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ABSTRACT 
 

MODELING ENERGY CONSUMPTION OF HIGH-PERFORMANCE 
APPLICATIONS ON HETEROGNEOUS COMPUTING PLATFORMS 

 
Gary D. Lawson Jr. 

Old Dominion University, 2017 
Director: Masha Sosonkina 

Director: Yuzhong Shen 
 
 

Achieving Exascale computing is one of the current leading challenges in High 

Performance Computing (HPC). Obtaining this next level of performance will allow more 

complex simulations to be run on larger datasets and offer researchers better tools for data 

processing and analysis. In the dawn of Big Data, the need for supercomputers will only 

increase. However, these systems are costly to maintain because power is expensive. Thus, 

a better understanding of power and energy consumption is required such that future 

hardware can benefit. 

Available power models accurately capture the relationship to the number of cores 

and clock-rate, however the relationship between workload and power is less understood. 

Thus, investigation and analysis of power measurements has been a focal point in this work 

with the aim to improve the general understanding of energy consumption in the context of 

HPC. 

This dissertation investigates power and energy consumption of many different 

parallel applications on several hardware platforms while varying a number of execution 

characteristics. Multicore and manycore hardware devices are investigated in homogeneous 

and heterogeneous computing environments. Further, common techniques for reducing 

power and energy consumption are employed to each of these devices. 

Well-known power and performance models have been combined to form the 
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Execution-Phase model, which may be used to quantify energy contributions based on 

execution phase and has been used to predict energy consumption to within 10%. 

However, due to limitations in the measurement procedure, a less intrusive approach 

is required. 

The Empirical Mode Decomposition (EMD) and Hilbert-Huang Transform analysis 

technique has been applied in innovative ways to model, analyze, and visualize power and 

energy measurements. EMD is widely used in other research areas, including 

earthquake, brain-wave, speech recognition, and sea-level rise analysis and this is 

the first it has been applied to power traces to analyze the complex interactions 

occurring within HPC systems.  

Probability distributions may be used to represent power and energy traces, thereby 

providing an alternative means of predicting energy consumption while retaining the fact 

that power is not constant over time. Further, these distributions may be used to define the 

cost of a workload for a given computing platform. 
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CHAPTER 1 

INTRODUCTION 

Achieving Exascale computing is one of the current leading challenges in High 

Performance Computing (HPC). Obtaining this next level of performance is important 

because it allows more complex simulations to be run on larger datasets, current 

simulations may be run faster, and offers researchers better tools for analysis. HPC systems 

are commonly used for government, industry, and academic research projects. In the dawn 

of Big Data, the need for supercomputers will only increase as more data becomes readily 

available, and more conclusions can be made from these datasets1. 

 

1.1 Theoretical Formulations 

Current HPC systems are rated according to the Top500 list, which ranks 

computing platforms by performance [99]. As of June 2017, the Sunway TaihuLight of 

China is the top ranked platform with 93 petaflops performance. Titan, the top ranked US 

platform installed in 2012, is ranked fourth with 17.6 petaflops [106]. 

The two systems differ significantly in architecture. Sunway is built with 256 processors 

1.45GHz per node, each with 64KB scratchpad memory (16KB instruction), and 

communicate via a network on chip [105]. Titan is built using heterogeneous nodes, each 

contains a 16-core AMD Opteron CPU with 32 GB DDR3 ECC memory and an Nvidia 

Tesla K20X GPU with 2,688 CUDA cores 732 MHz and 6GB GDDR5 ECC memory. 

Nodes are interconnected using a 3D torus Gemini network. 

                                                 
1 IEEE Transactions and Journals style is used in this dissertation for formatting figures, tables, and 
references. 



   
 

 

2

The complexity of the two systems makes it difficult to pinpoint how specific 

design differences impact the final performance result. For example, consider investigating 

the differences in data transfer and power between the two systems. 

• How much better is the scratchpad memory versus a cache memory hierarchy? 

• What impact does the network on a chip have on data transfer performance? 

• How well does each system perform with applications requiring more data than  

 cache can hold? 

• Where is all the power going? 

To answer such questions, models may be used to better understand the system. 

Power is one of the obstacles preventing Exascale performance. The Department of 

Energy imposed a 20MW power cap for all US based systems [53]. Titan consumes 8.2 

MW of power, and Sunway consumes 15.4 MW – thus for the 1,000-fold increase in 

performance, power usage can at most double which is not feasible given current 

technology. Thus, a better understanding of power consumption is required such that future 

hardware can benefit. Furthermore, power usage is of great concern because typical 

systems require 60% of total power for cooling, and only 40% goes towards performance, 

and power is expensive. Thus, reducing power draw is important to reduce the long-term 

costs of maintaining the system.  

 

1.2 Purpose 

It is well-known that the most basic functions of a processor are performing 

computations, i.e., arithmetic operations, and moving data, whether it be from cache to 

registers, DRAM to cache, hard disk to DRAM, or DRAM to network. At some point, the 



   
 

 

3

processor must perform these basic operations, and the processor must consume power to 

do so. 

With newer generations of processors, these functions are expected to improve; both 

the operation of computing and moving data, and the power consumed for these operations. 

And with power becoming more adaptive for different components, i.e. core, DRAM, 

uncore, peripherals, etc., power traces will be more important to the analysis of executions 

because they will show more definitively how power is used for performance. This trend 

is already present between three generations of Xeon CPU’s, as will be shown in this 

dissertation, and is expected to continue into Exascale computing. 

Power has gained attention in the literature over the past 5 years, however it is still 

difficult to predict. While available models accurately capture the trend of power draw while 

varying cores or clock-rate, the relationship between workload and power is not modeled 

and must be measured. Workload, here, is not just a measure of floating-point operations 

because data must be moved for computation to occur, and data movement incurs significant 

penalties as the distance increases. Even cache misses present opportunities for inefficiency. 

Although, this may be hidden by allowing multiple threads to access the same core, however, 

this method only works when there is dedicated memory for these threads such that context 

switches occur with low latency. Bottom line, the relationship between power, performance, 

and workload needs to be better understood to improve future hardware. 

Typically, power is summarized as an average. This is good when only a single value 

is needed to represent a complex system for comparison to other systems. However, the 

measurements show a distribution; and in order to better predict power draw, this distribution 

needs to be evaluated and modeled. The purpose of this work is to investigate power draw and 
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energy consumption for modern multicore and manycore platforms, whether 

heterogeneous or homogeneous, in order to more accurately predict power and energy 

consumption while varying execution characteristics, including workload. 

 

1.3 Problem 

Power draw, and thus energy consumption, is the leading limitation to Exascale 

performance. Although such a machine could be built in the present, the power draw of 

such a system would exceed 20MW, and thus be in violation of the DOE standard in place. 

However, more importantly, beyond 20MW a computer center will face significant costs 

— cooling, maintenance, etc. Thus, the problem remains, how to achieve more efficient 

power and energy consumption without sacrificing performance? 

The relationship of power is well known to voltage, current, and the characteristics 

of interest to performance, such as clock-rate and cores, however less is known about the 

relationship between power and workload. There is a need for a new analytical model to 

describe the relationship between power and workload. 

 

1.4 Method and Procedure 

This dissertation investigates power and energy consumption on a number of 

hardware platforms with many different parallel applications while varying a number of 

execution characteristics. Homogeneous and heterogeneous executions are considered, as 

well as techniques for reducing energy consumption (such as dynamic voltage and 

frequency scaling) on CPU and Xeon Phi accelerators. 
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Available power and performance models are also investigated in this work, and 

applied to these applications and hardware combinations. A combination of these models 

was united to create the Execution Phase model, that models the relationship in power and 

performance for heterogeneous executions based on dividing the execution into 

computation or communication phases. 

The Empirical Mode Decomposition and Hilbert-Huang Transform analysis 

technique is used to analyze power traces. Execution characteristics such as the number of 

cores, clock-rate, number of nodes, thread mapping, and device configuration are varied to 

capture as many different variations of execution, and therefore power draw, as available 

for analysis. The approach has been used to visualize power traces using the relation of 

energy, frequency, and time; frequency here relating to the physical system and not clock-

rate (GHz). The approach has also been used to analyze segmented power measurements, 

and model the general trend of an execution. It is shown in this work that the EMD method 

is commutative, and may be applied to a sum of time-series, or individual time-series 

representing the same system (e.g. multiple sockets, nodes). 

Probability distributions are used in this work to represent power and energy traces, 

thereby providing an alternative means of modeling power and energy consumption. The 

distribution models retain the fact that power is not constant over time, and also retains the 

fact that average power is an excellent approximation for most workloads and systems. 

Also, they may be used to define the explicit costs of a workload for a given computing 

platform. 

The remainder of the dissertation has been separated into the following chapters. 

Chapter 2 presents the review of relevant literature that has motivated this work, an 
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introduction to the parallel applications and hardware used throughout this work, and the 

measurement tools required for power measurements. Chapter 3 presents the Empirical 

Mode Decomposition and Hilbert-Huang Transform analysis method, and the applicability 

of this method to power traces. Chapter 4 presents investigations on power and energy for 

hardware applications with Intel Xeon Phi, and discusses thread mapping strategies, 

applicability to DVFS for heterogeneous executions, and power limiting on the Xeon Phi. 

Chapter 5 presents the execution phase model where computation and data movement are 

modeled according to well-known power and performance models in order to predict 

energy for specific phases and devices. Chapter 6 presents methods for predicting energy 

while varying workload, and including EMD and probability distributions. Chapter 7 

presents an analysis for power traces obtained on multiple sockets and nodes. Finally, 

Chapter 8 concludes this dissertation.  
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CHAPTER 2 

BACKGROUND 

This chapter provides the background and motivation for the remainder of this 

work. A review of the literature has been performed; performance, power, and energy 

investigations and models are reviewed. The models are then formally defined. The parallel 

applications, computing platforms, and measurement software and procedures used 

throughout this work are then introduced. 

 

2.1 Literature Review 

This section presents an analysis of literature for hardware-software modeling with 

a focus placed on Intel Xeon Phi co-processor and processor. This review is motivated by 

the following factors: 

• Future systems are expected to be power constrained, which makes power 

 capping an upper-bound on application performance, 

• Future systems are susceptible to dark silicon — system resources must be turned 

 off because of power constraints, 

• Time, Power, and Energy modeling improves the understanding of hardware-

 software interactions, which are used to improve resource utilization, overall 

 performance, and energy-efficiency, 

• Scalability modeling is crucial for developing future Exascale systems and 

 applications because data movement is also an upper-bound on computational 

 performance. 
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2.1.1 Xeon Phi Performance, Power, and Energy Investigations 

Computational throughput was the dominating performance bottleneck through the 

rise of Petascale computing platforms. However, as systems surpass Petascale and 

advanced towards Exascale performance, data movement has become an overwhelming 

bottleneck. The trend in computing platforms has migrated to heterogeneous computing 

platforms with processor and accelerators on each node. Accelerators require steep power 

draw requirements, but the advantage is a device with 50+ small, low clock-rate processors 

for highly-parallel computational workloads. 

This section presents a comparison of papers investigating performance, power, 

and/or energy for the Intel Xeon Phi. Comparisons are made between competitive hardware 

(GPU and CPU where applicable), and Xeon Phi usage modes: offload, native, and 

symmetric. The offload usage mode uses a host + accelerator strategy, where 

computational tasks are “offloaded” to the Xeon Phi co-processor over the PCI bus. An 

application run only on the Xeon Phi is deemed “native” mode. Symmetric mode treats the 

CPU and Xeon Phi as separate nodes, thus MPI tasks are distributed between devices. 

In most of the literature, the GPU outperforms the Xeon Phi co-processor in 

compute performance and energy-efficiency, as noted in: [6], [7], [37], [68], [70], and [98]. 

Only in the case of sparse matrix multiplication does the Xeon Phi outperform the GPU as 

found in [85]. Comparing the Xeon Phi to the CPU, however, most works find the Xeon 

Phi superior. This finding has been noted in the following 12 works: [4], [6], [7], [37], [39], 

[52], [69], [78], [83], [84], [85], and [98]. 
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Although the Xeon Phi doesn’t outperform the GPU for all applications, additional 

factors may influence users to choose the Xeon Phi over the GPU. The Xeon Phi uses   the 

x86 architecture, which makes it compatible with x86 instruction sets – newer devices 

support all legacy instruction sets. Support for legacy compilers is important, since many 

codes have been created and maintained since the 80’s and 90’s; this is especially true for 

government projects. The GPU uses the CUDA programming model which requires code 

refactoring. The newer Xeon Phi (“Knights Landing”) is available as a processor and is 

more energy-efficient than the prior generations of Xeon Phi. 

Comparing Xeon Phi usage modes, the literature shows a trend towards native and 

offload execution. In [4], [6], [70], [83], and [108], the offload execution mode has been 

found to outperform the native execution mode. The opposite is found in [7], [54], [77], 

and [83]. Note the authors in [83] presented two evaluations of performance – one on the 

NASA Parallel Benchmarks (NPB) and one on the Weather Research and Forecasting real-

world application. The NPB performed best under the native execution mode, and the 

Weather Research and Forecasting application performed best with offload. 

Symmetric execution is rarely investigated ([72], [83], [78]), and has not been 

found to be better than native execution. Further, symmetric mode execution is sensitive to 

load balancing issues and data movement bottlenecks over the PCI bus which limits the 

usefulness of this mode. Offload execution also suffers from data movement over the PCI 

bus and from load balancing between the host and accelerator. Native mode execution is 

limited by the capabilities of a single Xeon Phi which only has 8-16GB of DRAM as a co-

processor. The processor supports 16 GB of multi-channel DRAM, as well as conventional 

DDR3 DRAM off-chip. 
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In general, Xeon Phi performance depends on vectorization and cache performance, 

which is especially critical on this device since it only has 2 levels of cache, and each MB 

of L2 is shared between two cores. The smaller cache is also found on the newer Xeon Phi 

processor, which can be cumbersome for applications that do not optimize cache 

performance. 

 

2.1.2 Modeling Multicore and Heterogeneous Computing Platforms 

Aside from testing all permutations of the execution space, few methods exist to 

determine the optimal configuration (cores, clock-rate, etc.) for a given hardware-software 

combination. One such method is auto-tuning [47, 48], where many different compiled 

versions of a code are tested according to a search algorithm to find the best version 

(configuration). Although there are many flavors of auto-tuning, and often the results are 

very promising, there is one dominating drawback of the method: all permutations must be 

tested to measure performance. This leads to using time, power, and energy models for 

configuration space exploration. The difficulty here is that execution performance is not 

easily quantified into available models. 

Analytical models are derived as an abstraction of the system in the form of a set 

of equations [71]. In this work, analytical models are further divided into the following 

categories: performance, energy, and scalability. 

 

2.1.2.1 Scalability 

Scalability has been an important area of research since the beginning of parallel 

computing. A difficult challenge in scalability is to determine the efficiency of an algorithm 
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on different hardware platforms, or when varying parameters such as the number of cores 

or problem size. Currently a method does not exist to determine the scalability of an 

application beyond what is measured. 

Isoefficiency is a metric for measuring scalability that relates problem size to the 

number of cores required to maintain efficiency. Efficiency is the ratio of speedup vs the 

number of processors used. An introduction to the basics on isoefficiency and scalability 

can be found in [31, 80]. 

True heterogeneous models are few and far between, however the authors in [49] 

present an extension to Amdahl’s Law to investigate the trade-off between energy and 

performance for heterogeneous systems. This model incorporates serial and parallel phases 

of execution and relative architecture complexity to compare architectures, which is an 

important concept in scalability. 

The authors in [102] present a novel approach to determining the best configuration 

for energy-efficient computation for a given application and hardware pair. The work uses 

scalability concepts, such as speedup, concurrency, and work defined by the serial and 

parallel portions of the application to devise an empirical model for scalability. Although 

the model is excellent for selecting a best configuration for the hardware-software 

combination tested, the model parameters cannot be used to predict usage on another 

hardware platform. 

Additional details on iosefficiency may be found on Georg Hager’s personal blog 

[34] which discusses the Z-plot presented by Thomas Zeiser. In short, performance is 

dependent on the number of cores, clock-rate, and performance on a single core. The 
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findings presented here are consistent with the Execution-Cache-Model developed by 

Georg Hager and others, to be discussed shortly. 

 

2.1.2.2 Performance 

Performance models generally focus on defining computational throughput and/or 

data movement (communication) overhead as a result of parallelizing a sequential 

application. One of the earliest models is a communication performance model—known as 

“LogP”—for parallel architectures and applications which was proposed at the dawn of 

parallel computing [19]. LogP uses communication latency, memory transfer overhead, the 

reciprocal of per-processor communication bandwidth, and the number of available 

processor/memory modules to calculate the application performance. Following in the 

footsteps of the LogP model, the “roofline” model [107] has also been proposed as a 

general way to model parallel application runtime performance. It describes the 

relationship between the data movement and computational throughput, which helps to 

identify performance bottlenecks with respect to the theoretical performance of the 

hardware. 

Many works investigate communication performance [74, 3, 33, 81, 92], because 

communication is an overhead of parallel execution. Sequential codes do not have 

communication because all of the data is readily available for computation, however 

sequential execution is too slow for real-world use. Therefore, communication overhead is 

a necessary penalty and these models aim to identify performance degradation due to 

communication. Computational throughput is linearly dependent on clock-rate, as found in 

[16]. 
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This model is easily applied to any type of application (kernel, proxy-app, and real-

world); however, the method is not applicable to all hardware — specifically the Xeon Phi. 

The time on- and off-chip model [16] requires clock-rate to be varied in order to determine 

the ratio of time on- and off-chip. This is useful because this ratio can be used to determine 

the compute- or memory-boundedness of an application without analysis of the source 

code. However, hardware such as the Xeon Phi does not allow user-defined control over 

the voltage/clock-rate states and so this model is not easily applied. This is especially true 

for the Knights Landing generation of Xeon Phi where clock-rate varies significantly with 

execution and is not controllable by the user. 

 

2.1.2.3 Power and Energy 

The models discussed thus far do not consider the combined effects of performance 

and power on the energy consumption of a software-hardware combination. Building upon 

the roofline model, [14, 15] include power and energy contributions of the parallel 

architecture. Introduced in [42], the roofline model has been extended to incorporate cache-

memory performance in addition to data transfers between LLC and DRAM. This 

improvement to the model allows for more fine-grained power and performance 

investigations, although operational intensity must be known. 

Instruction-level modeling [87] is another way for characterizing the hardware, but 

is not easily extended to real-world applications. Instruction-level models are very specific 

to a particular hardware device, in this case the Xeon Phi, but this specificity makes the 

model impractical for comparing hardware platforms or even analyzing large-scale 
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application behavior. These models are best used for theoretical foundations and 

benchmarking hardware performance. 

The execution-cache-memory (ECM) model [35, 38] extends the Roofline model 

to incorporate performance degradation due to scaling clock-rate, and maintains the upper- 

bound on performance due to data movement. In addition, the model provides a new take 

on power where clock-rate has a quadratic relationship with power draw. 

 

2.2 Time and Power Model Definitions 

Several models are considered in this work: linear regression power, the Roofline 

model for execution time, and the ECM model for both time and power. The models are 

defined here for reference throughout the document. 

 

2.2.1 Roofline 

In the Roofline performance model, time is described as the maximum between 

computation and data movement (between DRAM and LLC), and is defined as: 

𝑇 = max (𝑁  × 𝑇 ,   𝑁  × 𝑇 ),                                  (1) 

where 𝑇 is total execution time, 𝑁  is the total number of floating-point operations, 𝑇  

is the time per flop, 𝑁  is the total number of memory operations, and 𝑇  is the time 

per memory operation. Typically, the model is applied to micro-benchmarks which are 

custom built for a hardware architecture to stress-test performance. Applying the model to 

a larger application can be more difficult if the number of FLOPs and MOPs is not well 

defined. 
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2.2.2 Linear Power Model 

The power model assumes a linear relationship between workload, cores, clock- 

rate, and power draw, and is defined as 

 𝑃 = 𝑃 + 𝑘𝑐𝑓   (2)

where 𝑃 is the total power, 𝑃  is the static power draw, and dynamic power is defined 

by the workload constant 𝑘, number of cores 𝑐, and clock-rate 𝑓 . Clock-rate is cubed 

because power is proportional the product of dynamic capacitance, voltage squared, and 

clock-rate; however some assumptions can be made. The influence of voltage and clock- 

rate on power draw are proportional, hence power is defined as clock-rate cubed [111] and 

dynamic capacitance is factored into the workload constant k in the linear model. 

 

2.2.3 Execution-Cache-Memory 

The Execution-Cache-Memory (ECM) energy model is defined using novel 

performance and power models. The time model assumes a linear relationship between 

performance exists between floating-point operations, cores and clock-rate defined as: 

𝑇 =  min 𝑐𝑁 1 + , 𝑁 ,                                    (3) 

where 𝑁  is the performance in FLOPs for one core, 𝑁  is the maximum achievable 

performance given all bottlenecks, 𝑐 is the number of cores, 𝑓 is the current clock-rate, and 

𝑓  is the baseline clock-rate. 

The power model assumes a quadratic relationship to clock-rate, a linear 

relationship to the number of cores (independent of static power), and is defined as: 

𝑃 = 𝑊 + 𝑐(𝑊 𝑓 + 𝑊 𝑓 ),                                               (4) 
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where W0 is static power draw, W1 is the coefficient for the linear term of power draw, 

and W2 is the quadratic term. Dynamic power, defined by the linear and quadratic terms, 

scales with the number of cores. 

 

2.3 Parallel Applications 

Parallel applications are commonly used in academic, government, and industry 

research. Each application requires specific resources which varies how the software 

utilizes the hardware, therefore it is of interest to test many different applications to better 

understand hardware power draw. Below, the following parallel applications are 

introduced: GAMESS, CoMD, and NPB. 

 

2.3.1 GAMESS 

The General Atomic and Molecular Electronic Structure System (GAMESS)  

[30, 86] is a widely used quantum chemistry package capable of performing molecular 

structure and property calculations by a rich variety of ab initio methods finding an 

(approximate) solution of the Schrödinger equation for a given molecular system. An 

approximate (uncorrelated) solution is initially found using the Hartree-Fock (HF) method 

via an iterative self-consistent field (SCF) approach, and then is improved using various 

electron-correlated methods, such as second-order Møller-Plesset perturbation theory 

(MP2).  

To reduce the computational complexity for large molecular systems, a 

fragmentation approach, such as Fragment Molecular Orbital (FMO) method [29], is used, 

which divides the system into fragments and applies a quantum chemical method to each 



   
 

 

17

fragment, followed by the consideration of fragment interactions. The inputs used in this 

work are calculated using the MP2 method. Specifically, they are 20w, a cluster  

of 20 water molecules; 1L2Y, a synthetic protein tryptophan cage; S256, a  

1-trichloromethylsilatrane (TCMS) molecule with 6-31G(d) basis set (265 basis functions), 

and S301, a TCMS molecule with 6-31G(d,p) basis set (301 basis functions). The inputs 

20w and 1L2Y also use FMO approximations of short-range interactions up to trimers 

(when triples of fragments considered as a single fragment). OpenMP is not available in 

GAMESS, so half of the total MPI (Message Passing Interface) tasks are dedicated to 

computation and the remaining half to data movement via the generalized Distributed Data 

Interface (GDDI) [27]. 

