adapted to use the Xeon Phi co-processor. The impacts of varying host-side clock-rate

during offload executions and the maximum atom count of link cells are explored with

focus on minimizing the energy-to-solution. Impacts to time-to-solution, performance, and

offload timings are also discussed. The tests are performed on a single-node computing

platform that offers two Xeon Phi’s; hence one- and two- Xeon Phi configurations are

explored. In this section, Xeon Phi and MIC may be used interchangeably to reference the

Intel Xeon Phi co-processor.

To reduce energy consumption by the CPU, a dynamic voltage and clock-rate

scaling (DVFS) technique is commonly used at the application runtime (see, e.g., [94]).

The current generation of Intel processors provides various P-states for clock-rate scaling.

clock-rate may be specified by manipulating the model-specific registers (MSR). P-states

are defined as (fi, . . . fn, where fi > fj for i < j). For the Intel Xeon Phi, DVFS is not

software-accessible. DVFS may be used on the host CPU only to reduce host-side

energy consumption while computation is being performed on Xeon Phi.

4.2.1 Execution Time Model

The time on- and off-chip model [16] may be used to determine how compute- or

memory-intensive an application is. This information may then be used to determine the

67

effect MIC acceleration had with respect to the host and the effect of DVFS during MIC

offloads with respect to MIC executions without DVFS. Execution time T for an

application that offloads computation to the Xeon Phi may be defined as T = 𝑡 + 𝑡 ,

where the execution time of the host and offloaded code sections are non-overlapping. 𝑡

represents the execution time spent on the host multi-CPU and 𝑡 represents the execution

time spent on the Xeon Phi. DVFS may save power during those CPU cycles that are not

computationally intensive, e.g., when the CPU is stalled waiting for memory, I/O, branch

misprediction, or reservation station stalls [94]. The host execution time𝑡 consists of the

time on-chip 𝑡 , when the CPU is engaged in computations, and time off-chip 𝑡 for

the remainder of CPU cycles. DVFS affects only the time on-chip, which scales linearly

with the change in clock-rate [94]. This relationship may be described as:

 𝑡 = 𝑡 + 𝑡 , (12)

where 𝑓 is the maximum allowable clock-rate and 𝑓 , i > 0 is any lower available

clock-rate level. Substituting 𝑡 to solve for T yields:

 𝑇 = 𝑡 + 𝑡 + 𝑡 . (13)

Equation (13) provides the most basic relationship between total execution time, CPU (host)

clock-rate, and times spent on the host and MIC. It may be used to determine the energy-

saving potential for a hybrid CPU-MIC application, indicated by the ratio of 𝑡 to 𝑡 .

4.2.2 Experiments

The experiments conducted here aim to compare the multicore execution of CoMD,

referred to as Host, and the CPU-MIC execution of CoMD, referred to as MIC. Each

68

execution is run using one or two MPI tasks, hence: Host 1, Host 2, MIC 1, MIC 2. When

DVFS was applied to the host during MIC offloads, the corresponding tests are referred to

as MIC 1 DVFS and MIC 2 DVFS. For the MIC executions, the number of MPI tasks is

equivalent to the number of MIC devices employed, such that each MPI task is assigned a

Xeon Phi for its portion of the computations. In each iteration of the EAM force kernel,

data must be transmitted between the Xeon Phi and host four times for three offload events.

In the initialization phase of CoMD, one offload to Xeon Phi is required to instantiate and

allocate its memory. All static data, such as interpolation tables, are transmitted to the

device at this time. The memory transfer times have been measured by setting the

environment variable OFFLOAD REPORT to a value greater than zero.

Experiments were performed on the “Borges” computing platform at Old Dominion

University. Power measurements are collected externally via two Wattsup meters which

power and monitor the Borges computing platform. Data is sampled at a rate of 1Hz, which

does not affect the measurements considerably since the problem size used provides

sufficiently longer execution times. Although several tools exist for measuring power on

the Xeon Phi itself [50, 46], they often incur a substantial overhead from measuring the

device power. Wattsup offers a coarse-grained sampling solution, which, however, does not

impact power measurements. The power is measured for 15 seconds before and after

execution of CoMD in all the experiments. Additionally, 45 seconds of idle time is allocated

in-between executions to allow the idle power draw to reach steady state. The results have

been averaged over five executions of each test.

In this work, two parameters are varied: link-cell count and host CPU clock-rate.

69

TABLE VII

EXECUTION TIMES ON HOST IN SECONDS AND THE ASSOCIATED

GOODNESS-OF-FIT METRIC R2 FOR ALL EXPLORED CONFIGURATIONS.

Configuration ton toff toff /ton R2
Host 1 97.139 3.769 0.039 0.992
Host 2 94.965 1.019 0.011 0.973
MIC 1 6.990 2.630 0.376 0.995
MIC 2 4.820 1.293 0.268 0.965
MIC 1 DVFS 7.051 2.635 0.374 0.996
MIC 2 DVFS 4.460 1.680 0.377 0.985

Conversely, the parameters that are not varied during the experiment are problem size, thread

affinity, and thread count. Problem size has been set to 70 (1,372,000 atoms) because this

workload provides a sufficiently long execution time (more than 30 seconds) to collect power

samples. Thread affinity has been set to compact and granularity is set to thread because this

affinity combination has been shown to provide the most efficient execution [61, 62]. Thread

count has been set to 236 threads (out of possible 240), which are mapped to 59 cores. One

core is left free from CoMD because it is occupied by the MIC operating system.

4.2.3 Execution-Time Model Validation

Compute- or memory-intensity of an application may be measured by the ratio

𝑡 -to-𝑡 from Eq. (12). A ratio which is close to 0 represents a computationally intensive

application; similar, a value greater than 1 represents a memory intensive application. Here

CoMD is executed on “Borges” for each configuration at different operating clock-rates such

that linear regression may be used to solve Eq. (12) for 𝑡 and 𝑡 . In all of the “one-

70

MPI” configurations (Table VII), 𝑡 is about the same while it is much smaller for those

with two MPI tasks because, in the latter, certain data sets are treated in a two-way parallel

fashion. For the MIC executions, 𝑡 is much smaller than Host because the CPU (host)

counts the Xeon Phi computations as its own time off-chip. It is for this reason, that the

DVFS applied during Xeon Phi offloads may benefit energy without affecting the

performance.

Notice that CoMD remains rather compute-intensive (𝑡 -to-𝑡 ratio is less than

one) even when the force kernel is computed on the accelerator (rows MIC in Table VII).

In particular, for all the MIC configurations, this ratio is approximately 0.3, which indicates

that the computations remaining on the host, such as position and velocity updates, are also

compute-bound. Offloading the update sections does not benefit the MIC implementation

because additional atom data would need to be transmitted to the Xeon Phi each iteration.

The extra memory transfer per iteration is comparable to the computation time to perform

the update. Therefore, the velocity and position updates are computed by the host.

The MIC 2 tests with and without DVFS have rather high variation in the 𝑡 -to-

𝑡 ratios, which is 0.1 higher for MIC 2 DVFS whereas these ratios are almost the same in

the MIC 1 tests. This observation may be explained by the fact that, in the MIC 2 DVFS

case, DVFS is applied to the entire node by only one (first) MPI task. However, no

synchronization is algorithmically necessary between the MPI tasks. Hence, it is possible

for the DVFS to be applied while one of the MPI tasks is still executing a host CPU portion,

outside of the offloading segment. It has been verified experimentally that the host

execution time 𝑡 in the MIC 2 DVFS case was greater than that in the MIC 2 case for

several clock-rate levels, while 𝑡 remained constant independent of host DVFS.

71

4.2.4 Experimental Results

 The impact on performance from varying link-cell count is investigated. Link-cell

size has been set to either the default value of 64 atoms or to 16 atoms, which is the smallest

size available for the problem size selected and, thus, may lead to more prominent

differences in the performance. The highest CPU clock-rate 𝑓 has been applied and

remains constant throughout each execution, except in the MIC DVFS configurations. For

MIC DVFS, CPU clock-rate is set to its lowest value of 1.2 GHz during offloads to the

MIC(s), and restored to its highest value at the end of the offload section.

4.2.4.1 Link-Cell

The results presented in Fig. 21 compare the performance of the two link-cell

counts (LC of 16 and 64) in each execution configuration. In particular, Fig. 21 (left)

presents the total execution time while Fig. 21 (right) shows the offload memory transfer

time for the hybrid configurations with four main offload events: Initialization and Loop 1,

2, 3. The smaller LC of 16 reduces execution time for each configuration except Host 2, as

seen in Fig. 21 (left) Host 2 does not benefit from the reduced link cell count because the

link cell was able to fit into cache in the two MPI task version. MIC 2 benefits from the

reduced link cell count because its cache is much smaller than the hosts. In general, the

cache utilization increases as a result of the reduced memory footprint of the link-cell

container for LC of 16. For the MIC configurations, this observation may be particularly

noticeable: Fig. 21 (right) shows that the memory transfer time decreases significantly with

the reduced maximum atom count per link cell. Specifically, the transfer time decreases

2.75x (from eleven to four seconds) for MIC 1 and 2.0x (from six to three seconds) for MIC2.

72

Fig. 21. Total execution time (left) and total memory transfer time per offload event

(right) for two link-cell counts, 16 and 64.

4.2.4.2 Clock-Rate Scaling

Fig. 22 and Fig. 23 provide the average power, atom rate, execution time, and

energy plots for the experiments when clock-rate on the host is scaled from the lowest

clock-rate to the highest clock-rate. The link-cell count is fixed as 16 in the plots.

Fig. 22 (left) presents the average power during the execution of CoMD derived

from Wattsup measurements for each test configuration. For the MIC 2 configurations, the

curves show the actual power measurements. For the MIC 1 and Host configurations, the

curves represent the measured power values adjusted to exclude the power draw of unused

Xeon Phi devices, which could not be removed from the compute node in the experiments,

as follows. The execution of CoMD on a single MIC causes both devices, if present, to

enter an active power state. From the Xeon Phi datasheet, the active power state draws about

115W [17], therefore this number was subtracted from the actual power measurements and

the resulting value shown on the MIC 1 curves in Fig. 22 (left). For the Host executions,

both Xeon Phi’s are in an idle state, which draws about 45W [17], therefore this number

was subtracted from the actual power measurements and the resulting value shown in the

73

Host curves in Fig. 22 (left). Note that, power draw has not been measured on the Xeon

Phi devices directly because existing software tools, such as micsmc, incur excessive

overheads as was shown in authors’ earlier work [61].

Fig. 22 (right) presents the atom rate metric of the performance, defined as number

of atoms processed per microsecond. For lower clock-rates, the atom rate is smaller because

execution on the host longer. The atom rate is also indicative of the MIC performance.

Hence, the rate is the largest for MIC 2 cases, which also exhibit the best execution time

as shown in Fig. 23 (left). For the MIC 2 tests, the atom rate decreases faster than that for

the MIC 1 ones because the executions of the MIC 2 configuration are much shorter

(cf. Fig. 22 (right) and Fig. 23 (left)). Hence, host operates at a lower clock-rate longer,

which negatively affects the performance.

In Fig. 23 (left), the total execution time is plotted against the available clock-rate

levels. The Host executions are significantly impacted by clock-rate, as expected, due to

the computationally intensive requirements of the CoMD application. The MIC executions

are not impacted by DVFS as significantly as the Host because the host clock-rate affects

only the host-side computations and not the ones offloaded to MIC.

Fig. 23 (right) presents the total energy consumed for the various configurations

under different clock-rates. The MIC 1 and Host values have been adjusted to remove the

unused Xeon Phi power draw from the measurements as explained for Fig. 22 (left).

The MIC 2 tests consumed the least energy (with and without DVFS) for almost all the

clock-rates, except for 𝑓 , when Host 2, adjusted for unused MICs, shows the best result.

MIC 1 does not compare to MIC 2 or to the Host executions, especially at the higher clock-

rates. Hence, further optimizations are required to make MIC 1 energy efficient.

74

Fig. 22. Average power (left) and atom rate (right) for different clock-rate levels with and

without DVFS for link-cell count of 16. (The curves MIC DVFS and MIC partially

overlap for one and two MICs, respectively.)

Fig. 23. Total execution time (left) and energy consumed (right) for different clock-rates

with and without DVFS for link-cell count of 16. (The MIC curves partially overlap MIC

DVFS for their respective tests.)

Energy savings for the MIC 2 executions were measured when varying link-cell

count and when applying DVFS. When link-cell count was reduced from 64 to 16, MIC 2

saved 8.3% and MIC 2 DVFS saved 14.3% energy. The savings are the result of reduced

75

host– MIC memory transfer in the cased of 16 link-cell count and of reduced cache misses

due to the decreased memory footprint. When DVFS is applied and link-cell count is 16,

MIC 2 DVFS saved 9% in energy compared with the MIC 2 execution without DVFS while

still consuming more energy than the Host 2 execution at the highest clock-rate, when the

MIC 2 executions were not fast enough to compensate for the additional power

consumption of the MICs (cf. Fig. 23 (left) and Fig. 22 (right)).

4.3 Real-Time Power Limiting of the Xeon Phi

In this section, an investigation of power limiting on the Xeon Phi is presented, where

both an offline and real-time strategy are used to investigate the impact of power limiting

on performance and energy consumption.

It is important to understand how the Xeon Phi SMC varies operating clock-rate

as power surpasses the designated thresholds. Specifically, the Xeon Phi uses two power

threshold values—low and high—each with a designated time window. By default, the low

power threshold is set to the TDP with a time window of 100ms and the high threshold

at 120% of the TDP and a time window of 10ms. When power exceeds the low threshold

for the duration of the time window, clock-rate is decreased until power consumption is less

than the threshold. When power exceeds the high threshold for the duration of the time

window, the thermal throttling mechanism is engaged, which forces the device to the lowest

operating clock-rate of around 500 MHz, as seen experimentally. More on Xeon Phi

power limiting can be found in the datasheet [43]; however, it has not yet been updated for

Knights Landing. For correlating the application performance with variation in clock-

rate, a performance model is needed that is valid for modern out-of-order (OOO)

76

processors. The performance model presented here predicts the instructions retired at

different processor clock-rates depending on a few system parameters. A power model is

also outlined, which translates the clock-rate needs to power consumption limits. By using

these power and performance models, the power thresholds are decided during application

execution to obtain energy savings, based on a user-defined performance loss.

4.3.1 Performance Model

Processor clock-rate effects on the micro-operations retired may be accounted for

by a cycle-accounting equation [96] as:

 𝑓 = 𝐼𝑅 × 𝐶𝑃𝐼 + 𝑁 × 𝛼 × 𝛽 ×
𝑓

𝑓
 (14)

where

 𝐼𝑅 is the number of instructions retired per second at processor clock-rate 𝑓 .

 𝐶𝑃𝐼 is the number of cycles per micro-operations retired barring the memory

accesses per second.

 𝛼 (0 ≤ 𝛼 ≤ 1) is the OOO overlap factor, which determines the extent of memory

stalls overlapped with execution cycles.

 𝑁 is the number of memory accesses in a second.

 𝛽 is the number of cycles corresponding to the memory-access latency.

 𝑓 is the maximum processor clock-rate.

Since memory access stalls tend to have the maximum impact on the performance

[96], the other types of stalls namely cache-access, branch effects etc. are not considered

in Eq. (14). By rearranging Eq. (14), the instructions retired at processor clock-rate 𝑓

77

can be expressed as:

𝐼𝑅 =

𝑓 − 𝑁 × 𝛼 × 𝛽 ×
𝑓

𝑓

𝐶𝑃𝐼
 . (15)

The instructions retired serve as a measure of application performance in the

model, where the performance loss 𝛿 of an application when executed on a processor

clock-rate 𝑓 , may be expressed as:

 𝛿 =
𝐼𝑅 − 𝐼𝑅

𝐼𝑅
 . (16)

The proposed performance model can be applied to hardware platforms other than

KNL by considering the throughput as a measure of performance and relating it to the

operating clock-rate.

4.3.2 Power Consumption Model

The power consumption 𝑃 of Xeon Phi at a clock-rate𝑓 can be expressed

[96, 13] as:

 𝑃 = 𝑃 + 𝑘 × 𝑐 × 𝑓 , (17)

where 𝑃 is the static power consumption of Phi, 𝑐 is the number of physical cores

and 𝑘 is the factor which varies as per the workload.

