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Abstract 

Supporting decision-making processes when the elements of a group are geographically 

dispersed and on a tight schedule is a complex task. Aiming to support decision-makers anytime 

and anywhere, Web-based Group Decision Support Systems have been studied. However, the 

limitations in the decision-makers’ interactions associated to this scenario bring new challenges. 

In this work, we propose a set of behavioral styles from which decision-makers’ intentions can 

be modelled into agents. The goal is that, besides having agents represent typical preferences of 

the decision-makers (towards alternatives and criteria), they can also represent their intentions. 

To do so, we conducted a survey with 64 participants in order to find homogeneous operating 

values so as to numerically define the proposed behavioral styles in four dimensions. In 

addition, we also propose a communication model that simulates the dialogues made by 

decision-makers in face-to-face meetings. We developed a prototype to simulate decision 

scenarios and found that agents are capable of acting according to the decision-makers’ 

intentions and fundamentally benefit from different possible behavioral styles, just as a face-to-

face meeting benefits from the heterogeneity of its participants. 
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1. Introduction 

It is a given that in organizations most decisions are group decisions (Lunenburg, 2011). There 

are 2 main reasons: on the one hand, most of the current organizations organigrams involve 

several decision-makers (Luthans, 2010), both at the strategic (Eisenhardt & Zbaracki, 1992) 

and at the technical level (Montoya-Weiss, Massey, & Song, 2001), and on the other hand, 

deciding as a group can potentiate the decision quality (Dennis, 1996; Hill, 1982; Huber, 1984). 
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Group Decision Support Systems (GDSS) have been widely studied throughout the last decades 

(DeSanctis & Gallupe, 1984, 1987; Gray, 1987; Marakas, 2003) to support this type of 

decisions. However, in the last ten/twenty years, we have seen a remarkable change in the 

context where the decision-making process happens, particularly in large organizations (Chen, 

Liou, Wang, Fan, & Chi, 2007; Grudin, 2002). With the emergence of global markets, the 

growth of multinational organizations and a globalist view of the planet, we can easily have 

decision-makers (chief executive officers, managers and other members of global virtual teams) 

spreading around the world, across countries with different time zones (Shum, Cannavacciuolo, 

De Liddo, Iandoli, & Quinto, 2013). Moreover, to support the group decision-making process in 

this context is particularly complex, due to the decision-makers being geographically dispersed. 

This can lead to additional problems: failure to communicate and retain contextual information, 

unevenly distributed information, difficulty to communicate and to understand the salience of 

information, differences in the speed of access to information, and difficulty to interpret the 

meaning of silence (Bjørn, Esbensen, Jensen, & Matthiesen, 2014); and to deal with temporal 

issues, which can originate: ambiguity, conflicting temporal interests and requirements, and 

scarcity of temporal resources (McGrath, 1991). To provide an answer and operate correctly in 

this type of scenarios, the traditional GDSS have evolved to what we identify today as Web-

based GDSS (Alonso, Herrera-Viedma, Chiclana, & Herrera, 2010; Kwon, Yoo, & Suh, 2005; 

Marreiros, Santos, Ramos, & Neves, 2010). The idea behind the Web-based GDSS is to support 

the decision-making process “anytime” and “anywhere” (Santos, Marreiros, Ramos, Neves, & 

Bulas-Cruz, 2006; Shim et al., 2002), and to help deal with some of the referred problems. Two 

main approaches have been implemented in GDSS to help with group decision-making 

processes. The classical approaches, based on preferences’ aggregation, and the consensus-

based approaches. The former consists in an aggregation phase, that combines the experts’ 

preferences, followed by the selection of one alternative (Herrera, Martınez, & Sánchez, 2005; 

Saaty, 1988). The latter extends the former through an iterative process in order to achieve 

consensus (Fedrizzi & Kacprzyk, 1988; Iván Palomares & Martínez, 2014b). 

When developing a Web-based GDSS it is necessary to be aware of the benefits inherent to 

group decision-making. A typical face-to-face meeting allows the decision-makers’ interaction, 

exchange of ideas, work on new knowledge and intelligence generation (Dennis, 1996; Hill, 

1982; Huber, 1984). In an ideal scenario, we can achieve some of these benefits using automatic 

negotiation models (for instance: argumentation-based negotiation models). However, there is 

much more besides the “messages” exchanged by decision-makers. It is necessary to work in 

the representation of those decision-makers. The representation can range from criteria’s 

evaluation (for instance in a multi-criteria problem (Carneiro, Martinho, Marreiros, & Novais, 

2015)) to a complete representation of the individual (personality, emotions, mood, etc. 