 

2.3.2 CoMD 

Co-design Molecular Dynamics (CoMD) is a proxy application developed as part 

of the Department of Energy co-design research effort [22] at the Extreme Materials at 

Extreme Scale (ExMatEx) center. CoMD is compute-intensive, where approximately  

85– 90% of the execution time is spent computing forces. In this work, both force kernels 

are used: the more accurate Embedded Atom Model (EAM) force kernel for short-range 

material response simulations, such as uncharged metallic materials [23], and the less 

accurate Lennard-Jones (LJ) force kernel. The LJ force kernel consists of one compute 

loop, whereas EAM consists of three compute loops and a small halo data exchange 

between the second and third loop. 

Problem size is expressed as the number of atoms along an axis of the material; the 

default material is copper. In this work, each axis is equivalent (in atoms) which defines 
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the material shape is a cube. A problem size of 40 equates to 4 × 403 = 256,000 atoms. 

CoMD is available as a hybrid of MPI and OpenMP, thus each may be measured separately 

or in combination. 

 

2.3.3 NPB 

The NAS Parallel Benchmarks [76] is a collection of programs used to evaluate the 

performance of parallel supercomputers, which was derived from computational fluid 

dynamics applications. This work considers all its five kernels: EP (embarrassingly 

parallel), CG (conjugate gradient), FT (discrete 3D fast Fourier Transform), IS (integer 

sort), and MG (multi-grid solver on a sequence of meshes). Note that EP is compute-

intensive, CG and MG are memory-intensive (see [96]), IS uses random memory access 

patterns, and FT performs all-to-all communication. Additionally, four pseudo-

applications have been tested: BT (block tri-diagonal solver), SP (scalar penta-diagonal 

solver), and LU (lower-upper Gauss-Seidel solver), and UA (an unstructured adaptive 

mesh which imposes dynamic and irregular memory accesses). The NPB applications are 

available for MPI or OpenMP, although few are also offered as a hybrid. Problem sizes are 

defined by “class”, ranging from S, W, A, B, C, D, and E as specified in [75]. 

 

2.4 Computing Platforms 

The computing platforms used in this work are organized as follows: Borges, Bolt, 

Turing, Marquez, and Rulfo. The computing architectures include Intel Sandy-Bride, Ivy- 

Bridge, and Haswell CPU’s and Intel Xeon Phi KNC and KNL generations. The CPU 

hardware specifications are provided in Table I for Borges, Bolt, Turing, and Marquez. 
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TABLE I 
 

HARDWARE CHARACTERISTICS OF THE PARALLEL COMPUTING 
PLATFORMS 

 
 Borges Bolt Turing Marquez 

Microarchitecture Sandy Sandy Ivy Haswell 
Model E5-2650 E5-1650 E5-2670 v2 E5-2630 v3 

Nodes 1 3 10 1 
Sockets (p Node) 2 1 2 2 
Cores (p Socket) 8 6 10 8 
Clock-Rate (GHz) 2.0-1.2 3.2-1.2 2.5-1.2 2.4-1.2 

LL Cache (MB) 32 12 25 20.5 
DRAM (GB) 64 64 64 64 
TDP (Watts) 95 130 115 85 
Location ODU Ames Lab ODU - HPC ODU 

 

 

TABLE II 
 

INTEL XEON PHI HARDWARE SPECIFICATIONS FOR KNC AND KNL 
 

 Knights-Corner Knights-Landing 

Device Co-processor Processor 

Model 5110p 7210 

Cores 60 64 

Threads (p Core) 4 4 

Clock-Rate (GHz) 1.053 1.3-1.0 

LL Cache (MB) 30 32 

DRAM (GB) 8 16 

VPU (bits) 512 512 x2 

FMA (ops/cyc) 2 2 

TDP (Watts) 245 215 
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The Intel Xeon Phi hardware specifications are provided in Table II. The Borges, Bolt, and 

Turing systems are equipped with 2 KNC per node, in addition to the CPU specified in 

Table I. For Bolt, the compute nodes are QDR-connected with Infiniband. For Turing, 

nodes are FDR-connected with Infiniband. To avoid confusion with the EMD/HHT 

analysis method, which calculates a physical frequency, clock-rate is used to reference the 

operating frequency of any hardware platform in this work. 

 

2.5 Power Measurement 

The Sandia National Labs PowerAPI [55] is used to measure energy via the Linux 

Power Capping Framework (LPCF) [2] plugin which reads energy from the Running 

Average Power Limit (RAPL) [103, 20] counters. The PowerAPI uses the hardware 

locality (hwloc) API [79, 9] to detect the underlying hardware and is very portable. 

Power measurements are collected every 5ms, and measurements are collected for 

five seconds before and after the application is executed to establish the idle power draw. 

Although most of computing platforms support up to 1ms resolution for sampling power 

using RAPL, it has been found empirically that 1ms sampling is unreliable on most 

systems. A more modest 5ms sampling rate is used in this work; however, the sampling 

rate is closer to 10ms when the system is loaded. Sampling rate is reported as 5ms 

throughout this work. In the case of the KNC, a 20ms sampling rate is used because this is 

the minimum achievable sampling rate for the device (and RAPL is not available).  Power 

is read using the micmgmt API or by reading the power file hosted on the device at: 

/sys/class/micras/power. KNL supports RAPL and the LPCF, and is compatible 

with the PowerAPI. 
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 For the Intel Xeon Phi, user-defined clock-rate scaling is not available; instead, the 

clock-rate may be changed indirectly by setting power limit thresholds for the device. The 

Xeon Phi System Management Controller (SMC) varies operating clock-rate as power 

surpasses the designated thresholds. Specifically, the Xeon Phi uses two power threshold 

values—low and high—each with a designated time window. By default, the low power 

threshold is set to the TDP with a time window of 100ms and the high threshold at 120% 

of the TDP and a time window of 10ms. When power exceeds the low threshold for the 

duration of the time window, clock-rate is decreased until power consumption is less than 

that of the threshold. When power exceeds the high threshold for the duration of the time 

window, the thermal throttling mechanism is engaged, which forces the device to the 

lowest operating clock-rate of around 500 MHz, as seen experimentally. More on Xeon 

Phi power limiting can be found in the datasheet [43]. 
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CHAPTER 3 

EMPIRICAL MODE DECOMPOSITION 

The Empirical Mode Decomposition and Hilbert-Huang Transform (EMD/HHT) 

method [40, 109] is used for non-parametric non-stationary time-series analysis and 

calculates instantaneous amplitude and frequency, and is applied to real-world systems to 

uncover underlying physical interactions. This method has been already successfully 

applied in a variety of fields, such as medicine, finance, engineering, and more recently in 

geosciences — analysis of sea level data [26] and climate change studies [25]. The main 

advantage of EMD/HHT over standard spectral methods is that it detects oscillating modes 

with time-dependent amplitudes and frequencies, so it is useful for analyzing irregular data 

with unknown frequencies. On the other hand, the interpretation of the EMD/HHT results 

is not straightforward since individual modes do not necessarily represent particular 

execution characteristics. 

EMD/HHT has been adopted to analyze an execution as a whole as opposed to its 

division into phases based on specific resources used in each phase.   Phase refers to a 

computation or data-movement type operation, such as RAM to cache data transfers or 

communication on the node or over the network; the phases often overlap to optimize 

performance. Such a division was considered in [66] in order to model each phase 

differently, which has proven to be difficult in general for correlating phases with power 

readings. See Chapter 5 for additional details on the phase method. 

 

3.1 Method  

 EMD is used to decompose a power trace into oscillating intrinsic mode functions 
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(IMF) and a residual trend. An IMF is a function that satisfies two criteria [40]. First, the 

number of extrema and number of zero-crossings must be equal or differ by no more than 

one. Second, the mean value of the envelope defined by the local maxima and minima is 

zero. IMF’s are recovered from the time-series until none remain — the resulting time- 

series is the residual trend. This may be described as: 

 ℎ(𝑡) = 𝑐 (𝑡) + 𝑟(𝑡) (5) 

where ℎ(𝑡) is the original time-series, in this work the power trace, 𝑐 (𝑡) is the i-th IMF of 

a total of 𝑁 IMF’s, and 𝑟(𝑡) is the residual. 

EMD extracts IMFs through a process called sifting. To sift, the minimum and 

maximum extrema of the time-series are used to calculate the average; the difference 

between the average and time-series is then treated as the time-series for the next sift. This 

process continuously refines the data set until the standard deviation of the resulting time-

series is less than 0.2 (see [40]). Once this standard deviation is obtained the resulting time-

series is accepted as an IMF and is subsequently removed from the original time-series. 

This process is repeated until the residual is found from which no other IMFs may be 

obtained. One potential use for the residual trend is to construct a non-linear model to relate 

power and time-to-solution, as proposed by the authors [60]. Note that the total number of 

IMFs is an output of EMD and depends on the trace characteristics. For instance, more 

IMF modes are found in longer traces because low-frequency oscillations are more likely 

to be detected. 

HHT is then applied to each IMF, except the residual, to calculate instantaneous 

frequency: the time derivative of the oscillation phase for any time-step of the signal [40]. 
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The maximum frequency that may be obtained using HHT is determined by the sampling 

rate 𝑟 in the expression 1/5𝑟, where 5 is the minimum number of data points required to 

accurately define instantaneous frequency [40]. Modern HPC systems are able to sample 

power at a maximum rate of 1ms, but to ensure consistency between measurements across 

computing platforms, a more modest sampling rate of 5ms is used throughout this work. 

At 5ms, the maximum frequency obtainable by EMD is 40Hz. Sampling rate significantly 

impacts the utility of the EMD/HHT method. 

The implementation of the EMD/HHT method used here is based on the original 

one from [40, 109], as adapted in [25, 26]. Source code for EMD/HHT analysis in Matlab 

is available at [24]. A talk given by Donghoh Kim is an excellent aid for understanding the 

EMD procedure, see [51]. 

 

3.2 EMD/HHT on Power Traces 

Figure 1 presents power traces for CoMD and CG executed on the Borges and 

Marquez computing platforms, Sandy-bridge and Haswell respectively. Power samples are 

shown as black circles and the residual trend of the trace is shown as a solid red curve. The 

residual has been obtained using the EMD procedure above and will be of importance later 

in this chapter. The traces include measurements for idle (static) power draw and active 

(dynamic) power draw, and some comparisons between systems and applications may be 

established. 

First note that static power for the Sandy-Bridge system is between 40-50W, 

whereas the Haswell system is between 20-30W. Already the Haswell system has an 

energy advantage over Sandy. Notice also that CoMD runs faster on Haswell than Sandy,  
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(a) CoMD on Sandy-Bridge 

 

(b) CoMD on Haswell 

 

(c) CG on Sandy-Bridge 

 

(d) CG on Haswell 

 

Fig. 1. Original power traces with EMD residual for CoMD and CG on Sandy-Bridge 

(Borges) and Haswell (Marquez) computing platforms. 

 

but CG runs faster on Sandy. Interestingly, all applications use roughly 80-120W while 

active and power samples are observed over the range with few outliers. Outliers near idle 

power draw show moments when the execution encountered an idle period, possibly due 

to a severe latency penalty in data movement. 

The power traces in Fig. 1 serve as input to the Empirical Mode Decomposition 

(EMD) and Hilbert-Huang Transform (HHT) analysis method. Figure 2 presents the  
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Amplitude for CoMD on Sandy-Bridge 

 
 
 
 
 

Frequency for CoMD on Sandy-Bridge 
 

 
Fig. 2. Intrinsic mode functions for CoMD on the Borges platform. The power trace de- 

composed into 13 modes and the residual trend, with amplitude (Watts) on the left and 

frequency (Hertz) on the right. 
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Amplitude for CoMD on Haswell 

 

 

 

Frequency for CoMD on Haswell 

 

Fig. 3. Intrinsic mode functions for CoMD on the Marquez platform. The power trace 

decomposed into 13 modes and the residual trend, with amplitude (Watts) on the left and 

frequency (Hertz) on the right. 

  



   
 

 

28

  

 

Amplitude for CG on Sandy-Bridge 

 

 

 
Frequency for CG on Sandy-Bridge 

 

Fig. 4. Intrinsic mode functions for CG on the Borges platform. The power trace de- 

composed into 13 modes and the residual trend, with amplitude (Watts) on the left and 

frequency (Hertz) on the right. 
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Amplitude for CG on Haswell 

 

 
 
 

Frequency for CG on Haswell 
 

Fig. 5. Intrinsic mode functions for CG on the Marquez platform. The power trace de- 

composed into 13 modes and the residual trend, with amplitude (Watts) on the left and 

frequency (Hertz) on the right.  
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intrinsic mode functions for the power trace of CoMD on Borges, shown in Fig. 1a.  

Figure 3 presents the IMF’s for CoMD on Marquez, shown in Fig. 1b. Figure 4 presents 

the IMF’s for CG on Borges, shown in Fig. 1c. Figure 5 presents the IMF’s for CG on 

Marquez, shown in Fig. 1d. 

The sifting process removes the highest frequency oscillations from the source 

time-series first, hence the low modes of amplitude correspond to the high-frequency 

oscillations and as the number of modes increases the frequency of oscillations decreases. 

This pattern may be observed in the amplitude of IMF’s for all four traces. Note here that 

the frequency of oscillations in amplitude, as described here, is different from the 

instantaneous frequency calculated using HHT. Instantaneous frequency describes the 

frequency of the system, in this case the execution (application running on a computing 

platform). 

By observing the patterns in the amplitude of the IMF’s, some features become 

visible. Most obvious is the start and end of execution which can be identified in most of 

the IMF modes for any given trace. In the lower modes, the high-frequency oscillations do 

not begin until execution starts which is to be expected. The hardware platform is idle until 

a workload is executed on the system, and this is reflected well by EMD. 

Beyond identifying the bounds of execution with respect to the trace, it is difficult 

to discern much from the IMFs. It is evident that the IMF’s relate to workload and 

performance characteristics, but it is not immediately discernible how the IMF’s relate to 

computation or data movement. Consider IMF modes 1-7 for each of the four traces and 

observe the frequency of oscillations in amplitude while varying hardware platforms and 

applications. There are different patterns corresponding to different applications/platforms 
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which likely correlate computation or data movement, since these are the most basic 

workloads of any application. The difficulty is in establishing the correlation, since it is not 

feasible to instrument a large-scale application with output markers to identify computation 

and communication phases. 

Due to the difference in power sampling rate and clock-rate, it is difficult to relate 

instantaneous frequency to the power trace. However, certain modes show interesting 

results; consider modes 6, 7, & 9 for CG on the Haswell platform (Fig. 5). Similar patterns 

in frequency may be observed in the other traces. 

 

3.3 Ensemble Empirical Mode Decomposition 

It may happen, however, that an intermittent mode cannot manifest under the 

standard deviation constraint and “contaminates” the residual trend with a spurious IMF. 

To alleviate this problem and obtain a more reliable shape of the residual, the Ensemble 

EMD (EEMD) method [109] may be applied.  

EEMD works by introducing white noise to the time-series to exhaust the sifting 

process. While in EMD, the sifting processes the original time-series once to extract each 

IMF, in EEMD, white noise and the sifting process are applied to the time-series multiple 

times, such that the white noise is averaged out and only the trace itself remains. As 

explained in [109], IMFs obtained from different series of white noise have no correlation 

with each other, and therefore the means of each IMF (of white noise) will cancel out. This 

way, EEMD may avoid the residual contamination, as seen, e.g., in Fig. 6, which illustrates 

the difference between residuals found using EMD and EEMD.  
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Fig. 6. Illustration of a residual with intermittent oscillations found using EMD and the 

same residual with EEMD (5 Watts, 100 Iterations). 

 
 

It is important to note that the number of modes produced by EEMD and EMD are 

the same for the traces explored in this work and possibly in general. The difference 

between the EEMD and EMD is in the shape of the resulting IMFs and residual, where 

modes now include intermittent oscillations otherwise missed. The error introduced by 

EEMD can be calculated as: 

 𝜀 =
𝜎

𝑁
 (6)

where 𝜀 is the standard deviation of error introduced to by the white noise, 𝜎  is the 

specified amplitude of white noise, and 𝑁 is the specified number of iterations [109]. Based 

on this equation, applying EEMD with 5 Watts and 100 iterations yields a standard 

deviation of error of 0.5. Indeed, this error is high but has been shown to improve the result 

of EEMD as shown in Fig. 6 and in [60]. 
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 EMD/HHT Analysis Output 
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(b) IMF Amplitude 

 

 
 

 
(c) IMF Frequency 
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(d) Power Trace 

 

 
 

(e) IMF Amplitude 

 

 
 

(f) IMF Frequency 

 
Fig. 7. Illustration of EMD/HHT procedure on CoMD (top row) and GAMESS (bottom 

row). The original power trace (a & d) is decomposed into intrinsic mode functions (IMFs) 

with respect to amplitude (b & e) and instantaneous frequency (c & f). Each trace is 

collected while executing CoMD or GAMESS with 59 cores at the maximum computer 

clock- rate. 

 
 

3.4 Energy-Frequency-Time 

Consider for this section the following power traces, IMF amplitudes and 

frequencies shown in Fig. 7. Once a power trace has been analyzed using EMD/HHT  
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(a) Raw Trace 

 
 

(b) IMF Amplitude 

 
 

(c) IMF Frequency 
 

 
 

(d) All IMF Modes 

 
 

(e) Mode 1 Removed 

 
 
(f) Modes 1 & 2 Removed 

 
Fig. 8. Illustration of EMD/HHT histograms generated using a power trace (a) collected 

on Bolt-CPU running CoMD-50 with maximum cores and clock-rate. The EMD/HHT 

analysis produced IMFs shown as amplitudes (b) and frequencies (c), which were then 

used to generate histograms (c–e); Histogram (c) was created with all available IMF 

modes, (d) all modes minus mode 1, and (e) all modes minus modes 1 and 2. 

 

(see Fig. 7), the amplitude and instantaneous frequency may be combined into a 2-

dimensional histogram. Time and frequency make up the x- and y-axes, respectively, and 

amplitude is collected in bins and represented as intensity using color from blue to red for 

low to high, respectively. Hence, intensity is the sum of all amplitudes for a given 
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time/frequency bin. Intensity is used to show the concentration of power draw with respect 

to time and frequency. The histogram uses bin sizes of 100ms (time) and 2Hz (frequency). 

A feature of these histograms is a band, which is a range of frequencies having a consistent 

intensity throughout execution. 

Figure 8 presents a power trace collected on the Bolt system while running CoMD 

on the CPU with maximum cores and clock-rate for a problem size of 50 (500,000 atoms). 

The power trace (a) has been analyzed using EMD/HHT to produce IMFs (b and c), which 

were then combined to form the 2D histograms (d–f), of time and frequency, where 

intensity is the sum of all amplitudes for a given time/frequency bin. To better understand 

the histogram, consider Fig. 8d to Fig. 8f. In Fig. 8d, where all the IMF modes are included, 

notice the moderate-to-high intensity (in yellow) from 24 to 36Hz. In Fig. 8e, which is the 

same as Fig. 8d but without mode #1, the yellow band of moderate intensity has shrunk 

and only encompasses 24–30Hz. Therefore, one may conclude that the first mode contains 

high frequency oscillations from the original trace (in Fig. 8a).  

One step further, in Fig. 8f, the band of moderate intensity has vanished.  

Comparing with the IMF data shown in Fig. 8b and Fig. 8c, it is now more apparent that 

the “high-frequency” modes (modes 1 and 2) contain a large portion of the total power 

draw for CoMD. Similarly, for GAMESS, modes 1, 2, and 3 contribute the most to total 

power draw (see Fig. 7e). Hence, in this way, it is possible to quantify a significant amount 

of power is used by high-frequency interactions. It is also of importance to note that the 

highest intensity is shown at frequency close to zero (see Fig. 8d), which can be explained 

by static power draw or low-frequency operations, such as data I/O. 

Figure 9 presents the EMD/HHT histograms generated for power traces collected  
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CPU-Only Offload Xeon Phi-Only 
 

 
 

(a) Bolt 
 
 

 
 

(e) Turing 

 

  
 

(b) Bolt-CPU (c) Bolt-KNC 
 
 

  
 

(f) Turing-CPU (g) Turing-KNC 

 

 
 

(d) Rulfo-KNL 
 
 

 
 

(h) Bolt-KNC 

 
Fig. 9. Comparison of EMD/HHT histograms generated for power traces collected by 

running CoMD on different systems and for different usage modes. From left to right, the 

first column presents the histogram on the Bolt (a) and Turing (e) systems. The following 

two columns present the offload histograms, with the CPU output on the left and KNC 

output on the right for Bolt (b & f) and Turing (c & g). The final column presents the 

histograms for the two Xeon Phi systems, KNL on Rulfo (d) and KNC on Bolt (h). 

 

by running CoMD on different systems and for different usage modes. From left to right, 

the first column presents the histogram on the Bolt (Fig. 9a) and Turing (Fig. 9e) systems. 

The following two columns present the offload histograms, with the CPU output on the left 

and KNC output on the right for Bolt (Fig. 9b & Fig. 9c) and Turing (Fig. 9f & Fig. 9g). 
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The final column presents the histograms for the two Xeon Phi systems, KNL on Rulfo 

(Fig. 9d) and KNC on Bolt (Fig. 9h). Comparisons of the histograms in Fig. 9a and Fig. 9e 

provide insights on how the different hardware platforms respond to a similar workload—

CoMD on the CPU with maximum cores and clock-rate for a problem size of 50. The 

histogram for Bolt (Fig. 9a) shows a concentrated band of moderate-to-high intensity 

(yellow) above 24Hz, suggesting that the hardware is approaching performance 

bottlenecks. Specifically, an operation that occurs at 28Hz causes high intensity throughout 

the Bolt execution and may be indicative of a performance bottleneck. Turing (Fig. 9e), on 

the other hand, shows a moderate-to-low intensity (cyan) throughout execution, and this 

intensity band spans the entire spectrum from 0 to 40Hz. From such comparisons, it may 

be deduced that a more consistent intensity over frequency and time suggests the 

application performs more optimally. Indeed, Turing is able to solve the problem almost 

twice as fast as Bolt thanks to having increased parallelism of 20 cores versus 6 cores on 

Bolt. 

By comparing Bolt and Turing, and the CPU and Offload usage modes, the 

following findings may be observed. Comparing CPU executions (Fig. 9a vs Fig. 9b) and 

(Fig. 9e vs Fig. 9f), data transfer over the PCI bus can be observed. This is the critical 

difference between CPU-only and Offload usage modes, since data must be shared between 

the host CPU and KNC devices. In particular, an increase in intensity is found for 

frequencies below 10Hz throughout execution. Data transfer over the PCI bus is a form of 

I/O, which is considered low-frequency because data is often transferred in large chunks 

that experience varying degrees of performance. High-frequency data transfers include 

RAM and cache memory because these subsystems operate more frequently than PCI bus 
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transfers. The KNC histograms (Fig. 9c and Fig. 9g) also provide insights with the 

frequency limit of 10Hz. The low intensity on Bolt suggests the KNC device was prone to 

latency due to load balance problems between the CPU and KNC. Bolt suffers from a lack 

of parallelism, whereas Turing can achieve better load balancing due to the increased 

parallelism. Note that obtaining frequencies above 10Hz, as in Fig. 9h, for a sampling rate 

of 20ms suggests that the sampling resolution is not sufficient for EMD/HHT analysis. 