4.3.3 Power-Threshold Selection

Figure 24 displays the steps of the algorithm for selecting lower and higher power

thresholds at the runtime. At a given 𝑓 , the contents of the CPR register, holding 𝐶𝑃𝐼

values for the past few time-slices, and the value of 𝑘 are obtained by solving Eq. (15)

78

for 𝐶𝑃𝐼 and from Eq. (17), respectively. The contents of the MPR register, holding the

memory-access values corresponding to the 𝐶𝑃𝐼 CPR are initialized through the

performance counters. Then, the value of 𝐶𝑃𝐼 and memory accesses for the next

time-slice is determined through a history-window prediction mechanism [96] (in Step 4)

by using an averaging function to predict the future value as an average of the past

values. If the registers are not completely filled, then their last-assigned values are used

for 𝐶𝑃𝐼 and 𝑁 , respectively, otherwise an average is taken and the oldest value in

each register is discarded. In Step 6, the smallest operating clock-rate is determined that

satisfies the performance loss constraint such that the performance loss does not exceed

the user-defined performance loss 𝛾. The values of the power limits are chosen in Step 7

such that to allow the power consumption to remain close to 𝑃 . The lower and higher

power limits are separated by a difference proportional to the user defined performance

loss. This accounts for any inaccuracies in the performance model by giving some

headroom to the performance governor to stay above the power limit calculated in Step 6.

4.3.4 Experiments

The Sandia National Labs PowerAPI [55] is used to measure energy via the Linux

Power Capping Framework (LPCF) [2] plugin which reads energy from the Running

Average Power Limit (RAPL) [103, 20] counters. The PowerAPI uses the hardware

locality (hwloc) API [79, 9] to detect the underlying hardware and is very portable, hence

no modification to the API was required to measure energy for the KNL processor. The

Linux Power Capping Framework is also used to update power thresholds, and “perf” [1]

is used to measure hardware performance counters since PAPI does not yet support KNL

79

[41, 10]. Power and performance measurements are collected every 250ms to be used by

the power threshold selection procedure. Measurements are collected for five seconds

before the application is executed to establish the idle power draw, about 72 watts.

Memory latency was measured as 390 cycles using LMBench. As per [110], the out-of-

order execution overlap (α) can be calculated as calculated as 0.9 using the methodology

discussed in [110].

 𝛼 =
𝑅𝑒𝑜𝑟𝑑𝑒𝑟 𝐵𝑢𝑓𝑓𝑒𝑟 𝐿𝑒𝑛𝑔𝑡ℎ

𝐼𝑠𝑠𝑢𝑒 𝑊𝑖𝑑𝑡ℎ × 𝑀𝑒𝑚𝑜𝑟𝑦 𝐿𝑎𝑡𝑒𝑛𝑐𝑦
 . (18)

Plugging the relevant values of the parameters for the performance model obtained from

[86] in Eq. (18), the value of α was calculated as 0.9.

4.3.5 Results

For all the executions, 252 threads (63 cores) are used, and one core is left for the

measurement application so that the performance impact of measurement is minimized.

(The use of “perf” to collect hardware performance counters significantly degrades

performance if all 256 cores are allotted to the execution.) Presented results are based on

the average execution time and average energy consumption based on five executions for

each configuration: each application without measurement (denoted as baseline), with

measurement and default power limits (denoted as default), with static power limits

(denoted as best power limit (BPL)), and with the runtime power-threshold as per algorithm

in Fig. 24 (denoted here as model).

For the offline analysis, power limits are set before the execution and do not vary

throughout execution. For NPB and CoMD, power limits are varied between 90W–150W

at 10W intervals and for GAMESS, power limits are varied between 80W–95W at 5W

80

intervals because only 64 threads may be used and max power draw is about 100W. The

maximum power draw, BPL, and the average runtime power limits are shown in Fig. 25a.

The average runtime power limits were measured during the ‘model’ executions. Maximum

power was measured with the default power limits (215W), and the BPL is chosen based

on energy saved with less than 10% performance loss and when the power limits are not

equal to the default ones. A special case – BT – incurred more than 10% performance (see

Fig. 25c, the darkest bars). As shown in Fig. 25a, none of the workloads were able to stress

the KNL processor up to the TDP (215W). Notice also that the memory-intensive

applications (FT, CG, and MG) benefit from power limiting more than the compute-

intensive ones (EP, CoMD, and GAMESS).

For the runtime method, power limits are dynamically set during execution, as in

Fig. 24, where each timeslice duration τ is 250ms. Note that the time-to-solution for all

applications is at least five seconds with CoMD and GAMESS executing longer than 20

seconds. Figure 25b presents the energy saved for each application relative to the default

execution, while Fig. 25c shows the corresponding performance changes compared with

the baseline execution. Note that the default execution of BT-B (i.e., just by measuring its

power) 12% of the performance is lost, which is the most extreme negative effect seen in

this work. All the other applications are within 10% of the performance loss for the default

and BPL executions. For the runtime model, however, the performance losses, as recorded

after the execution completion, often are higher. This is because they are only approximated

at the runtime to be less than the specified value (10%), and calls for further fine-tuning of

the model.

81

Fig. 24. Runtime power-threshold selection procedure for energy savings in Xeon Phi.

Input Parameters:
𝜏 : Duration of the timeslice 𝑠.
𝛾 : Performance-loss tolerance.
𝑉 : Number of timeslices.
𝑓 , 𝑓 , . . . , 𝑓 : Available frequencies in Xeon Phi, where 𝑓 > 𝑓 for i < j.
CPR and MPR : 𝐶𝑃𝐼 and 𝑁 registers of length L = 3.
𝑐 : index of CPR and MPR, initialized to 0.

Algorithm:
Step 1. Execute application during the timeslice 𝑠 = 1 at the highest clock-rate
 𝑓 .
Step 2. Determine 𝐼𝑅 , 𝑃 , and MPR[𝑐] at the end of first timeslice using
 hardware counters.
Step 3. Initialize CPR[c] and k using Eq. (15) and Eq. (17), respectively,
 for 𝑓 = 𝑓 .

 For (𝑠 = 2, 𝑠 ≤ 𝑉, 𝑠++) do:
Step 4. Calculate 𝐶𝑃𝐼 and 𝑁 :
 𝑐 = 𝑐 + 1
 If (𝑐 ≤ 𝐿 − 1) then
 𝐶𝑃𝐼 = CPR[𝑐 − 1].

𝑁 = MPR[𝑐 − 1].
 Else
 𝐶𝑃𝐼 = avg(CPR);
 𝑁 = avg(MPR);
 Shift CPR and MPR to the left by one position
 𝑐 = 𝑐 − 1
Step 5. Calculate 𝐼𝑅 for all i = 1, . . . , N from Eq. (15).
Step 6. Determine the least operating clock-rate 𝑓 from Eq. (16), such that 𝛿 ≤ 𝛾
Step 7. Calculate 𝑃 = 𝑃 + 𝑘 × 𝑐 × 𝑓
Step 8. Set the power limits as lower = 𝑃 (1- 𝛾) and higher = 𝑃 (1 + 𝛾)
Step 9. Execute application for duration τ at the lower and higher power
 thresholds from Step 8.
Step 10. Determine 𝐼𝑅 , Pm, and MPR[c] at the end of timeslice s using hardware
 counters.
Step 11. For current fm, calculate CPR[c] and k using Eq. (15) and Eq. (17),
 respectively.

 EndFor

82

(a) Power Draw

(b) Energy Savings

(c) Performance Gain

Fig. 25. Baseline power draw (Default) compared to the online (Model) and offline (Best

Power Limit) power limiting methods (a), energy savings (b), and performance gain (c)

for each workload investigated. Energy savings and performance gain are compared to

the Default measurements for each respective workload. In (c), the 10% performance-loss

mark is indicated with the dashed line. The IS-D and MG-C bars are labeled with their

actual values, which are beyond the scale of the plots.

For GAMESS, energy savings could not be obtained with the runtime model because

varying voltage and clock-rate impacted both the compute and data threads on the Xeon

Phi as opposed to CPU-only executions, in which compute and data processes may be

83

mapped to different cores with selective DVFS application in cores [90]. On the Xeon Phi,

however, all the cores are subjected to the same power limits, thereby adversely affecting the

compute processes.

For CoMD, the static analysis produced energy savings with a negligible

performance impact. The most savings were found for EAM, 3% and 10% for the problem

sizes 30 and 40, respectively. They may be explained by the energy-saving potential of the

communication phase present in the middle of the EAM force computation (see authors’

previous work [61]). The use of runtime procedure degraded the CoMD performance,

however, and thus its energy consumption; hence, the need to refine the runtime analysis in

the future work.

For NPB, energy savings were obtained mostly by memory-intensive applications:

FT, LU, SP, MG, and IS. The most significant gains were obtained by FT, LU, and MG when

the model was used, ranging from 15% to 30%. For FT and MG, such energy-savings are

attributed to the performance gains found when decreasing clock-rate and voltage: The

performance counters show that LLC misses were decreased for these executions,

indicating that fewer memory misses increased execution performance. For LU, the energy

savings were only obtained at the performance loss greater than 10%, which was not

desirable.

Similarly, the compute-intensive EP obtained some energy savings with a large

performance loss for the model execution CG, a memory-intensive application, obtained

energy savings of 8% under BPL with a small performance loss, while under the runtime

analysis larger performance loss yielded negligible energy savings. This is because the

model does not include feedback to limit performance impact, which has been beneficial

84

on the CPU. The energy savings and performance gain obtained by IS may be attributed

not only to the significant reduction in LLC misses with BPL, but also to the random

memory accesses occurring in each execution: the standard deviation for its measurements

was much higher (by about an order of magnitude) than that for the other applications.

With the runtime method, however, only 7% of energy savings were obtained.

85

CHAPTER 5

HETEROGENEOUS EXECUTION-PHASE MODEL

One such method considered in this work is the Execution Phase model, presented

in this chapter. The phase model leverages popular performance models, such as the

Roofline and ping-pong communication models, with application specific measurements

to estimate execution phases, i.e., computation and communication phases. In this chapter,

a heterogeneous computing platform featuring a CPU and one or more accelerators is

modeled. Computation on all devices is considered, as well as the communication between

devices and among MPI domains.

In this chapter, the system characteristics are presented, followed by the derivation

of the models with respect to the system. The experimental setup, results, and visualization

of the method is then presented.

5.1 System Characteristics

A single-node heterogeneous architecture is composed of one multi-core host

architecture and one or more multi-core accelerator architectures (Ai i = 1, 2, . . . , nacc),

where nacc is the number of accelerators. Note that such an architecture may contain

accelerators of different types (e.g., Xeon Phi and GPU). Each accelerator is connected to

the host and one another by the PCI bus, contains a two-level memory hierarchy (with slow

and fast memories), and is a many-core processing unit. It is also assumed that the slow

and fast memories are infinite and finite capacities, respectively, and that data must be

moved between memories and processor (called resources) during application execution.

The parallel application is assumed to employ a domain-decomposition scheme [36], which

86

is defined here as the division of a problem into sub-problems (called sub-domains) that

are distributed among devices. Sub-domains may be computed in parallel, and may also

require sharing data with neighboring sub-domains to solve the problem globally. It is

assumed that data communication phase may not overlap computation phase. When

executing an application, the total number of sub-domains is dependent both on the

application and system configuration.

The distribution of sub-domains among resources is dependent on the execution

mode: device, offload, or symmetric. For execution exclusively on the device, all work and

data movement use only the resources of that particular device. For symmetric execution,

sub-domains are distributed among the hosts and accelerators, serving as peers. For offload,

on the other hand, the computations are performed either on the host or accelerators, such

that one host sub-domain is shared with one accelerator only. In other words, each sub-

domain resides on the host while portions of its computational phase and data are copied

to the accelerator for processing and the result returned to the host. It is assumed that host

and accelerator computations do not overlap, i.e., one is idle while the other computes. The

communications among sub-domain performed only by the host(s) while leaving the

corresponding accelerators idle.

5.2 Derivation of the Execution Phases

This section presents the time, power, and energy models used to describe each of

the phases considered, with distinctions made for the hardware influencing the model

(e.g. throughput).

87

5.2.1 Execution Time

The execution of an application that employs domain-decomposition may be

described as having the following four phases: initialize, compute, communicate, and output.

The initialization phase sets up a problem to be solved, and the output phase relays

important statistics and output upon completion. Solving each sub-problem requires an

iterative pattern of computation and communication phases until a global solution is

achieved. Note that the initialization and output phases are not modeled because they are

expected to have little impact on the overall performance for large-scale problems with

multiple nodes.

The total execution time in the offload mode may modeled as:

 𝑇 = 𝑇 + 𝑇 , (19)

Where 𝑇 is the sum of the times required to perform all the computations and

communications, respectively.

5.2.1.1 Computation Phase

The total computation time is limited by the slowest time required to solve a sub-

domain for a given execution mode. It is equivalent to being limited by the total time of a

particular execution mode. Computation may be simply defined by the slowest execution

mode because sub-domains of similar execution modes will require relatively the same

time to solve; however sub-domains of differing execution modes may be vastly different,

depending on load balance and the implementation. For the model, all sub-domains of

similar execution modes are equivalent considering each would be modeled using the same

parameters.

88

The total time to compute in offload mode 𝑇 is:

 𝑇 = 𝑇 + 𝑇 + 𝑇 . (20)

It is defined by the execution time for the host 𝑇 , accelerator 𝑇 , and communication

time across the PCI bus 𝑇 . The time 𝑇 to compute on the host is defined using the

time-frequency model [16, 64, 95] as:

 𝑇 = 𝑡 ×
𝑓

𝑓
+ 𝑡 , (21)

where 𝑡 is the time on-chip, 𝑡 is the time off-chip, and 𝑓 is the operational frequency

during execution for the device such that 𝑓 ≠ 𝑓 . This general equation is used simply to

estimate host execution time and deduce the applications computational intensity on the host.

The time 𝑇 to compute on the accelerator is defined using the roofline model [107, 15] :

 𝑇 = max (𝑊 × 𝜏 , 𝑀 × 𝜏) (22)

which is the maximum of the time to perform work 𝑊 and time to move data 𝑀

between memories with 𝜏 and 𝜏 being the times to perform a unit of work and to

transfer a unit of data, respectively. The time 𝑇 to move data across the PCI bus is:

 𝑇 = 𝑀 ×𝜏 , (23)

which is the product of the amount of data 𝑀 to be moved and the time per data

movement 𝜏 across the PCI bus.

5.2.1.2 Communication Phase

Total communication time 𝑇 is limited by the slowest transfer between sub-

domains, and it may be simply limited by the slowest communication type. For offload

89

execution, there are two communication types to consider: transfers between sub-domains

on the same node (called intra-node), and transfers between sub-domains on differing

nodes (called inter-node). These two communication types may overlap. For configurations

executed on one node, the intra-node communication model is used; and for multiple nodes

the inter-node communication model is used.

Intra-node communication times 𝑇 may be defined as:

 𝑇 = 𝑀 × 𝜏 , (24)

where 𝑀 is the amount of data to be moved and 𝜏 the time required to move a

unit of data. Inter-node communication time 𝑇 is:

 𝑇 = 𝑡 + 𝑀 × 𝜏 , (25)

where 𝑡 is the network latency. Note that, for a single-node configuration, network latency

time is not present in Eq. (24).

5.2.1.3 Throughput

The time 𝜏 to perform unit of work is computed by taking the inverse of

throughput. The definition of throughput is generally the total number of cores performing

work times the frequency per core. However, for devices, such as the Xeon Phi, throughput

also depends on characteristics such as vectorization intensity [11] and operations per cycle:

 𝜏 = 𝑐 × 𝑛 × 𝑉𝐼 × 𝑓 (26)

where number of cores 𝑐 includes only those used in the computation, 𝑓 is the device clock-

rate, the number of operations per cycle 𝑛 is a value between one and two representing

an average of single and fused multiply-add operations performed, and 𝑉𝐼 is the

90

vectorization intensity, which is a measure of the number of SIMD instructions issued. For

the Intel Xeon Phi, 𝑉𝐼 may be a value between one and eight for double-precision floating-

point operations. Note that Eq. (26) is applicable to all the Intel devices based on the Sandy-

Bridge or newer microarchitectures.

5.2.2 Power and Energy

The total power draw P for the system is the sum of the power draw for each device;

the total number of devices is 𝑛 , and power is defined as:

 𝑃 = 𝑃 . (27)

Device power is defined as static and dynamic power; however dynamic power may fluctuate

during execution depending on whether the device is idle or active. A device is considered

active if performing computation, and otherwise is idle (that is to include all

communications). Device power may be defined using the weighted sum of the power draw

for each execution state:

 𝑃 = 𝑃 ×
𝑇

𝑇
+ 𝑃 ×

𝑇

𝑇
 , (28)

where the total execution time T = 𝑇 + 𝑇 and

 𝑃 = 𝑃 + 𝑘 × 𝑐 × 𝑓 (29)

is the power draw for a given state and depends on the static power draw 𝑃 , a power

constant 𝑘, the number of cores for the device 𝑐, and the state clock-rate 𝑓 (see, e.g., [95]

and the references therein).

91

From Eqs. (19), (20) and (27), energy may be defined as:

 𝐸 = 𝐸 + 𝐸 + 𝐸 + 𝐸 , (30)

where the energies 𝐸 , 𝐸 , and 𝐸 correspond to the three terms of Eq. (20),

respectively, and 𝐸 is obtained using either Eq. (24) or Eq. (25) for single- or multi-

node executions, respectively.