(Gmytrasiewicz & Lisetti, 2002; Raja & Srivatsa, 2006; Santos, Marreiros, Ramos, Neves, & 

Bulas-Cruz, 2009b)). The face-to-face meetings benefit from the decision-makers’ 

heterogeneity (Hambrick, Cho, & Chen, 1996). This heterogeneity is related with the decision-

makers’ temperament but also with the decision-makers’ intentions. Let us consider a scenario 

in which a medical team intends to choose a particular course of treatment for a patient whose 

condition calls for different areas of expertise. As in any other multi-criteria problem, each of 

the specialists, depending on their own background could have their own preferences over a 

number of possible alternatives, considering for instance, the order/timing of certain required 

interventions. However, each team member’s opinion may be subject to a different appreciation, 

being judged for instance in terms of importance, rank, expert level or even based on implicit 

rules regarding their overall credibility. It is also conceivable that in some authoritative contexts 

the opinions of the highest graduated specialist may be taken as the rule of law, limiting any 

further suggestions once they are stated. 



To model agents with human-like aspects is not new. At the start of the new millennium, some 

projects dealing with agents’ humanization began to appear (André, Klesen, Gebhard, Allen, & 

Rist, 2000). Nowadays, there are many proposals that intend to model human characteristics in 

agents, such as: personality (Dimuro, da Rocha Costa, Gonçalves, & Hübner, 2007; Padgham & 

Taylor, 1997), emotions (Ball & Breese, 2000; Gmytrasiewicz & Lisetti, 2002), cognitive styles 

(Frank, Bittner, & Raubal, 2001), etc. There are also some few proposals under the topic of 

GDSS (Ivan Palomares, Martinez, & Herrera, 2014; Iván Palomares, Rodríguez, & Martínez, 

2013; Recio-García, Quijano, & Díaz-Agudo, 2013; Santos et al., 2009b). All of them share the 

idea that the inclusion of cognitive/affective aspects helps in some way the decision-making 

process. However, (to the best of our knowledge) most of them are oriented to be used in 

simulated environments. The usage of such techniques in real systems can bring some 

disadvantages. “A real me” can be a bad approach if my persona is less 

persuasive/intelligent/capable than others. An application that mimics one’s limitation will be of 

lesser interest. Moreover, the inclusion of aspects such as personality, do not permit to reflect 

other aspects such as intentions and objectives. For each decision-maker the objectives and 

intentions can vary even for the same problem. 

In this article, we propose a set of behavioral styles (Dominating, Integrating, Compromising, 

Obliging and Avoiding) to model agents that represent decision-makers in a group decision-

making process. An agent modelled with each of these behavior styles is able to act following 

the intentions of the decision-maker it represents; The intentions may be for instance “preferring 

to please a group of other decision-makers”, “preferring to dominate the course of the decision”, 

“let people better positioned to lead the decision process”, etc. The proposed behavioral styles 

act according to four dimensions deemed relevant in the context of group decision-making 

(Concern for self, Concern for others, Resistance to change and Activity level). Moreover, we 

introduce a communication model that allows agents to have dialogues that mimic the logic of 

communication existing in face-to-face meetings. Our research hypotheses are: (h1) it is 

possible for decision-makers to select behavioral styles to model computer agents in the context 

of group decision-making so that the behavior of the agents is as expected by the decision-

makers; (h2) computer agents can act according to the style of behavior with which they are 

defined; (h3) a cooperative decision system that uses agents modelled with behavioral styles 

should be able to benefit from this heterogeneity and not present a biased functioning. In order 

to study h1, we carried out a survey with 64 participants to understand if the definition of the 

proposed behaviors has a homogeneous understanding on the part of the users and more 

importantly to find a homogeneous classification (numeric) of the behavioral styles in the 

proposed dimensions. To study h2 and h3, we have developed a prototype of a multi-agent 

system that includes a previously proposed argumentation-based negotiation (ABN) model for 

running simulations. In the developed prototype, the agents try to achieve the consensus through 

an iterative process (the ABN model used is fully described in Carneiro, Martinho, Marreiros, 

Jimenez, and Novais (In Press, 2017)). We created different simulation environments with 

different numbers of agents in order to study the hypotheses. The proposed behavioral styles, as 

well as the proposed definitions, allowed us to find homogeneous operating values in the 

proposed dimensions. In turn, the agents have been able to represent the intentions associated 

with each style of behavior and to take advantage of their style of behavior just as face-to-face 

meetings take advantage from the heterogeneity of their participants. 

The rest of the paper is organized in the following order: in the next section, we present several 

models (under the topic of psychology) that can be used by computer science scientists to model 

computer agents with human’ characteristics/features. In Section 3, we expose the related work 

and in Section 4 we introduce the considered behavior styles and the dimensions in which they 

are defined. The study of operating values for behavior dimensions and their homogeneity is 

addressed in Section 5 and in Section 6 the agents are modelled with the proposed behavior 



styles and several experiments are performed. In Section 7 the discussion is presented. Finally, 

some conclusions are taken in Section 8, along with the work to be done hereafter. 