Figure 9d presents another example of an optimal execution performance, as is explained 

further using Fig. 10. 

Figure 10 presents the EMD/HHT histograms generated for power traces collected 

by running CoMD and GAMESS on different systems while varying the number of cores 

or clock-rate. From left to right, the first two columns present the histograms on the Rulfo 

for CoMD and GAMESS with 63 cores (Fig. 10a & Fig. 10b) and with 32 cores (Fig. 10d 

& Fig. 10e). The final column presents the histograms for the Turing system with 

maximum clock-rate (Fig. 10c) and minimum clock-rate (Fig. 10f). Consider two numbers 

of cores, 63 and 32, as shown for CoMD in Fig. 10a and Fig. 10d, and for GAMESS, in 

Fig. 10b and Fig. 10e, respectively. For the smaller number of cores, the intensity of the 

trace decreased over the entire time-frequency domain. Although this an expected 

behavior, the histograms are telling because they show that the processor power draw 

impacts at all frequencies.   

In particular, CoMD is a compute-intensive application that achieves optimal 

performance with the maximum number of cores. The intensity for the maximum number 

of cores is moderate, and for the minimum number of cores the intensity is moderate-to-

low; factoring time-to-solution with this difference, it is apparent that a moderate intensity  
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Rulfo Turing 
CoMD GAMESS CoMD 

 

 
 

(a) 63 Cores 
 

 
 

(d) 32 Cores 

 

 
 

(b) 63 Cores 
 

 
 

(e) 32 Cores 

 

 
 

(c) Maximum Clock-Rate 
 

 
 

(f) Minimum Clock-Rate 

 
Fig. 10. Comparison of EMD/HHT histograms generated for power traces collected by 

running CoMD and GAMESS on different systems while varying the number of cores or 

clock- rate. From left to right, the first two columns present the histograms on the Rulfo 

for CoMD and GAMESS with 63 cores (a & b) and with 32 cores (d & e). The final 

column presents the histograms for the Turing system with maximum clock-rate (c) and 

minimum clock-rate (f). 

 

coincides with the more optimal execution. It has been observed earlier [60] that GAMESS 

is a memory-intensive application that achieves optimal performance with half of the 
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maximum number of cores on Rulfo because of the limited L2 cache size (32 MB for 64 

cores). Indeed, for GAMESS, a moderate intensity is seen in the 32-core trace (Fig. 10e) 

while the plot for 63-core trace exhibit high intensity, notably between 50 and 200 seconds 

(Fig. 10b). Such a high intensity for larger frequencies suggests that performance 

bottlenecks have been encountered by the execution. 

Figures 10c and 10f present comparisons of the maximum and minimum clock-rate 

(P-state) for Turing. Similarly, to decreasing the number of cores, smaller clock-rate 

reduces the intensity across the entire time-frequency domain. A smaller clock-rate, 

however, did not impact the bands found in the Turing trace for frequencies from 18 to 

34Hz. 

 

3.5 Modeling the EMD Residual Trend 

The residual produced by EMD may be used to describe power as a function of 

time [60]. The model is obtained by first applying EMD to a complete power trace and then 

fitting a quadratic equation (see Eq. (7)) to the residual.  

𝑃(𝑡) = 𝑎𝑡 + 𝑏𝑡 + 𝑐 .                                                 (7) 

Denote this model as the quadratic-fit residual (QFR) model. 

 

3.5.1 Constructing the QFR 

The first step is to obtain a power trace. In this work, power measurements are 

sampled at a rate of 5ms, which is close to the maximum available sampling rate of 1ms. 

A sampling rate of 5ms ensures all samples return a reliable measurement as well as allows 

for a significant number of IMF modes to be extracted from the trace to get an accurate and 
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reliable residual. Lower sampling rates, even on the order of hundreds of milliseconds, 

would suffice for producing a residual trend. However, the higher the sampling rate, the 

more IMF components that may be extracted since each IMF component resembles a 

particular time-scale (defined as the time between successive extrema). The residual is on 

the largest time-scale obtained by EMD. 

The next step is to apply EEMD to the power trace. For a more reliable fit, EEMD 

may be applied to power traces collected for several duplicate runs and then fit the 

quadratic model to the collection of residuals. In [60], a total of 5 duplicate runs was 

considered, and a white noise of 5 W was applied to the time-series and averaged over 50 

EEMD passes. These are the smallest values, which were found to be sufficient to remove 

the final residual contamination, and fit the model to the residuals with  

R2 > 0.95. Note that several traces are used due to the variability in execution 

characteristics (e.g., memory stalls and conflicts). 

The shape of the residual is consistent between power traces because idle power is 

measured for several seconds before and after the execution. These “cool” periods 

influence the EMD residual to start at and return to the idle power draw, forming a concave-

down quadratic. Therefore, the maximum power draw appears towards the center of the 

entire trace with minima at the ends (see Fig. 1 for examples). 

Once the quadratic model is obtained, the execution parameters, such as the total 

time, average power, and total energy may be quite easily defined as follows: 

• Total time is difference in the start and end times, the start time is always zero for 

 the model, and the end time is taken as the time when the power draw equals or is 

 less than power at the start (zero) time. 
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Fig. 11. QFR model of power over time. 
 
 

 𝑇 =  
−𝑏

𝑎
 (8)

 𝑃 =
−𝑏 + 4𝑎𝑐

4𝑎
 (9)

 𝑎 =
−𝑏

𝑇
 (10)

 𝑏 =
4𝑃

𝑇
 (11)

• Average power is an average of the power draw as defined by the model. 

• Energy is found by integrating the model between start and end times. 

An example QFR model is shown in Fig. 11. Power is shown on the y-axis, and 

time is the x-axis in Fig. 11. The power model describes the trend in power draw over time 

where power draw always returns to idle. The coefficients relate to time in maximum power  

draw as shown in Eq. (8) and Eq. (9). To obtain these definitions, assume that c=0 and 

static power draw is removed from the trend; then time may be described as the x-intercept 

greater than zero, see Eq. (8). Power is defined at the apex, or axis of symmetry [104], as 
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shown in Eq. (9). Notice that power, even defined as a quadratic, has a static and dynamic 

component, where static power is coefficient c. Conversely, the coefficients may then be 

defined using these definitions; a is shown in Eq. (10) and b is shown in Eq. (11). The QFR 

shown in Fig. 11 was created for a time of 450s, static power of 80W, and dynamic power 

of 90W - the coefficients are then a = −0.0018, b = 0.80, and c = 80. Using the QFR to 

model energy, it has been shown that measured energy for traces longer than 100 seconds 

has an error of 10% or less [60]. 

 

3.5.2 Modeling Energy using the QFR 

Table III and Fig. 12 present the measured and modeled time-to-solution and 

average power draw for each workload, memory type, and number of cores. First, notice 

that the power limiting has a larger impact for CoMD than GAMESS. In particular, CoMD 

shows a linearly decreasing pattern as power draw increases while GAMESS shows a 

marginal decrease in the execution time as power draw increases and a large range of time-

to-solution values, depending on the number of cores.  

These results may be explained by a general observation that, for CoMD, the 

maximum number of cores is always preferred while, for a GAMESS workload, smaller 

numbers of cores may lead to the best execution time, which is less affected by the power 

limiting and L2 cache saturation. Also, recall that the minimum power limit tested is 90 W, 

yet the resulting minimum measured power for CoMD or GAMESS is 105W as indicated 

in Fig. 12, which is in line with authors’ previous findings in [67]. When comparing 

modeled and measured values in Fig. 12 observe that the model calculates reasonably well 

both the time and average power usage for each configuration, even though power trends  
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(a) CoMD 
 

 

 
 

(b) GAMESS 
 

Fig. 12. Measured and modeled time vs power for (a) CoMD and (b) GAMESS with two 

memory types (DDR and MCDRAM) and three core counts (32, 48, and 63); and one subplot 

per workload.
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TABLE III 
 

BEST EXECUTION TIME, POWER, AND ENERGY ACROSS ALL THE WORKLOADS IN COMD AND 

GAMESS AND DRAM MEMORY TYPES. 

 DRAM Memory 
 Best Config DDR MCDRAM 

Application Workload # Cores, PLimit(W) Time(s) Power(W) Energy(J) Time(s) Power(W) Energy(J) 
 
 

CoMD 

LJ (60) 63, 120 19 141 2654 18 138 2528 
LJ (80) 63, 120 41 142 5830 40 138 5549 
LJ (100) 63, 120 82 142 11664 82 138 11279 

EAM (60) 63, 120 35 142 5007 35 138 4776 
EAM (80) 63, 120 75 143 10681 73 138 10153 
EAM (100) 63, 120 140 142 19906 137 138 18921 

 
GAMESS 

1L2Y 32, 215 130 130 16862 127 128 16190 
20w 32, 215 212 125 26332 201 123 24708 
S265 32, 215 35 126 4444 31 125 3865 
S301 32, 215 44 127 5534 39 126 4905 
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TABLE IV 
 

MODEL COEFFICIENTS AND CALCULATED ENERGY FOR ALL WORKLOADS OF COMD AND GAMESS 

AND DRAM MEMORY TYPES. 

 DRAM Memory 
DDR MCDRAM 

Application Workload a b c Energy (J) a b c Energy (J) 
 
 

CoMD 

LJ (60) -0.432 12.161 63.461 3388 -0.401 11.202 64.754 3267 
LJ (80) -0.105 5.340 84.493 6561 -0.102 5.145 83.051 6362 
LJ (100) -0.026 2.414 96.495 12297 -0.025 2.298 95.328 11933 

EAM (60) -0.134 6.138 80.571 5844 -0.133 5.940 80.123 5537 
EAM (80) -0.030 2.548 97.848 11321 -0.029 2.481 95.512 10866 
EAM (100) -0.008 1.134 108.488 20461 -0.008 1.130 104.974 19512 

 
GAMESS 

1L2Y -0.009 1.381 90.230 18109 -0.010 1.406 88.682 17565 
20w -0.003 0.599 99.350 27176 -0.003 0.640 95.837 25944 
S265 -0.107 4.912 76.968 5286 -0.128 5.428 73.563 4746 
S301 -0.075 4.128 80.108 6454 -0.088 4.400 79.125 5768 
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are underestimated and further model tuning may be warranted. In particular, for CoMD 

(Fig. 12a), the model closely matches the measured values with power underestimated by 

approximately 5–10 W. For GAMESS (Fig. 12b), on the other hand, the power is 

underestimated by almost 15 W in some cases. 

Using the constructed model, the same best configurations, specified by the  

(# Cores, Power Limit(W)) pair, were found as those observed with measurements (see 

column Best Config in Table III). For these best configurations, Table IV provides the 

modeled energy values and quadratic model coefficients a, b, and c. Observe that the model 

acceptably calculates the total energy consumption (cf. columns Energy(J) in Tables III 

and IV). Specifically, the modeling error is within 10% for longer executions, i.e., for those 

taking greater than 100s, while the error increases up to 30% for shorter ones. For CoMD, 

which contains shorter traces, the overall average error has been found to be 15%. CoMD 

problem size of 100 shows the least error of 5–10%, whereas the problem size of 60 shows 

the largest error of 15–30%. For GAMESS, workloads 1L2Y and 20w result in the smallest 

error (less than 10%), but the errors in S265 and S301 are in the 15–25% range. Large 

model errors may be attributed, in part, to fitting the quadratic model into the outcome 

(residuals) of the EEMD procedure, which itself may incur errors of up to 10% [26], as 

verified empirically in the course of this work. Note that fitting into the raw traces is 

practically an impossible task, circumventing which is a principal objective of the current 

work. It may be possible to decrease the errors by increasing the power sampling rate, 

which is set to 5ms in this work. 

It may be also observed in Table IV that, for the test cases with MCDRAM, the 

model predicts always less energy consumption than that predicted for the cases with the 
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DDR memory, which is in line with the measured results. From Table IV, some tendencies 

of the model coefficients may be noticed. In particular, as problem size increases, the 

coefficients a and b decrease for both CoMD and GAMESS. Also, a is always negative, 

which is a trait of a concave-down shape of the quadratic residual. Finally, the coefficient 

c always increases with problem size. Further testing is necessary to observe how these 

tendencies hold across other platforms. 

 

3.6 Trace Segmentation 

This method, denoted here as segmented trace modeling (STM), uses segments of 

the power trace to approximate the QFR on the entire trace, thereby reducing the amount 

of measured data required for the model construction. 

STM approximates the QFR using a power trace of only a fraction of total execution 

time, which speeds up the entire EMD modeling process, and makes the power trace 

handling manageable. In particular, the modeling with EMD is dominated by the number 

of times the EMD is applied to the trace, which increases non-linearly with the number of 

samples. For example, a 30-second segment at 5ms (6,000 samples) the processing time is 

about 24s, and after 60 seconds of the trace, the time for processing is already about two 

times greater than the segment length. Thus, only small-size segments may be processed in 

at the runtime. Segment trace modeling becomes possible because EMD can be applied to 

a time-series of any length as long as there are enough measurement samples (as few as 

five). 
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Fig. 13. Segmenting a power trace: the original power trace (left), set of residuals when 

EMD was applied to each 10-second segment (center), and a comparison of residuals for 

the trace with missing segments (right). 

 

3.6.1 Segmenting Power Traces  

In this work, 2,000 measurement samples are used per segment. EMD is sensitive  

to the sampling rate; the more fine-grained the samples, the more information EMD can 

yield. However, the more fine-grained, the more space required to store such a trace. Note 

that modern systems are also limited in the maximum sampling rate allowed, which is about 

1ms. For a realistically stable sampling rate, a value of 5ms is used, which leads to 10-

second trace segments. A 10-second segment may also fit the experimentally found 

durations of the pre- and post-execution measurements, which span five seconds each. See 

[60] for a discussion of the importance of these measurements. 

Figure 13 shows a power trace and the result of applying EMD to a series of 

segments (center). The trace was collected for the CoMD proxy application on an Intel 

Xeon E5-2650 v1 with 16 cores. Notice that EMD closely mimics the trend of each segment 

with respect to the original power trace. This shows that EMD can be applied to segments, 

and also that the resulting residual will accurately represent the trace segments. The next 
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step is to investigate the residual with missing segments, as is shown in Fig. 13 (right) where 

every other segment is considered for the STM. The difference between the STM with every 

other segment missing and the QRF, which is done on the entire (non-segmented) trace, is 

within 1% (cf. red and blue curves, respectively, in Fig. 13 (right), which essentially 

overlap). This shows that STM with missing segments is a good candidate for 

approximating QFR. 

The STM method requires a minimum of three key segments, broadly denoted as 

start, end, and workload. The start and end segments are required to capture power draw 

at the start and end of the application with respect to idle power. Generally, an application 

begins by allocating memory and reading data from the hard-drive; this causes a large spike 

in power draw which is captured by the start segment. Likewise, when the application exits 

and memory is released, a large drop in power draw is observed which is captured by end. 

The workload segment depends on the application; at least one segment must be provided. 

Applications with large variations in power draw may require additional segments to more 

accurately estimate workload power draw. In this work, only one workload segment is used, 

for the sake of simplicity of exposition. The number of workload segments, however, may 

depend of the nature of the application power trace, and its determination is left as future 

work. 

 

3.6.2 EMD on Partial Trace  

 Figure 14 presents two examples of the STM method applied to complex power 

traces. The two applications, CG [76] and GAMESS [30, 86], were chosen because their 

power traces exhibit much variability, which may hinder their modeling if relied on the  
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  (a) CG-D            (b) Segment Residuals            (c) Raw Segments 
 

 
 

    (d) GAMESS-1L2Y         (e) Segment Residuals        (f) Raw Segments 
 
Fig. 14. The STM method applied to complex power traces. The QFR is shown as a 

dashed line in each plot (white and blue), the STM is a solid red line, and segments in 

black. 

 

periodicity in traces, e.g. Fig. 14a and Fig. 14d show the original power trace for CG and 

GAMESS, respectively, as well as their QFRs (white dashed lines). Fig. 14b, Fig. 14c, Fig. 

14e, and Fig. 14f compare the corresponding QFRs and STMs with only three segments, 

chosen in a certain way. Specifically, the workload segment is composed of one 10-second 

interval taken from the absolute center of the trace. This segment was chosen to keep the 

end of execution which impacts the resulting STM. This may be desired to more accurately 

model the power draw of an application that ends with a higher power draw than that when 
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starting the application (cf. CG in Fig. 14Fig. 14a). 

Observe the differences between the QFR and STM model curves in Fig. 14b and 

Fig. 14c and Fig. 14e and Fig. 14f, respectively. When EMD is applied to each of the three 

chosen segments, the error between QFR and STM is within 5% of the measured energy 

as shown in Fig. 14b and Fig. 14e, while the error is greater than 10% when using the raw 

traces of the three key segments for the quadratic fit as in Fig. 14c and Fig. 14f. Hence, the 

STM method, which employs EMD on the key segments followed by the quadratic fit, is 

beneficial. 

 Next observe that the QFR model more closely mimics the power trend since it 

follows closely the entire trend. On the other hand, the STM method accuracy may be 

improved by adding more workload segments, and thus, capturing various trace spikes. 

Hence, a trade-off between the STM method accuracy and speed of processing with EMD 

may be sought and tailored to the particular needs and resource availability. 

 

3.6.3 STM with Segment Approximations 

Recall that the STM requires three  key segments: start, workload, and end. The 

start segment can be measured easily by the user, since only one segment is needed, and 

the time for each segment is relatively short compared to the total execution time. 

Assuming that average power is known, an artificial segment, where every sample is equal 

to the average power, may then be created as substitute for the workload segment. The end 

segment may be approximated also, if assumed that the “cool-down” period mirrors the 

start-up one—corresponding to the start segment—with a negative slope. Hence, the start 

segment characteristics may be used in place of those for the end with the samples in  
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              (a) CG-D                               (b) GAMESS-1L2Y 
 
Fig. 15. Energy consumption error for the STM and ASTM methods applied to complex 

power traces. 

 

 

reverse order (with respect to time). The STM with the start segment mirroring and the 

artificial segment creation is denoted henceforth as approximating STM (ASTM). 

 

3.6.4 Relative Modeling Error   

 Figure 15 shows the relative error in energy consumption for three pairs of models— 

(QFR, STM), (QFR, ASTM), and (STM, ASTM)—and for measured energy vs STM and 

ASTM with the increase in the number of samples used. CG class D and GAMESS IL2Y 

were run on the Rulfo system (KNL) with 48 and 63 cores respectively. 

All but one error curves approach zero as the segment size increases, although errors 

between STM and measured or QFR-modeled errors continue to grow beyond 30-second 

segments. The error in the energy consumption between the STM and ASTM exhibits a 
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horizontal trend, stating from zero and leveling at about 3% of difference. This indicates 

that the ASTM is a good approximation of the STM. In general, the overall small magnitude 

of errors demonstrates that the segmented trace modeling STM as well as its variant ASTM 

approximate QFR of the entire trace with an acceptable accuracy. Note that, although Fig. 

15 only depicts CG and GAMESS modeling errors, these errors were computed for all the 

applications tested and were found to be of magnitudes and trends comparable to the ones 

in Fig. 15. 
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CHAPTER 4 

INVESTIGATING ENERGY ON PLATFORMS FEATURING INTEL XEON PHI 

In this chapter, several methods for investigating energy are presented. First, an 

evaluation of thread affinity and the impact of thread mapping is conducted for the Xeon 

Phi. Then, DVFS has been applied to heterogeneous executions featuring offload 

execution. Finally, a real-time strategy has been applied to the Xeon Phi with power 

limiting to attempt DVFS on the device, although not in the same manner as traditional 

CPU’s. Power limiting is closely related to power capping strategies. The investigations in 

this chapter motivate further investigation and analysis of power and performance 

modeling for applications and hardware. 

 

4.1 Thread Affinity on Intel Xeon Phi 

The work in this section investigates both the performance and energy effects of 

thread affinity on the NASA Advanced Supercomputing (NAS) Parallel Benchmarks, 

which are compiled to run natively on the Intel Xeon Phi (KNC). Specifically, the 

execution time and energy consumed by the Intel Xeon Phi are evaluated under different 

thread affinity modes. Going beyond measuring the execution time, other performance 

metrics relevant for Xeon Phi are explored, such as average cycles per instruction (CPI) 

per thread, memory bandwidth, and vectorization intensity. The energy and approximate 

execution time are computed based on measurements captured using the MIC System 

Management and Configuration micsmc utility tool [8]. 

The Xeon Phi coprocessor (KNC) is composed of 50+ cores at approximately 

1GHz. Each core is capable of concurrently processing four hardware threads [45]. It is not 
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possible to execute instructions from a single thread in back-to-back cycles; therefore, a 

minimum of two hardware threads per core is suggested. Threads may be mapped to cores 

through the affinity environment variable that governs six possible modes: balanced, 

compact, scatter, none, disabled, and explicit [44, 32]. The “disabled-affinity” setting 

provides no thread affinity interface, while the “explicit-affinity” setting allows the user to 

manually assign each thread to any core. These two affinity settings are not considered here 

however.  

The balanced affinity mode evenly distributes threads among the cores. This mode 

attempts to use all the available cores while keeping the thread neighboring logical IDs 

physically close to one another. The scatter affinity also evenly distributes threads among 

the cores but it does so in a round-robin fashion. Hence, threads with the adjacent IDs are 

not guaranteed to be physically adjacent. The compact affinity distributes threads by 

assigning the maximum number of threads (which is 4) to a core before assigning threads 

to another core. This mode keeps the threads grouped tightly together and uses fewer cores 

than other affinity modes unless the maximum thread count is set, at which point the 

balanced and compact thread mappings are identical. When the thread affinity is not 

specified explicitly, the system-default setting is none. 

Thread granularity specifies the way various affinity modes are applied. On the 

KNC, there are three levels of granularity: fine, thread, and core. The fine and thread levels 

are similar in that they bind threads to a single context when the thread is assigned to a 

core. The core granularity binds threads to a core, such that the threads may float within 

the context of the physical core [44, 5]. Using the former may improve reproducibility of 

the results and avoid the overhead from thread context switch. The system-default  
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TABLE V 
 

EXECUTION TIME (SECONDS) OF 59 AND 236 THREADS FOR 

VARIOUS BENCHMARK PROBLEM-CLASS SIZES. 

 59 Threads 236 Threads 
NPB A B C D E A B C D E 

EP 1.97 7.83 28.94 455.84 — 1.05 4.18 16.44 268.69 4229.20 
CG 0.49 49.61 206.82 † † 0.21 12.98 53.31 † † 
FT 0.93 12.54 52.50 † † 0.71 10.57 45.15 † † 
IS 0.17 0.52 3.26 † NA 0.39 0.59 1.99 † NA 
MG 0.26 1.41 8.28 † † 0.24 1.19 8.14 † † 

    — - Did not test NA - Class size not available † - Out of memory 
 
 
 
granularity setting is core. 

 

4.1.1 Measuring Time and Energy 

Table V presents execution time required to complete each benchmark for the 

various classes at 59 and 236 threads. Only the EP benchmark was able to execute class 

sizes larger than C on the Xeon Phi. This is due to the small memory footprint required for 

EP. Therefore, each benchmark is executed with class C problem sizes. 