5.3 Experiment

Measurements have been collected on the Borges and Bolt systems using CPU +

Xeon Phi offload. The measured energy is averaged over five runs for each experiment.

For the Borges system, only two configurations are investigated, termed MIC 1 and

MIC 2, corresponding to employing only one or both Xeon Phi devices, respectively. On

Bolt, six configurations are investigated, termed N1 MIC 1, N1 MIC 2, N2 MIC 1,

N2 MIC 2, N3 MIC 1, and N3 MIC 2, where N1, N2, and N3 correspond to one, two, and

three nodes used to run CoMD. For each configuration, the host frequency, number of Xeon

Phi (MIC) threads, and model problem size were varied as follows:

− All ten power states were considered on Borges (from 1.2 to 2.001 GHz with the 100- MHz

stepping). On Bolt, only were seven (3.201, 3.2, 2.8, 2.3, 1.9, 1.5, and 1.2 GHz) out of

sixteen possible states (from 1.2 to 3.201 GHz with variable stepping) chosen to make the

number of measured configuration instances manageable while still having enough data to

fit the models.

− Seven MIC-thread values ranging from 120 to 236 (four threads per core) were taken to

execute CoMD. Note, that, since one core is always occupied by four threads dedicated to

operating system tasks, such as servicing the offload daemon and to avoid thread over-

92

subscription, the maximum of 236 application threads is reasonable to use on the 60-core

Xeon Phi considered here.

− Although problem sizes of 50, 60, 70, and 80 are explored to observe the computational

intensity of CoMD for given platforms in this work, all the results presented here are for

the problem size of 50 only. Executions with the other problem sizes exhibited similar

behavior but took significantly longer to complete.

− The compact thread affinity and thread-level granularity were used on accelerator devices

since they were found to perform better in [61, 62].

The relative error between the measured energy 𝐸 and 𝐸 ,

modeled by Eq. (30), is calculated as:

 100×
𝐸 − 𝐸

𝐸
 . (31)

Examples of error quantification are featured in Figs. 26 and 27 for Borges and Bolt systems,

respectively, where each configuration is considered for all the chosen MIC-thread and host-

frequency values. For Borges—as seen in Fig. 26–the majority of configuration instances

are modeled with no more than 5% of error. Note that only does MIC 1 at the frequency of

2.001 and lower MIC-thread values appear outside the 5% error range but is still confined

within the 10% threshold. In Fig. 27, the relative error is also confined in the 10% interval

with the MIC 1 configurations showing a slightly better prediction accuracy, in general.

5.3.1 Execution Time

Table VIII presents the execution-time model parameters for each configuration

(column Config) of the CoMD and the two systems (column System) as calculated

93

from Eqs. (21) to (24) for the host compute time 𝑇 , host communication time 𝑇 ,

Xeon Phi compute time 𝑇 , and PCI transfer time 𝑇 . The model parameters have been

estimated using linear regression over a sample set of configuration instances with varying

host frequencies and MIC thread counts. For detailed procedure to estimate parameters in

Table VIII see [65]. The column 𝑛 lists the number of sub-domains for each

configuration.

The host computation time (column-set Host Comp) is modeled as a sum of on- and

off-chip times (columns 𝑡 and 𝑡) using linear regression while varying host

frequencies in Eq. (21). The coefficient R2 was 0.99 throughout this estimation for all the

configurations; thereby, indicating a high accuracy of the model. Note that for both

systems, the ratio of 𝑡 to 𝑡 (column 𝑡 /𝑡) is less than one for all cases, which shows

that the host computation is compute, rather than memory, intensive. Recall that in CoMD,

the host updates atom position, velocity, and (when needed) redistribution of atoms. The

host communication time (column-set Host Comm) is measured and used in Eq. (24) to

obtain the (inter-host) communication latency 𝑡 by reading the hardware counters for the

amount of data transferred 𝑀 and the transfer bandwidth 1/𝜏 .

The workload on the Xeon Phi (column 𝑊 in the column-set MIC Comp) is

estimated by varying the MIC thread count and observing its effect on the execution time.

The parameters 𝑀 and 𝜏 were estimated similarly to those for 𝑇 . Note that,

although both systems use the same model (5110p) of the Intel Xeon Phi, the estimated

workloads are somewhat different for the same configurations (e.g., cf. 4.12 and 4.46

TFLOPs on Borges and Bolt, respectively, for MIC 1), which is expected because the 𝑊

values were modeled rather than calculated by counting all the algorithmic operations.

94

Fig. 26. Relative energy-model error per Eq. (30) on Borges.

Fig. 27. Relative energy-model error per Eq. (30) on Bolt.

95

TABLE VIII

EXECUTION-TIME MODEL PARAMETERS FOR BORGES AND BOLT

 Host Comp Thost Host Comm Tcomm MIC Comp Tacc PCI Tpci

System Config nsub
ton

(s)

toff

(s)

toff ton tl
Mcomm

(MB)

1/τcomm

(MB/s)

Wacc

(TFLOPs)

Macc

(MB)

1/τM

(MB/s)

Mpci

(GB)

1/τpci

(GB/s)

Borges MIC 1 1 1.62 0.23 0.14 0 59.17 450.51 4.12 83.5 2.48 5.33 4.61

MIC 2 2 0.99 0.06 0.06 0 67.1 514.97 2.16 36.1 2.10 2.81 3.78

Bolt

N1 MIC 1 1 1.21 0.30 0.25 0 63.26 564.18 4.46 84.18 2.44 5.64 2.83

N1 MIC 2 2 0.93 0.19 0.20 0 56.23 549.98 2.32 36.13 2.04 2.97 2.51

N2 MIC 1 2 0.63 0.12 0.19 0.31 52.39 569.27 2.33 36.06 2.03 2.97 2.23

N2 MIC 2 4 0.46 0.13 0.28 0.63 51.66 553.03 1.14 10.33 1.14 1.56 0.62

N3 MIC 1 3 0.43 0.06 0.14 0.23 49.14 580.15 1.60 19.52 1.61 2.08 1.93

N3 MIC 2 6 0.32 0.05 0.16 0.80 51.02 572.12 0.79 5.80 0.94 1.09 0.44

96

TABLE IX

DEVICE POWER-MODEL PARAMETERS FOUND FOR THE BORGES AND BOLT SYSTEMS

Device System Config Active Power Pactive, W Idle Power Pidle, W Total Power P , W

Pstatic ρ Pmax Tactive/T R2 Pstatic ρ Pmax Tidle/T R2 Pstatic Pmax

Xeon Phi

Borges MIC 1 168.39 1.05 241.95 0.88 0.99 170.07 0.95 236.62 0.12 0.95 168.59 241.31

MIC 2 169.91 0.93 235.06 0.84 0.97 171.24 0.79 226.58 0.16 0.80 170.12 233.70

Bolt MIC 1 161.69 1.26 249.96 0.87 0.99 160.51 1.28 250.18 0.13 0.99 161.54 249.99

MIC 2 162.51 1.17 244.47 0.84 0.99 168.37 1.07 243.33 0.16 0.84 163.45 244.29

Host CPU

Borges
MIC 1 24.30 0.28 60.19 0.07 0.85 24.22 0.28 60.11 0.93 0.85 24.23 60.12

MIC 2 13.11 0.11 27.21 0.08 0.99 13.11 0.11 27.20 0.92 0.99 13.11 27.21

Bolt MIC 1 30.60 0.22 73.89 0.04 0.99 29.03 0.18 64.45 0.96 0.91 29.09 64.83

MIC 2 25.21 0.12 48.83 0.08 0.96 25.82 0.12 49.44 0.92 0.98 25.77 49.39

97

TABLE X

MINIMUM MEASURED AND MODELED ENERGY FOR BORGES AND BOLT

System Type N nsub
Config Instance Min Energy

(J)

MIC Comp

(GFLOPs/J)

MIC Mem

(MB/J)

Host Comm

(MB/J)

PCI

(MB/J) # MIC Freq Thread

Borges Measured 1 2 2 1.3 236 6436.6 0.81 0.013 0.69 16.77

Modeled 1 2 2 1.9 236 6583.2 0.77 0.013 1.03 15.62

Bolt

Measured 1 2 2 2.3 236 8112.1 0.70 0.011 0.51 8.27

Modeled 1 2 2 2.6 236 7986.8 0.70 0.011 1.04 8.04

Measured 2 2 1 1.5 236 8786.1 0.34 0.005 0.22 3.59

Modeled 2 2 1 1.8 236 8725.8 0.33 0.005 0.23 3.96

Measured 3 3 1 1.5 236 8985.6 0.23 0.003 0.20 2.10

Modeled 3 3 1 1.8 236 8980.4 0.22 0.003 0.19 2.32

98

The differences (amounting to about 8%) may be due, for example, to different numbers

of co-processor stalls incurred during memory operations in each system, which are not

accounted for explicitly in the proposed model. It is also interesting to observe that the

speed-up with respect to the number of sub-domains 𝑛 is very good in all the

configurations with its lowest gains of 2.78 on three sub-domains and highest gains of 1.92

on two sub-domains of Bolt. Hence, one may infer that, even this non-optimized version of

CoMD with VI of only 2.6 and with a moderate problem size of 50 scales well to multiple

accelerators, either attached to a single node or to multiple nodes (cf. 𝑊 for N1 MIC 2

and N2 MIC 1 configurations, which have the same 𝑛 on Bolt).

The amount of data transferred over PCI (column 𝑀 from the column-set PCI)

was read directly from the offload output reports, which most likely estimate this value since

it appears to differ somewhat across the systems. The peak PCI bandwidth is 8 GB/s (PCI

Express 2.0 x16) for Xeon Phi. As seen in Table VIII, the configurations with fewer sub-

domains (thus, more data to transfer per sub-domain), the bandwidth 1/𝜏 reaches almost

3 and 5 GB/s on Bolt and Borges, respectively, which indicates that PCI transfers are well-

optimized in offload executions.

5.3.2 Power

Table IX presents the obtained power-model parameters for a Xeon Phi

accelerator and the host CPU (column Device) when a given configuration (column

Config) is considered on a single node of Borges or Bolt (column System). The

parameters were calculated using linear regression over the configurations instances, in

which different execution states, active or idle, were distinguished (column-sets Active

99

Power and Idle Power, respectively). The samples are obtained from varying host

frequency and MIC threads, for the host and Xeon-Phi device power models,

respectively, obtained by Eq. (29). If the maximum frequency is used, then the

maximum power draw 𝑃 may be predicted for each state, as presented in Table IX .

The total power P (column-set Total Power) is then calculated following Eq. (28).

The model accuracy is assessed by the R2 term. All the models appear well-

correlated because the obtained R2 coefficients, also provided in Table IX, are all close

to one. For each device and configuration, a ratio of its active (idle) time to the total

time is provided in column 𝑇 /T (𝑇 /T). Note that the sum of these two ratios is

one. For a give device, the times 𝑇 and 𝑇 mutually exclusive with an active-state

time being equal to the device computation time, 𝑇 for the Xeon Phi and 𝑇 for the

host CPU. During any type of communications (host-only or PCI), both host and Xeon

Phi are assumed to be idle since communication/computation overlap is not considered in

this work.

Different amounts of idle time may indicate varying benefits of CPU-based

dynamic voltage and frequency scaling (DVFS) for each device. For example, as seen in

Table IX for Borges and the MIC 1 configuration, the Xeon Phi idles only for 12% of the

execution time, so its DVFS potential may be rather small compared with that on the host,

which is 93% for the same system and configuration. Even though the power draw is

significantly lower on the host, the offloaded portions of the execution are ideal places to

save energy by DVFS, as the authors have previously concluded [63], along with

communication phases (see, e.g., [95]).

It may be observed from Table X, that the maximum host power draw for either

100

system is higher when only one accelerator is used (cf. lines 5 and 6; lines 7 and 8) because

with two accelerators the host works on two smaller sub-domains in parallel. Using two

sub-domains requires less computational intensity than one larger sub-domain does with

only one accelerator in use. Observe also, that the MIC 1 configurations required more total

power than the MIC 2 ones. Hence, using more than one accelerator may be beneficial not

only to reduce execution time but also to expect less of a power surge in compute-intensive

applications.

5.3.3 Energy

The proposed model aims to predict the best configuration instance defined as the

one with the lowest energy consumption. For each system and the corresponding node

count (column N), Table X presents configuration instances consuming (column-set

Config Instance) the minimum amount of energy (column Min Energy), which is

either measured or modeled (column Type). Since the problem size is fixed, each

configuration instance shown in Table X is determined by the number of Xeon Phi’s used

(column # MIC), host frequency (column Freq) in GHz, and the number of threads per

Xeon Phi (column Thread). The measured energy values are averaged over five runs for

a given configuration instance.

As seen in Table X, the models are able to predict a configuration close to the one

obtained experimentally. Specifically, in each case, all the configuration-instance

parameters matched except that the host frequency was consistently over-predicted by 0.3

GHz throughout but on Borges, where the predicted frequency was 0.6 GHz higher.

Overall, for either Borges or Bolt, the best configuration instances were those using a single

101

node with two Xeon Phi since the entire problem of size 50 fits on a single node. For larger

problems, when only are multi-node systems employed efficiently, the best configuration

instances will include multiple node.

To further verify the minimum energy estimations obtained for a single node N of

Bolt, all the 16 available frequencies were examined for 220 and 236 thread counts and the

corresponding energies measured. Their values, however, were always higher than that

shown as italicized in column Min Energy of Table X. It may be observed also that, for

multi-node executions, one-MIC configurations are better at large MIC-thread counts

because the host frequency may be significantly reduced (cf. measured 2.3 and 1.5 GHz on

Bolt for two sub-domains in column nsub) to compute sub-domains distributed to multiple

nodes rather than shared by a single node, considering that the total execution time is similar

in these cases (cf. 𝑇 + 𝑇 equal to 1.12 and 1.06 seconds for N1 MIC 2 and N2 MIC

1, respectively, in Table VIII), it may be inferred that an instance of N2 MIC 1 is more

energy efficient, as confirmed in column Min Energy.

The number of floating-point operations per joule as well as bytes per joule are

typically used to assess architecture performance with respect to energy consumption (see

[14, 15]). These metrics are modeled using the parameters from Tables VIII and IX using

Eq. (30) and are provided in columns 9–12 of Table X, such that columns MIC

Comp, MIC Mem, Host Comm, and PCI correspond to MIC-only computations

and memory accesses, data movement in host communications and PCI transfers,

respectively. The modeled values in each column were calculated from Eq. (26) as

follows:

102

5.4 Visualizing Phase for Heterogeneous Executions

To better visualize power with respect to time for different configurations, it has been

decided to employ the so-called waterfall plots [82]. Although software exists to render

these plots, such as Mathematica or Matlab, rendering is slow and thus too cumbersome to

use as a tool. Instead, Unity, a software used for game development on many platforms

[100], has been adopted to render the plots. With Unity, a tool has been created by the

authors to read simple input files (containing only a 2D array of power data and phase

labels) and to automatically render a corresponding plot.

The three axes composing each waterfall plot are execution configuration

(x-axis), power draw (y-axis), and execution time (z-axis); in Unity, the y-axis is the

vertical axis by default. The input power and phase data are used to create a mesh: one

mesh is created for the host and another for the accelerator, and, in cases of multiple host

or accelerator devices, the power is summed. Recall that the application execution phases

are static power draw, initialization, host computation, host communication, and offload

phase. The offload phase contains both accelerator computation and data transfer phases.

The created waterfall plots are meant to be viewed in color and from multiple viewpoints.

Hence, the authors have published a webpage, available at [57], where any user may

explore the plots firsthand.

nacc · Wacc/Eacc ,

nacc · Macc/Eacc , N

· Mcomm/Ecomm ,

nacc · Mpci/Epci .

MIC Comp

MIC Mem

Host Comm

PCI

103

Figure 28 shows the waterfall plots for 1–4 node configurations with 236 threads,

one Xeon Phi, and frequency from minimum to maximum in each plot. The colors illustrate

the phase transitions that occurred in each execution, and show the relative timing of phases

across different executions. The data for the plots in Fig. 28 come from the authors’ work

[66]. One may observe across all four plots in Fig. 28 that the phase power draw differences

diminish as the number of devices used increases; in (a), power draw is very jagged and

fluctuates highly between large and small power draws, but in (d), power draw is relatively

smooth and thus fewer fluctuations are perceived. This shows that there is significant

overlap among phases executed on differing nodes which impacts the resulting power draw

of the system. On a per node basis, power draw can be expected to fluctuate rapidly, but from

the viewpoint of the system, power draw appears fairly consistent.

Figure 28 may also be used to show the power draw for each execution phase. In

color, the plots are mostly green; green is used to show when power draw has been sampled

during the offload execution phase. This is especially true for the host. Most of the high

power readings on the host are colored green, although one would think that power would

be low because the host is not actively computing. This shows that the host is moving data,

but must utilize the core to handle the instructions. From the authors previous work [63],

minimizing frequency during offload execution reduced power draw. However, from the

waterfall plots in Fig. 28, it may be concluded that there is a potential for energy savings

during offload through host DVFS. Alternatively, the host may be scheduled to perform

computations during the offload phase.

