2,911 research outputs found

    Representing decision-makers using styles of behavior: an approach designed for group decision support systems

    Get PDF
    Supporting decision-making processes when the elements of a group are geographically dispersed and on a tight schedule is a complex task. Aiming to support decision-makers anytime and anywhere, Web-based group decision support systems have been studied. However, the limitations in the decision-makers’ interactions associated to this scenario bring new challenges. In this work, we propose a set of behavioral styles from which decision-makers’ intentions can be modelled into agents. The goal is that, besides having agents represent typical preferences of the decision-makers (towards alternatives and criteria), they can also represent their intentions. To do so, we conducted a survey with 64 participants in order to find homogeneous operating values so as to numerically define the proposed behavioral styles in four dimensions. In addition, we also propose a communication model that simulates the dialogues made by decision-makers in face-to-face meetings. We developed a prototype to simulate decision scenarios and found that agents are capable of acting according to the decision-makers’ intentions and fundamentally benefit from different possible behavioral styles, just as a face-to-face meeting benefits from the heterogeneity of its participants.This work was supported by COMPETE Programme (operational programme for competitiveness) within Project POCI-01-0145-FEDER-007043, by National Funds through the FCT – Fundação para a CiĂȘncia e a Tecnologia (Portuguese Foundation for Science and Technology) within the Projects UID/CEC/00319/2013, UID/EEA/00760/2013, and the Ph.D. grants SFRH/BD/89697/2012 and SFRH/BD/89465/2012 attributed to JoĂŁo Carneiro and Pedro Saraiva, respectively.info:eu-repo/semantics/publishedVersio

    Training of Crisis Mappers and Map Production from Multi-sensor Data: Vernazza Case Study (Cinque Terre National Park, Italy)

    Get PDF
    This aim of paper is to presents the development of a multidisciplinary project carried out by the cooperation between Politecnico di Torino and ITHACA (Information Technology for Humanitarian Assistance, Cooperation and Action). The goal of the project was the training in geospatial data acquiring and processing for students attending Architecture and Engineering Courses, in order to start up a team of "volunteer mappers". Indeed, the project is aimed to document the environmental and built heritage subject to disaster; the purpose is to improve the capabilities of the actors involved in the activities connected in geospatial data collection, integration and sharing. The proposed area for testing the training activities is the Cinque Terre National Park, registered in the World Heritage List since 1997. The area was affected by flood on the 25th of October 2011. According to other international experiences, the group is expected to be active after emergencies in order to upgrade maps, using data acquired by typical geomatic methods and techniques such as terrestrial and aerial Lidar, close-range and aerial photogrammetry, topographic and GNSS instruments etc.; or by non conventional systems and instruments such us UAV, mobile mapping etc. The ultimate goal is to implement a WebGIS platform to share all the data collected with local authorities and the Civil Protectio

    Software Agent Finds Its Way in the Changing Environment

    Get PDF

    Recent Developments in Video Surveillance

    Get PDF
    With surveillance cameras installed everywhere and continuously streaming thousands of hours of video, how can that huge amount of data be analyzed or even be useful? Is it possible to search those countless hours of videos for subjects or events of interest? Shouldn’t the presence of a car stopped at a railroad crossing trigger an alarm system to prevent a potential accident? In the chapters selected for this book, experts in video surveillance provide answers to these questions and other interesting problems, skillfully blending research experience with practical real life applications. Academic researchers will find a reliable compilation of relevant literature in addition to pointers to current advances in the field. Industry practitioners will find useful hints about state-of-the-art applications. The book also provides directions for open problems where further advances can be pursued

    Operator Objective Function Guidance for a Real-time Unmanned Vehicle Scheduling Algorithm

    Get PDF
    Advances in autonomy have made it possible to invert the typical operator-to-unmanned-vehicle ratio so that asingle operator can now control multiple heterogeneous unmanned vehicles. Algorithms used in unmanned-vehicle path planning and task allocation typically have an objective function that only takes into account variables initially identified by designers with set weightings. This can make the algorithm seemingly opaque to an operator and brittle under changing mission priorities. To address these issues, it is proposed that allowing operators to dynamically modify objective function weightings of an automated planner during a mission can have performance benefits. A multiple-unmanned-vehicle simulation test bed was modified so that operators could either choose one variable or choose any combination of equally weighted variables for the automated planner to use in evaluating mission plans. Results from a human-participant experiment showed that operators rated their performance and confidence highest when using the dynamic objective function with multiple objectives. Allowing operators to adjust multiple objectives resulted in enhanced situational awareness, increased spare mental capacity, fewer interventions to modify the objective function, and no significant differences in mission performance. Adding this form of flexibility and transparency to automation in future unmanned vehicle systems could improve performance, engender operator trust, and reduce errors.Aurora Flight Sciences, U.S. Office of Naval Researc