Energy consumption is calculated by the approximation of power timeslices 

provided by the Intel utility tool, micsmc. From the command line, micsmc can output a 

wealth of data including clock-rate, power, temperature, memory usage, and CPU 

utilization per core [50]. However, as additional types of data are requested, the delay 

between calls increase. Hence, to capture the energy readings in the smallest timeslice 

available, only clock-rate and power data are recorded (both are printed when the same 

input parameter is given). The micsmc tool measured and reported every 22–28ms, which 

is sufficient for a detailed evaluation. Data are collected from each unit on the device via 
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the performance monitoring unit (PMU) [45, 18]. Each core contains an independently 

programmable PMU, which supports four hardware threads, two hardware counters per 

thread, and 40-bit precision per hardware counter. 

Dynamic Voltage and Frequency (Clock-Rate) Scaling (DVFS) involves changing 

the voltage and clock-rate levels of the processor to reduce or increase power, which may 

be performed in application software. This technique generally requires a careful 

implementation to reduce potentially severe performance penalties. When applied 

judiciously, however, it may yield as much energy savings as 14% with a modest 

performance loss of 2% on certain NAS parallel benchmarks as was shown by the authors 

in [94].  

Unfortunately, Xeon Phi does not allow user-controlled DVFS. The hardware 

performance levels (P-states) are selected and set through the coprocessor OS kernel.  

P-states may change depending on the thermal or power readings. A new P-state is selected 

by the OS upon crossing a high thermal threshold or approaching one of the upper power 

limits [45]. Additionally, the Intel Xeon Phi may perform DVFS selectively for inactive 

cores. Hence, varying power consumption is explored here by varying the active core count 

under the compact affinity mode, in which it is possible to leave some cores idle when 

mapping threads numbered greater than the total core count. These idle cores may allow 

the device to save power with a certain performance loss. 

To demonstrate the accuracy of the data obtained by micsmc, its output is compared 

to that collected by the Wattsup power meters, having a sampling rate of 1 Hz, which does 

not affect the measurements considerably since the benchmark used here has a sufficient  
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Fig. 16. The power profiles as obtained by Wattsup and micsmc for the CG benchmark 

with the compact affinity mode at 180 threads. 

 

execution time. Wattsup meter records the total power for the computing system to which 

it is connected; two meters are used here because the system has two power outlets.  

Fig. 16 presents the power profiles, averaged over three runs, for micsmc alone (curve 

Micsmc), for the sum of the two Wattsup power (curve Wattsup) meters, and for the 

Wattsup power meters during Micsmc (curve Micsmc-Wattsup) when the CG benchmark 

is executed at 180 threads in the compact affinity mode.  From Fig. 16, it is clear that 

micsmc and Wattsup are reporting power traces of similar patterns, with fluctuations 

appearing at the same time points. However, from the difference between the “pure” 

Wattsup and Micsmc-Wattsup power profiles, it may be observed that micsmc incurs a 

substantial overhead, which is caused by the fact that micsmc always puts the device cores 

into a rather high energy state (around 100 watts, as seen near time 0 in Fig. 16), even if 

they are idle, when polling each core for the power data. 
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4.1.2 Results  

 The experiments were conducted on Borges computing platform. The execution  

time is obtained from the NPB output, and Intel VTune Amplifier XE software samples the 

hardware event counters. The Intel Xeon Phi power was measured with micsmc to compare 

the energy of different affinity modes used on the device only. 

Figure 17 presents the average normalized execution time observed for the EP, FT, 

IS, and MG benchmarks with different affinity modes and thread granular ity. The 

execution time shown is an average over four runs, which is normalized against the default 

test. (Thus, values less than one are an improvement over the default case.) Recall that the 

default case uses the core granularity and none affinity. Figure 17 provides several 

examples of applications that perform better with a specified affinity and granularity. IS and 

MG under the compact affinity perform exceptionally well after 180 threads when compared 

to the default test.  

However, it also provides several examples of applications which under-perform 

when fewer cores are utilized: All four benchmarks perform worse (value less than 1) while 

using the compact affinity for thread counts fewer than 180. In EP and FT, the balanced, 

scatter, and none affinities chaotically shift between being more or less efficient than the 

default. However, after 180 threads, each affinity observes a boost in performance, except 

for the scatter one. Thus, NPB perform best when each Intel Xeon Phi core is running at 

least three threads per otherwise empty core, which is in agreement with the general 

optimization guideline of running four threads per core. After 236 threads, the performance 

of each affinity dramatically increases or decreases, depending on how well the threads are 

able to compete with the OS for resources, which occupy one core. Generally, the scatter  
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Fig. 17. Normalized execution time for the EP, FT, IS, and MG benchmarks with different 

affinity modes and the thread granularity. Each value is the average of four runs for each 

benchmark, and is normalized for each affinity against the default test, which has the 

affinity none and granularity core. The data for compact affinity are shown starting at the 

number of threads greater than for the other affinities to permit good scaling of the plots. 

 
 
 

 
Fig. 18. Benchmark total bandwidth (left) and average CPI (right) for each affinity mode 

with the granularity thread at thread counts from Table VI. 
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Fig. 19. Normalized energy for the EP, FT, IS, and MG benchmarks with different affinity 

modes and the thread granularity. Each value is the average of four runs for each 

benchmark, and is normalized for each affinity against the default test, which has the 

affinity none and granularity core.  

 

 

Fig. 20. Normalized energy (left) and execution time (right) for the CG benchmark with 

different affinity modes and the thread granularity. Each value is the average of four runs 

& is normalized against the default test, which has the affinity none and granularity core. 

and none affinities perform better at 240 threads. 



 
 

63 
 

 

4.1.3 Performance Metrics 

 To gain further insights into the performance of each benchmark, this work 

considers certain performance metrics as obtained from the hardware event counters 

provided by the Intel VTune Amplifier XE 2013 [101]. In particular, these metrics are 

average CPI per thread, vectorization intensity (VI) and memory bandwidth. The average 

CPI per thread (CPI) is the average number of CPU cycles required to retire an instruction, 

averaged per thread. It can be used to detect latency in the system which affects the 

applications execution.  VI provides an indicator for how well the entire code maps to the 

VPU. For double-precision and single-precision operations, the VI ideally should be close 

to 8 and 16, respectively. The memory bandwidth metric describes the average streaming 

memory bandwidth achieved during execution. 

After running the Intel VTune Amplifier, it was observed that VI did not vary when 

varying affinity for any of the benchmarks. The EP, CG, FT, IS, and MG benchmarks 

exhibited a VI of 3.2, 3.0, 8.0, 1.33, and 6.4, respectively. This is attributed to the NPB 

benchmarks applications using 64-bit precision and the VPU length is 512-bit. FT and MG 

are observed with high vectorization utilization, suggesting few or no data dependencies 

within the vectorized loops. The total bandwidth (Fig. 18 left) is much lower than the peak 

value of 320 GB/s or even than the observable 140 GB/s, as presented in [12]. The measured 

CPI (Fig. 18  right) is much closer to the expected value of four, except for CG which 

incurs around 26 cycles per instruction on average. In general, FT, with over 70 GB/s and 

a low CPI, utilizes the resources of the Xeon Phi well compared to the other benchmarks. 

MG features moderate bandwidth, acceptable CPI, and high VI. 
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4.1.4 Energy 

For the executions shown in Fig. 17, Fig. 19 presents the average normalized energy 

observed for the EP, FT, IS, and MG benchmarks, which is averaged and normalized as in 

Fig. 17. From Fig. 19, it is seen that, for the thread counts greater than 180, specifying 

affinity and granularity can decrease energy consumption. It is not until after 180 threads that 

the energy savings of using fewer cores outweigh the loss of the performance. Consecutively, 

EP results in almost 8% of energy savings with the compact affinity, FT results in 6%, IS 

results in 13%, and MG results in almost 23% energy savings. 

For the CG benchmark (Fig. 20 left), energy savings may be observed already for 

fewer cores under the compact affinity mode, starting at 28 threads even though execution 

time is larger than the default test (normalized value greater than one in Fig. 20, right) and 

larger than other affinity modes until 180 threads. Since CG is the most memory-accessing 

application among the ones considered here as was shown in [94], this situation may be 

explained by the findings in [14] that Intel Xeon Phi uses less energy for memory accesses. 

Under the compact affinity mode, the neighboring threads, which are more likely to access 

memory simultaneously, are located in the same core. Hence, an entire core may be 

considered as memory-accessing to enjoy the lower energy usage, while the execution time 

is high because of thread contention.  

 After 180 threads, which was the same threshold observed in every other bench- 

mark, the CG performance increases drastically leading to substantial energy savings. At 

the 180-thread count, better thread load balancing takes place as threads are evenly 

distributed to cores, at three per core. Good load balancing occurs at other thread counts as 

well, such as 60, 120, and 240. In particular, after 120 threads (two per core), one of the  
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TABLE VI 
 
LOWEST ENERGY CONSUMED WHEN SPECIFYING THE AFFINITY MODES AS 

COMPARED TO THE SYSTEM-DEFAULT SETTING. 

 EP CG FT IS MG 
E Default (J) 3,173.16 17,005.39 8,274.34 1,042.97 1,813.89 
E Test (J) 2,986.20 8,787.69 8,386.27 892.59 1,731.50 
Aff Mode compact compact scatter compact balanced 
Thread Count 236 236 104 232 180 
E Saved +5.89% +48.32% -1.35% +14.42% +4.54% 

 
 
 
 
two compute cycles will gain the option to switch between threads during execution and an 

increase in the performance is observed. An even greater increase is observed when the 

fourth thread is added and the second cycle has an additional thread (after 180 threads). 

Such performance increases, which lead to energy savings, are noticeable for all the user-

specified affinity modes with the thread granularity considered here. 

Fig. 17, Fig. 19, and Fig. 20 indicate that the DVFS was not applied during the 

benchmark executions since the performance and energy correlate so closely in all the 

cores. Further, this is supported by the output from the micsmc that shows that clock-rate 

did not change during any of the benchmark executions. 

For each benchmark, Table VI provides the lowest energy (row E Test) along with 

the affinity mode (row Aff Mode) and thread count (row Thread Count) at which it was 

observed. The corresponding energy value of the default case is in row E Default and 

the difference in the energy consumption is in row E Saved. CG features the highest 

energy saving, a staggering 48% with respect to the default test. The FT benchmark was 

the only benchmark to consume more energy as a result of specifying affinity. It may be 
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due to the granularity difference with the default case because the energy consumed by the 

none, scatter, and balanced affinities are almost the same (within 0.1% of one another). 

 

4.2 DVFS with Heterogeneous Executions 

This section investigates the impact on performance and energy when CoMD is 

adapted to use the Xeon Phi co-processor. The impacts of varying host-side clock-rate 

during offload executions and the maximum atom count of link cells are explored with 

focus on minimizing the energy-to-solution. Impacts to time-to-solution, performance, and 

offload timings are also discussed.  The tests are performed on a single-node computing 

platform that offers two Xeon Phi’s; hence one- and two- Xeon Phi configurations are 

explored. In this section, Xeon Phi and MIC may be used interchangeably to reference the 

Intel Xeon Phi co-processor. 

To reduce energy consumption by the CPU, a dynamic voltage and clock-rate 

scaling (DVFS) technique is commonly used at the application runtime (see, e.g., [94]). 

The current generation of Intel processors provides various P-states for clock-rate scaling. 

clock-rate may be specified by manipulating the model-specific registers (MSR). P-states 

are defined as (fi, . . . fn, where fi > fj for i < j). For the Intel Xeon Phi, DVFS is not 

software-accessible. DVFS may be used on the host CPU only to reduce host-side 

energy consumption while computation is being performed on Xeon Phi. 

 

4.2.1 Execution Time Model 

The time on- and off-chip model [16] may be used to determine how compute- or 

memory-intensive an application is. This information may then be used to determine the 
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effect MIC acceleration had with respect to the host and the effect of DVFS during MIC 

offloads with respect to MIC executions without DVFS. Execution time T for an 

application that offloads computation to the Xeon Phi may be defined as T = 𝑡 + 𝑡 , 

where the execution time of the host and offloaded code sections are non-overlapping. 𝑡  

represents the execution time spent on the host multi-CPU and 𝑡  represents the execution 

time spent on the Xeon Phi. DVFS may save power during those CPU cycles that are not 

computationally intensive, e.g., when the CPU is stalled waiting for memory, I/O, branch 

misprediction, or reservation station stalls [94]. The host execution time𝑡  consists of the 

time on-chip 𝑡 , when the CPU is engaged in computations, and time off-chip 𝑡  for 

the remainder of CPU cycles. DVFS affects only the time on-chip, which scales linearly 

with the change in clock-rate [94]. This relationship may be described as: 

 𝑡 = 𝑡 + 𝑡  , (12) 

where 𝑓  is the maximum allowable clock-rate and 𝑓 , i > 0 is any lower available 

clock-rate level. Substituting 𝑡  to solve for T yields: 

 𝑇 = 𝑡 + 𝑡 + 𝑡  . (13) 

Equation (13) provides the most basic relationship between total execution time, CPU (host) 

clock-rate, and times spent on the host and MIC. It may be used to determine the energy- 

saving potential for a hybrid CPU-MIC application, indicated by the ratio of 𝑡  to 𝑡 . 

 

4.2.2 Experiments 

The experiments conducted here aim to compare the multicore execution of CoMD, 

referred to as Host, and the CPU-MIC execution of CoMD, referred to as MIC. Each 
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execution is run using one or two MPI tasks, hence: Host 1, Host 2, MIC 1, MIC 2. When 

DVFS was applied to the host during MIC offloads, the corresponding tests are referred to 

as MIC 1 DVFS and MIC 2 DVFS. For the MIC executions, the number of MPI tasks is 

equivalent to the number of MIC devices employed, such that each MPI task is assigned a 

Xeon Phi for its portion of the computations. In each iteration of the EAM force kernel, 

data must be transmitted between the Xeon Phi and host four times for three offload events. 

In the initialization phase of CoMD, one offload to Xeon Phi is required to instantiate and 

allocate its memory.  All static data, such as interpolation tables, are transmitted to the 

device at this time. The memory transfer times have been measured by setting the 

environment variable OFFLOAD REPORT to a value greater than zero. 

Experiments were performed on the “Borges” computing platform at Old Dominion 

University. Power measurements are collected externally via two Wattsup meters which 

power and monitor the Borges computing platform. Data is sampled at a rate of 1Hz, which 

does not affect the measurements considerably since the problem size used provides 

sufficiently longer execution times. Although several tools exist for measuring power on 

the Xeon Phi itself [50, 46], they often incur a substantial overhead from measuring the 

device power. Wattsup offers a coarse-grained sampling solution, which, however, does not 

impact power measurements. The power is measured for 15 seconds before and after 

execution of CoMD in all the experiments. Additionally, 45 seconds of idle time is allocated 

in-between executions to allow the idle power draw to reach steady state. The results have 

been averaged over five executions of each test. 

In this work, two parameters are varied: link-cell count and host CPU clock-rate.  
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TABLE VII 

EXECUTION TIMES ON HOST IN SECONDS AND THE ASSOCIATED 

GOODNESS-OF-FIT METRIC R2 FOR ALL EXPLORED CONFIGURATIONS. 

Configuration ton toff toff /ton R2 
Host 1 97.139 3.769 0.039 0.992 
Host 2 94.965 1.019 0.011 0.973 
MIC 1 6.990 2.630 0.376 0.995 
MIC 2 4.820 1.293 0.268 0.965 
MIC 1 DVFS 7.051 2.635 0.374 0.996 
MIC 2 DVFS 4.460 1.680 0.377 0.985 

 

 

Conversely, the parameters that are not varied during the experiment are problem size, thread 

affinity, and thread count. Problem size has been set to 70 (1,372,000 atoms) because this 

workload provides a sufficiently long execution time (more than 30 seconds) to collect power 

samples. Thread affinity has been set to compact and granularity is set to thread because this 

affinity combination has been shown to provide the most efficient execution [61, 62]. Thread 

count has been set to 236 threads (out of possible 240), which are mapped to 59 cores. One 

core is left free from CoMD because it is occupied by the MIC operating system. 

 

4.2.3 Execution-Time Model Validation 

Compute- or memory-intensity of an application may be measured by the ratio 

𝑡 -to-𝑡  from Eq. (12). A ratio which is close to 0 represents a computationally intensive 

application; similar, a value greater than 1 represents a memory intensive application. Here 

CoMD is executed on “Borges” for each configuration at different operating clock-rates such 

that linear regression may be used to solve Eq. (12) for 𝑡  and 𝑡 . In all of the “one-
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MPI” configurations (Table VII), 𝑡  is about the same while it is much smaller for those 

with two MPI tasks because, in the latter, certain data sets are treated in a two-way parallel 

fashion. For the MIC executions, 𝑡  is much smaller than Host because the CPU (host) 

counts the Xeon Phi computations as its own time off-chip.  It is for this reason, that the 

DVFS applied during Xeon Phi offloads may benefit energy without affecting the 

performance. 

Notice that CoMD remains rather compute-intensive (𝑡 -to-𝑡  ratio is less than 

one) even when the force kernel is computed on the accelerator (rows MIC in Table VII). 

In particular, for all the MIC configurations, this ratio is approximately 0.3, which indicates 

that the computations remaining on the host, such as position and velocity updates, are also 

compute-bound. Offloading the update sections does not benefit the MIC implementation 

because additional atom data would need to be transmitted to the Xeon Phi each iteration. 

The extra memory transfer per iteration is comparable to the computation time to perform 

the update. Therefore, the velocity and position updates are computed by the host. 

The MIC 2 tests with and without DVFS have rather high variation in the 𝑡 -to-

𝑡  ratios, which is 0.1 higher for MIC 2 DVFS whereas these ratios are almost the same in 

the MIC 1 tests. This observation may be explained by the fact that, in the MIC 2 DVFS 

case, DVFS is applied to the entire node by only one (first) MPI task. However, no 

synchronization is algorithmically necessary between the MPI tasks. Hence, it is possible 

for the DVFS to be applied while one of the MPI tasks is still executing a host CPU portion, 

outside of the offloading segment. It has been verified experimentally that the host 

execution time 𝑡  in the MIC 2 DVFS case was greater than that in the MIC 2 case for 

several clock-rate levels, while 𝑡  remained constant independent of host DVFS. 
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4.2.4 Experimental Results 

 The impact on performance from varying link-cell count is investigated. Link-cell  

size has been set to either the default value of 64 atoms or to 16 atoms, which is the smallest 

size available for the problem size selected and, thus, may lead to more prominent 

differences in the performance. The highest CPU clock-rate 𝑓  has been applied and 

remains constant throughout each execution, except in the MIC DVFS configurations. For 

MIC DVFS, CPU clock-rate is set to its lowest value of 1.2 GHz during offloads to the 

MIC(s), and restored to its highest value at the end of the offload section. 

 

4.2.4.1 Link-Cell 

The results presented in Fig. 21 compare the performance of the two link-cell 

counts (LC of 16 and 64) in each execution configuration. In particular, Fig. 21 (left) 

presents the total execution time while Fig. 21 (right) shows the offload memory transfer 

time for the hybrid configurations with four main offload events: Initialization and Loop 1, 

2, 3. The smaller LC of 16 reduces execution time for each configuration except Host 2, as 

seen in Fig. 21 (left) Host 2 does not benefit from the reduced link cell count because the 

link cell was able to fit into cache in the two MPI task version. MIC 2 benefits from the 

reduced link cell count because its cache is much smaller than the hosts. In general, the 

cache utilization increases as a result of the reduced memory footprint of the link-cell 

container for LC of 16. For the MIC configurations, this observation may be particularly 

noticeable: Fig. 21 (right) shows that the memory transfer time decreases significantly with 

the reduced maximum atom count per link cell. Specifically, the transfer time decreases 

2.75x (from eleven to four seconds) for MIC 1 and 2.0x (from six to three seconds) for MIC2.  
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Fig. 21. Total execution time (left) and total memory transfer time per offload event 

(right) for two link-cell counts, 16 and 64. 

 
 

4.2.4.2 Clock-Rate Scaling 

Fig. 22 and Fig. 23 provide the average power, atom rate, execution time, and 

energy plots for the experiments when clock-rate on the host is scaled from the lowest 

clock-rate to the highest clock-rate. The link-cell count is fixed as 16 in the plots. 

Fig. 22 (left) presents the average power during the execution of CoMD derived 

from Wattsup measurements for each test configuration. For the MIC 2 configurations, the 

curves show the actual power measurements. For the MIC 1 and Host configurations, the 

curves represent the measured power values adjusted to exclude the power draw of unused 

Xeon Phi devices, which could not be removed from the compute node in the experiments, 

as follows. The execution of CoMD on a single MIC causes both devices, if present, to 

enter an active power state. From the Xeon Phi datasheet, the active power state draws about 

115W [17], therefore this number was subtracted from the actual power measurements and 

the resulting value shown on the MIC 1 curves in Fig. 22 (left). For the Host executions, 

both Xeon Phi’s are in an idle state, which draws about 45W [17], therefore this number 

was subtracted from the actual power measurements and the resulting value shown in the 
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Host curves in Fig. 22 (left). Note that, power draw has not been measured on the Xeon 

Phi devices directly because existing software tools, such as micsmc, incur excessive 

overheads as was shown in authors’ earlier work [61]. 

Fig. 22 (right) presents the atom rate metric of the performance, defined as number 

of atoms processed per microsecond. For lower clock-rates, the atom rate is smaller because 

execution on the host longer. The atom rate is also indicative of the MIC performance. 

Hence, the rate is the largest for MIC 2 cases, which also exhibit the best execution time 

as shown in Fig. 23 (left). For the MIC 2 tests, the atom rate decreases faster than that for 

the MIC 1 ones because the executions of the MIC 2 configuration are much shorter  

(cf. Fig. 22 (right) and Fig. 23 (left)). Hence, host operates at a lower clock-rate longer, 

which negatively affects the performance. 

In Fig. 23 (left), the total execution time is plotted against the available clock-rate 

levels. The Host executions are significantly impacted by clock-rate, as expected, due to 

the computationally intensive requirements of the CoMD application. The MIC executions 

are not impacted by DVFS as significantly as the Host because the host clock-rate affects 

only the host-side computations and not the ones offloaded to MIC. 

Fig. 23 (right) presents the total energy consumed for the various configurations 

under different clock-rates. The MIC 1 and Host values have been adjusted to remove the 

unused Xeon Phi power draw from the measurements as explained for Fig. 22 (left). 

The MIC 2 tests consumed the least energy (with and without DVFS) for almost all the 

clock-rates, except for 𝑓 , when Host 2, adjusted for unused MICs, shows the best result. 

MIC 1 does not compare to MIC 2 or to the Host executions, especially at the higher clock-

rates. Hence, further optimizations are required to make MIC 1 energy efficient. 
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Fig. 22. Average power (left) and atom rate (right) for different clock-rate levels with and 

without DVFS for link-cell count of 16. (The curves MIC DVFS and MIC partially 

overlap for one and two MICs, respectively.) 

 

 

 

Fig. 23. Total execution time (left) and energy consumed (right) for different clock-rates 

with and without DVFS for link-cell count of 16. (The MIC curves partially overlap MIC 

DVFS for their respective tests.) 