Figure 29 shows a waterfall plot with data collected using the micmgmt API

measurements. Note the power draw differences between Fig. 28 and Fig. 29: The power

104

Fig. 28. Waterfall plots for Turing with 1–4 nodes (a–d), each with 1 Xeon Phi, 236

threads with a CoMD problem size of 60 (864,000 atoms).

Fig. 29. Waterfall plot on Borges with 1 node, 1 Xeon Phi, 236 threads with a CoMD

problem size of 50 (500,000 atoms). On the left (a), executions were measured using the

old method, and on the right (b), measured using the new method with micmgmt API.

105

per Xeon Phi does not exceed 150 W with the micmgmt API measurements (Fig. 29). All

the plots have been generated using power data collected by reading the connector sensors

(PCI, 2x3, and 2x4) which should yield a maximum power draw of 300 W. The device TDP

is 245 W, recall that this is the average power draw while the device is in the C0 (active)

state; therefore, a power draw of over 200 W was the expected result, yet power draw nears

only 130 W. This shows there is room for optimization for this application on this hardware.

5.5 Conclusions

In this chapter, the execution phase model was presented. The models used here were

successfully fit to CoMD on two different heterogeneous platforms with Xeon Phi, and the

results were visualized using the Unity Game engine. The model was able to capture the

execution trends identified by the models, although the method for collecting this data is

not extendable to all applications. The method relies on quantifying each execution phase

using timers, such that the data can be correlated with power measurements and thus

execution phases may be determined. Although this approached worked for CoMD, more

complex applications (such as GAMESS) are not easily dissected, especially since

GAMESS offers many more execution kernels than CoMD. Further, this measurement

approach incurred additional performance penalties due to writing data to the output file

(write operations to the hard disk), which made the method impractical for general use.

Thus, a different approach is needed to model applications and hardware.

106

CHAPTER 6

PREDICTING ENERGY CONSUMPTION

Energy consumption is a major concern for HPC systems because energy is a measure

of operating costs – power draw is expensive, and applications take time to execute. Two

techniques have emerged to control power and energy consumption for HPC systems: power

and energy capping [88]. Power capping is used to limit the amount of power that the system

may consume while executing a workload. Energy capping is used to limit the amount

of energy that may be consumed to execute a workload. The difference between the two

techniques is subtle; power capping limits the peak power draw and may consequently cause

execution performance to decrease, whereas energy capping limits the integral of power

over time but does not limit instantaneous power draw and thus does not reduce execution

performance.

Predicting energy consumption can be tricky. Application workloads are highly

variable, especially for more complex algorithms, thus power draw varies over the

execution. Further, not all compute resources respond the same to a given workload, i.e.,

certain nodes will consume more power than others given the same workload; this is also

true of time / performance. Finally, power draw does not necessarily reflect the state of the

execution, e.g., computing or moving data, for several reasons. (1) Power draw depends on

the efficiency of an operation – the larger the delay between requesting data and operating

on it can potentially reduce the power draw. (2) Computations and data movement overlap

which makes identifying particular operations difficult. (3) Multiple cores may share a

power plane, thus the actual power consumption may be higher than that required by the

workload because of this limitation (power will be the max required of all cores on the

107

plane).

To demonstrate several methods for predicting energy consumption, consider the

following analysis of several parallel applications (CoMD and NPB) of which problem size

may be defined. The ECM model is considered here because performance is defined by

problem size (in FLOP’s), the number of cores, and clock-rate; these application and system

parameters are most commonly adjusted to determine the optimal execution. Recall from

Chapter 2 the definition for the ECM performance model (Eq. (3)); for reference, it is

presented again below:

 𝑇 = min 𝑐𝑁 1 +
𝑓 − 𝑓

𝑓
, 𝑁 (32)

where 𝑁 is the performance in FLOPs for one core, 𝑁 is the maximum achievable

performance given all bottlenecks, 𝑐 is the number of cores, 𝑓 is the current clock-rate, and

𝑓 is the baseline clock-rate. The ECM power model is:

𝑃 = 𝑊 + 𝑐(𝑊 𝑓 + 𝑊 𝑓), (33)

where W0 is static power draw, W1 is the coefficient for the linear term of power draw,

and W2 is the quadratic term.

The ECM performance model has been fit to measurements collected while running

each application with several small problem sizes. Power is not modeled here, since average

power varies little with problem size, and predictions are verified against large problems

executed with only the maximum number of cores and clock-rate. Instead, the maximum

power measurement obtained from the small problem sizes will be used to estimate the power

draw for a larger problem size.

The results contained in this chapter are obtained using two definitions of problem

108

size: (1) “problem size” refers to the input problem size used for each application, and

(2) “problem size per core” refers to the ECM-defined problem size (see Eq. (32)) which

scales the input problem size by the number of cores and clock-rate. Also note here that

the performance bottleneck term defined in the ECM performance equation is ignored for

the clarity of exposition.

6.1 Problem Size Definitions

The NAS Parallel Benchmark Suite contains many different benchmarks for which

problem size relates to inputs, such as the number of iterations or grid size. Problem size

for the NPB can be found by reviewing the source code for the computation of millions of

flops, a metric output by each benchmark. The problem size definitions for CoMD and the

NPB suite are presented below.

6.1.1 NPB Problem Size

Here the definitions for problem sizes are presented for the CG and LU benchmarks

for the NPB benchmarks. Only these two are shown here for brevity, however, the methods

contained in this chapter may be applied to all of the benchmarks as will be shown in this

chapter. The NPB benchmarks all estimate problem size in unit FLOPs.

For CG, problem size is defined as:

 𝑁𝑍𝑍 = 𝑁𝑍 × (𝑁𝑍 + 1) , (34)

 𝑁 = 2 × 𝐼 × 𝑅 × 6 + 𝑁𝑍𝑍 + 25 × (5 + 𝑁𝑍𝑍) , (35)

where I represents iterations, R is number of rows, and N Z is the number of non-zeros

109

per row. This function can be found in the NPB source code for CG. Performance

modeling of CG has been conducted in the literature [91, 21], although the version

provided by the NPB is a modern implementation of the algorithm.

For LU, problem size is defined as:

𝑁 = 𝐼 × (1984.77 × 𝑁𝑋 × 𝑁𝑌 × 𝑁𝑍 −

 10923.3 ×
𝑁𝑋 + 𝑁𝑌 + 𝑁𝑍

3
+

 27770.9 ×
𝑁𝑋 + 𝑁𝑌 + 𝑁𝑍

3
− 144010)

(36)

where I represents iterations, and NX, NY, and NZ represents the grid size. What is

interesting here is that the model for 𝑁 is based on a regression model and not on an

approximate computation of the total FLOPs, thus Eq. (36) may be subject to error when

tested on machines other than that used to obtain it.

6.1.2 CoMD Problem Size

For CoMD, the total number of atoms represents problem size, and is defined as:

 𝑁 = 4 × 𝐼 × 𝑁𝑥 × 𝑁𝑦 × 𝑁𝑧 (37)

where I again represents iterations, and N x, N y, N z represents the number of atoms in

the x, y, and z-directions respectively. It is more difficult to approximate the number of

FLOPs associated with this algorithm since the number of atoms involved per iteration

depends on the number of atoms within a cutoff distance. Further, the computation may

involve an interpolation which the number of FLOPs is not clearly defined. However,

supplementing the number of atoms for FLOPs provides the linear model with a

110

sufficient definition of problem size for this investigation.

6.2 Measurements

Figures 30 and 31 present the measured energy, time, and power for CoMD (EAM

and LJ) and NPB (CG and LU), respectively, for two platforms: Borges (Sandy-Bridge) and

Marquez (Haswell). Energy and time are plotted against the problem size per core according

to the ECM performance model Eq. (32). Power is plotted against clock-rate in GHz as in

the ECM power model Eq. (33). Notice that the linear ECM model has been fit to the time

measurements, represented as a solid line.

For CoMD, three problem sizes are tested, 25.6, 50.0, & 86.4 million atoms, and

for CG and LU, two problem sizes are tested, classes B and C, while varying clock-rate

and number of cores. Because strong scaling has been used while varying the number of

cores, the data has been divided into two general problem sizes / core, noted as PS1

and PS2, where PS2 > PS1 by a factor of 2. Note that the problem size / core includes

all problem sizes considered for each application (25.6-86.4 mil atoms for CoMD and

classes B and C for NPB).

Clock-rate has been included in the measurements because it can be used to identify

the computational- or memory-boundedness of an application [16], and so it is useful to

define whether the application scales well with problem size (upward linear trend between

all problem sizes) or if the application encounters bottlenecks (horizontal linear trend

between local problem sizes). This may be observed in Fig. 31c where the linear trend of

the ECM model does not accurately reflect the trend of the measurements (see PS2). In this

situation, an underlying performance bottleneck has been encountered, although this is not

111

predicted by the model since data movement (between cache and DRAM) is not modeled

here.

Power is not modeled here, although the quadratic trend may be observed in Figs.

30 and 31; the trend is less obvious for the NPB measurements since class B is much

smaller than class C which distorts the trend (e.g. two parallel quadratic trends are shown in

Fig. 31c for both PS1and PS2). Energy is to be predicted, and so the measured results are

shown here for reference. Measured energy has been calculated as:

 𝐸(𝑡) = 𝑃(𝑡) × ∆𝑡 , (38)

where E(t) is energy, T is execution time, P (t) is power at time t, and ∆t is the sampling

rate (5ms).

6.3 Predictions

Figures 32 and 33 presents the predicted and measured energy, time, and power for

large problem sizes; for CoMD, problem sizes 400 million-3200 million atoms are

considered, and for NPB, class D is considered. Predicted time and energy is shown as a

solid line. The average power draw used to predict energy is shown in Figs. 32 and 33 using

a black ’X’. The prediction results here only investigate PS1 at maximum clock-rate

because measurements were only collected for this configuration (16 cores @ max clock-

rate). Power measurements for the larger problem sizes is shown as a blue circle, and the

small power measurements from Figs. 30 and 31 are shown as orange squares for reference.

Tables XI and XII presents the time, power, and energy values obtained from

measuring and predicting the larger problem size considered for each application (3200

112

million atoms and class D), shown in Figs. 32 and 33, respectively, for CoMD and NPB.

Predicted energy has been calculated as:

 𝐸 = 𝑇×𝑃 . (39)

Negative error shows an under-estimation with respect to the measured result, and a

positive error shows an over-estimation.

First consider power in Figs. 32 and 33 and Tables XI and XII. The maximum

average power draw (labeled ’Model’ in the figures) is used to predict energy consumed;

notice that the selected power draw is close to that measured for the larger problem sizes

(max error 7%).

Time is less accurate, with error ranging from 6%–60%. Inaccuracy of the time

model is the result of two factors: (1) the ECM performance model is based on small

problem sizes, and (2) the performance bottleneck is not included in the model fit since

data movement is not defined for the applications considered. Error in energy consumption

ranges from 4%–60%. Thus, it is clear from these results that the error in the energy

consumption is due to the error in time, for which only small problem sizes were used to

fit the ECM performance model.

It must also be mentioned here that the LU predictions are less accurate than those

for CG or CoMD. Again, this reflects on the model for problem size. LU may be used here

as an example of the difficulty in defining problem size in the terms that are meaningful

across platforms. CoMD also suffers from an incomplete definition of problem size, which

is shown in Fig. 32; however because the code is compute-bounded, the definition for

problem size still maintains a mostly linear trend. On Borges, it is clear that the code is less

compute- bounded than on Marquez; the linear fit is better on Marquez than Borges.

113

(a
)

B
or

ge
s-

C
oM

D
 -

 E
A

M

(b
)

B
or

ge
s-

C
oM

D
 -

 L
J

(c
)

M
ar

qu
ez

-

C
oM

D
 -

 E
A

M

(d
)

M
ar

qu
ez

-

C
oM

D
 -

 L
J

Fig. 30. Predicted vs. measured energy, time, and average power of CoMD on Borges

and Marquez.

114

(a
)

B
or

ge
s-

N
P

B
 -

 C
G

(b
)

B
or

ge
s-

N
P

B
 -

 L
U

(c
)

M
ar

qu
ez

-

N
P

B
 -

 C
G

(d
)

M
ar

qu
ez

-

N
P

B
 -

 L
U

Fig. 31. Predicted vs. measured energy, time, and average power of CG and LU on

Borges and Marquez.

115

TABLE XI

PREDICTED VS. MEASURED ENERGY, TIME, AND AVERAGE POWER FOR 3200

MILLION ATOMS (COMD) AND CLASS D (NPB – CG AND LU) ON BORGES.

 Energy Time Avg Power

 Measured 214752 2149.64 99.61
CoMD-EAM Modeled 262802 2657.39 97.75

 Error 22.4% 23.6% -1.9%

 Measured 135843 1393.69 96.79
CoMD-LJ Modeled 128537 1300.20 96.67

 Error -5.4% -6.7% -0.1%

 Measured 152655 1353.94 109.85
NPB-CG Modeled 129783 1176.01 104.00

 Error -15.0% -13.1% -5.3%

 Measured 261480 2260.84 114.57
NPB-LU Modeled 259970 2421.47 106.52

 Error -5.7% 7.1% -7.0%

TABLE XII

PREDICTED VS. MEASURED ENERGY, TIME, AND AVERAGE POWER FOR 3200

MILLION ATOMS (COMD) AND CLASS D (NPB – CG AND LU) ON MARQUEZ.

 Energy Time Avg Power

 Measured 153553 1711.43 89.45
CoMD-EAM Modeled 166320 1851.41 88.31

 Error 8.3% 8.2% -1.3%

 Measured 95350 1072.08 88.54
CoMD-LJ Modeled 88585 950.10 90.49

 Error -7.1% -11.4% 2.2%

 Measured 236406 2454.74 94.92
NPB-CG Modeled 123447 1224.78 99.11

 Error -47.8% -50.1% 4.4%

 Measured 553854 5241.16 104.93
NPB-LU Modeled 222934 2156.78 102.59

 Error -59.7% -58.8% -2.2%

116

(a
)

B
or

ge
s-

C
oM

D
 -

 E
A

M

(b
)

B
or

ge
s-

C
oM

D
 -

 L
J

(c
)

M
ar

qu
ez

-

C
oM

D
 -

 E
A

M

(d
)

M
ar

qu
ez

-

C
oM

D
 -

 L
J

Fig. 32. Predicted vs. measured energy, time, and average power of CoMD on Borges

and Marquez.

117

(a
)

B
or

ge
s-

N
P

B
 -

 C
G

(b
)

B
or

ge
s-

N
P

B
 -

 L
U

(c
)

M
ar

qu
ez

-

N
P

B
 -

 C
G

(d
)

M
ar

qu
ez

-

N
P

B
 -

 L
U

Fig. 33. Predicted vs. measured energy, time, and average power of CG and LU on

Borges and Marquez.

118

6.4 Analysis

Consider the power traces and corresponding probability distributions shown in Figs. 34

and 35 for each application and computing platform. An annotation has been added for

probabilities exceeding the specified boundaries of the plot. Each bar of the distribution

represents a 5W bin, and each distribution is normalized by the total number of samples

in the trace (except idle power).

Idle power measurements are excluded from the trace because the distribution

represents the execution. Hence, the power traces have been cropped 4.8s from the start

and 5.0s from the end of the trace, i.e., a majority of idle power measurements are ignored.

Approximately 0.2s of idle power measurements remain at the beginning of the trace

because there is a delay between issuing the command to measure power and the time

required to make the first measurement. It may be possible to find a smaller value than 0.2s,

however idle power measurements contribute less than 1% of overall distribution.

6.4.1 Distribution Analysis

The power distributions in Figs. 34 and 35 share a common trend, in that they may

be modeled using a Normal distribution [56], which is represented in the figure as a solid

line. Table XIII presents the Normal distribution parameters (mean µ, standard deviation

σ) for the power traces shown in Figs. 34 and 35. The normal distribution

is defined as:

 𝑓(𝑥) =
1

√2×𝜋×𝜎
× exp

−(𝑥 − 𝜇)

2×𝜎
 , (40)

119

where f (x) is the resulting probability density function, σ is standard deviation, and µ is

the mean.

Energy distributions for each application and system are presented in Figs. 36 and

37; like with the power traces, the energy traces show energy over time for the execution

and the corresponding distribution. The distributions have been fit to a bimodal distribution

[90], and the model parameters are presented in Table XIV. The bimodal distribution is

defined as:

𝑓(𝑥) = 𝛼 ×𝑒𝑥𝑝
()

 + 𝛼 ×𝑒𝑥𝑝
()

 , (41)

where f (x) is the resulting probability density function, α1 and α2 are approximately equal

to 1 √2×𝜋×𝜎⁄ , and 𝜇 , 𝜇 , 𝜎 , and 𝜎 are the mean and standard deviation of each peak

of the distribution (labeled 1 and 2 respectively).