    Context-based Information Fusion: A survey and discussion

    Get PDF
    This survey aims to provide a comprehensive status of recent and current research on context-based Information Fusion (IF) systems, tracing back the roots of the original thinking behind the development of the concept of \u201ccontext\u201d. It shows how its fortune in the distributed computing world eventually permeated in the world of IF, discussing the current strategies and techniques, and hinting possible future trends. IF processes can represent context at different levels (structural and physical constraints of the scenario, a priori known operational rules between entities and environment, dynamic relationships modelled to interpret the system output, etc.). In addition to the survey, several novel context exploitation dynamics and architectural aspects peculiar to the fusion domain are presented and discussed

    Enabling Artificial Intelligence Analytics on The Edge

    Get PDF
    This thesis introduces a novel distributed model for handling in real-time, edge-based video analytics. The novelty of the model relies on decoupling and distributing the services into several decomposed functions, creating virtual function chains (V F C model). The model considers both computational and communication constraints. Theoretical, simulation and experimental results have shown that the V F C model can enable the support of heavy-load services to an edge environment while improving the footprint of the service compared to state-of-the art frameworks. In detail, results on the V F C model have shown that it can reduce the total edge cost, compared with a monolithic and a simple frame distribution models. For experimenting on a real-case scenario, a testbed edge environment has been developed, where the aforementioned models, as well as a general distribution framework (Apache Spark ©), have been deployed. A cloud service has also been considered. Experiments have shown that V F C can outperform all alternative approaches, by reducing operational cost and improving the QoS. Finally, a migration model, a caching model and a QoS monitoring service based on Long-Term-Short-Term models are introduced

    Learning probabilistic interaction models

    Get PDF
    We live in a multi-modal world; therefore it comes as no surprise that the human brain is tailored for the integration of multi-sensory input. Inspired by the human brain, the multi-sensory data is used in Artificial Intelligence (AI) for teaching different concepts to computers. Autonomous Agents (AAs) are AI systems that sense and act autonomously in complex dynamic environments. Such agents can build up Self-Awareness (SA) by describing their experiences through multi-sensorial information with appropriate models and correlating them incrementally with the currently perceived situation to continuously expand their knowledge. This thesis proposes methods to learn such awareness models for AAs. These models include SA and situational awareness models in order to perceive and understand itself (self variables) and its surrounding environment (external variables) at the same time. An agent is considered self-aware when it can dynamically observe and understand itself and its surrounding through different proprioceptive and exteroceptive sensors which facilitate learning and maintaining a contextual representation by processing the observed multi-sensorial data. We proposed a probabilistic framework for generative and descriptive dynamic models that can lead to a computationally efficient SA system. In general, generative models facilitate the prediction of future states while descriptive models enable to select the representation that best fits the current observation. The proposed framework employs a Probabilistic Graphical Models (PGMs) such as Dynamic Bayesian Networks (DBNs) that represent a set of variables and their conditional dependencies. Once we obtain this probabilistic representation, the latter allows the agent to model interactions between itself, as observed through proprioceptive sensors, and the environment, as observed through exteroceptive sensors. In order to develop an awareness system, not only an agent needs to recognize the normal states and perform predictions accordingly, but also it is necessary to detect the abnormal states with respect to its previously learned knowledge. Therefore, there is a need to measure anomalies or irregularities in an observed situation. In this case, the agent should be aware that an abnormality (i.e., a non-stationary condition) never experienced before, is currently present. Due to our specific way of representation, which makes it possible to model multi-sensorial data into a uniform interaction model, the proposed work not only improves predictions of future events but also can be potentially used to effectuate a transfer learning process where information related to the learned model can be moved and interpreted by another body

    Intelligent building systems: Security and facility professionals’ understanding of system threats,vulnerabilities and mitigation practice

    Get PDF
    Intelligent Buildings or Building Automation and Control Systems (BACS) are becoming common in buildings, driven by the commercial need for functionality, sharing of information, reduced costs and sustainable buildings. The facility manager often has BACS responsibility; however, their focus is generally not on BACS security. Nevertheless, if a BACS-manifested threat is realised, the impact to a building can be significant, through denial, loss or manipulation of the building and its services, resulting in loss of information or occupancy. Therefore, this study garnered a descriptive understanding of security and facility professionals’ knowledge of BACS, including vulnerabilities and mitigation practices. Results indicate that the majority of security and facility professionals hold a general awareness of BACS security issues, although they lacked a robust understanding to meet necessary protection. For instance, understanding of 23 BACS vulnerabilities were found to be equally critical with limited variance. Mitigation strategies were no better, with respondents indicating poor threat diagnosis. In contrast, cybersecurity and technical security professionals such as integrators or security engineering design professionals displayed a robust understanding of BACS vulnerabilities and resulting mitigation strategies. Findings support the need for greater awareness for both security management and facility professionals of BACS vulnerabilities and mitigation strategies
    • 

    corecore