 
 
 

Energy savings for the MIC 2 executions were measured when varying link-cell 

count and when applying DVFS. When link-cell count was reduced from 64 to 16, MIC 2 

saved 8.3% and MIC 2 DVFS saved 14.3% energy. The savings are the result of reduced 
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host– MIC memory transfer in the cased of 16 link-cell count and of reduced cache misses 

due to the decreased memory footprint. When DVFS is applied and link-cell count is 16, 

MIC 2 DVFS saved 9% in energy compared with the MIC 2 execution without DVFS while 

still consuming more energy than the Host 2 execution at the highest clock-rate, when the 

MIC 2 executions were not fast enough to compensate for the additional power 

consumption of the MICs (cf. Fig. 23 (left) and Fig. 22 (right)). 

 

4.3 Real-Time Power Limiting of the Xeon Phi 

In this section, an investigation of power limiting on the Xeon Phi is presented, where 

both an offline and real-time strategy are used to investigate the impact of power limiting 

on performance and energy consumption.  

It is important to understand how the Xeon Phi SMC varies operating clock-rate   

as power surpasses the designated thresholds. Specifically, the Xeon Phi uses two power 

threshold values—low and high—each with a designated time window. By default, the low 

power threshold is set to the TDP with a time window of 100ms and the high threshold 

at 120% of the TDP and a time window of 10ms. When power exceeds the low threshold 

for the duration of the time window, clock-rate is decreased until power consumption is less 

than the threshold. When power exceeds the high threshold for the duration of the time 

window, the thermal throttling mechanism is engaged, which forces the device to the lowest 

operating clock-rate of around 500 MHz, as seen experimentally. More on Xeon Phi 

power limiting can be found in the datasheet [43]; however, it has not yet been updated for 

Knights Landing. For correlating the application performance with variation in clock-

rate, a performance model is needed that is valid for modern out-of-order (OOO) 
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processors. The performance model presented here predicts the instructions retired at 

different processor clock-rates depending on a few system parameters. A power model is 

also outlined, which translates the clock-rate needs to power consumption limits. By using 

these power and performance models, the power thresholds are decided during application 

execution to obtain energy savings, based on a user-defined performance loss. 

 

4.3.1 Performance Model 

Processor clock-rate effects on the micro-operations retired may be accounted for 

by a cycle-accounting equation [96] as: 

 𝑓 = 𝐼𝑅  × 𝐶𝑃𝐼 + 𝑁  × 𝛼 × 𝛽 × 
𝑓

𝑓
 (14)

where 

 𝐼𝑅  is the number of instructions retired per second at processor clock-rate 𝑓 . 

 𝐶𝑃𝐼  is the number of cycles per micro-operations retired barring the memory 

accesses per second. 

 𝛼 (0 ≤ 𝛼 ≤ 1) is the OOO overlap factor, which determines the extent of memory 

stalls overlapped with execution cycles. 

 𝑁  is the number of memory accesses in a second. 

 𝛽 is the number of cycles corresponding to the memory-access latency. 

 𝑓  is the maximum processor clock-rate. 

Since memory access stalls tend to have the maximum impact on the performance 

[96], the other types of stalls namely cache-access, branch effects etc. are not considered 

in Eq. (14). By rearranging Eq. (14), the instructions retired at processor clock-rate 𝑓  
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can be expressed as: 

 
𝐼𝑅 =

𝑓 − 𝑁  × 𝛼 × 𝛽 ×
𝑓

𝑓

𝐶𝑃𝐼
  . (15)

The instructions retired serve as a measure of application performance in the 

model, where the performance loss 𝛿  of an application when executed on a processor 

clock-rate 𝑓 , may be expressed as: 

 𝛿 =
𝐼𝑅 − 𝐼𝑅

𝐼𝑅
  . (16)

The proposed performance model can be applied to hardware platforms other than 

KNL by considering the throughput as a measure of performance and relating it to the 

operating clock-rate. 

 

4.3.2 Power Consumption Model 

The power consumption 𝑃  of Xeon Phi at a clock-rate𝑓  can be expressed  

[96, 13] as: 

 𝑃 = 𝑃 + 𝑘 × 𝑐 × 𝑓  , (17)

where 𝑃  is the static power consumption of Phi, 𝑐 is the number of physical cores 

and 𝑘 is the factor which varies as per the workload. 

 

4.3.3 Power-Threshold Selection 

Figure 24 displays the steps of the algorithm for selecting lower and higher power 

thresholds at the runtime. At a given 𝑓 , the contents of the CPR register, holding 𝐶𝑃𝐼  

values for the past few time-slices, and the value of 𝑘 are obtained by solving Eq. (15)    
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for 𝐶𝑃𝐼  and from Eq. (17), respectively. The contents of the MPR register, holding the 

memory-access values corresponding to the 𝐶𝑃𝐼  CPR are initialized through the 

performance counters.   Then, the value of 𝐶𝑃𝐼  and memory accesses for the next 

time-slice is determined through a history-window prediction mechanism [96] (in Step 4) 

by using an averaging function to predict the future value as an average of the past 

values. If the registers are not completely filled, then their last-assigned values are used 

for 𝐶𝑃𝐼  and 𝑁 , respectively, otherwise an average is taken and the oldest value in 

each register is discarded. In Step 6, the smallest operating clock-rate is determined that 

satisfies the performance loss constraint such that the performance loss does not exceed 

the user-defined performance loss 𝛾. The values of the power limits are chosen in Step 7 

such that to allow the power consumption to remain close to 𝑃 . The lower and higher 

power limits are separated by a difference proportional to the user defined performance 

loss. This accounts for any inaccuracies in the performance model by giving some 

headroom to the performance governor to stay above the power limit calculated in Step 6. 

 

4.3.4 Experiments 

The Sandia National Labs PowerAPI [55] is used to measure energy via the Linux 

Power Capping Framework (LPCF) [2] plugin which reads energy from the Running 

Average Power Limit (RAPL) [103, 20] counters. The PowerAPI uses the hardware 

locality (hwloc) API [79, 9] to detect the underlying hardware and is very portable, hence 

no modification to the API was required to measure energy for the KNL processor. The 

Linux Power Capping Framework is also used to update power thresholds, and “perf” [1] 

is used to measure hardware performance counters since PAPI does not yet support KNL 
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[41, 10]. Power and performance measurements are collected every 250ms to be used by 

the power threshold selection procedure. Measurements are collected for five seconds 

before the application is executed to establish the idle power draw, about 72 watts. 

Memory latency was measured as 390 cycles using LMBench. As per [110], the out-of-

order execution overlap (α) can be calculated as calculated as 0.9 using the methodology 

discussed in [110]. 

 𝛼 =
𝑅𝑒𝑜𝑟𝑑𝑒𝑟 𝐵𝑢𝑓𝑓𝑒𝑟 𝐿𝑒𝑛𝑔𝑡ℎ

𝐼𝑠𝑠𝑢𝑒 𝑊𝑖𝑑𝑡ℎ × 𝑀𝑒𝑚𝑜𝑟𝑦 𝐿𝑎𝑡𝑒𝑛𝑐𝑦
 . (18)

Plugging the relevant values of the parameters for the performance model obtained from 

[86] in Eq. (18), the value of α was calculated as 0.9. 

 

4.3.5 Results 

For all the executions, 252 threads (63 cores) are used, and one core is left for the 

measurement application so that the performance impact of measurement is minimized. 

(The use of “perf” to collect hardware performance counters significantly degrades 

performance if all 256 cores are allotted to the execution.) Presented results are based on 

the average execution time and average energy consumption based on five executions for 

each configuration: each application without measurement (denoted as baseline), with 

measurement and default power limits (denoted as default), with static power limits 

(denoted as best power limit (BPL)), and with the runtime power-threshold as per algorithm 

in Fig. 24 (denoted here as model). 

For the offline analysis, power limits are set before the execution and do not vary 

throughout execution. For NPB and CoMD, power limits are varied between 90W–150W 

at 10W intervals and for GAMESS, power limits are varied between 80W–95W at 5W 
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intervals because only 64 threads may be used and max power draw is about 100W. The 

maximum power draw, BPL, and the average runtime power limits are shown in Fig. 25a. 

The average runtime power limits were measured during the ‘model’ executions. Maximum 

power was measured with the default power limits (215W), and the BPL is chosen based 

on energy saved with less than 10% performance loss and when the power limits are not 

equal to the default ones. A special case – BT – incurred more than 10% performance (see 

Fig. 25c,  the darkest bars). As shown in Fig. 25a, none of the workloads were able to stress 

the KNL processor up to the TDP (215W). Notice also that the memory-intensive 

applications (FT, CG, and MG) benefit from power limiting more than the compute-

intensive ones (EP, CoMD, and GAMESS). 

For the runtime method, power limits are dynamically set during execution, as in 

Fig. 24, where each timeslice duration τ is 250ms.  Note that the time-to-solution for all 

applications is at least five seconds with CoMD and GAMESS executing longer than 20 

seconds. Figure 25b presents the energy saved for each application relative to the default 

execution, while Fig. 25c shows the corresponding performance changes compared with 

the baseline execution. Note that the default execution of BT-B (i.e., just by measuring its 

power) 12% of the performance is lost, which is the most extreme negative effect seen in 

this work. All the other applications are within 10% of the performance loss for the default 

and BPL executions. For the runtime model, however, the performance losses, as recorded 

after the execution completion, often are higher. This is because they are only approximated 

at the runtime to be less than the specified value (10%), and calls for further fine-tuning of 

the model. 
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Fig. 24. Runtime power-threshold selection procedure for energy savings in Xeon Phi. 
 

Input Parameters: 
𝜏 : Duration of the timeslice 𝑠.  
𝛾 : Performance-loss tolerance.  
𝑉 : Number of timeslices. 
𝑓 , 𝑓 , . . . ,  𝑓  : Available frequencies in Xeon Phi, where 𝑓  >  𝑓  for i < j.  
CPR and MPR : 𝐶𝑃𝐼  and 𝑁  registers of length L = 3. 
𝑐 : index of CPR and MPR, initialized to 0. 
 
Algorithm: 
Step 1.  Execute application during the timeslice 𝑠 = 1 at the highest clock-rate    
   𝑓 . 
Step 2. Determine 𝐼𝑅 , 𝑃 , and MPR[𝑐] at the end of first timeslice using    
    hardware counters. 
Step 3. Initialize CPR[c] and k using Eq. (15) and Eq. (17), respectively,  
        for 𝑓   = 𝑓 . 
 

     For (𝑠 = 2, 𝑠 ≤ 𝑉, 𝑠++) do: 
Step 4. Calculate 𝐶𝑃𝐼  and 𝑁 : 
  𝑐 = 𝑐 + 1 
  If (𝑐 ≤ 𝐿 − 1) then 
   𝐶𝑃𝐼 = CPR[𝑐 − 1]. 

𝑁 = MPR[𝑐 − 1]. 
  Else 
   𝐶𝑃𝐼 = avg(CPR); 
   𝑁 = avg(MPR); 
   Shift CPR and MPR to the left by one position 
   𝑐 = 𝑐 − 1 
Step 5.  Calculate 𝐼𝑅  for all i = 1, . . . , N from Eq. (15). 
Step 6.  Determine the least operating clock-rate 𝑓  from Eq. (16), such that 𝛿 ≤ 𝛾 
Step 7.  Calculate 𝑃 = 𝑃 + 𝑘 × 𝑐 × 𝑓  
Step 8.  Set the power limits as lower = 𝑃  (1- 𝛾) and higher = 𝑃  (1 + 𝛾) 
Step 9.  Execute application for duration τ at the lower and higher power      
    thresholds from Step 8. 
Step 10.  Determine 𝐼𝑅 , Pm, and MPR[c] at the end of timeslice s using hardware 
     counters. 
Step 11.  For current fm, calculate CPR[c] and k using Eq. (15) and Eq. (17),    
    respectively. 

      EndFor 
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(a) Power Draw 

 

(b) Energy Savings 

 

(c) Performance Gain 

 

Fig. 25. Baseline power draw (Default) compared to the online (Model) and offline (Best 

Power Limit) power limiting methods (a), energy savings (b), and performance gain (c) 

for each workload investigated. Energy savings and performance gain are compared to 

the Default measurements for each respective workload. In (c), the 10% performance-loss 

mark is indicated with the dashed line. The IS-D and MG-C bars are labeled with their 

actual values, which are beyond the scale of the plots. 

 
 

For GAMESS, energy savings could not be obtained with the runtime model because  

varying voltage and clock-rate impacted both the compute and data threads on the Xeon 

Phi as opposed to CPU-only executions, in which compute and data processes may be 
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mapped to different cores with selective DVFS application in cores [90]. On the Xeon Phi, 

however, all the cores are subjected to the same power limits, thereby adversely affecting the 

compute processes. 

For CoMD, the static analysis produced energy savings with a negligible 

performance impact. The most savings were found for EAM, 3% and 10% for the problem 

sizes 30 and 40, respectively. They may be explained by the energy-saving potential of the 

communication phase present in the middle of the EAM force computation (see authors’ 

previous work [61]). The use of runtime procedure degraded the CoMD performance, 

however, and thus its energy consumption; hence, the need to refine the runtime analysis in 

the future work. 

For NPB, energy savings were obtained mostly by memory-intensive applications: 

FT, LU, SP, MG, and IS. The most significant gains were obtained by FT, LU, and MG when 

the model was used, ranging from 15% to 30%. For FT and MG, such energy-savings are 

attributed to the performance gains found when decreasing clock-rate and voltage: The 

performance counters show that LLC misses were decreased for these executions, 

indicating that fewer memory misses increased execution performance. For LU, the energy 

savings were only obtained at the performance loss greater than 10%, which was not 

desirable.  

Similarly, the compute-intensive EP obtained some energy savings with a large 

performance loss for the model execution CG, a memory-intensive application, obtained 

energy savings of 8% under BPL with a small performance loss, while under the runtime 

analysis larger performance loss yielded negligible energy savings. This is because the 

model does not include feedback to limit performance impact, which has been beneficial 
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on the CPU. The energy savings and performance gain obtained by IS may be attributed 

not only to the significant reduction in LLC misses with BPL, but also to the random 

memory accesses occurring in each execution: the standard deviation for its measurements 

was much higher (by about an order of magnitude) than that for the other applications. 

With the runtime method, however, only 7% of energy savings were obtained. 
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CHAPTER 5 

HETEROGENEOUS EXECUTION-PHASE MODEL 

One such method considered in this work is the Execution Phase model, presented 

in this chapter. The phase model leverages popular performance models, such as the 

Roofline and ping-pong communication models, with application specific measurements 

to estimate execution phases, i.e., computation and communication phases. In this chapter, 

a heterogeneous computing platform featuring a CPU and one or more accelerators is 

modeled. Computation on all devices is considered, as well as the communication between 

devices and among MPI domains. 

In this chapter, the system characteristics are presented, followed by the derivation 

of the models with respect to the system. The experimental setup, results, and visualization 

of the method is then presented. 

 

5.1 System Characteristics 

A single-node heterogeneous architecture is composed of one multi-core host 

architecture and one or more multi-core accelerator architectures (Ai i = 1, 2, . . . , nacc), 

where nacc is the number of accelerators. Note that such an architecture may contain 

accelerators of different types (e.g., Xeon Phi and GPU). Each accelerator is connected to 

the host and one another by the PCI bus, contains a two-level memory hierarchy (with slow 

and fast memories), and is a many-core processing unit. It is also assumed that the slow 

and fast memories are infinite and finite capacities, respectively, and that data must be 

moved between memories and processor (called resources) during application execution. 

The parallel application is assumed to employ a domain-decomposition scheme [36], which 
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is defined here as the division of a problem into sub-problems (called sub-domains) that 

are distributed among devices. Sub-domains may be computed in parallel, and may also 

require sharing data with neighboring sub-domains to solve the problem globally. It is 

assumed that data communication phase may not overlap computation phase. When 

executing an application, the total number of sub-domains is dependent both on the 

application and system configuration. 

The distribution of sub-domains among resources is dependent on the execution 

mode: device, offload, or symmetric. For execution exclusively on the device, all work and 

data movement use only the resources of that particular device. For symmetric execution, 

sub-domains are distributed among the hosts and accelerators, serving as peers. For offload, 

on the other hand, the computations are performed either on the host or accelerators, such 

that one host sub-domain is shared with one accelerator only. In other words, each sub-

domain resides on the host while portions of its computational phase and data are copied 

to the accelerator for processing and the result returned to the host. It is assumed that host 

and accelerator computations do not overlap, i.e., one is idle while the other computes. The 

communications among sub-domain performed only by the host(s) while leaving the 

corresponding accelerators idle. 

 

5.2 Derivation of the Execution Phases 

This section presents the time, power, and energy models used to describe each of 

the phases considered, with distinctions made for the hardware influencing the model  

(e.g. throughput). 
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5.2.1 Execution Time 

The execution of an application that employs domain-decomposition may be 

described as having the following four phases: initialize, compute, communicate, and output. 

The initialization phase sets up a problem to be solved, and the output phase relays 

important statistics and output upon completion. Solving each sub-problem requires an 

iterative pattern of computation and communication phases until a global solution is 

achieved. Note that the initialization and output phases are not modeled because they are 

expected to have little impact on the overall performance for large-scale problems with 

multiple nodes. 

The total execution time in the offload mode may modeled as: 

 𝑇 = 𝑇 + 𝑇  , (19)

Where 𝑇 is the sum of the times required to perform all the computations and 

communications, respectively. 

 

5.2.1.1 Computation Phase 

The total computation time is limited by the slowest time required to solve a sub-

domain for a given execution mode. It is equivalent to being limited by the total time of a 

particular execution mode. Computation may be simply defined by the slowest execution 

mode because sub-domains of similar execution modes will require relatively the same 

time to solve; however sub-domains of differing execution modes may be vastly different, 

depending on load balance and the implementation. For the model, all sub-domains of 

similar execution modes are equivalent considering each would be  modeled using the same 

parameters. 
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The total time to compute in offload mode 𝑇  is: 

 𝑇 = 𝑇 + 𝑇 + 𝑇  . (20)

It is defined by the execution time for the host 𝑇 , accelerator 𝑇 , and communication 

time across the PCI bus 𝑇 .  The time 𝑇  to compute on the host is defined using the 

time-frequency model [16, 64, 95] as: 

 𝑇 = 𝑡 ×
𝑓

𝑓
+ 𝑡  , (21)

where 𝑡  is the time on-chip, 𝑡  is the time off-chip, and 𝑓 is the operational frequency 

during execution for the device such that 𝑓 ≠ 𝑓 . This general equation is used simply to 

estimate host execution time and deduce the applications computational intensity on the host. 

The time 𝑇  to compute on the accelerator is defined using the roofline model [107, 15] : 

 𝑇 = max (𝑊  × 𝜏 , 𝑀  × 𝜏 ) (22)

which is the maximum of the time to perform work 𝑊   and time to move data 𝑀  

between memories with 𝜏  and 𝜏  being the times to perform a unit of work and to 

transfer a unit of data, respectively. The time 𝑇  to move data across the PCI bus is: 

 𝑇 = 𝑀 ×𝜏  , (23)

which is the product of the amount of data 𝑀  to be moved and the time per data 

movement 𝜏  across the PCI bus. 

 

5.2.1.2 Communication Phase 

Total communication time 𝑇  is limited by the slowest transfer between sub-

domains, and it may be simply limited by the slowest communication type. For offload 
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execution, there are two communication types to consider: transfers between sub-domains 

on the same node (called intra-node), and transfers between sub-domains on differing 

nodes (called inter-node). These two communication types may overlap. For configurations 

executed on one node, the intra-node communication model is used; and for multiple nodes 

the inter-node communication model is used. 

Intra-node communication times 𝑇  may be defined as: 

 𝑇 = 𝑀  × 𝜏  , (24)

where 𝑀  is the amount of data to be moved and 𝜏  the time required to move a 

unit of data. Inter-node communication time 𝑇  is: 

 𝑇 = 𝑡 + 𝑀  × 𝜏  , (25)

where 𝑡  is the network latency. Note that, for a single-node configuration, network latency 

time is not present in Eq. (24). 

 

5.2.1.3 Throughput 

The time 𝜏  to perform unit of work is computed by taking the inverse of 

throughput. The definition of throughput is generally the total number of cores performing 

work times the frequency per core. However, for devices, such as the Xeon Phi, throughput 

also depends on characteristics such as vectorization intensity [11] and operations per cycle: 

 𝜏 = 𝑐 × 𝑛  × 𝑉𝐼 × 𝑓  (26)

where number of cores 𝑐 includes only those used in the computation, 𝑓 is the device clock-

rate, the number of operations per cycle 𝑛  is a value between one and two representing 

an average of single and fused multiply-add operations performed, and 𝑉𝐼 is the 
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vectorization intensity, which is a measure of the number of SIMD instructions issued. For 

the Intel Xeon Phi, 𝑉𝐼 may be a value between one and eight for double-precision floating-

point operations. Note that Eq. (26) is applicable to all the Intel devices based on the Sandy-

Bridge or newer microarchitectures. 

 

5.2.2 Power and Energy 

The total power draw P for the system is the sum of the power draw for each device; 

the total number of devices is 𝑛 , and power is defined  as: 

 𝑃 = 𝑃  . (27)

Device power is defined as static and dynamic power; however dynamic power may fluctuate 

during execution depending on whether the device is idle or active. A device is considered 

active if performing computation, and otherwise is idle (that is to include all 

communications). Device power may be defined using the weighted sum of the power draw 

for each execution state: 

 𝑃 = 𝑃 ×
𝑇

𝑇
+ 𝑃 ×

𝑇

𝑇
 , (28)

where the total execution time T = 𝑇  + 𝑇  and 

 𝑃 = 𝑃 + 𝑘 × 𝑐 × 𝑓  (29)

is the power draw for a given state and depends on the static power draw 𝑃 , a power 

constant 𝑘, the number of cores for the device 𝑐, and the state clock-rate 𝑓 (see, e.g., [95] 

and the references therein). 
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From Eqs. (19), (20) and (27), energy may be defined as: 

 𝐸 = 𝐸 + 𝐸 + 𝐸 + 𝐸  , (30)

where the energies 𝐸 , 𝐸 , and 𝐸 correspond to the three terms of Eq. (20), 

respectively, and 𝐸  is obtained using either Eq. (24) or Eq. (25) for single- or multi-

node executions, respectively. 

 

5.3 Experiment  

Measurements have been collected on the Borges and Bolt systems using CPU + 

Xeon Phi offload. The measured energy is averaged over five runs for each experiment. 

For the Borges system, only two configurations are investigated, termed MIC 1 and  

MIC 2, corresponding to employing only one or both Xeon Phi devices, respectively. On 

Bolt, six configurations are investigated, termed N1 MIC 1, N1 MIC 2, N2 MIC 1,  

N2 MIC 2, N3 MIC 1, and N3 MIC 2, where N1, N2, and N3 correspond to one, two, and 

three nodes used to run CoMD. For each configuration, the host frequency, number of Xeon 

Phi (MIC) threads, and model problem size were varied as follows: 

− All ten power states were considered on Borges (from 1.2 to 2.001 GHz with the 100- MHz 

stepping). On Bolt, only were seven (3.201, 3.2, 2.8, 2.3, 1.9, 1.5, and 1.2 GHz) out of 

sixteen possible states (from 1.2 to 3.201 GHz with variable stepping) chosen to make the 

number of measured configuration instances manageable while still having enough data to 

fit the models. 