What is interesting about the distributions here is that power can be described

generally using only one peak, but energy shows two (sometimes three, see Fig. 35) peaks,

depending on the application. Also make note that the power measurements near idle power

(and respective energies) are not representative of the distribution, and consist of fewer

than 1% (0.01 normalized) of all samples; indeed these measurements are outliers, which

supports the theory that measurements near idle are indicative of delays captured via power

draw, see Fig. 35d. Generally power and energy for an application-platform are shown as

a whole, meaning energy is the sum of the power samples over time, providing a single

value for energy consumption.

Similarly, power is averaged such that a single value is representative of the trace.

This is good, but it doesn’t say much about how the application used that energy. The energy

distribution shows this. It provides a range of energy values, and shows that given a

120

sampling rate (about 10ms measured), energy most commonly is used in specific

increments of energy. In this way, applications and hardware can be more directly

compared. And since energy is about equal to cost, this is also good for cost assessment.

6.4.2 EMD Residual and the QFR Model

Consider the QFR power models and EMD residuals presented in Figs. 38 and 39.

EMD has been applied to each power trace in Figs. 34 and 35 and the corresponding

residual (Measured EMD) is compared against the predicted quadratic fit residual

(Modeled QFR), calculated as described in Eq. (42).

 𝑃(𝑡) = 𝑎𝑡 + 𝑏𝑡 + 𝑐 (42)

 𝑎 =
−𝑏

𝑇
 (43)

 𝑏 =
4×𝑃

𝑇
 (44)

The coefficients a, b, and c are calculated using Eqs. (43) and (44) where coefficient

c is idle power draw, dynamic power draw Pd is the difference between average power and

idle, and time T is the time predicted by the ECM performance model. Idle power draw

has been measured at 45.8 W for Borges and 33.3 W for Marquez (at the maximum clock-

rate), which can be seen in the QFR’s in Figs. 38 and 39.

Compare the EMD residual to the QFR. The error calculated prior (see Tables XI

and XII) is captured in the relative length of each curve. Both the QFR and EMD residual

also approach average power, which is expected since power was not modeled here.

Focusing on the relative shape of the EMD residual vs. the QFR, notice that the EMD

residual converges on average power draw as time increases.

121

For a shorter trace, the start and end of the EMD residual may be observed

approaching idle power; this is explained by the amount of idle power samples in the trace.

Since a fixed amount of idle measurements are included in the trace, independent of

execution time, the influence of idle power on the residual of shorter traces is increased. The

opposite occurs for larger traces (i.e. the curve is mostly influenced by dynamic power

draw), hence the EMD residual converges on average power draw. Figure 34d provides an

excellent example of a short trace, and Fig. 35c shows a long trace (> 1000 seconds).

Further, the EMD residual is more representative of the power trace than the QFR

since EMD is based on the measurements. The minimum power exhibited by the residual

is much larger than that of the QFR. This suggests that the observed static power draw for

the execution is much higher than typically reported, since EMD is including the power

required to keep cores active throughout the execution. Typically, the power required to

keep cores active is tallied as dynamic power draw since this may be scaled with DVFS;

however, if the power draw during execution does not dynamically change, this may be a

misrepresentation of power. Based on the trend from EMD, a substantial amount of power

may be concluded as static power draw.

A similar finding has been found by the authors in [28] who use linear regression

to evaluate power models meant to investigate uncore power usage. They found that up to

74% of static power is due to uncore power draw, and up to 61% of total energy

consumption on the Haswell CPU is due to uncore power draw. This finding is consistent

with the findings for the Xeon Phi which has a static power draw of approximately 80W

and most applications use up to 160W when loaded — in this case, static power

contributes to 50% total energy consumption. Indeed, static power draw is the leading

122

(a
)

B
or

ge
s-

C
oM

D
 -

 E
A

M

(b
)

B
or

ge
s-

C
oM

D
 -

 L
J

(c
)

M
ar

qu
ez

-

C
oM

D
 -

 E
A

M

(d
)

M
ar

qu
ez

-

C
oM

D
 -

 L
J

Fig. 34. Power traces for CoMD on Borges and Marquez at max problem size (3.2 billion

atoms) with distribution of power samples normalized by the total number of samples in

the trace.

123

(a
)

B
or

ge
s-

N
P

B
 -

 C
G

(b
)

B
or

ge
s-

N
P

B
 -

 L
U

(c
)

M
ar

qu
ez

-

N
P

B
 -

 C
G

(d
)

M
ar

qu
ez

-

N
P

B
 -

 L
U

Fig. 35. Power traces for CG and LU on Borges and Marquez at max problem size

(class D) with distribution of power samples normalized by the total number of samples

in the trace.

124

(a
)

B
or

ge
s-

C
oM

D
 -

 E
A

M

(b
)

B
or

ge
s-

C
oM

D
 -

 L
J

(c
)

M
ar

qu
ez

-

C
oM

D
 -

 E
A

M

(d
)

M
ar

qu
ez

-

C
oM

D
 -

 L
J

Fig. 36. Energy traces for CoMD on Borges and Marquez at max problem size

(3.2 billion atoms) with distribution of power samples normalized by the total number of

samples in the trace.

125

(a
)

B
or

ge
s-

N
P

B
 -

 C
G

(b
)

B
or

ge
s-

N
P

B
 -

 L
U

(c
)

M
ar

qu
ez

-

N
P

B
 -

 C
G

(d
)

M
ar

qu
ez

-

N
P

B
 -

 L
U

Fig. 37. Energy traces for CG and LU on Borges and Marquez at max problem size

(class D) with distribution of power samples normalized by the total number of samples

in the trace.

126

TABLE XIII

NORMAL DISTRIBUTION COEFFICIENTS OF POWER FOR COMD AND NPB

(CG AND LU) ON THE BORGES AND MARQUEZ PLATFORMS.

System Application Mean µ Std Dev σ

 CoMD - EAM 99.6 4.069
 CoMD - LJ 96.7 6.017
Borges NPB - CG 113.0 7.242

 NPB - LU 117.6 6.579

 CoMD - EAM 89.6 6.223
 CoMD - LJ 88.4 6.696
Marquez NPB - CG 6.429 96.6

 NPB - LU 106.6 3.996

TABLE XIV

BIMODAL DISTRIBUTION COEFFICIENTS OF ENERGY FOR COMD AND NPB

(CG AND LU) ON THE BORGES AND MARQUEZ PLATFORMS.

System Application α1 µ1 σ1 α2 µ2 σ2

Borges

CoMD - EAM 0.610 0.528 0.049 0.290 1.513 0.063
CoMD - LJ 0.601 0.525 0.048 0.294 1.495 0.062
NPB - CG 0.485 0.589 0.063 0.211 1.788 0.067
NPB - LU 0.067 0.649 0.079 0.043 1.610 0.488

Marquez

CoMD - EAM 0.600 0.511 0.060 0.117 1.442 0.114
CoMD - LJ 0.573 0.507 0.063 0.169 1.406 0.072
NPB - CG 0.646 0.533 0.058 0.063 1.527 0.271
NPB - LU 0.647 0.585 0.051 0.095 1.738 0.114

127

(a
)

B
or

ge
s-

C
oM

D
 -

 E
A

M

(b
)

B
or

ge
s-

C
oM

D
 -

(c
)

M
ar

qu
ez

-

C
oM

D
 -

 E
A

M

(d
)

M
ar

qu
ez

-

C
oM

D
 -

 L
J

Fig. 38. EMD residual vs predicted QFR for CoMD on Borges and Marquez at max

problem size (3.2 billion atoms).

128

(a

)
B

or
ge

s-

N
P

B
 -

 C
G

(b
)

B
or

ge
s-

N
P

B
 -

 L
U

(c
)

M
ar

qu
ez

-

N
P

B
 -

 C
G

(d
)

M
ar

qu
ez

-

N
P

B
 -

 L
U

Fig. 39. EMD residual vs predicted QFR for CG and LU on Borges and Marquez at max

problem size (class D).

129

limitation to energy-efficient computing.

Although the QFR model is based on the residual, certain assumptions had been made

such that the model may be equated to time and power [60]. The first assumption is power

draw is equal at the start and end of execution, thus time may then be easily defined when

the y-intercept equal to coefficient c for a time > zero. The second assumption is coefficient

c is idle power draw (a.k.a static power). As has been shown here, these assumptions placed

limitations on the model, and for long traces (> 1000 seconds), the model began to fail. This

is visible in Figs. 38 and 39 where the QFR does not cover nearly the amount of area as the

EMD residual. The model could be more representative of the EMD residual if idle power

measurements were collected for a time proportional to the execution time; however, this

is wasteful and the distributions shown prior are a better representation of power and energy.

6.5 Relative Error Between Prediction Methods

Consider Fig. 40 which compares the relative error for each method to predict

energy considered in this chapter; error in predicted energy is relative to measured energy.

To recap, measurements were collected using small problem sizes to which the ECM

performance model was fit. Using this definition of time, and the maximum value of

average power measured, energy was predicted. Thus, the first method is Avg Power.

Following came the introduction and discussion of the Power Distribution and

Energy Distribution using unimodal and bimodal normal distributions. Finally,

the EMD Residual and QFR Model were discussed.

130

Fig. 40. Error in energy consumption for predicting energy using: average power, EMD

residual, QFR model, power distribution, and energy distribution.

First, note in Fig. 40 that the baseline error is Avg Power, which was defined prior

in Tables XI and XII. Because of the error in the execution time model, no other model

here should predict energy better than average power, hence it is used as a baseline.

Also note that the EMD residual remains an excellent representation of energy

consumption, although it is based on the measured results and thus is expected to have zero

error. The QFR model shows high error, as expected based on the trends in Figs. 38 and

39. The purpose of the QFR model was to be a high-level interpretation of an execution

such that applications and hardware could be compared in a way that was meaningful.

131

Inadvertently, analyzing the traces as distributions provides a better method for

representing power and energy. The error shown in Fig. 40 for both the power and energy

distributions closely matches the average power. This is to be expected, however, since the

distributions incorporate mean power/energy into the model, so the results here could be

misleading and further analysis of the method is required.

132

CHAPTER 7

MULTISOCKET AND MULTINODE ANALYSIS

In this chapter, an investigation of hardware platforms featuring multiple sockets

per node and multiple nodes is performed. This analysis is meant to bridge the gap between

the analyses conducted thus far (primarily focused on single-node executions) and the

applicability of the results to large-scale systems. More emphasis has been placed on

individual nodes than large groups because these individual nodes make up the whole, and

the variability of runs on a particular machine will impact the scaling behavior as additional

nodes are added.

In the previous chapter, plots were presented that showed the raw measurements of

time, power, and energy for various applications and platforms (in particular, the small

problem sizes). The plots of interest have been duplicated here, see Fig. 41. Focus attention

to power for each plot; notice that although a quadratic trend may be observed as clock-

rate increases, outliers may be observed that draw 10W less than the trend (on Borges, and

around 5-6W on Marquez). This has a bigger impact on the PS1 measurements where 16

cores are used (as opposed to 8 in the PS2 case). These variations may also be observed

in energy (notice the PS1 measurements are grouped together instead of following a trend

as with PS2). Even with the trend, outliers are still present in energy (e.g. Borges). This is

caused by latency in the system that can only be encountered at runtime. Thus, this behavior

is to be expected in the multi-node environment and to greater extremes due to the added

level of parallelism (network).

In the multi-node environment, latency due to data movement over the network and

load imbalance between nodes will compound with the run-to-run variability in performance

133

(a) Borges - CoMD - LJ

(b) Marquez - CoMD - LJ

Fig. 41. Duplicate of the measured energy, time, and average power of CoMD on Borges

and Marquez for several problem sizes as presented in the previous chapter.

and energy. Optimization of the application can reduce these bottlenecks, but no application

can be completely rid of them. Thus, it becomes important to investigate how applications

utilize multiple nodes. However, before jumping into multiple nodes, one feature of each

node has been overlooked; that is each node is often comprised of multiple sockets and

each socket, if measured using RAPL as is done in this work, provide multiple sources of

measurement, i.e., total package, core, and DRAM.

134

7.1 Multisocket Analysis

Many computing platforms designed today feature multiple sockets to increase the

available resources per node. This is an important caveat, since one may assume that all

cores may share the same cache, however often there are multiple processors and the node

is represented as the total amount of resources (e.g. cores, memory, cache levels,

bandwidth, power draw, etc.).

Intel processors allow for energy to be measured using the running average power

limit (RAPL) interface [20] and more recent processors utilize the Linux Power Capping

Framework [2] to obtain measurements. Most important here is that each socket reports

energy independently, and offers energy measured for the core, DRAM memory, and

sometimes the package (to indirectly include uncore).

In the author’s previous works [58–60] EMD has been applied to a power trace,

consisting of total power (the sum of all power sources). In this section, an investigation of

applying EMD to the various sources of energy is conducted; specifically, EMD is applied

to power traces for the following measurement sources: total and per source totals for core,

DRAM, and uncore.

7.1.1 Power Traces

The power traces presented in Figs. 42 and 43 show two problem sizes for the

GAMESS chemistry application, namely 1L2Y and 20w, while varying the MPI thread

affinity between bunch and scatter. The traces shown here have been collected on the

Haswell system, Marquez, because Haswell and newer processors include DVFS for DRAM

and the impact of thread affinity is more obvious.

135

GAMESS is different from the other applications shown in this dissertation (CoMD,

and any NPB benchmark) because it has been designed to be task-parallel as opposed to

the other applications which are data-parallel. Data parallel is very easy to implement;

generally, one or more loops index one or more datasets and computations are performed

on them. Task parallel is less specific, in that a “task” could represent any number of

operations, such as computation (or a series of computations), writing to the hard disk (I/O),

and communication.

In GAMESS, an equal number of MPI processes are created to accomplish two

types of tasks; one set for computations and communication, and the other set for I/O. The

advantage of this application design is that data I/O can overlap computation, although the

code is more complex to accommodate this optimization. And since half of the tasks perform

very little work, again data I/O, over-subscribing cores is commonly used for this application.

In the traces presented in Figs. 42 and 43, half of the total cores are dedicated to computation

and the other half to data I/O.

Notice in Figs. 42 and 43 that the DRAM power is flat on the second Socket for the

Bunch affinity, and activity is observed for both Sockets for the Scatter affinity. Next, notice

that core power is fairly constant throughout the execution on both sockets, no matter the

affinity. This is interesting, since power traces on older generations of Xeon CPU’s show a

lot of variability in the CPU power and constant power draw for DRAM.

Consider Fig. 44 which shows GAMESS-1L2Y under the bunch and scatter

affinities on Sandy-Bridge. What is most interesting for this architecture is that there is not a

difference in power draw between sockets while varying affinity. Since uncore and DRAM

power do not change throughout execution, all variability in the trace occurs on the core

136

power rail. It is unexpected that the bunch affinity would cause power draw to vary on both

sockets. A similar study in [93] showed that the DVFS granularity is the cause for the

power draw on both sockets. Note, this is also observed for configurations with fewer cores

(8 used in the execution in Fig. 44).

7.1.2 EMD on Socket Traces

When EMD is applied to power traces, it provides a wealth of information yet to

be completely explored. A question may be raised; what are the differences when EMD is

applied to the total power versus the individual traces? To answer this question, the IMF’s

for the total power of all nodes, of each node, and of each source are considered. The

method has been extended to per-source and per-socket analysis, but that is not shown here

for the sake of exposition.

7.1.2.1 Per Source Traces

Consider the IMF’s generated for the traces in Fig. 42 which are presented in Figs.

45 to 48. Here, the total power trace is compared against the core and DRAM power traces

(sum of both sockets). And for the sake of exposition, only the 1L2Y problem size is

discussed since there is more variation in power as a function of execution time.

To maximize the visibility of the data, IMF’s have been separated into two groups for each

trace; Figs. 45 and 46 present the IMF’s for the bunch affinity and Figs. 47 and 48 for the

scatter affinity. Total power is shown in black, core power is shown in light gray, and

DRAM power is shown as dark gray; for reference, the original power traces are presented

in Figs. 45 and 47, respectively.

137

(a) Marquez - GAMESS - 1L2Y - 4 cores – Bunch

(b) Marquez - GAMESS - 1L2Y - 4 cores - Scatter

Fig. 42. Power traces of GAMESS-1L2Y collected on Haswell showing total vs. per socket,

per source traces while varying MPI thread affinity. For each plot (a & b), there are three

subplots: top shows total power, middle and bottom shows socket 1 & 2 power respectively

where core power is shown in black, and DRAM power in gray.

138

(a) Marquez - GAMESS - 20w - 8 cores – Bunch

(b) Marquez - GAMESS - 20w - 8 cores - Scatter

Fig. 43. Power traces of GAMESS-20w collected on Haswell showing total vs. per socket,

per source traces while varying MPI thread affinity. For each plot (a & b), there are three

subplots: top shows total power, middle and bottom shows socket 1 & 2 power respectively

where core power is shown in black, and DRAM power in gray.