2. Literature Review 

In this section, we put forward some models that can be used by computer scientists to model 

agents with typically human characteristics. A current problem in the humanization of agents is 

related to the lack of knowledge there still is about human psychological functioning, and 

perhaps ever more so regarding the formalization of such knowledge. This problem often leaves 

computer scientists prone to devise strategies that would still benefit from stronger scientific 

validation. In this regard, a greater investment in multidisciplinary teams becomes of uppermost 

importance. Next, we advance some models that, in our view, show the potential of being 

adapted to computational systems, regardless of whether they are simulators or real systems. 

Kilmann and Thomas (1975), based on Jung’s studies and a conflict-handling mode proposed 

by Blake and Mouton (1964), suggested a model for interpersonal conflict-handling behavior, 

defining five modes: competing, collaborating, compromising, avoiding and accommodating, 

according to two dimensions: assertiveness and cooperativeness. 

 

Figure 1. Thomas and Kilmann’s model for interpersonal conflict-handling behavior, adapted from (Kilmann & 

Thomas, 1975) 

As seen in Figure 1, both the dimensions of assertiveness and cooperativeness are related to the 

integrative and distributive dimensions as discussed by Walton and McKersie (1965). 

Integrative dimensions refer to the overall satisfaction of the group involved in the discussion 

while the distributive dimension refers to the individual’s satisfaction within the group. It is 

possible to see that the thinking-feeling dimension maps onto the distributive dimension while 

the introversion-extraversion dimension maps onto the integrative dimension. This association 

becomes more evident if we conceive competitors as the ones who seek the highest individual 

satisfaction and collaborators as the ones who prefer the highest satisfaction of the entire group. 

On the other hand, avoiders, do not worry about group satisfaction and accommodators do not 

worry about individual satisfaction. They also concluded that the thinking-feeling dimension did 

not move towards the integrative dimension, and that the introversion-extraversion did not 

overlap with the distributive dimension. 

McCrae and John (1992) proposed a set of thirty traits extending the five-factor model of 

personality (OCEAN model). Based on the most commonly accepted Big Five “buckets of 

traits”, Costa and McCrae (1992) presented a model that comprises the dimensions of: (a) 

Negative Emotionality: as an individual’s susceptibility to negative emotions and a general 

discontent with life; (b) Extraversion: broadly taken as the number of relationships with which 

one is comfortable; (c) Openness: referring to the number of interests, i.e., the variety and depth 

of information one is to prone to explore; (d) Agreeableness: measured by the one’s willingness 

to takes norms for behavior while deferring to figures of authority; and (e) Conscientiousness: 



resulting from the number of goals on which one is focused, where an high consciousness level 

means to be able to focus on a limited number of goals and to exhibit a high self-discipline. The 

traits then included six facets for each of the factors described above. These traits were used in a 

study made by Howard and Howard (1995) in order to help them separate different kinds of 

behavior styles and identify corresponding themes. A theme is defined as “a trait which is 

attributable to the combined effect of two or more separate traits”. Those styles and themes are 

based on common sense and general research, and can be inferred such as the conflict styles that 

were proposed, (Negotiator, Aggressor, Submissive and Avoider), however it is also important 

to refer other relevant styles that were suggested such as the Decision and Learning styles. 

Decision style includes the Autocratic, Bureaucratic, Diplomat and Consensus themes while 

Learning style includes the Classroom, Tutorial, Correspondence and Independent themes. 

Rahim (1983) created a meta-model of possible styles for handling interpersonal conflict based 

on two dimensions: Concern for self and Concern for the other. Later, Rahim and Magner 

(1995) performed a study to assess the construct validity of the five subscales of the Rahim 

Organizational Conflict Inventory (Rahim, 1983). The styles defined by Rahim (1983) are 

presented in Figure 2 and have been adapted to our problem. Rahim (1983) acknowledge the 

existence of 5 types of conflict styles: Integrating, Obliging, Dominating, Avoiding and 

Compromising. In this work, they suggested these styles as means to describe different possible 

ways of behaving in conflict situations. Their proposed styles are defined according to the level 

of concern an individual shows for achieving one’s own goal or follow other people’s 

objectives. 