− Seven MIC-thread values ranging from 120 to 236 (four threads per core) were taken to 

execute CoMD. Note, that, since one core is always occupied by four threads dedicated to 

operating system tasks, such as servicing the offload daemon and to avoid thread over- 
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subscription, the maximum of 236 application threads is reasonable to use on the 60-core 

Xeon Phi considered here. 

− Although problem sizes of 50, 60, 70, and 80 are explored to observe the computational 

intensity of CoMD for given platforms in this work, all the results presented here are for 

the problem size of 50 only. Executions with the other problem sizes exhibited similar 

behavior but took significantly longer to complete. 

− The compact thread affinity and thread-level granularity were used on accelerator devices 

since they were found to perform better in [61, 62]. 

The relative error between the measured energy 𝐸  and 𝐸 , 

modeled by Eq. (30), is calculated as: 

 100×
𝐸 − 𝐸

𝐸
 . (31)

Examples of error quantification are featured in Figs. 26 and 27 for Borges and Bolt systems, 

respectively, where each configuration is considered for all the chosen MIC-thread and host- 

frequency values. For Borges—as seen in Fig. 26–the majority of configuration instances 

are modeled with no more than 5% of error. Note that only does MIC 1 at the frequency of 

2.001 and lower MIC-thread values appear outside the 5% error range but is still confined 

within the 10% threshold. In Fig. 27, the relative error is also confined in the 10% interval 

with the MIC 1 configurations showing a slightly better prediction accuracy, in general. 

 

5.3.1 Execution Time 

Table VIII presents the execution-time model parameters for each configuration 

(column Config) of the CoMD and the two systems (column System) as calculated 
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from Eqs. (21) to (24) for the host compute time 𝑇 , host communication time 𝑇 , 

Xeon Phi compute time 𝑇 , and PCI transfer time 𝑇 . The model parameters have been 

estimated using linear regression over a sample set of configuration instances with varying 

host frequencies and MIC thread counts. For detailed procedure to estimate parameters in 

Table VIII see [65]. The column 𝑛  lists the number of sub-domains for each 

configuration. 

The host computation time (column-set Host Comp) is modeled as a sum of on- and 

off-chip times (columns 𝑡  and 𝑡 ) using linear regression while varying host 

frequencies in Eq. (21). The coefficient R2 was 0.99 throughout this estimation for all the 

configurations; thereby, indicating a high accuracy of the model. Note that for both 

systems, the ratio of  𝑡 to 𝑡 (column 𝑡 /𝑡 ) is less than one for all cases, which shows 

that the host computation is compute, rather than memory, intensive. Recall that in CoMD, 

the host updates atom position, velocity, and (when needed) redistribution of atoms. The 

host communication time (column-set Host Comm) is measured and used in Eq. (24) to 

obtain the (inter-host) communication latency 𝑡 by reading the hardware counters for the 

amount of data transferred 𝑀  and the transfer bandwidth 1/𝜏 . 

The workload on the Xeon Phi (column 𝑊  in the column-set MIC Comp) is 

estimated by varying the MIC thread count and observing its effect on the execution time. 

The parameters 𝑀  and 𝜏  were estimated similarly to those for 𝑇 . Note that, 

although both systems use the same model (5110p) of the Intel Xeon Phi, the estimated 

workloads are somewhat different for the same configurations (e.g., cf. 4.12 and 4.46 

TFLOPs on Borges and Bolt, respectively, for MIC 1), which is expected because the 𝑊  

values were modeled rather than calculated by counting all the algorithmic operations. 
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Fig. 26. Relative energy-model error per Eq. (30) on Borges. 
 
 
 
 

 
 

Fig. 27. Relative energy-model error per Eq. (30) on Bolt. 
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TABLE VIII 

 
EXECUTION-TIME MODEL PARAMETERS FOR BORGES AND BOLT 

 
 Host Comp Thost Host Comm Tcomm MIC Comp Tacc PCI Tpci 

System Config nsub 
ton 

(s) 

toff 

(s) 

toff ton tl 
Mcomm 

(MB) 

1/τcomm 

(MB/s) 

Wacc 

(TFLOPs) 

Macc 

(MB) 

1/τM 

(MB/s) 

Mpci 

(GB) 

1/τpci 

(GB/s) 

Borges MIC 1 1 1.62 0.23 0.14 0 59.17 450.51 4.12 83.5 2.48 5.33 4.61 

MIC 2 2 0.99 0.06 0.06 0 67.1 514.97 2.16 36.1 2.10 2.81 3.78 

 

 

Bolt 

N1 MIC 1 1 1.21 0.30 0.25 0 63.26 564.18 4.46 84.18 2.44 5.64 2.83 

N1 MIC 2 2 0.93 0.19 0.20 0 56.23 549.98 2.32 36.13 2.04 2.97 2.51 

N2 MIC 1 2 0.63 0.12 0.19 0.31 52.39 569.27 2.33 36.06 2.03 2.97 2.23 

N2 MIC 2 4 0.46 0.13 0.28 0.63 51.66 553.03 1.14 10.33 1.14 1.56 0.62 

N3 MIC 1 3 0.43 0.06 0.14 0.23 49.14 580.15 1.60 19.52 1.61 2.08 1.93 

N3 MIC 2 6 0.32 0.05 0.16 0.80 51.02 572.12 0.79 5.80 0.94 1.09 0.44 
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TABLE IX 
 

DEVICE POWER-MODEL PARAMETERS FOUND FOR THE BORGES AND BOLT SYSTEMS 
 

Device System Config Active Power Pactive, W Idle Power Pidle, W Total Power P , W 

Pstatic ρ Pmax Tactive/T R2 Pstatic ρ Pmax Tidle/T R2 Pstatic Pmax 

 

Xeon Phi 

Borges MIC 1 168.39 1.05 241.95 0.88 0.99 170.07 0.95 236.62 0.12 0.95 168.59 241.31 

MIC 2 169.91 0.93 235.06 0.84 0.97 171.24 0.79 226.58 0.16 0.80 170.12 233.70 

Bolt MIC 1 161.69 1.26 249.96 0.87 0.99 160.51 1.28 250.18 0.13 0.99 161.54 249.99 

MIC 2 162.51 1.17 244.47 0.84 0.99 168.37 1.07 243.33 0.16 0.84 163.45 244.29 

 

Host CPU 

Borges 
MIC 1 24.30 0.28 60.19 0.07 0.85 24.22 0.28 60.11 0.93 0.85 24.23 60.12 

MIC 2 13.11 0.11 27.21 0.08 0.99 13.11 0.11 27.20 0.92 0.99 13.11 27.21 

Bolt MIC 1 30.60 0.22 73.89 0.04 0.99 29.03 0.18 64.45 0.96 0.91 29.09 64.83 

MIC 2 25.21 0.12 48.83 0.08 0.96 25.82 0.12 49.44 0.92 0.98 25.77 49.39 
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TABLE X 
 

MINIMUM MEASURED AND MODELED ENERGY FOR BORGES AND BOLT 
 

System Type N nsub 
Config Instance Min Energy 

(J) 

MIC Comp 

(GFLOPs/J) 

MIC Mem 

(MB/J) 

Host Comm 

(MB/J) 

PCI 

(MB/J) # MIC Freq Thread 

Borges Measured 1 2 2 1.3 236 6436.6 0.81 0.013 0.69 16.77 

Modeled 1 2 2 1.9 236 6583.2 0.77 0.013 1.03 15.62 

 

 

Bolt 

Measured 1 2 2 2.3 236 8112.1 0.70 0.011 0.51 8.27 

Modeled 1 2 2 2.6 236 7986.8 0.70 0.011 1.04 8.04 

Measured 2 2 1 1.5 236 8786.1 0.34 0.005 0.22 3.59 

Modeled 2 2 1 1.8 236 8725.8 0.33 0.005 0.23 3.96 

Measured 3 3 1 1.5 236 8985.6 0.23 0.003 0.20 2.10 

Modeled 3 3 1 1.8 236 8980.4 0.22 0.003 0.19 2.32 
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The differences (amounting to about 8%) may be due, for example, to different numbers 

of co-processor stalls incurred during memory operations in each system, which are not 

accounted for explicitly in the proposed model. It is also interesting to observe that the 

speed-up with respect to the number of sub-domains 𝑛  is very good in all the 

configurations with its lowest gains of 2.78 on three sub-domains and highest gains of 1.92 

on two sub-domains of Bolt. Hence, one may infer that, even this non-optimized version of 

CoMD with VI of only 2.6 and with a moderate problem size of 50 scales well to multiple 

accelerators, either attached to a single node or to multiple nodes (cf. 𝑊  for N1 MIC 2 

and N2 MIC 1 configurations, which have the same 𝑛  on Bolt). 

The amount of data transferred over PCI (column 𝑀  from the column-set PCI) 

was read directly from the offload output reports, which most likely estimate this value since 

it appears to differ somewhat across the systems. The peak PCI bandwidth is 8 GB/s (PCI 

Express 2.0 x16) for Xeon Phi. As seen in Table VIII, the configurations with fewer sub- 

domains (thus, more data to transfer per sub-domain), the bandwidth 1/𝜏  reaches almost 

3 and 5 GB/s on Bolt and Borges, respectively, which indicates that PCI transfers are well- 

optimized in offload executions. 

 

5.3.2 Power 

Table IX presents the obtained power-model parameters for a Xeon Phi 

accelerator and the host CPU (column Device) when a given configuration (column 

Config) is considered on a single node of Borges or Bolt (column System). The 

parameters were calculated using linear regression over the configurations instances, in 

which different execution states, active or idle, were distinguished (column-sets Active 
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Power and Idle Power, respectively).  The samples are obtained from varying host 

frequency and MIC threads, for the host and Xeon-Phi device power models, 

respectively, obtained by Eq. (29). If the maximum frequency is used, then the 

maximum power draw 𝑃  may be predicted for each state, as presented in Table  IX . 

The total power P (column-set Total Power) is then calculated following Eq. (28).  

The model accuracy is assessed by the R2 term. All the models appear well-

correlated because the obtained R2 coefficients, also provided in Table IX, are all close 

to one. For each device and configuration, a ratio of its active (idle) time to the total 

time is provided in column 𝑇 /T  (𝑇 /T). Note that the sum of these two ratios is 

one. For a give device, the times 𝑇  and 𝑇  mutually exclusive with an active-state 

time being equal to the device computation time, 𝑇  for the Xeon Phi and 𝑇  for the 

host CPU. During any type of communications (host-only or PCI), both host and Xeon 

Phi are assumed to be idle since communication/computation overlap is not considered in 

this work.  

Different amounts of idle time may indicate varying benefits of CPU-based 

dynamic voltage and frequency scaling (DVFS) for each device. For example, as seen in 

Table IX for Borges and the MIC 1 configuration, the Xeon Phi idles only for 12% of the 

execution time, so its DVFS potential may be rather small compared with that on the host, 

which is 93% for the same system and configuration. Even though the power draw is 

significantly lower on the host, the offloaded portions of the execution are ideal places to 

save energy by DVFS, as the authors have previously concluded [63], along with 

communication phases (see, e.g., [95]).  

It may be observed from Table X, that the maximum host power draw for either 
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system is higher when only one accelerator is used (cf. lines 5 and 6; lines 7 and 8) because 

with two accelerators the host works on two smaller sub-domains in parallel. Using two 

sub-domains requires less computational intensity than one larger sub-domain does with 

only one accelerator in use. Observe also, that the MIC 1 configurations required more total 

power than the MIC 2 ones. Hence, using more than one accelerator may be beneficial not 

only to reduce execution time but also to expect less of a power surge in compute-intensive 

applications. 

 

5.3.3 Energy 

The proposed model aims to predict the best configuration instance defined as the 

one with the lowest energy consumption. For each system and the corresponding node 

count (column N), Table X presents configuration instances consuming (column-set 

Config Instance) the minimum amount of energy (column Min Energy), which is 

either measured or modeled (column Type). Since the problem size is fixed, each 

configuration instance shown in Table X is determined by the number of Xeon Phi’s used 

(column # MIC), host frequency (column Freq) in GHz, and the number of threads per 

Xeon Phi (column Thread). The measured energy values are averaged over five runs for 

a given configuration instance. 

As seen in Table X, the models are able to predict a configuration close to the one 

obtained experimentally. Specifically, in each case, all the configuration-instance 

parameters matched except that the host frequency was consistently over-predicted by 0.3 

GHz throughout but on Borges, where the predicted frequency was 0.6 GHz higher. 

Overall, for either Borges or Bolt, the best configuration instances were those using a single 
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node with two Xeon Phi since the entire problem of size 50 fits on a single node. For larger 

problems, when only are multi-node systems employed efficiently, the best configuration 

instances will include multiple node. 

To further verify the minimum energy estimations obtained for a single node N of 

Bolt, all the 16 available frequencies were examined for 220 and 236 thread counts and the 

corresponding energies measured. Their values, however, were always higher than that 

shown as italicized in column Min Energy of Table X. It may be observed also that, for 

multi-node executions, one-MIC configurations are better at large MIC-thread counts 

because the host frequency may be significantly reduced (cf. measured 2.3 and 1.5 GHz on 

Bolt for two sub-domains in column nsub) to compute sub-domains distributed to multiple 

nodes rather than shared by a single node, considering that the total execution time is similar 

in these cases (cf. 𝑇 + 𝑇  equal to 1.12 and 1.06 seconds for N1 MIC 2 and N2 MIC 

1, respectively, in Table VIII), it may be inferred that an instance of N2 MIC 1 is more 

energy efficient, as confirmed in column Min Energy. 

The number of floating-point operations per joule as well as bytes per joule are 

typically used to assess architecture performance with respect  to  energy consumption (see 

[14, 15]). These metrics are modeled using the parameters from Tables VIII and IX  using 

Eq. (30) and are provided in columns 9–12 of Table X, such that columns MIC 

Comp,  MIC Mem,  Host Comm,  and  PCI correspond  to  MIC-only  computations 

and memory accesses, data movement in host communications and PCI transfers, 

respectively. The modeled values in each column were calculated from Eq. (26) as 

follows: 



102 
 

 

 

 

5.4 Visualizing Phase for Heterogeneous Executions 

To better visualize power with respect to time for different configurations, it has been 

decided to employ the so-called waterfall plots [82]. Although software exists to render 

these plots, such as Mathematica or Matlab, rendering is slow and thus too cumbersome to 

use as a tool. Instead, Unity, a software used for game development on many platforms 

[100], has been adopted to render the plots. With Unity, a tool has been created by the 

authors to read simple input files (containing only a 2D array of power data and phase 

labels) and to automatically render a corresponding plot. 

The three axes composing each waterfall plot are execution configuration  

(x-axis), power draw (y-axis), and execution time (z-axis); in Unity, the y-axis is the 

vertical axis by default. The input power and phase data are used to create a mesh: one 

mesh is created for the host and another for the accelerator, and, in cases of multiple host 

or accelerator devices, the power is summed. Recall that the application execution phases 

are static power draw, initialization, host computation, host communication, and offload 

phase. The offload phase contains both accelerator computation and data transfer phases. 

The created waterfall plots are meant to be viewed in color and from multiple viewpoints.  

Hence, the authors have published a webpage, available at [57], where any user may 

explore the plots firsthand. 

nacc · Wacc/Eacc , 

nacc · Macc/Eacc , N 

· Mcomm/Ecomm , 

nacc  · Mpci/Epci . 

MIC Comp 

MIC Mem 

Host Comm 

PCI 
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Figure 28 shows the waterfall plots for 1–4 node configurations with 236 threads, 

one Xeon Phi, and frequency from minimum to maximum in each plot. The colors illustrate 

the phase transitions that occurred in each execution, and show the relative timing of phases 

across different executions. The data for the plots in Fig. 28 come from the authors’ work 

[66]. One may observe across all four plots in Fig. 28 that the phase power draw differences 

diminish as the number of devices used increases; in (a), power draw is very jagged and 

fluctuates highly between large and small power draws, but in (d), power draw is relatively 

smooth and thus fewer fluctuations are perceived. This shows that there is significant 

overlap among phases executed on differing nodes which impacts the resulting power draw 

of the system. On a per node basis, power draw can be expected to fluctuate rapidly, but from 

the viewpoint of the system, power draw appears fairly consistent. 

Figure 28 may also be used to show the power draw for each execution phase. In 

color, the plots are mostly green; green is used to show when power draw has been sampled 

during the offload execution phase. This is especially true for the host. Most of the high 

power readings on the host are colored green, although one would think that power would 

be low because the host is not actively computing. This shows that the host is moving data, 

but must utilize the core to handle the instructions. From the authors previous work [63], 

minimizing frequency during offload execution reduced power draw. However, from the 

waterfall plots in Fig. 28, it may be concluded that there is a potential for energy savings 

during offload through host DVFS. Alternatively, the host may be scheduled to perform 

computations during the offload phase. 

Figure 29 shows a waterfall plot with data collected using the micmgmt API 

measurements. Note the power draw differences between Fig. 28 and Fig. 29: The power  
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Fig. 28. Waterfall plots for Turing with 1–4 nodes (a–d), each with 1 Xeon Phi, 236 

threads with a CoMD problem size of 60 (864,000 atoms). 

 

 

 

 
 
 
Fig. 29. Waterfall plot on Borges with 1 node, 1 Xeon Phi, 236 threads with a CoMD 

problem size of 50 (500,000 atoms). On the left (a), executions were measured using the 

old method, and on the right (b), measured using the new method with micmgmt API. 
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per Xeon Phi does not exceed 150 W with the micmgmt API measurements (Fig. 29). All  

the plots have been generated using power data collected by reading the connector sensors 

(PCI, 2x3, and 2x4) which should yield a maximum power draw of 300 W. The device TDP 

is 245 W, recall that this is the average power draw while the device is in the C0 (active) 

state; therefore, a power draw of over 200 W was the expected result, yet power draw nears 

only 130 W. This shows there is room for optimization for this application on this hardware. 

 

5.5 Conclusions 

In this chapter, the execution phase model was presented. The models used here were 

successfully fit to CoMD on two different heterogeneous platforms with Xeon Phi, and the 

results were visualized using the Unity Game engine. The model was able to capture the 

execution trends identified by the models, although the method for collecting this data is 

not extendable to all applications. The method relies on quantifying each execution phase 

using timers, such that the data can be correlated with power measurements and thus 

execution phases may be determined. Although this approached worked for CoMD, more 

complex applications (such as GAMESS) are not easily dissected, especially since 

GAMESS offers many more execution kernels than CoMD. Further, this measurement 

approach incurred additional performance penalties due to writing data to the output file 

(write operations to the hard disk), which made the method impractical for general use. 

Thus, a different approach is needed to model applications and hardware.  
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CHAPTER 6 

PREDICTING ENERGY CONSUMPTION 

Energy consumption is a major concern for HPC systems because energy is a measure 

of operating costs – power draw is expensive, and applications take time to execute. Two 

techniques have emerged to control power and energy consumption for HPC systems: power 

and energy capping [88]. Power capping is used to limit the amount of power that the system 

may consume while executing a workload.   Energy capping is used to limit the amount   

of energy that may be consumed to execute a workload. The difference between the two 

techniques is subtle; power capping limits the peak power draw and may consequently cause 

execution performance to decrease, whereas energy capping limits the integral of power 

over time but does not limit instantaneous power draw and thus does not reduce execution 

performance. 

Predicting energy consumption can be tricky. Application workloads are highly 

variable, especially for more complex algorithms, thus power draw varies over the 

execution. Further, not all compute resources respond the same to a given workload, i.e., 

certain nodes will consume more power than others given the same workload; this is also 

true of time / performance. Finally, power draw does not necessarily reflect the state of the 

execution, e.g., computing or moving data, for several reasons. (1) Power draw depends on 

the efficiency of an operation – the larger the delay between requesting data and operating 

on it can potentially reduce the power draw. (2) Computations and data movement overlap 

which makes identifying particular operations difficult. (3) Multiple cores may share a 

power plane, thus the actual power consumption may be higher than that required by the 

workload because of this limitation (power will be the max required of all cores on the 
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plane). 

To demonstrate several methods for predicting energy consumption, consider the 

following analysis of several parallel applications (CoMD and NPB) of which problem size 

may be defined. The ECM model is considered here because performance is defined by 

problem size (in FLOP’s), the number of cores, and clock-rate; these application and system 

parameters are most commonly adjusted to determine the optimal execution. Recall from 

Chapter 2 the definition for the ECM performance model (Eq. (3)); for reference, it is 

presented again below: 

 𝑇 =  min 𝑐𝑁 1 +
𝑓 − 𝑓

𝑓
, 𝑁  (32)

where 𝑁  is the performance in FLOPs for one core, 𝑁  is the maximum achievable 

performance given all bottlenecks, 𝑐 is the number of cores, 𝑓 is the current clock-rate, and 

𝑓  is the baseline clock-rate. The ECM power model is: 

𝑃 = 𝑊 + 𝑐(𝑊 𝑓 + 𝑊 𝑓 ),                                               (33) 

where W0 is static power draw, W1 is the coefficient for the linear term of power draw, 

and W2 is the quadratic term.  

The ECM performance model has been fit to measurements collected while running 

each application with several small problem sizes. Power is not modeled here, since average 

power varies little with problem size, and predictions are verified against large problems 

executed with only the maximum number of cores and clock-rate. Instead, the maximum 

power measurement obtained from the small problem sizes will be used to estimate the power 

draw for a larger problem size. 

The results contained in this chapter are obtained using two definitions of problem 
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size: (1) “problem size” refers to the input problem size used for each application, and  

(2) “problem size per core” refers to the ECM-defined problem size (see Eq. (32)) which 

scales the input problem size by the number of cores and clock-rate. Also note here that 

the performance bottleneck term defined in the ECM performance equation is ignored for 

the clarity of exposition. 

 

6.1 Problem Size Definitions 

The NAS Parallel Benchmark Suite contains many different benchmarks for which 

problem size relates to inputs, such as the number of iterations or grid size. Problem size 

for the NPB can be found by reviewing the source code for the computation of millions of 

flops, a metric output by each benchmark. The problem size definitions for CoMD and the 

NPB suite are presented below. 

 

6.1.1 NPB Problem Size 

Here the definitions for problem sizes are presented for the CG and LU benchmarks 

for the NPB benchmarks. Only these two are shown here for brevity, however, the methods 

contained in this chapter may be applied to all of the benchmarks as will be shown in this 

chapter. The NPB benchmarks all estimate problem size in unit FLOPs. 

For CG, problem size is defined as: 

 𝑁𝑍𝑍 = 𝑁𝑍 × (𝑁𝑍 + 1) , (34)

 𝑁 = 2 × 𝐼 × 𝑅 × 6 + 𝑁𝑍𝑍 + 25 × (5 + 𝑁𝑍𝑍)  , (35)

where I represents iterations, R is number of rows, and N Z is the number of non-zeros 
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per row. This function can be found in the NPB source code for CG. Performance 

modeling of CG has been conducted in the literature [91, 21], although the version 

provided by the NPB is a modern implementation of the algorithm. 