139

(a) Borges - GAMESS - 1L2Y - 8 cores – Bunch

(b) Borges - GAMESS - 1L2Y - 8 cores - Scatter

Fig. 44. Power traces of GAMESS-1L2Y collected on Sandy-Bridge showing total vs. per

socket, per source traces while varying MPI thread affinity. For each plot (a & b), there are

three subplots: top shows total power, middle and bottom shows socket 1 & 2 power

respectively where core power is shown in black, DRAM power in dark gray, and uncore

in light gray.

140

Fig. 45. Power trace and the first half of the IMF’s for GAMESS-1L2Y collected on Haswell

with the bunch affinity. In each plot, total power (black) is shown with core (light gray) and

DRAM (gray) power traces (the total of both sockets).

141

Fig. 46. Residual and the second half of the IMF’s for GAMESS-1L2Y collected on Haswell

with the bunch affinity. In each plot, total power (black) is shown with core (light gray) and

DRAM (gray) power traces (the total of both sockets).

142

Fig. 47. Power trace and the first half of the IMF’s for GAMESS-1L2Y collected on Haswell

with the scatter affinity. In each plot, total power (black) is shown with core (light gray) and

DRAM (gray) power traces (the total of both sockets).

143

Fig. 48. Residual and the second half of the IMF’s for GAMESS-1L2Y collected on Haswell

with the scatter affinity. In each plot, total power (black) is shown with core (light gray) and

DRAM (gray) power traces (the total of both sockets).

144

Fig. 49. IMF reconstruction (first half) for GAMESS-1L2Y collected on Haswell with the

bunch affinity. In each plot, total power (black) is shown with core (light gray) and DRAM

(gray) power traces (the total of both sockets).

145

Fig. 50. IMF reconstruction (second half) for GAMESS-1L2Y collected on Haswell with

the bunch affinity. In each plot, total power (black) is shown with core (light gray) and

DRAM (gray) power traces (the total of both sockets).

146

Fig. 51. IMF reconstruction (first half) for GAMESS-1L2Y collected on Haswell with the

scatter affinity. In each plot, total power (black) is shown with core (light gray) and DRAM

(gray) power traces (the total of both sockets).

147

Fig. 52. IMF reconstruction (second half) for GAMESS-1L2Y collected on Haswell with

the scatter affinity. In each plot, total power (black) is shown with core (light gray) and

DRAM (gray) power traces (the total of both sockets).

148

The IMF’s show that the scatter affinity is encountering power fluctuations more

often than the bunch affinity. This may be observed in the original power traces, where the

scatter affinity has many spikes in power just as the DRAM power is ramping up; this

occurs during every period where DRAM power is high, although this does not occur under

the bunch affinity, thus it may be caused by communication between each socket. In the

IMF’s, modes 1 and 2 for the scatter affinity have many more peaks which coincide with

the peaks observed in the original trace. Far fewer peaks may be observed in the bunch

affinity. In fact, most of the IMF’s for the scatter affinity are larger (high amplitude) than

those for bunch.

Considering it was shown that DRAM power was indeed coming from only one

socket with the bunch affinity, it may be concluded that the scatter affinity is encountering

additional conflicts as a result of synchronization between sockets. However, it may also

be concluded that this performance loss is negligible, since the time-to-solution is

equivalent when using bunch or scatter affinity.

It is also of interest to note here that the number of modes for each source trace was

the same. For all IMF’s explored in this dissertation, that is, for CoMD, GAMESS, and

NPB across several platforms – Borges, Turing, Bolt, Marquez, KNC, and KNL – the

number of modes for each respective source of power for the trace: core, DRAM, and

uncore are always the same. However, different configurations (such as varying the number

of cores, and clock-rate) can result in a different number of modes, although this may be a

factor of time-to-solution since EMD is dependent on the total number of samples (which

is dependent on time for a constant sampling rate, as used in this work).

149

7.1.2.2 Trace Reconstruction

The EMD analysis procedure refines a time-series into a collection of IMF’s; the

sum of these IMF’s is the original time-series to the precision of the floating-point

computations, although this error is negligible as discussed in [40]. Each IMF may be

considered as the difference in amplitude from the mean trend (a.k.a. the residual) for

processes occurring on the time-scale of the IMF. The time-scale is the difference in time

between inflection points in the IMF, see [40].

The idea of accumulating IMF’s is of interest since the sum of several IMF’s may

be more meaningful than an individual IMF. Consider Figs. 49 to 52 the reconstruction of

the IMF’s for GAMESS 1L2Y under the bunch and scatter affinities; total, core, and

DRAM power are shown similar to Figs. 45 and 47. As shown here, the core and DRAM

IMF’s reconstruct into each respective trace, and the sum of the reconstructed traces,

whether as the sum of the IMF’s for total power or the sum of the IMF’s for core and

DRAM power (or even per socket-source), the resulting time-series matches the original.

Thus, applying EMD to the individual source traces (and then adding the respective IMF’s)

results in the same IMF’s as if decomposing the total power trace. Of course, decomposing

the total power trace cannot distinguish between core and DRAM power, although the net

sum of each will be represented in the resulting IMF’s for total power, as shown in the

prior section.

7.2 Multinode Analysis

As shown in the previous section, EMD may be successfully applied to individual

traces representing the same physical process. In this section, the same analysis is

150

performed for executions with multiple nodes. The difference between multisocket and

multinode executions is subtle; both include multiple devices working in unison to

accomplish a task, however, the multisocket measurements are collected from the same

timer and the multinode measurements are collected from different timers, one for each

node. Since the multisocket traces were all the same length and sampled at the same time,

those traces were easier to analyze. The multinode traces are not the same length, thus they

will need to be aligned such that the traces may be summed to create the total power trace

of the execution.

7.2.1 Power Traces

Figures 53 and 54 presents the four traces measured for the execution of

GAMESS - 1L2Y on four nodes of the Turing cluster (20 cores per node); Figs. 55 and 56

shows the four traces for GAMESS-20w. From the view given in these plots, it would

appear that each trace is already aligned; however, as will be shown next, slight

adjustments are necessary.

7.2.2 Trace Synchronization

To synchronize the traces, a delay was introduced to the power trace on each node

except the first, i.e. the shorter traces. Figure 57 presents the power traces for GAMESS on

Turing using 4 nodes for the 1L2Y and 20w problems. Each plot (in a & b) shows the

alignment of each respective node: the top plot shows Node 2 vs Node 1, middle shows

Node 3 vs Node 1, and the last shows Node 4 vs Node 1.

To align the traces, cross-correlation was attempted. The use of cross-correlation

151

(a) Turing - GAMESS - 1L2Y - Scatter - Node 1

(b) Turing - GAMESS - 1L2Y - Scatter - Node 2

Fig. 53. Power traces of GAMESS-1L2Y collected on 4 Ivy-Bridge nodes showing total

vs. per socket, per source traces while varying MPI thread affinity. For each plot (a & b),

there are three subplots: top shows total power, middle and bottom shows socket 1 & 2

power respectively where core power is shown in gray, DRAM power in light gray, and

uncore in black.

152

(a) Turing - GAMESS - 1L2Y - Scatter - Node 3

(b) Turing - GAMESS - 1L2Y - Scatter - Node 4

Fig. 54. Power traces of GAMESS-1L2Y collected on 4 Ivy-Bridge nodes showing total

vs. per socket, per source traces while varying MPI thread affinity. For each plot (a & b),

there are three subplots: top shows total power, middle and bottom shows socket 1 & 2

power respectively where core power is shown in black, and DRAM power in gray.

153

(a) Turing - GAMESS - 20w - Scatter - Node 1

(b) Turing - GAMESS - 20w - Scatter - Node 2

Fig. 55. Power traces of GAMESS-20w collected on 4 Ivy-Bridge nodes showing total vs.

per socket, per source traces while varying MPI thread affinity. For each plot (a & b), there

are three subplots: top shows total power, middle and bottom shows socket 1 & 2 power

respectively where core power is shown in gray, DRAM power in light gray, and uncore

in black.

154

(a) Turing - GAMESS - 20w - Scatter - Node 3

(b) Turing - GAMESS - 20w - Scatter - Node 4

Fig. 56. Power traces of GAMESS-20w collected on 4 Ivy-Bridge nodes showing total vs.

per socket, per source traces while varying MPI thread affinity. For each plot (a & b), there

are three subplots: top shows total power, middle and bottom shows socket 1 & 2 power

respectively where core power is shown in black, and DRAM power in gray.

155

(a) Turing - GAMESS - 1L2Y

(b) Turing - GAMESS - 20w

Fig. 57. Power traces of GAMESS, 1L2Y and 20w, collected on Ivy-Bridge on 4 nodes.

Each plot shows node power (2, 3, or 4) in black compared to the power on the first node

in gray. Traces have been manually aligned.

156

(a) Total Power – Turing - GAMESS - 1L2Y

(b) Total Power – Turing - GAMESS - 20w

Fig. 58. Total power traces for GAMESS, 1L2Y and 20w, collected on 4 Ivy-Bridge nodes

after alignment and cropping. Total power is shown in black, core in gray, DRAM in light

gray, and uncore in dark gray.

157

Fig. 59. (Node 1) Power trace and the first half of the IMF’s for GAMESS-1L2Y collected

on 4 Ivy-Bridge nodes. In each plot, total power (black) is shown with core (light gray),

DRAM (gray), and uncore (dark gray) power traces.

158

Fig. 60. (Node 1) Residual and the second half of the IMF’s for GAMESS-1L2Y collected

on 4 Ivy-Bridge nodes. In each plot, total power (black) is shown with core (light gray),

DRAM (gray), and uncore (dark gray) power traces.

159

Fig. 61. (Node 2) Power trace and the first half of the IMF’s for GAMESS-1L2Y collected

on 4 Ivy-Bridge nodes. In each plot, total power (black) is shown with core (light gray),

DRAM (gray), and uncore (dark gray) power traces.

160

Fig. 62. (Node 2) Residual and the second half of the IMF’s for GAMESS-1L2Y collected

on 4 Ivy-Bridge nodes. In each plot, total power (black) is shown with core (light gray),

DRAM (gray), and uncore (dark gray) power traces.

161

Fig. 63. (Node 3) Power trace and the first half of the IMF’s for GAMESS-1L2Y collected

on 4 Ivy-Bridge nodes. In each plot, total power (black) is shown with core (light gray),

DRAM (gray), and uncore (dark gray) power traces.

162

Fig. 64. (Node 3) Residual and the second half of the IMF’s for GAMESS-1L2Y collected

on 4 Ivy-Bridge nodes. In each plot, total power (black) is shown with core (light gray),

DRAM (gray), and uncore (dark gray) power traces.

163

Fig. 65. (Node 4) Power trace and the first half of the IMF’s for GAMESS-1L2Y collected

on 4 Ivy-Bridge nodes. In each plot, total power (black) is shown with core (light gray),

DRAM (gray), and uncore (dark gray) power traces.

164

Fig. 66. (Node 4) Residual and the second half of the IMF’s for GAMESS-1L2Y collected

on 4 Ivy-Bridge nodes. In each plot, total power (black) is shown with core (light gray),

DRAM (gray), and uncore (dark gray) power traces.

165

Fig. 67. (Total) Power trace and the first half of the IMF’s for GAMESS-1L2Y collected

on 4 Ivy-Bridge nodes. In each plot, total power (black) is shown with core (light gray),

DRAM (gray), and uncore (dark gray) power traces.

166

Fig. 68. (Total) Residual and the second half of the IMF’s for GAMESS-1L2Y collected

on 4 Ivy-Bridge nodes. In each plot, total power (black) is shown with core (light gray),

DRAM (gray), and uncore (dark gray) power traces.

to synchronize signals is suggested in Matlab [73]. However, power traces have been found

to be difficult to properly align using this method because large spurious correlations occur

frequently. Cross-correlation would have provided a method for automating the

synchronization process. Instead, the alignment delay was found by increasing the delay

until a feature, e.g. a rapid increase in power draw, is aligned for the two traces; this was

performed by hand. For 1L2Y in Fig. 57, the synchronization feature is just past 14 seconds,

167

and for 20w, the feature is between 7 and 7.5 seconds.

Once the traces have been synchronized, they may be cropped to ensure each trace

has the same number of samples. Then the traces for each node may be accumulated to

create the total execution power trace, shown in Fig. 58. With the traces prepared, EMD may

now be applied.

7.2.3 EMD on Multinode Traces

Figures 59 and 60 present the IMF’s calculated after EMD was applied to the total,

core, DRAM, and uncore power traces for node one. Figures 61 and 62 present the IMF’s

calculated after EMD was applied to the power traces for node two. Figures 63 and 64 present

the IMF’s calculated after EMD was applied to the power traces for node three. Figures 65

and 66 present the IMF’s calculated after EMD was applied to the power traces for node

four. Figures 67 and 68 present the IMF’s calculated after EMD was applied to the total,

core, DRAM, and uncore power traces for the total power summed for all four nodes.

By separating the power trace into sources, the role of each component with respect

to the IMF’s becomes clearer, although interpreting the meaning of each IMF remains

unclear. Take note that the total power trace (Figs. 67 and 68) closely resembles the traces

for each of the four nodes, so discussions of individual modes will pertain to this set of IMFs’

although the same features may be found in the IMF’s for each node as well.

There are two features for the 1L2Y problem size that makes GAMESS a particularly

interesting application to investigate. The first can be found between 6 to 12 seconds in

Figs. 67 and 68, where there are sharp ridges that have formed. This feature is clearly

visible in the core power trace. The second feature occurs many times throughout execution

168

and is first observed near 20 seconds (2nd tick mark along x-axis) and may be described

as humps. This feature is clearly visible in the uncore power trace.

Consider the ridges; the IMF’s for this feature have manifested in all of the modes,

but are most striking in modes 3, 4, and 5. What is most interesting about this feature is

that it shows a portion of execution with a very high flop-per-byte ratio. Compare the core

to the DRAM and uncore power traces. There are few large latencies incurred, indicated

by the fact that DRAM and uncore power remain low, yet the core power throttles to form

the ridges.

Now consider the humps. In modes 3 and 4, groups of high amplitude oscillations

are visible for the duration of the hump in uncore power; further, the uncore IMF’s in these

modes show consistent oscillations (although the amplitude is small compared to core). In

modes 7 and 8, the oscillations for uncore are more pronounced (and correlate well with

the IMF’s for total power). Depending on the operations occurring during these periods,

these modes may be useful for a forecasting model which could be used to predict/detect

when to apply DVFS during execution for minimal impact; since uncore power is increasing

dramatically, it is expected that a significant amount of data movement is involved, and

DVFS is most beneficial during periods of high data movement.

7.3 Concluding Remarks

 In this chapter, an in-depth view of EMD on power traces has been performed. Total

power was compared to the parts that compose it: core, DRAM, and uncore power. For the

individual sockets, EMD can be applied to the traces at any level (per socket & source, per

socket, per source, or total). Of course, EMD on the total trace cannot distinguish between

169

core and DRAM power draws, however, whether EMD is applied to the traces (e.g. core,

DRAM, uncore) and then summed or the traces are summed and then EMD is applied, the

172 resulting IMF’s will be the same and these IMF’s can be used to reconstruct the original

trace. If a forecasting model were applied to one or more IMF’s, it could be used for

predicting core, DRAM, and uncore power consumption during the execution. This could

then be used to aid a DVFS strategy, or predict the overall energy consumption of the

execution. The need to predict energy may be required by future Exascale HPC systems

adopt user-specified energy budgets to run large-scale applications.

170

CHAPTER 8

CONCLUSIONS

This dissertation has investigated power and energy consumption on a number of

hardware platforms, parallel applications, and for a number of execution characteristics.

Homogeneous and heterogeneous platforms have been considered, as well as multicore and

manycore devices.

8.1 Summary

Power capping and energy saving techniques using DVFS on CPU and Xeon Phi

accelerators have been explored. The findings in this work agree with the literature, in that

DVFS is beneficial for applications that are not bounded by floating-point performance and

may be used sparingly otherwise to reduce the energy consumption of the execution.

However, DVFS is fickle and often introduces performance bottlenecks; these may be due

to state switching or the reduced clock-rate, and often is not worth the performance loss.

Thus, a better strategy is to implement energy capping where applications must abide by

an energy cap, but may use any amount of power in between. However, given an energy

cap, optimization will be more important as to not waste energy and a system will need a

metric to weigh the general energy efficiency of an application.

This dissertation investigated available power and performance models and applied

them to benchmarks and real-world parallel applications for heterogeneous and

homogeneous multicore and manycore computing platforms to predict energy

consumption. A model was proposed which described an execution by the phases, either

computation or data movement, for heterogeneous and homogeneous platforms. Although

171

the model was able to capture the trends of the executions considered, measurement was

not easily extendable to large-scale applications; particularly cases where code has been

optimized for different architectures and must be inserted within each optimized version,

thereby introducing performance bottlenecks. It was clear a less intrusive method was

needed.

The Empirical Mode Decomposition and Hilbert-Huang Transform analysis

technique has been applied in innovative ways to model, analyze, and visualize power and

energy measurements. The approach has been used to visualize power traces using the

relation of energy, frequency, and time. The technique has been used to identify overlap

between computation and communication and quantify contributions of each for a specific

application-platform combination. The approach has also been used to analyze segmented

power measurements, and model the general trend of an execution. Further, it is shown in

this work that the EMD method may be applied to the total power (sum of individual power

sources), or the individual power traces (core, DRAM, uncore for each socket/device) so

long as they come from the same execution (e.g. multiple sockets, nodes).

Probability distributions were introduced in this work to represent power and energy

traces, thereby providing an alternative means of modeling power and energy consumption.

The distribution models retain the fact that power is not constant over time, and also retains

the fact that average power is an excellent approximation for most workloads and systems.

Further, these distributions may be used to define the explicit costs of a workload for a given

computing platform.

172

8.2 Findings

The findings of this work are as follows:

 Static power draw is the leading cause of all power/energy consumption in HPC – this

includes power consumed independent of the number of cores, such as the power

needed for memory and underlying components, such as data buses

 Improving measurement of these components will be needed in future systems

(some chips only provide core and DRAM power traces and neglect uncore, for

example)

 Future hardware will need to be more adaptive in how power is consumed for

optimal energy-efficiency; minimizing the power consumption for idle hardware is

the best way to improve efficiency

 Future software will need to be more parallel to better utilize the hardware; this

includes lowering the memory-footprint required per core

 DVFS is an effective power capping tool, however, has significant potential to impede

performance if used incorrectly

 An example of “correct” usage is as follows: apply DVFS during data transfer

phases of execution, such as transfers between devices or communication between

nodes, although the challenge remains to “detect” these phases in real-time

 An example of “incorrect” usage is to blindly apply DVFS to the entire execution;

performance loss will be higher than 10% (the maximum accepted loss in this area

of research)

 EMD provides a wealth of data by decomposing the power/energy trace into a series of

intrinsic mode functions, or oscillations, where each new series spans an interval of time

173

(from 2× the sampling rate (lowest mode) up to the total time elapsed (residual))

 This is the first time that EMD has been applied to power/energy traces

 More analysis is needed to uncover the explicit meaning of these IMF’s for the

purposes of phase detection and in the interest of power and energy capping

 Cross-correlation is a good first step to this further analysis, but these traces will

also need to be processed by other time-series analysis techniques as well, such as

discrete wavelet analysis and the Fourier decomposition method.

 Power and energy traces (the time-series) can be represented using multi-modal Normal

distributions

 Distributions be used to predict energy and compare application usage across

platforms, or the typical energy consumption of a hardware platform for a wealth of

applications

 This representation of power/time traces is novel

8.3 Future Work

There is much to be done in the future along this line of research. The EMD/HHT

method decomposes a time-series into intrinsic mode functions, but the interpretation of

these modes is not straightforward. For this reason, the residual was primarily investigated

and modeled; however, a wealth of information is still hidden in these modes. The Energy-

Frequency-Time plots can be used to show when performance-bottlenecks have been

encountered due to the relative energy consumption.

Further analysis into the combination of IMF modes is needed. As shown in the

EMD reconstruction, the sum of even a few modes brings shape to the trace by removing

174

noise (including other IMF modes considered “noise” based on the time-scale(s) of interest).

As proven in other research efforts (such as sea level rise analysis), analysis of combinations

of IMF’s proves to be more effective than individual modes. This would be the best next step

toward understanding power and energy using EMD/HHT analysis.

175

REFERENCES

[1] perf: Linux profiling with performance counters, 2015. https://perf.wiki.
 kernel.org/index.php/Main_Page.

[2] Power capping framework, 2016. https://www.kernel.org/doc/
 Documentation/power/powercap/powercap.txt.

[3] L. Adhianto and B. Chapman. Performance modeling of communication and
 computation in hybrid MPI and Openmp applications. Simulation Modelling
 Practice and Theory, 15(4):481 – 491, 2007. Performance Modelling and
 Analysis of Communication Systems.

[4] E. Apra, M. Klemm, and K. Kowalski. Efficient implementation of many-body
 quantum chemical methods on the Intel® Xeon Phi™ coprocessor. In
 Proceedings of the International Conference for High Performance Computing,
 Networking, Storage and Analysis, SC ’14, pages 674–684, Piscataway, NJ,
 USA, 2014. IEEE Press. http://dx.doi.org/10.1109/SC.2014.60.

[5] Michaela Barth. Best practice guide Intel Xeon Phi v1.1, 2014.
 http://www.prace-ri.eu/IMG/pdf/Best-Practice-GuideIntel-Xeon-Phi.pdf.

[6] M. Bernaschi, M. Bisson, and F. Salvadore. Multi-kepler GPU vs. multi-intel
 MIC for spin systems simulations. Computer Physics Communications,
 185(10):2495 – 2503, 2014.

[7] M. Bernaschi and F. Salvadore. Multi-kepler gpu vs. multi-intel mic: A two test
 case performance study. In High Performance Computing Simulation (HPCS),
 2014 International Conference on, pages 1–8, July 2014.

[8] A. Birkland. Cornell virtual workshop, 2013. https://www.cac.cornell.
 edu/vw/mic/default.aspx.

[9] F. Broquedis, J. C. Ortega, S. Moreaud, N. Furmento, B. Goglin, G. Mercier,
 S. Thibault, and R. Namyst. hwloc: A generic framework for managing
 hardware affinities in HPC applications. In Parallel, Distributed and Network-
 Based Processing (PDP), 2010 18th Euromicro International Conference on,
 pages 180 –186, Feb. 2010.

[10] S. Browne, J. Dongarra, N. Garner, G. Ho, and P. Mucci. A portable
 programming interface for performance evaluation on modern processors. Int. J.
 High Perform. Comput. Appl., 14(3):189–204, August 2000.
 http://dx.doi.org/10.1177/109434200001400303.

176

[11] S. Cepeda. Optimization and performance tuning for Intel Xeon Phi
 coprocessors, part 2: Understanding and using hardware events, 2012.
 https://software.intel.com/en-us/articles/.

[12] Shannon Cepeda. Optimization and performance tuning for Intel Xeon Phi
 coprocessors, part 2: Understanding and using hardware events, 2012.

[13] S. Cho and R. Melhem. Corollaries to Amdahl’s law for energy. IEEE Comput.
 Archit. Lett., 7:25–28, Jan. 2008.
 http://dl.acm.org/citation.cfm?id=1383041.1383084.

[14] J. Choi, M. Mukhan, X. Liu, and R. Vuduc. Algorithmic time, energy, and power
 on candidate HPC compute building blocks. In 2014 IEEE 28th International
 Symposiumon Parallel Distributed Processing (IPDPS), Arizona, USA, May
 2014.

[15] J. W. Choi, D. Bedard, R. Fowler, and R. Vuduc. A roofline model of energy. In
 Parallel Distributed Processing (IPDPS), 2013 IEEE 27th International
 Symposium on, pages 661–672, May 2013.

[16] K. Choi, R. Soma, and M. Pedram. Fine-grained dynamic voltage and
 frequency scaling for precise energy and performance tradeoff based on the
 ratio of off-chip access to on-chip computation times. Computer-Aided Design
 of Integrated Circuits and Systems, IEEE Transactions on, 24(1):18–28, Jan 2005.

[17] Intel Corporation. Developer zone, 2013. https://www.software.intel.com.

[18] Intel Corporation. Intel Xeon Phi coprocessor performance monitoring units.,
 2013. http://software.intel.com/sites/default/files/forum/
 278102/intelr-xeon-phitm-pmu-rev1.01.pdf.

[19] D. Culler, R. Karp, D. Patterson, A. Sahay, K. E. Schauser, E. Santos, R.
 Subramonian, and T. von Eicken. LogP: Towards a realistic model of parallel
 computation. In Proceedings of the Fourth ACM SIGPLAN Symposium on
 Principles and Practice of Parallel Programming, PPOPP ’93, pages 1–12, New
 York, NY, USA, 1993. ACM. http://doi.acm.org/10.1145/155332.155333.

[20] H. David, E. Gorbatov, U. R. Hanebutte, R. Khannal, and C. Le. RAPL: memory
 power estimation and capping. In Proceedings of the 16th ACM/IEEE
 international symposium on Low power electronics and design, ISLPED’10,
 pages 189–194, New York, NY, USA, 2010. ACM.
 http://doi.acm.org/10.1145/1840845.1840883.

177

[21] E. de Sturler and H. A. van der Vorst. Reducing the effect of global
 communication in GMRES(m) and CG on parallel distributed memory
 computers. Appl. Numer. Math., 18(4):441–459, October 1995.
 http://dx.doi.org/10.1016/0168-9274(95)00079-A.

[22] DOE. Co-design, 2013. http://science.energy.gov/ascr/research/
 scidac/co-design/.

[23] ExMatEx. CoMD proxy application, 2012. http://www.exmatex.org/comd.html.

[24] T. Ezer. EEMD/HHT, 2015. http://www.ccpo.odu.edu/˜tezer/HHT/.

[25] T. Ezer, L. P. Atkinson, W. B. Corlett, and J. L. Blanco. Gulf stream’s induced
 sea level rise and variability along the U.S. mid-Atlantic coast. Journal of
 Geophysical Research: Oceans, 118(2):685–697, 2013.
 http://dx.doi.org/10.1002/jgrc.20091.

[26] T. Ezer and W. Corlett. Is sea level rise accelerating in the Chesapeake Bay? A
 demonstration of a novel new approach for analyzing sea level data.
 GeophysicalResearch Letters, 39(19), 2012.
 http://dx.doi.org/10.1029/2012GL053435.

[27] D. G. Fedorov, R. M. Olson, K. Kitaura, M. S. Gordon, and S. Koseki.
 A new hierarchical parallelization scheme: Generalized distributed data
 interface (GDDI), and an application to the fragment molecular orbital method
 (FMO). Journal of Computational Chemistry, 25, Issue 6:872–880, 2004.
 http://onlinelibrary.wiley.com/doi/10.1002/jcc.20018/full.

[28] B. Goel and S. McKee. A methodology for modeling dynamic and static power
 consumption for multicore processors. In 2016 IEEE International Parallel
 and Distributed Processing Symposium (IPDPS), pages 273–282, May 2016.

[29] M. S. Gordon, D. G. Fedorov, S. R. Pruitt, and L. V. Slipchenko. Fragmentation
 methods: A route to accurate calculations on large systems. Chemical
 Reviews, 112(1):632–672, 2012. PMID: 21866983.

[30] M. S. Gordon and M. W. Schmidt. Advances in electronic structure theory:
 GAMESS a decade later, 2005.

[31] A. Grama, A. Gupta, and V. Kumar. Isoefficiency: measuring the scalability of
 parallel algorithms and architectures. IEEE Parallel Distributed Technology:
 Systems Applications, 1(3):12–21, Aug 1993.

[32] R. Green. OpenMP thread affinity control, 2012. https://software.intel.
 com/en-us/articles/openmp-thread-affinity-control.

178

[33] W. Gropp, L. Olson, and P. Samfass. Modeling MPI communication
 performance on SMP nodes: Is it time to retire the ping pong test, volume 25-
 28-September-2016, pages 41–50. Association for Computing Machinery, 9
 2016.

[34] G. Hager. Energy vs. performance: Introducing the z-plot, 2016. https://blogs.
 fau.de/hager/archives/tag/energy.

[35] G. Hager, J. Treibig, J. Habich, and G. Wellein. Exploring performance and
 power properties of modern multicore chips via simple machine models. CoRR,
 abs/1208.2908, 2012. http://arxiv.org/abs/1208.2908.

[36] R. Hayashi and S. Horiguchi. Domain decomposition scheme for parallel
 molecular dynamics simulation. In High Performance Computing on the
 Information Superhighway, 1997. HPC Asia ’97, pages 595–600, Apr 1997.

[37] A. Heinecke, K. Vaidyanathan, M. Smelyanskiy, A. Kobotov, R. Dubtsov, G.
 Henry, A.G. Shet, G. Chrysos, and P. Dubey. Design and implementation of the
 Linpack benchmark for single and multi-node systems based on Intel Xeon
 Phi coprocessor. In 2013 IEEE 27th International Symposium on Parallel
 Distributed Processing(IPDPS), pages 126–137, May 2013.

[38] J. Hofmann and D. Fey. An ECM-based energy-efficiency optimization
 approach for bandwidth-limited streaming kernels on recent Intel Xeon
 processors. In Proceedings of the 4th International Workshop on Energy
 Efficient Supercomputing, E2SC ’16, pages 31–38, Piscataway, NJ, USA, 2016.
 IEEE Press. https://doi.org/10.1109/E2SC.2016.16.

[39] M. Hohnerbach, A. E. Ismail, and P. Bientinesi. The vectorization of the tersoff
 multi-body potential: An exercise in performance portability. In Proceedings
 of the International Conference for High Performance Computing, Networking,
 Storage and Analysis, SC ’16, pages 7:1–7:13, Piscataway, NJ, USA, 2016. IEEE
 Press. http://dl.acm.org.proxy.lib.odu.edu/citation.cfm?id=
 3014904.3014914.

[40] N. Huang, Z. Shen, S. Long, M. Wu, H. Shih, Q. Zheng, N. Yen, Chi C. Tung,
 and H. Liu. The empirical mode decomposition and the Hilbert spectrum for
 nonlinear and non-stationary time series analysis. Proceedings of the Royal
 Society of London A: Mathematical, Physical and Engineering Sciences,
 454(1971):903–995, 1998.

[41] ICL:UT. Performance application programming interface PAPI, 2015. http://
 icl.cs.utk.edu/papi/.

179

[42] A. Ilic, F. Pratas, and L. Sousa. Beyond the roofline: Cache-aware power and
 energy efficiency modeling for multi-cores. IEEE Transactions on Computers,
 66(1):52–58, Jan 2017.

[43] Intel. Intel Xeon Phi coprocessor: Datasheet, 2015. http://www.intel.com/
 content/www/us/en/processors/xeon/xeon-phi-coprocessordatasheet.html.

[44] Intel Corporation. Intel C++ Compiler 12.1 user and reference guides, 2013.

[45] Intel Corporation. Intel Xeon Phi coprocessor system software developers guide,
 2013. http://www.intel.com/content/dam/www/public/us/en/documents/
 product-briefs/xeon-phi-coprocessor-systemsoftware-developers-guide.pdf.

[46] Intel Forums. how to measure energy consumption on the coprocessor?, 2013.
 https://software.intel.com/en-us/forums/topic/488782?language=en.

[47] H. Jordan, P. Thoman, J. Durillo, S. Pellegrini, P. Gschwandtner, T. Fahringer,
 and H. Moritsch. A multi-objective auto-tuning framework for parallel codes.
 In Proceedings of the International Conference on High Performance
 Computing, Networking, Storage and Analysis, SC ’12, pages 10:1–10:12, Los
 Alamitos, CA, USA, 2012. IEEE Computer Society Press.
 http://dl.acm.org/citation.cfm?id=2388996.2389010.

[48] S. Kamil, C. Chan, L. Oliker, J. Shalf, and S. Williams. An auto-tuning
 framework for parallel multicore stencil computations. In 2010 IEEE
 International Symposium on Parallel Distributed Processing (IPDPS),
 pages 1–12, April 2010.

[49] M. Kee, H. Lim, G. Park, and S. Cho. An analytical model based on
 performance demand of workload for energy-efficient heterogeneous
 multicore systems. Journal of Parallel and Distributed Computing, 100:172 –
 180, 2017.

[50] T. Kidd. Intel Xeon Phi coprocessor power management configuration: Using
 the micsmc command-line interface, 2014. https://software.intel.com/
 en-us/blogs/2014/01/31/intel-xeon-phi-coprocessor-powermanagement-
 \configuration-using-the-micsmc-command.

[51] D. Kim. Introduction to EMD (Empirical Mode Decomposition) with
 application to a scientific data, 2006. http://dasan.sejong.ac.kr/˜dhkim/main
 /research/talks/EMDintroSeminar.pdf.

180

[52] R. Krishnaiyer, E. Kultursay, P. Chawla, S. Preis, A. Zvezdin, and H. Saito.
 Compiler based data prefetching and streaming non-temporal store generation for
 the Intel Xeon Phi coprocessor. In 2013 IEEE 27th International Symposium on
 Parallel Distributed Processing (IPDPS), pages 1575–1586, May 2013.

[53] D. Kusnezov, S. Binkley, B. Harrod, and B. Meisner. DOE exascale initiative,
 2013. http://www.industry-academia.org/download/20130913-
 SEAB-DOE-Exascale-Initiative.pdf.

[54] C. Lai, Z. Hao, M. Huang, X. Shi, and H. You. Comparison of parallel
 programming models on intel mic computer cluster. In Parallel Distributed
 Processing Symposium Workshops (IPDPSW), 2014 IEEE International, pages
 925–932, May 2014.

[55] J. Laros. Sandia national laboratories high performance computing power
 application programming interface (API) specification, 2016.
 http://powerapi.sandia.gov/.