For LU, problem size is defined as: 

 

 

𝑁 = 𝐼 × (1984.77 × 𝑁𝑋 × 𝑁𝑌 × 𝑁𝑍 − 

                       10923.3 × 
𝑁𝑋 + 𝑁𝑌 + 𝑁𝑍

3
+ 

                        27770.9  × 
𝑁𝑋 + 𝑁𝑌 + 𝑁𝑍

3
− 144010) 

(36)

where I represents iterations, and NX, NY, and NZ represents the grid size. What is 

interesting here is that the model for 𝑁  is based on a regression model and not on an 

approximate computation of the total FLOPs, thus Eq. (36) may be subject to error when 

tested on machines other than that used to obtain it.  

 

6.1.2 CoMD Problem Size 

For CoMD, the total number of atoms represents problem size, and is defined as: 

 𝑁 = 4 × 𝐼 × 𝑁𝑥 × 𝑁𝑦 × 𝑁𝑧 (37)

where I again represents iterations, and N x, N y, N z represents the number of atoms in 

the x, y, and z-directions respectively. It is more difficult to approximate the number of 

FLOPs associated with this algorithm since the number of atoms involved per iteration 

depends on the number of atoms within a cutoff distance. Further, the computation may 

involve an interpolation which the number of FLOPs is not clearly defined. However, 

supplementing the number of atoms for FLOPs provides the linear model with a 
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sufficient definition of problem size for this investigation. 

 

6.2 Measurements 

Figures 30 and 31 present the measured energy, time, and power for CoMD (EAM 

and LJ) and NPB (CG and LU), respectively, for two platforms: Borges (Sandy-Bridge) and 

Marquez (Haswell). Energy and time are plotted against the problem size per core according 

to the ECM performance model Eq. (32). Power is plotted against clock-rate in GHz as in 

the ECM power model Eq. (33). Notice that the linear ECM model has been fit to the time 

measurements, represented as a solid line. 

For CoMD, three problem sizes are tested, 25.6, 50.0, & 86.4 million atoms, and 

for CG and LU, two problem sizes are tested, classes B and C, while varying clock-rate 

and number of cores. Because strong scaling has been used while varying the number of 

cores, the data has been divided into two general problem sizes / core, noted as PS1 

and PS2, where PS2 > PS1 by a factor of 2.  Note that the problem size / core includes 

all problem sizes considered for each application (25.6-86.4 mil atoms for CoMD and 

classes B and C for NPB). 

Clock-rate has been included in the measurements because it can be used to identify 

the computational- or memory-boundedness of an application [16], and so it is useful to 

define whether the application scales well with problem size (upward linear trend between 

all problem sizes) or if the application encounters bottlenecks (horizontal linear trend 

between local problem sizes). This may be observed in Fig. 31c where the linear trend of 

the ECM model does not accurately reflect the trend of the measurements (see PS2). In this 

situation, an underlying performance bottleneck has been encountered, although this is not 
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predicted by the model since data movement (between cache and DRAM) is not modeled 

here. 

Power is not modeled here, although the quadratic trend may be observed in Figs. 

30 and 31; the trend is less obvious for the NPB measurements since class B is much 

smaller than class C which distorts the trend (e.g. two parallel quadratic trends are shown in 

Fig. 31c for both PS1and PS2). Energy is to be predicted, and so the measured results are 

shown here for reference. Measured energy has been calculated as: 

 𝐸(𝑡) = 𝑃(𝑡) × ∆𝑡 , (38)

where E(t) is energy, T is execution time, P (t) is power at time t, and ∆t is the sampling 

rate (5ms). 

 

6.3 Predictions 

Figures 32 and 33 presents the predicted and measured energy, time, and power for 

large problem sizes; for CoMD, problem sizes 400 million-3200 million atoms are 

considered, and for NPB, class D is considered. Predicted time and energy is shown as a 

solid line. The average power draw used to predict energy is shown in Figs. 32 and 33 using 

a black ’X’. The prediction results here only investigate PS1 at maximum clock-rate 

because measurements were only collected for this configuration (16 cores @ max clock-

rate). Power measurements for the larger problem sizes is shown as a blue circle, and the 

small power measurements from Figs. 30 and 31 are shown as orange squares for reference. 

Tables XI and XII presents the time, power, and energy values obtained from 

measuring and predicting the larger problem size considered for each application (3200 
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million atoms and class D), shown in Figs. 32 and 33, respectively, for CoMD and NPB. 

Predicted energy has been calculated as: 

 𝐸 = 𝑇×𝑃 . (39)

Negative error shows an under-estimation with respect to the measured result, and a 

positive error shows an over-estimation. 

First consider power in Figs. 32 and 33 and Tables XI and XII. The maximum 

average power draw (labeled ’Model’ in the figures) is used to predict energy consumed; 

notice that the selected power draw is close to that measured for the larger problem sizes 

(max error 7%). 

Time is less accurate, with error ranging from 6%–60%. Inaccuracy of the time 

model is the result of two factors: (1) the ECM performance model is based on small 

problem sizes, and (2) the performance bottleneck is not included in the model fit since 

data movement is not defined for the applications considered. Error in energy consumption 

ranges from 4%–60%. Thus, it is clear from these results that the error in the energy 

consumption is due to the error in time, for which only small problem sizes were used to 

fit the ECM performance model. 

It must also be mentioned here that the LU predictions are less accurate than those 

for CG or CoMD. Again, this reflects on the model for problem size. LU may be used here 

as an example of the difficulty in defining problem size in the terms that are meaningful 

across platforms. CoMD also suffers from an incomplete definition of problem size, which 

is shown in Fig. 32; however because the code is compute-bounded, the definition for 

problem size still maintains a mostly linear trend. On Borges, it is clear that the code is less 

compute- bounded than on Marquez; the linear fit is better on Marquez than Borges. 
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Fig. 30. Predicted vs. measured energy, time, and average power of CoMD on Borges 

and Marquez. 
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Fig. 31. Predicted vs. measured energy, time, and average power of CG and LU on 

Borges and Marquez. 
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TABLE XI 
 
PREDICTED VS. MEASURED ENERGY, TIME, AND AVERAGE POWER FOR 3200 

MILLION ATOMS (COMD) AND CLASS D (NPB – CG AND LU) ON BORGES. 

 Energy Time Avg Power 

 Measured 214752 2149.64 99.61 
CoMD-EAM Modeled 262802 2657.39 97.75 

 Error 22.4% 23.6% -1.9% 

 Measured 135843 1393.69 96.79 
CoMD-LJ Modeled 128537 1300.20 96.67 

 Error -5.4% -6.7% -0.1% 

 Measured 152655 1353.94 109.85 
NPB-CG Modeled 129783 1176.01 104.00 

 Error -15.0% -13.1% -5.3% 

 Measured 261480 2260.84 114.57 
NPB-LU Modeled 259970 2421.47 106.52 

 Error -5.7% 7.1% -7.0% 

 
TABLE XII 

 
PREDICTED VS. MEASURED ENERGY, TIME, AND AVERAGE POWER FOR 3200 

MILLION ATOMS (COMD) AND CLASS D (NPB – CG AND LU) ON MARQUEZ. 

 Energy Time Avg Power 

 Measured 153553 1711.43 89.45 
CoMD-EAM Modeled 166320 1851.41 88.31 

 Error 8.3% 8.2% -1.3% 

 Measured 95350 1072.08 88.54 
CoMD-LJ Modeled 88585 950.10 90.49 

 Error -7.1% -11.4% 2.2% 

 Measured 236406 2454.74 94.92 
NPB-CG Modeled 123447 1224.78 99.11 

 Error -47.8% -50.1% 4.4% 

 Measured 553854 5241.16 104.93 
NPB-LU Modeled 222934 2156.78 102.59 

 Error -59.7% -58.8% -2.2% 
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Fig. 32. Predicted vs. measured energy, time, and average power of CoMD on Borges 

and Marquez. 
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Fig. 33. Predicted vs. measured energy, time, and average power of CG and LU on 

Borges and Marquez. 
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6.4 Analysis  

Consider the power traces and corresponding probability distributions shown in Figs. 34 

and 35 for each application and computing platform. An annotation has been added for 

probabilities exceeding the specified boundaries of the plot. Each bar of the distribution 

represents a 5W bin, and each distribution is normalized by the total number of samples 

in the trace (except idle power). 

Idle power measurements are excluded from the trace because the distribution 

represents the execution. Hence, the power traces have been cropped 4.8s from the start 

and 5.0s from the end of the trace, i.e., a majority of idle power measurements are ignored. 

Approximately 0.2s of idle power measurements remain at the beginning of the trace 

because there is a delay between issuing the command to measure power and the time 

required to make the first measurement. It may be possible to find a smaller value than 0.2s, 

however idle power measurements contribute less than 1% of overall distribution. 

 

6.4.1 Distribution Analysis 

The power distributions in Figs. 34 and 35 share a common trend, in that they may 

be modeled using a Normal distribution [56], which is represented in the figure as a solid 

line. Table XIII presents the Normal distribution parameters (mean µ, standard deviation 

σ) for the power traces shown in Figs. 34 and 35. The normal distribution 

is defined as: 

 𝑓(𝑥) =  
1

√2×𝜋×𝜎
× exp

−(𝑥 − 𝜇)

2×𝜎
  , (40)
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where f (x) is the resulting probability density function, σ is standard deviation, and µ is 

the mean. 

Energy distributions for each application and system are presented in Figs. 36 and 

37; like with the power traces, the energy traces show energy over time for the execution 

and the corresponding distribution. The distributions have been fit to a bimodal distribution 

[90], and the model parameters are presented in Table XIV. The bimodal distribution is 

defined as: 

𝑓(𝑥) =  𝛼 ×𝑒𝑥𝑝
( )

 + 𝛼 ×𝑒𝑥𝑝
( )

 ,                 (41) 

where f (x) is the resulting probability density function, α1 and α2 are approximately equal 

to 1 √2×𝜋×𝜎⁄ , and 𝜇 , 𝜇 , 𝜎 , and 𝜎  are the mean and standard deviation of each peak 

of the distribution (labeled 1 and 2 respectively). 

What is interesting about the distributions here is that power can be described 

generally using only one peak, but energy shows two (sometimes three, see Fig. 35) peaks, 

depending on the application. Also make note that the power measurements near idle power 

(and respective energies) are not representative of the distribution, and consist of fewer 

than 1% (0.01 normalized) of all samples; indeed these measurements are outliers, which 

supports the theory that measurements near idle are indicative of delays captured via power 

draw, see Fig. 35d. Generally power and energy for an application-platform are shown as 

a whole, meaning energy is the sum of the power samples over time, providing a single 

value for energy consumption. 

Similarly, power is averaged such that a single value is representative of the trace. 

This is good, but it doesn’t say much about how the application used that energy. The energy 

distribution shows this. It provides a range of energy values, and shows that given a 
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sampling rate (about 10ms measured), energy most commonly is used in specific 

increments of energy. In this way, applications and hardware can be more directly 

compared. And since energy is about equal to cost, this is also good for cost assessment. 

 

6.4.2 EMD Residual and the QFR Model 

Consider the QFR power models and EMD residuals presented in Figs. 38 and 39. 

EMD has been applied to each power trace in Figs. 34 and 35 and the corresponding 

residual (Measured EMD) is compared against the predicted quadratic fit residual 

(Modeled QFR), calculated as described in Eq. (42). 

 𝑃(𝑡) = 𝑎𝑡 + 𝑏𝑡 + 𝑐 (42)

 𝑎 =
−𝑏

𝑇
 (43)

 𝑏 =
4×𝑃

𝑇
 (44)

The coefficients a, b, and c are calculated using Eqs. (43) and (44) where coefficient 

c is idle power draw, dynamic power draw Pd is the difference between average power and 

idle, and time T is the time predicted by the ECM performance model. Idle power draw 

has been measured at 45.8 W for Borges and 33.3 W for Marquez (at the maximum clock-

rate), which can be seen in the QFR’s in Figs. 38 and 39. 

Compare the EMD residual to the QFR. The error calculated prior (see Tables XI 

and XII) is captured in the relative length of each curve. Both the QFR and EMD residual 

also approach average power, which is expected since power was not modeled here. 

Focusing on the relative shape of the EMD residual vs. the QFR, notice that the EMD 

residual converges on average power draw as time increases. 
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For a shorter trace, the start and end of the EMD residual may be observed 

approaching idle power; this is explained by the amount of idle power samples in the trace. 

Since a fixed amount of idle measurements are included in the trace, independent of 

execution time, the influence of idle power on the residual of shorter traces is increased. The 

opposite occurs for larger traces (i.e. the curve is mostly influenced by dynamic power 

draw), hence the EMD residual converges on average power draw. Figure 34d provides an 

excellent example of a short trace, and Fig. 35c shows a long trace (> 1000 seconds). 

Further, the EMD residual is more representative of the power trace than the QFR 

since EMD is based on the measurements. The minimum power exhibited by the residual 

is much larger than that of the QFR. This suggests that the observed static power draw for 

the execution is much higher than typically reported, since EMD is including the power 

required to keep cores active throughout the execution. Typically, the power required to 

keep cores active is tallied as dynamic power draw since this may be scaled with DVFS; 

however, if the power draw during execution does not dynamically change, this may be a 

misrepresentation of power. Based on the trend from EMD, a substantial amount of power 

may be concluded as static power draw. 

A similar finding has been found by the authors in [28] who use linear regression 

to evaluate power models meant to investigate uncore power usage. They found that up to 

74% of static power is due to uncore power draw, and up to 61% of total energy 

consumption on the Haswell CPU is due to uncore power draw. This finding is consistent 

with the findings for the Xeon Phi which has a static power draw of approximately 80W 

and most applications use up to 160W when loaded — in this case, static power 

contributes to 50% total energy consumption.  Indeed, static power draw is the leading  
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Fig. 34. Power traces for CoMD on Borges and Marquez at max problem size (3.2 billion 

atoms) with distribution of power samples normalized by the total number of samples in 

the trace. 
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Fig. 35. Power traces for CG and LU on Borges and Marquez at max problem size  

(class D) with distribution of power samples normalized by the total number of samples 

in the trace.  
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Fig. 36. Energy traces for CoMD on Borges and Marquez at max problem size  

(3.2 billion atoms) with distribution of power samples normalized by the total number of 

samples in the trace. 
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Fig. 37. Energy traces for CG and LU on Borges and Marquez at max problem size  

(class D) with distribution of power samples normalized by the total number of samples 

in the trace. 
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TABLE XIII 
 

NORMAL DISTRIBUTION COEFFICIENTS OF POWER FOR COMD AND NPB 

(CG AND LU) ON THE BORGES AND MARQUEZ PLATFORMS. 

System Application Mean µ Std Dev σ 

 CoMD - EAM 99.6 4.069 
 CoMD - LJ 96.7 6.017 
Borges NPB - CG 113.0 7.242 

 NPB - LU 117.6 6.579 

 CoMD - EAM 89.6 6.223 
 CoMD - LJ 88.4 6.696 
Marquez NPB - CG 6.429 96.6 

 NPB - LU 106.6 3.996 

 
 
 

TABLE XIV 
 

BIMODAL DISTRIBUTION COEFFICIENTS OF ENERGY FOR COMD AND NPB 

(CG AND LU) ON THE BORGES AND MARQUEZ PLATFORMS. 

 

System Application α1 µ1 σ1 α2 µ2 σ2 

Borges 

CoMD - EAM 0.610 0.528 0.049 0.290 1.513 0.063 
CoMD - LJ 0.601 0.525 0.048 0.294 1.495 0.062 
NPB - CG 0.485 0.589 0.063 0.211 1.788 0.067 
NPB - LU 0.067 0.649 0.079 0.043 1.610 0.488 

Marquez 

CoMD - EAM 0.600 0.511 0.060 0.117 1.442 0.114 
CoMD - LJ 0.573 0.507 0.063 0.169 1.406 0.072 
NPB - CG 0.646 0.533 0.058 0.063 1.527 0.271 
NPB - LU 0.647 0.585 0.051 0.095 1.738 0.114 
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Fig. 38. EMD residual vs predicted QFR for CoMD on Borges and Marquez at max 

problem size (3.2 billion atoms). 
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Fig. 39. EMD residual vs predicted QFR for CG and LU on Borges and Marquez at max 

problem size (class D). 
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limitation to energy-efficient computing. 

Although the QFR model is based on the residual, certain assumptions had been made 

such that the model may be equated to time and power [60]. The first assumption is power  

draw is equal at the start and end of execution, thus time may then be easily defined when 

the y-intercept equal to coefficient c for a time > zero. The second assumption is coefficient 

c is idle power draw (a.k.a static power). As has been shown here, these assumptions placed 

limitations on the model, and for long traces (> 1000 seconds), the model began to fail. This 

is visible in Figs. 38 and 39 where the QFR does not cover nearly the amount of area as the 

EMD residual. The model could be more representative of the EMD residual if idle power 

measurements were collected for a time proportional to the execution time; however, this 

is wasteful and the distributions shown prior are a better representation of power and energy. 

 

6.5 Relative Error Between Prediction Methods 

Consider Fig. 40 which compares the relative error for each method to predict 

energy considered in this chapter; error in predicted energy is relative to measured energy.  

To recap, measurements were collected using small problem sizes to which the ECM 

performance model was fit. Using this definition of time, and the maximum value of 

average power measured, energy was predicted. Thus, the first method is Avg Power. 

Following came the introduction and discussion of the Power Distribution and 

Energy Distribution using unimodal and bimodal normal distributions. Finally, 

the EMD Residual and QFR Model were discussed. 
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Fig. 40. Error in energy consumption for predicting energy using: average power, EMD 

residual, QFR model, power distribution, and energy distribution. 

 
 
 

First, note in Fig. 40 that the baseline error is Avg Power, which was defined prior 

in Tables XI and XII. Because of the error in the execution time model, no other model 

here should predict energy better than average power, hence it is used as a baseline. 

Also note that the EMD residual remains an excellent representation of energy 

consumption, although it is based on the measured results and thus is expected to have zero 

error. The QFR model shows high error, as expected based on the trends in Figs. 38 and 

39. The purpose of the QFR model was to be a high-level interpretation of an execution 

such that applications and hardware could be compared in a way that was meaningful. 
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Inadvertently, analyzing the traces as distributions provides a better method for 

representing power and energy. The error shown in Fig. 40 for both the power and energy 

distributions closely matches the average power. This is to be expected, however, since the 

distributions incorporate mean power/energy into the model, so the results here could be 

misleading and further analysis of the method is required.  
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CHAPTER 7 

MULTISOCKET AND MULTINODE ANALYSIS 

In this chapter, an investigation of hardware platforms featuring multiple sockets 

per node and multiple nodes is performed. This analysis is meant to bridge the gap between 

the analyses conducted thus far (primarily focused on single-node executions) and the 

applicability of the results to large-scale systems. More emphasis has been placed on 

individual nodes than large groups because these individual nodes make up the whole, and 

the variability of runs on a particular machine will impact the scaling behavior as  additional 

nodes are added. 

In the previous chapter, plots were presented that showed the raw measurements of 

time, power, and energy for various applications and platforms (in particular, the small 

problem sizes). The plots of interest have been duplicated here, see Fig. 41. Focus attention 

to power for each plot; notice that although a quadratic trend may be observed as clock-

rate increases, outliers may be observed that draw 10W less than the trend (on Borges, and 

around 5-6W on Marquez). This has a bigger impact on the PS1 measurements where 16 

cores are used (as opposed to 8 in the PS2 case). These variations may also be observed 

in energy (notice the PS1 measurements are grouped together instead of following a trend 

as with PS2). Even with the trend, outliers are still present in energy (e.g. Borges). This is 

caused by latency in the system that can only be encountered at runtime. Thus, this behavior 

is to be expected in the multi-node environment and to greater extremes due to the added 

level of parallelism (network). 

In the multi-node environment, latency due to data movement over the network and 

load imbalance between nodes will compound with the run-to-run variability in performance  
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(a) Borges - CoMD - LJ 
 
 

 
 
 

(b) Marquez - CoMD - LJ 
 

Fig. 41. Duplicate of the measured energy, time, and average power of CoMD on Borges 

and Marquez for several problem sizes as presented in the previous chapter. 

 
 

and energy. Optimization of the application can reduce these bottlenecks, but no application 

can be completely rid of them. Thus, it becomes important to investigate how applications 

utilize multiple nodes. However, before jumping into multiple nodes, one feature of each 

node has been overlooked; that is each node is often comprised of multiple sockets and 

each socket, if measured using RAPL as is done in this work, provide multiple sources of 

measurement, i.e., total package, core, and DRAM. 
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7.1 Multisocket Analysis 

Many computing platforms designed today feature multiple sockets to increase the 

available resources per node. This is an important caveat, since one may assume that all 

cores may share the same cache, however often there are multiple processors and the node 

is represented as the total amount of resources (e.g. cores, memory, cache levels, 

bandwidth, power draw, etc.). 

Intel processors allow for energy to be measured using the running average power 

limit (RAPL) interface [20] and more recent processors utilize the Linux Power Capping 

Framework [2] to obtain measurements. Most important here is that each socket reports 

energy independently, and offers energy measured for the core, DRAM memory, and 

sometimes the package (to indirectly include uncore). 

In the author’s previous works [58–60] EMD has been applied to a power trace, 

consisting of total power (the sum of all power sources). In this section, an investigation of 

applying EMD to the various sources of energy is conducted; specifically, EMD is applied 

to power traces for the following measurement sources: total and per source totals for core, 

DRAM, and uncore. 

 

7.1.1 Power Traces 

The power traces presented in Figs. 42 and 43 show two problem sizes for the 

GAMESS chemistry application, namely 1L2Y and 20w, while varying the MPI thread 

affinity between bunch and scatter. The traces shown here have been collected on the 

Haswell system, Marquez, because Haswell and newer processors include DVFS for DRAM 

and the impact of thread affinity is more obvious. 
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GAMESS is different from the other applications shown in this dissertation (CoMD, 

and any NPB benchmark) because it has been designed to be task-parallel as opposed to 

the other applications which are data-parallel. Data parallel is very easy to implement; 

generally, one or more loops index one or more datasets and computations are performed 

on them. Task parallel is less specific, in that a “task” could represent any number of 

operations, such as computation (or a series of computations), writing to the hard disk (I/O), 

and communication. 

In GAMESS, an equal number of MPI processes are created to accomplish two 

types of tasks; one set for computations and communication, and the other set for I/O. The 

advantage of this application design is that data I/O can overlap computation, although the 

code is more complex to accommodate this optimization. And since half of the tasks perform 

very little work, again data I/O, over-subscribing cores is commonly used for this application. 

In the traces presented in Figs. 42 and 43, half of the total cores are dedicated to computation 

and the other half to data I/O. 

Notice in Figs. 42 and 43 that the DRAM power is flat on the second Socket for the 

Bunch affinity, and activity is observed for both Sockets for the Scatter affinity. Next, notice 

that core power is fairly constant throughout the execution on both sockets, no matter the 

affinity. This is interesting, since power traces on older generations of Xeon CPU’s show a 

lot of variability in the CPU power and constant power draw for DRAM. 

Consider Fig. 44 which shows GAMESS-1L2Y under the bunch and scatter 

affinities on Sandy-Bridge. What is most interesting for this architecture is that there is not a 

difference in power draw between sockets while varying affinity. Since uncore and DRAM 

power do not change throughout execution, all variability in the trace occurs on the core 
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power rail. It is unexpected that the bunch affinity would cause power draw to vary on both 

sockets. A similar study in [93] showed that the DVFS granularity is the cause for the 

power draw on both sockets. Note, this is also observed for configurations with fewer cores 

(8 used in the execution in Fig. 44). 