[56] Averill Law. Simulation Modeling and Analysis (McGraw-Hill Series in
 Industrial Engineering and Management). McGraw-Hill
 Science/Engineering/Math, 2006.

[57] G. Lawson. Waterfall plot renderer, 2015. https://dl.
 dropboxusercontent.com/u/21348775/WebBuild/WebBuild.html.

[58] G. Lawson, M. Sosonkina, T. Ezer, and Y. Shen. Applicability of the empirical
 mode decomposition for power traces of large-scale applications. The
 International Journal of High Performance Computing Applications, 2017.
 Accepted June 28, 2017, to appear.

[59] G. Lawson, M. Sosonkina, T. Ezer, and Y. Shen. Applying EMD/HHT
 analysis to power traces of applications executed on systems with Intel Xeon Phi.
 The International Journal of High Performance Computing Applications, 2017.
 Accepted July 8, 2017, to appear.

[60] G. Lawson, M. Sosonkina, T. Ezer, and Y. Shen. Empirical mode decomposition
 for modeling of parallel applications on Intel Xeon Phi processors. In
 Proceedings of the 2nd International Workshop on Theoretical Approaches to
 Performance Evaluation, Modeling and Simulation, TAPEMS ’17, 2017.

[61] G. Lawson, M. Sosonkina, and Yuzhong S. Energy evaluation for applications
 with different thread affinities on the Intel Xeon Phi. In Computer Architecture
 and High Performance Computing Workshop (SBAC-PADW), 2014
 International Symposium on, Oct 2014.

181

[62] G. Lawson, M. Sosonkina, and Y. Shen. Performance and energy evaluation of
 CoMD on Intel Xeon Phi co-processors. In Proceedings of the 1st International
 Workshop on Hardware-Software Co-Design for High Performance Computing,
 Co-HPC ’14, Piscataway, NJ, USA, 2014. IEEE Press.
 http://dx.doi.org/10.1109/CoHPC.2014.12.

[63] G. Lawson, M. Sosonkina, and Y. Shen. Changing CPU frequency in CoMD
 proxy application offloaded to Intel Xeon Phi co-processors. Procedia
 Computer Science, 51(0):100 – 109, 2015. International Conference On
 Computational Science, ICCS 2015 Computational Science at the Gates of
 Nature.

[64] G. Lawson, M. Sosonkina, and Y. Shen. Towards modeling energy
 consumption of Xeon Phi. CoRR, abs/1505.06539, 2015.
 http://arxiv.org/abs/1505.06539.

[65] G. Lawson, V. Sundriyal, M. Sosonkina, and Y. Shen. Experimentation
 procedure for offloaded mini-apps executed on cluster architectures with Xeon
 Phi accelerators, 2015. http://arxiv.org/abs/1509.02135.

[66] G. Lawson, V. Sundriyal, M. Sosonkina, and Y. Shen. Modeling performance
 and energy for applications offloaded to Intel Xeon Phi. In Proceedings of the
 2Nd International Workshop on Hardware-Software Co-Design for High
 Performance Computing, Co-HPC ’15, pages 7:1–7:8, New York, NY, USA,
 2015. ACM. http://doi.acm.org/10.1145/2834899.2834903.

[67] G. Lawson, V. Sundriyal, M. Sosonkina, and Y. Shen. Runtime power limiting of
 parallel applications on Intel Xeon Phi processors. In Proceedings of the 4th
 International Workshop on Energy Efficient Supercomputing, E2SC ’16, pages
 39–45, Piscataway, NJ, USA, 2016. IEEE Press.
 https://doi.org/10.1109/E2SC.2016.9.

[68] B. Li, H. Chang, S. L. Song, C. Su, T. Meyer, J. Mooring, and K. Cameron.
 The power-performance tradeoffs of the Intel Xeon Phi on HPC applications,
 2014. http://scape.cs.vt.edu/wp-content/uploads/2014/06/
 lspp14-Li.pdf.

[69] X. Liu, S. Peng, C. Yang, C. Wu, H. Wang, Q. Cheng, W. Zhu, and J. Wang.
 mamber: Accelerating explicit solvent molecular dynamic with Intel Xeon Phi
 many-integrated core coprocessors. In Cluster, Cloud and Grid Computing
 (CCGrid), 2015 15th IEEE/ACM International Symposium on, pages 729–732,
 May 2015.

182

[70] M. Graham Lopez, Jeffrey Young, Jeremy S. Meredith, Philip C. Roth, Mitchel
 Horton, and Jeffrey S. Vetter. Examining recent many-core architectures and
 programming models using shoc. In Proceedings of the 6th International
 Workshop on Performance Modeling, Benchmarking, and Simulation of High
 Performance Computing Systems, PMBS ’15, pages 3:1–3:12, New York, NY,
 USA, 2015. ACM. http://doi.acm.org/10.1145/2832087.2832090.

[71] U. Lopez-Novoa, A. Mendiburu, and J. Miguel-Alonso. A survey of
 performance modeling and simulation techniques for accelerator-based
 computing. IEEE Transactions on Parallel and Distributed Systems, 26(1):272–
 281, Jan 2015.

[72] M. Luo, M. Li, A. Venkatesh, X. Lu, and D. Panda. Upc on mic: Early
 experiences with native and symmetric modes. Proceedings of the 7th
 International Conference on PGAS Programming Models, 2013.

[73] Matlab. Align signals using cross-correlation, 2017.
 https://www.mathworks.com/help/signal/ug/align-
 signals-using-cross-correlation.html.

[74] M. Meswani, L. Carrington, D. Unat, A. Snavely, S. Baden, and S. Poole.
 Modeling and predicting performance of high performance computing
 applications on hardware accelerators. In 2012 IEEE 26th International
 Parallel and Distributed ProcessingSymposium Workshops PhD Forum, pages
 1828–1837, May 2012.

[75] NASA. Problem sizes and parameters in NAS parallel benchmarks, 2012.
 https://www.nas.nasa.gov/publications/npb_problem_sizes.html.

[76] NASA. NAS parallel benchmarks, 2013. http://www.nas.nasa.gov/
 publications/npb.html.

[77] Chris J. Newburn, Serguei Dmitriev, Ravi Narayanaswamy, John Wiegert, Ravi
 Murty, Francisco Chinchilla, Rajiv Deodhar, and Russ McGuire. Offload
 compiler runtime for the Intel Xeon Phi™ coprocessor. In Proceedings of the
 2013 IEEE 27th International Symposium on Parallel and Distributed
 Processing Workshops and PhD Forum, IPDPSW ’13, pages 1213–1225,
 Washington, DC, USA, 2013. IEEE Computer Society.
 http://dx.doi.org/10.1109/IPDPSW.2013.251.

[78] J. Park, G. Bikshandi, K. Vaidyanathan, P. Tang, P. Dubey, and D. Kim. Tera-
 scale 1d FFT with low-communication algorithm and Intel Xeon Phi
 coprocessors. In Proceedings of the International Conference on High
 Performance Computing, Networking, Storage and Analysis, SC ’13,
 pages 34:1–34:12, New York, NY, USA, 2013. ACM.

183

 http://doi.acm.org/10.1145/2503210.2503242.

[79] Open MPI Project. Portable hardware locality (hwloc), 2016. https://www.
 open-mpi.org/projects/hwloc/.

[80] M. Quinn. Parallel Programming in C with MPI and OpenMP. McGraw-Hill
 Education Group, 2003.

[81] S. Ramos and T. Hoefler. Modeling communication in cache-coherent smp
 systems: A case-study with xeon phi. In Proceedings of the 22Nd International
 Symposium on High-performance Parallel and Distributed Computing, HPDC
 ’13, pages 97–108, New York, NY, USA, 2013. ACM.
 http://doi.acm.org/10.1145/2462902.2462916.

[82] J. Reinders and J. Jeffers. High Performance Parallelism Pearls Volume Two.
 MK Publishers, 2015. http://lotsofcores.com/.

[83] S. Saini, H. Jin, D. Jespersen, S. Cheung, J. Djomehri, J. Chang, and R. Hood.
 Early multi-node performance evaluation of a knights corner (knc) based nasa
 supercomputer. In Parallel and Distributed Processing Symposium
 Workshop (IPDPSW), 2015 IEEE International, pages 57–67, May 2015.

[84] F. Sainz, J. Belln, V. Beltran, and J. Labarta. Collective offload for
 heterogeneous clusters. In 2015 IEEE 22nd International Conference on High
 Performance Computing (HiPC), pages 376–385, Dec 2015.

[85] E. Saule, K. Kaya, and U. C¸ ataly ¨ urek. ¨ Performance Evaluation of Sparse
 Matrix Multiplication Kernels on Intel Xeon Phi, pages 559–570. Springer
 Berlin Heidelberg, Berlin, Heidelberg, 2014. http://dx.doi.org/10.1007/978-
 3-642-55224-3 52.

[86] M. W. Schmidt, K. K. Baldridge, J. A. Boatz, S. T. Elbert, M. S. Gordon,
 J. H. Jensen, S. Koseki, N. Matsunaga, K. A. Nguyen, S. Su, T. L. Windus, M.
 Dupuis, and Jr. J. A. Montgomery. General atomic and molecular electronic
 structure system. J. Comput. Chem., 14:1347–1363, Nov. 1993.
 http://portal.acm.org/citation.cfm?id=163483.163497.

[87] Y. S. Shao and D. Brooks. Energy characterization and instruction-level energy
 model of Intel’s Xeon Phi processor, 2013.
 http://www.eecs.harvard.edu/˜shao/papers/shao2013-islped.pdf.

[88] H. Shoukourian, T. Wilde1, A. Auweterl, and A. Bode. Predicting the energy
 and power consumption of strong and weak scaling HPC applications.
 Supercomputing Frontiers and Innovations, (2), 2014.
 http://superfri.org/superfri/article/view/9/105.

184

[89] A. Sodani, R. Gramunt, J. Corbal, H. S. Kim, K. Vinod, S. Chinthamani, S.
 Hutsell, R. Agarwal, and Y. C. Liu. Knights landing: Second-generation Intel
 Xeon Phi product. IEEE Micro, 36(2):34–46, Mar 2016.

[90] StackOverflow. Fit bimodal normal distribution to a vector of values, not its
 histogram, 2015. https://stackoverflow.com/questions/30374594/
 fit-bimodal-normal-distribution-to-a-vector-of-valuesnot-its-histogram.

[91] E. de Sturler. A performance model for krylov subspace methods on mesh-
 based parallel computers. Parallel Comput., 22(1):57–74, January 1996.
 http://dx.doi.org/10.1016/0167-8191(95)00057-7.

[92] K. Suksomboon, N. Matsumoto, M. Fukushima, S. Okamoto, and M. Hayashi.
 Towards performance prediction of multicore software routers. International
 Journal of Network Management, 27(2):e1966–n/a, 2017.
 http://dx.doi.org/10.1002/nem.1966.

[93] V. Sundriyal, A. Gaenko, M. Sosonkina, and Z. Zhang. Energy saving strategies
 for parallel applications with point-to-point communication phases. Journal
 of Parallel and Distributed Computing, 73(8):1157–1169, August 2013.

[94] V. Sundriyal and M. Sosonkina. Initial investigation of a scheme to use
 instantaneous CPU power consumption for energy savings format. In
 Proceedings of the 1st International Workshop on Energy Efficient
 Supercomputing, New York, NY, USA, 2013.
 ACM. http://doi.acm.org/10.1145/2536430.2536433.

[95] V. Sundriyal and M. Sosonkina. Analytical modeling of the CPU frequency to
 minimize energy consumption in parallel applications. Submitted for
 publication to: Elsevier, 2015.

[96] V. Sundriyal and M. Sosonkina. Joint frequency scaling of processor and dram.
 The Journal of Supercomputing, 72(4):1549–1569, 2016.
 http://dx.doi.org/10.1007/s11227-016-1680-4.

[97] V. Sundriyal, M. Sosonkina, and Z. Zhang. Automatic runtime frequency- scaling
 system for energy savings in parallel applications. The Journal of
 Supercomputing, 68(2):777–797, 2014. http://dx.doi.org/10.1007/s11227-013-
 1062-0.

[98] G. Teodoro, T. Kurc, J. Kong, L. Cooper, and J. Saltz. Comparative performance
 analysis of Intel Xeon Phi, GPU, and CPU: A case study from microscopy
 image analysis. In Parallel and Distributed Processing Symposium, 2014 IEEE
 28th International, pages 1063–1072, May 2014.

185

[99] Top500. Top 500 supercomputer sites, 2013. http://www.top500.org/.

[100] Unity3D, 2015. https://unity3d.com/.

[101] P. Wang. Ready to run applications from multicore platform onto Intel Xeon
 Phi coprocessor, 2013. https://software.intel.com/en-us/blogs/2013/
 01/08/ready-to-run-applications-from-multicore-platformonto-intel-xeon-phi-
 coprocessor.

[102] S. Wang, B. Luo, W. Shi, and D. Tiwari. Application configuration selection for
 energy-efficient execution on multicore systems. Journal of Parallel and
 Distributed Computing, 87:43 – 54, 2016.

[103] V. Weaver. Reading RAPL energy measurements from linux, 2011.
 http://web.eece.maine.edu/˜vweaver/projects/rapl/.

[104] Wikipedia. Quadratic function, 2017. https://en.wikipedia.org/wiki/
 Quadratic_function.

[105] Wikipedia. Sunway taihulight, 2017. https://en.wikipedia.org/wiki/
 Sunway_TaihuLight.

[106] Wikipedia. Titan (supercomputer), 2017. https://en.wikipedia.org/
 wiki/Titan_(supercomputer).

[107] S. Williams, A. Waterman, and D. Patterson. Roofline: An insightful visual
 performance model for multicore architectures. Commun. ACM, 52(4):65–76,
 April 2009. http://doi.acm.org/10.1145/1498765.1498785.

[108] J. Wood, Z. Zong, Q. Gu, and R. Ge. Energy and power characterization of
 parallel programs running on Intel Xeon Phi. In 2014 43rd International
 Conference on Parallel Processing Workshops, pages 265–272, Sept 2014.

[109] Z. Wu and N. Huang. Ensemble empirical mode decomposition: A noise-
 assisted data analysis method. Advances in Adaptive Data Analysis, 01(01):1–
 41, 2009. http://www.worldscientific.com/doi/abs/10.1142/
 S1793536909000047.

[110] Z. Zhang and J. M. Chang. A cool scheduler for multi-core systems exploiting
 program phases. IEEE Trans. Comput., 63(5):1061–1073, May 2014.

[111] Victoria Zhislina. Why has CPU frequency ceased to grow?, 2014.
 https://software.intel.com/en-us/blogs/2014/02/19/why-has-cpu-frequency-
 ceased-to-grow.

186

Gary D Lawson Jr
1625 Skyline Drive
Norfolk, VA 23518
Mobile: (757) 292-3528
Email: gary.lawson.hpc@gmail.com

Summary of Qualifications

Extensive experience with modeling power/energy and performance of high-performance
computing systems, heterogeneous and homogeneous computing platforms. Extensive experience
with Intel Xeon Phi accelerators (processor and coprocessor), and some experience with NVIDIA
GPU. Proficient with MPI, MPI-3 Shared Memory, and OpenMP in C/C++ and Fortran. Self-
motivated professional, capable of working independently or collaboratively with a team, and
driven to aspire to management and leadership positions.

Professional Experience

NASA, Poquoson, VA
Contractor, Aug 2016 – Oct 2017

 Designed mini-app to test shared memory paradigms (MPI-3 Shared Memory and
OpenMP) on routine(s) of interest from VULCAN

 Improved performance using loop-blocking and shared memory parallelism in the mini-
app with 75% efficiency (15x speedup using 20 processors)

 Successfully implemented MPI-3 in VULCAN on routine(s) of interest
 Delegated work among 2 under-graduate students who aided with the mini-app portion of

the project.

Old Dominion University, Norfolk, VA
Research Assistant, Sept 2013 – Present

 Time-series Analysis using Empirical Mode Decomposition of power measurements
 Power and performance modeling of various applications (benchmark, mini-app, and

real-world) across several computing platforms (CPU, Accelerator, and CPU +
Accelerator configurations)

 Energy prediction using well-known power and performance models
 Languages: C/C++/C#, Fortran, Matlab, Python, Bash
 Libraries: MPI, OpenMP, CUDA, Sandia PowerAPI, micmgmt API (KNC)

Education

Old Dominion University, Norfolk, VA
2010 – Present

 Doctor of Philosophy, Modeling Simulation and Visualization Engineering
 Master of Science, Modeling Simulation and Visualization Engineering
 Bachelor of Science, Electrical Engineering

	Old Dominion University
	ODU Digital Commons
	Fall 2017

	Modeling Energy Consumption of High-Performance Applications on Heterogeneous Computing Platforms
	Gary D. Lawson Jr.
	Recommended Citation

	Microsoft Word - Dissertation_Lawson Tracked Changes GL.docx