 

7.1.2 EMD on Socket Traces 

When EMD is applied to power traces, it provides a wealth of information yet to 

be completely explored. A question may be raised; what are the differences when EMD is 

applied to the total power versus the individual traces? To answer this question, the IMF’s 

for the total power of all nodes, of each node, and of each source are considered. The 

method has been extended to per-source and per-socket analysis, but that is not shown here 

for the sake of exposition. 

 

7.1.2.1 Per Source Traces 

Consider the IMF’s generated for the traces in Fig. 42 which are presented in Figs. 

45 to 48. Here, the total power trace is compared against the core and DRAM power traces 

(sum of both sockets). And for the sake of exposition, only the 1L2Y problem size is 

discussed since there is more variation in power as a function of execution time. 

To maximize the visibility of the data, IMF’s have been separated into two groups for each 

trace; Figs. 45 and 46 present the IMF’s for the bunch affinity and Figs. 47 and 48 for the 

scatter affinity. Total power is shown in black, core power is shown in light gray, and 

DRAM power is shown as dark gray; for reference, the original power traces are presented 

in Figs. 45 and 47, respectively. 
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(a) Marquez - GAMESS - 1L2Y - 4 cores – Bunch 

 

 

 
(b) Marquez - GAMESS - 1L2Y - 4 cores - Scatter 

 
Fig. 42. Power traces of GAMESS-1L2Y collected on Haswell showing total vs. per socket, 

per source traces while varying MPI thread affinity. For each plot (a & b), there are three 

subplots: top shows total power, middle and bottom shows socket 1 & 2 power respectively 

where core power is shown in black, and DRAM power in gray. 
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(a) Marquez - GAMESS - 20w - 8 cores – Bunch 

 

 

 
(b) Marquez - GAMESS - 20w - 8 cores - Scatter 

 
Fig. 43. Power traces of GAMESS-20w collected on Haswell showing total vs. per socket, 

per source traces while varying MPI thread affinity. For each plot (a & b), there are three 

subplots: top shows total power, middle and bottom shows socket 1 & 2 power respectively 

where core power is shown in black, and DRAM power in gray. 
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(a) Borges - GAMESS - 1L2Y - 8 cores – Bunch 

 

 

 
(b) Borges - GAMESS - 1L2Y - 8 cores - Scatter 

 
Fig. 44. Power traces of GAMESS-1L2Y collected on Sandy-Bridge showing total vs. per 

socket, per source traces while varying MPI thread affinity. For each plot (a & b), there are 

three subplots: top shows total power, middle and bottom shows socket 1 & 2 power 

respectively where core power is shown in black, DRAM power in dark gray, and uncore 

in light gray. 
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Fig. 45. Power trace and the first half of the IMF’s for GAMESS-1L2Y collected on Haswell 

with the bunch affinity. In each plot, total power (black) is shown with core (light gray) and 

DRAM (gray) power traces (the total of both sockets).
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Fig. 46. Residual and the second half of the IMF’s for GAMESS-1L2Y collected on Haswell 

with the bunch affinity. In each plot, total power (black) is shown with core (light gray) and 

DRAM (gray) power traces (the total of both sockets).
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Fig. 47. Power trace and the first half of the IMF’s for GAMESS-1L2Y collected on Haswell 

with the scatter affinity. In each plot, total power (black) is shown with core (light gray) and 

DRAM (gray) power traces (the total of both sockets). 
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Fig. 48. Residual and the second half of the IMF’s for GAMESS-1L2Y collected on Haswell 

with the scatter affinity. In each plot, total power (black) is shown with core (light gray) and 

DRAM (gray) power traces (the total of both sockets). 
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Fig. 49. IMF reconstruction (first half) for GAMESS-1L2Y collected on Haswell with the 

bunch affinity. In each plot, total power (black) is shown with core (light gray) and DRAM 

(gray) power traces (the total of both sockets). 



145 
 

 

 

 
 
Fig. 50. IMF reconstruction (second half) for GAMESS-1L2Y collected on Haswell with 

the bunch affinity. In each plot, total power (black) is shown with core (light gray) and 

DRAM (gray) power traces (the total of both sockets). 
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Fig. 51. IMF reconstruction (first half) for GAMESS-1L2Y collected on Haswell with the 

scatter affinity. In each plot, total power (black) is shown with core (light gray) and DRAM 

(gray) power traces (the total of both sockets). 
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Fig. 52. IMF reconstruction (second half) for GAMESS-1L2Y collected on Haswell with 

the scatter affinity. In each plot, total power (black) is shown with core (light gray) and 

DRAM (gray) power traces (the total of both sockets). 
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The IMF’s show that the scatter affinity is encountering power fluctuations more 

often than the bunch affinity. This may be observed in the original power traces, where the 

scatter affinity has many spikes in power just as the DRAM power is ramping up; this 

occurs during every period where DRAM power is high, although this does not occur under 

the bunch affinity, thus it may be caused by communication between each socket. In the 

IMF’s, modes 1 and 2 for the scatter affinity have many more peaks which coincide with 

the peaks observed in the original trace. Far fewer peaks may be observed in the bunch 

affinity. In fact, most of the IMF’s for the scatter affinity are larger (high amplitude) than 

those for bunch. 

Considering it was shown that DRAM power was indeed coming from only one 

socket with the bunch affinity, it may be concluded that the scatter affinity is encountering 

additional conflicts as a result of synchronization between sockets. However, it may also 

be concluded that this performance loss is negligible, since the time-to-solution is 

equivalent when using bunch or scatter affinity. 

It is also of interest to note here that the number of modes for each source trace was 

the same. For all IMF’s explored in this dissertation, that is, for CoMD, GAMESS, and 

NPB across several platforms – Borges, Turing, Bolt, Marquez, KNC, and KNL – the 

number of modes for each respective source of power for the trace: core, DRAM, and 

uncore are always the same. However, different configurations (such as varying the number 

of cores, and clock-rate) can result in a different number of modes, although this may be a 

factor of time-to-solution since EMD is dependent on the total number of samples (which 

is dependent on time for a constant sampling rate, as used in this work). 
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7.1.2.2 Trace Reconstruction 

The EMD analysis procedure refines a time-series into a collection of IMF’s; the 

sum of these IMF’s is the original time-series to the precision of the floating-point 

computations, although this error is negligible as discussed in [40]. Each IMF may be 

considered as the difference in amplitude from the mean trend (a.k.a. the residual) for 

processes occurring on the time-scale of the IMF. The time-scale is the difference in time 

between inflection points in the IMF, see [40]. 

The idea of accumulating IMF’s is of interest since the sum of several IMF’s may 

be more meaningful than an individual IMF. Consider Figs. 49 to 52 the reconstruction of 

the IMF’s for GAMESS 1L2Y under the bunch and scatter affinities; total, core, and 

DRAM power are shown similar to Figs. 45 and 47. As shown here, the core and DRAM 

IMF’s reconstruct into each respective trace, and the sum of the reconstructed traces, 

whether as the sum of the IMF’s for total power or the sum of the IMF’s for core and 

DRAM power (or even per socket-source), the resulting time-series matches the original. 

Thus, applying EMD to the individual source traces (and then adding the respective IMF’s) 

results in the same IMF’s as if decomposing the total power trace. Of course, decomposing 

the total power trace cannot distinguish between core and DRAM power, although the net 

sum of each will be represented in the resulting IMF’s for total power, as shown in the 

prior section. 

 

7.2 Multinode Analysis 

As shown in the previous section, EMD may be successfully applied to individual 

traces representing the same physical process. In this section, the same analysis is 
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performed for executions with multiple nodes. The difference between multisocket and 

multinode executions is subtle; both include multiple devices working in unison to 

accomplish a task, however, the multisocket measurements are collected from the same 

timer and the multinode measurements are collected from different timers, one for each 

node. Since the multisocket traces were all the same length and sampled at the same time, 

those traces were easier to analyze. The multinode traces are not the same length, thus they 

will need to be aligned such that the traces may be summed to create the total power trace 

of the execution. 

 

7.2.1 Power Traces 

Figures 53 and 54 presents the four traces measured for the execution of  

GAMESS - 1L2Y on four nodes of the Turing cluster (20 cores per node); Figs. 55 and 56 

shows the four traces for GAMESS-20w. From the view given in these plots, it would 

appear that each trace is already aligned; however, as will be shown next, slight 

adjustments are necessary. 

 

7.2.2 Trace Synchronization 

To synchronize the traces, a delay was introduced to the power trace on each node 

except the first, i.e. the shorter traces. Figure 57 presents the power traces for GAMESS on 

Turing using 4 nodes for the 1L2Y and 20w problems. Each plot (in a & b) shows the 

alignment of each respective node: the top plot shows Node 2 vs Node 1, middle shows 

Node 3 vs Node 1, and the last shows Node 4 vs Node 1. 

To align the traces, cross-correlation was attempted.  The use of cross-correlation  
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(a) Turing - GAMESS - 1L2Y - Scatter - Node 1 

 

(b) Turing - GAMESS - 1L2Y - Scatter - Node 2 

Fig. 53. Power traces of GAMESS-1L2Y collected on 4 Ivy-Bridge nodes showing total 

vs. per socket, per source traces while varying MPI thread affinity. For each plot (a & b), 

there are three subplots: top shows total power, middle and bottom shows socket 1 & 2 

power respectively where core power is shown in gray, DRAM power in light gray, and 

uncore in black. 
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(a) Turing - GAMESS - 1L2Y - Scatter - Node 3 

 

(b) Turing - GAMESS - 1L2Y - Scatter - Node 4 

Fig. 54. Power traces of GAMESS-1L2Y collected on 4 Ivy-Bridge nodes showing total 

vs. per socket, per source traces while varying MPI thread affinity. For each plot (a & b), 

there are three subplots: top shows total power, middle and bottom shows socket 1 & 2 

power respectively where core power is shown in black, and DRAM power in gray. 
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(a) Turing - GAMESS - 20w - Scatter - Node 1 

 

(b) Turing - GAMESS - 20w - Scatter - Node 2 

Fig. 55. Power traces of GAMESS-20w collected on 4 Ivy-Bridge nodes showing total vs. 

per socket, per source traces while varying MPI thread affinity. For each plot (a & b), there 

are three subplots: top shows total power, middle and bottom shows socket 1 & 2 power 

respectively where core power is shown in gray, DRAM power in light gray, and uncore 

in black. 
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(a) Turing - GAMESS - 20w - Scatter - Node 3 

 

(b) Turing - GAMESS - 20w - Scatter - Node 4 

Fig. 56. Power traces of GAMESS-20w collected on 4 Ivy-Bridge nodes showing total vs. 

per socket, per source traces while varying MPI thread affinity. For each plot (a & b), there 

are three subplots: top shows total power, middle and bottom shows socket 1 & 2 power 

respectively where core power is shown in black, and DRAM power in gray. 
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(a) Turing - GAMESS - 1L2Y 

 

(b) Turing - GAMESS - 20w 

Fig. 57. Power traces of GAMESS, 1L2Y and 20w, collected on Ivy-Bridge on 4 nodes. 

Each plot shows node power (2, 3, or 4) in black compared to the power on the first node 

in gray. Traces have been manually aligned. 
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(a) Total Power – Turing - GAMESS - 1L2Y 

 

(b) Total Power – Turing - GAMESS - 20w 

Fig. 58. Total power traces for GAMESS, 1L2Y and 20w, collected on 4 Ivy-Bridge nodes 

after alignment and cropping. Total power is shown in black, core in gray, DRAM in light 

gray, and uncore in dark gray. 
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Fig. 59. (Node 1) Power trace and the first half of the IMF’s for GAMESS-1L2Y collected 

on 4 Ivy-Bridge nodes. In each plot, total power (black) is shown with core (light gray), 

DRAM (gray), and uncore (dark gray) power traces. 
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Fig. 60. (Node 1) Residual and the second half of the IMF’s for GAMESS-1L2Y collected 

on 4 Ivy-Bridge nodes. In each plot, total power (black) is shown with core (light gray), 

DRAM (gray), and uncore (dark gray) power traces. 
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Fig. 61. (Node 2) Power trace and the first half of the IMF’s for GAMESS-1L2Y collected 

on 4 Ivy-Bridge nodes. In each plot, total power (black) is shown with core (light gray), 

DRAM (gray), and uncore (dark gray) power traces. 
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Fig. 62. (Node 2) Residual and the second half of the IMF’s for GAMESS-1L2Y collected 

on 4 Ivy-Bridge nodes. In each plot, total power (black) is shown with core (light gray), 

DRAM (gray), and uncore (dark gray) power traces. 
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Fig. 63. (Node 3) Power trace and the first half of the IMF’s for GAMESS-1L2Y collected 

on 4 Ivy-Bridge nodes. In each plot, total power (black) is shown with core (light gray), 

DRAM (gray), and uncore (dark gray) power traces. 
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Fig. 64. (Node 3) Residual and the second half of the IMF’s for GAMESS-1L2Y collected 

on 4 Ivy-Bridge nodes. In each plot, total power (black) is shown with core (light gray), 

DRAM (gray), and uncore (dark gray) power traces. 
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Fig. 65. (Node 4) Power trace and the first half of the IMF’s for GAMESS-1L2Y collected 

on 4 Ivy-Bridge nodes. In each plot, total power (black) is shown with core (light gray), 

DRAM (gray), and uncore (dark gray) power traces. 
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Fig. 66. (Node 4) Residual and the second half of the IMF’s for GAMESS-1L2Y collected 

on 4 Ivy-Bridge nodes. In each plot, total power (black) is shown with core (light gray), 

DRAM (gray), and uncore (dark gray) power traces. 
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Fig. 67. (Total) Power trace and the first half of the IMF’s for GAMESS-1L2Y collected 

on 4 Ivy-Bridge nodes. In each plot, total power (black) is shown with core (light gray), 

DRAM (gray), and uncore (dark gray) power traces. 
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Fig. 68. (Total) Residual and the second half of the IMF’s for GAMESS-1L2Y collected 

on 4 Ivy-Bridge nodes. In each plot, total power (black) is shown with core (light gray), 

DRAM (gray), and uncore (dark gray) power traces. 

 
 
 
to synchronize signals is suggested in Matlab [73]. However, power traces have been found 

to be difficult to properly align using this method because large spurious correlations occur 

frequently. Cross-correlation would have provided a method for automating the 

synchronization process. Instead, the alignment delay was found by increasing the delay 

until a feature, e.g. a rapid increase in power draw, is aligned for the two traces; this was 

performed by hand. For 1L2Y in Fig. 57, the synchronization feature is just past 14 seconds, 
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and for 20w, the feature is between 7 and 7.5 seconds. 

Once the traces have been synchronized, they may be cropped to ensure each trace 

has the same number of samples. Then the traces for each node may be accumulated to 

create the total execution power trace, shown in Fig. 58. With the traces prepared, EMD may 

now be applied. 

 

7.2.3 EMD on Multinode Traces 

Figures 59 and 60 present the IMF’s calculated after EMD was applied to the total, 

core, DRAM, and uncore power traces for node one. Figures 61 and 62 present the IMF’s 

calculated after EMD was applied to the power traces for node two. Figures 63 and 64 present 

the IMF’s calculated after EMD was applied to the power traces for node three. Figures 65 

and 66 present the IMF’s calculated after EMD was applied to the power traces for node 

four. Figures 67 and 68 present the IMF’s calculated after EMD was applied to the total, 

core, DRAM, and uncore power traces for the total power summed for all four nodes. 

By separating the power trace into sources, the role of each component with respect 

to the IMF’s becomes clearer, although interpreting the meaning of each IMF remains 

unclear. Take note that the total power trace (Figs. 67 and 68) closely resembles the traces 

for each of the four nodes, so discussions of individual modes will pertain to this set of IMFs’ 

although the same features may be found in the IMF’s for each node as well. 

There are two features for the 1L2Y problem size that makes GAMESS a particularly 

interesting application to investigate.   The first can be found between 6 to 12 seconds in 

Figs. 67 and 68, where there are sharp ridges that have formed. This feature is clearly 

visible in the core power trace. The second feature occurs many times throughout execution 
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and is first observed near 20 seconds (2nd tick mark along x-axis) and may be described 

as humps. This feature is clearly visible in the uncore power trace. 

Consider the ridges; the IMF’s for this feature have manifested in all of the modes, 

but are most striking in modes 3, 4, and 5. What is most interesting about this feature is 

that it shows a portion of execution with a very high flop-per-byte ratio. Compare the core 

to the DRAM and uncore power traces. There are few large latencies incurred, indicated 

by the fact that DRAM and uncore power remain low, yet the core power throttles to form 

the ridges. 

Now consider the humps. In modes 3 and 4, groups of high amplitude oscillations 

are visible for the duration of the hump in uncore power; further, the uncore IMF’s in these 

modes show consistent oscillations (although the amplitude is small compared to core). In 

modes 7 and 8, the oscillations for uncore are more pronounced (and correlate well with 

the IMF’s for total power). Depending on the operations occurring during these periods, 

these modes may be useful for a forecasting model which could be used to predict/detect 

when to apply DVFS during execution for minimal impact; since uncore power is increasing 

dramatically, it is expected that a significant amount of data movement is involved, and 

DVFS is most beneficial during periods of high data movement. 

 

7.3 Concluding Remarks  

 In this chapter, an in-depth view of EMD on power traces has been performed. Total 

power was compared to the parts that compose it: core, DRAM, and uncore power. For the 

individual sockets, EMD can be applied to the traces at any level (per socket & source, per 

socket, per source, or total). Of course, EMD on the total trace cannot distinguish between 
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core and DRAM power draws, however, whether EMD is applied to the traces (e.g. core, 

DRAM, uncore) and then summed or the traces are summed and then EMD is applied, the 

172 resulting IMF’s will be the same and these IMF’s can be used to reconstruct the original 

trace. If a forecasting model were applied to one or more IMF’s, it could be used for 

predicting core, DRAM, and uncore power consumption during the execution. This could 

then be used to aid a DVFS strategy, or predict the overall energy consumption of the 

execution. The need to predict energy may be required by future Exascale HPC systems 

adopt user-specified energy budgets to run large-scale applications.   
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CHAPTER 8 

CONCLUSIONS 

This dissertation has investigated power and energy consumption on a number of 

hardware platforms, parallel applications, and for a number of execution characteristics. 

Homogeneous and heterogeneous platforms have been considered, as well as multicore and 

manycore devices. 

 

8.1 Summary 

Power capping and energy saving techniques using DVFS on CPU and Xeon Phi 

accelerators have been explored. The findings in this work agree with the literature, in  that 

DVFS is beneficial for applications that are not bounded by floating-point performance and 

may be used sparingly otherwise to reduce the energy consumption of the execution. 

However, DVFS is fickle and often introduces performance bottlenecks; these may be due 

to state switching or the reduced clock-rate, and often is not worth the performance loss. 

Thus, a better strategy is to implement energy capping where applications must abide by 

an energy cap, but may use any amount of power in between. However, given an energy 

cap, optimization will be more important as to not waste energy and a system will need a 

metric to weigh the general energy efficiency of an application. 

This dissertation investigated available power and performance models and applied 

them to benchmarks and real-world parallel applications for heterogeneous and 

homogeneous multicore and manycore computing platforms to predict energy 

consumption. A model was proposed which described an execution by the phases, either 

computation or data movement, for heterogeneous and homogeneous platforms. Although 



171 
 

 

the model was able to capture the trends of the executions considered, measurement was 

not easily extendable to large-scale applications; particularly cases where code has been 

optimized for different architectures and must be inserted within each optimized version, 

thereby introducing performance bottlenecks. It was clear a less intrusive method was 

needed. 

The Empirical Mode Decomposition and Hilbert-Huang Transform analysis 

technique has been applied in innovative ways to model, analyze, and visualize power and 

energy measurements. The approach has been used to visualize power traces using the 

relation of energy, frequency, and time. The technique has been used to identify overlap 

between computation and communication and quantify contributions of each for a specific 

application-platform combination. The approach has also been used to analyze segmented 

power measurements, and model the general trend of an execution. Further, it is shown in 

this work that the EMD method may be applied to the total power (sum of individual power 

sources), or the individual power traces (core, DRAM, uncore for each socket/device) so 

long as they come from the same execution (e.g. multiple sockets, nodes). 

Probability distributions were introduced in this work to represent power and energy 

traces, thereby providing an alternative means of modeling power and energy consumption. 

The distribution models retain the fact that power is not constant over time, and also retains 

the fact that average power is an excellent approximation for most workloads and systems. 

Further, these distributions may be used to define the explicit costs of a workload for a given 

computing platform. 
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8.2 Findings 

The findings of this work are as follows: 

 Static power draw is the leading cause of all power/energy consumption in HPC – this 

includes power consumed independent of the number of cores, such as the power 

needed for memory and underlying components, such as data buses 

 Improving measurement of these components will be needed in future systems 

(some chips only provide core and DRAM power traces and neglect uncore, for 

example) 

 Future hardware will need to be more adaptive in how power is consumed for 

optimal energy-efficiency; minimizing the power consumption for idle hardware is 

the best way to improve efficiency 

 Future software will need to be more parallel to better utilize the hardware; this 

includes lowering the memory-footprint required per core 

 DVFS is an effective power capping tool, however, has significant potential to impede 

performance if used incorrectly 

 An example of “correct” usage is as follows: apply DVFS during data transfer 

phases of execution, such as transfers between devices or communication between 

nodes, although the challenge remains to “detect” these phases in real-time 

 An example of “incorrect” usage is to blindly apply DVFS to the entire execution; 

performance loss will be higher than 10% (the maximum accepted loss in this area 

of research) 

 EMD provides a wealth of data by decomposing the power/energy trace into a series of 

intrinsic mode functions, or oscillations, where each new series spans an interval of time 
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(from 2× the sampling rate (lowest mode) up to the total time elapsed (residual)) 

 This is the first time that EMD has been applied to power/energy traces 

 More analysis is needed to uncover the explicit meaning of these IMF’s for the 

purposes of phase detection and in the interest of power and energy capping 

 Cross-correlation is a good first step to this further analysis, but these traces will 

also need to be processed by other time-series analysis techniques as well, such as 

discrete wavelet analysis and the Fourier decomposition method. 

 Power and energy traces (the time-series) can be represented using multi-modal Normal 

distributions 

 Distributions be used to predict energy and compare application usage across 

platforms, or the typical energy consumption of a hardware platform for a wealth of 

applications 

 This representation of power/time traces is novel 

 

8.3 Future Work 

There is much to be done in the future along this line of research. The EMD/HHT 

method decomposes a time-series into intrinsic mode functions, but the interpretation of 

these modes is not straightforward. For this reason, the residual was primarily investigated 

and modeled; however, a wealth of information is still hidden in these modes. The Energy-

Frequency-Time plots can be used to show when performance-bottlenecks have been 

encountered due to the relative energy consumption. 

Further analysis into the combination of IMF modes is needed. As shown in the 

EMD reconstruction, the sum of even a few modes brings shape to the trace by removing 
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noise (including other IMF modes considered “noise” based on the time-scale(s) of interest). 

As proven in other research efforts (such as sea level rise analysis), analysis of combinations 

of IMF’s proves to be more effective than individual modes. This would be the best next step 

toward understanding power and energy using EMD/HHT analysis.  
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