 

Figure 2. Conflict Styles, adapted from (Rahim & Magner, 1995) 

The model proposed by Rahim (1983) also relates to the themes identified by Howard and 

Howard (1995) to a certain extent. The Aggressor theme resembles the Dominating style; the 

Negotiator theme resembles the Integrating style; the Avoiding theme resembles the Avoider 

style; and the Submissive theme resembles the Obliging style. The main difference is the 

existence of the Compromising style in the model proposed by Rahim (1983) which does not 

relate to a specific theme. In theory, the Compromising style is an intermediate state between 

the other styles that were identified. It is worth noting that in psychological literature, depending 

on its scope, it is often not consensual even the mere definition of single behavior styles. For 

example, what we conceive as “avoidance” for the sake of the present study may not reflect the 

subtleties of the concept as proposed elsewhere. For instance, when it is presented as an 

attachment style and therefore rendered as multifold. We would then have to consider avoiders 

that do not care and also the anxious, preoccupied avoiders that do care but won’t engage, for 

regarding their actions as not useful or even as detrimental to the task in hand (Fraley & Shaver, 

2000). Certainly, these examples and possible ramifications abound for all other behavior styles. 

Nonetheless we commit to Rahim’s formulation as a basis for our work because, more than any 



other model, it has been largely grounded in organizational contexts, from which a great deal of 

his data has sprout. This too is our target of application. 

3. Related Work 

In this section, we present some works in the field of computer science, which somehow deal 

with cognitive and/or affective aspects. We began by taking a more general approach and later 

focus on work in the area of decision support or recommendation systems. 

To rephrase Doyle, Cummins, and Pollock (1991), AI is the discipline aimed at understanding 

intelligent beings by constructing intelligent systems. In 1998, Castelfranchi (1998) said “AI is 

the science of possible forms of intelligence, both individual and collective”. In order to build 

intelligent systems, it is therefore absolutely necessary to first know the human being (its 

functioning) in order to later be able to use this knowledge in the development of systems. 

Multi-agent systems have been widely used in the last decades (Cao, Yu, Ren, & Chen, 2013; 

Jennings, Sycara, & Wooldridge, 1998). The level of autonomy associated with agents, their 

abilities to interact/communicate, as well as their capability to exhibit “behaviors” are highly 

praised features in ever more distributed environments (Ito & Shintani, 1997; Jennings & 

Wooldridge, 1998; Van der Hoek & Wooldridge, 2008). Many approaches have been put 

forward in literature, where agents are defined with characteristics that set them apart from each 

other (Allbeck & Badler, 2002; Badler, Allbeck, Zhao, & Byun, 2002; Velsquez, 1997; 

Zamfirescu, 2003). Also under the topic of group decision-making several works with agents 

have been proposed (Aronson, Liang, & Turban, 2005; Olfati-Saber, Fax, & Murray, 2007), 

some of which used agents as a way to represent decision-makers/experts (Joao Carneiro et al., 

In Press, 2017; Iván Palomares & Martínez, 2014b; Santos et al., 2009b). This representation of 

decision-makers allows the systems to become more intelligent and dynamic, given they are 

capable of dealing with aspects of great relevance in face-to-face type meetings. Zamfirescu 

(2003) proposed a model with two kinds of agents: interface agents and resources agents. 

Interface agents support each member that takes part in the meeting, including the group 

facilitator. Resources agents provide services for the rest of the system (communication 

services, decision support system services, and information recovery services). Iván Palomares 

and Martínez (2014b) used agents to represent experts. To minimize the needed interactions 

with the system, the experts can model the agent that represents them according to 1 of 3 

profiles: sure profile, unsure profile and neutral profile (see below for a more detailed 

description). Santos, Marreiros, Ramos, Neves, and Bulas-Cruz (2009a) used agents to represent 

decision-makers and used the Five Factor Model to model the agents with different 

personalities: Aggressor, Submissive, Negotiator and Avoiding. 

To model agents with human-like’ aspects is not new. At the beginning of the new millennium, 

some projects related to the agents’ humanization began to appear (André et al., 2000; Ball & 

Breese, 2000; Franklin, Kelemen, & McCauley, 1998). 

Becker, Kopp, and Wachsmuth (2004) presented system that takes into account the emotions 

and mood of a conversational agent. Like most works since then, they use the OCC model by 

Ortony, Clore, and Collins (1990) to deal with emotions. The emotions are represented in an 

“emotion axis” and the mood in an “orthogonal axis” that stands for an undirected, longer 

lasting system state. In addition, they ponder “boredom” in order to deal with the absence of 

stimulus that the agent may face. In this way, they get the agent to express their emotional state 

according to the content of the conversation. They presented an experience in which the agent 

leaves the scene when it begins to feel insulted. 

André et al. (2000) presented a paper where they describe the functioning of three projects that 

integrate lifelike characters. They considered that the growth in the number of research projects 



related to humanization with the goal of make human-computer interaction more enjoyable had 

become noticeable. To make the psychological modeling of the agents they also used the OCC 

model (to model the emotions) (Ortony et al., 1990) and the Five Factor Model (FFM) (to 

model the personality) (McCrae & John, 1992). They stressed the importance of taking into 

account affective issues in user-agent interactions. However, they did not present any type of 

data that quantified how the models proposed by them allow to obtain more satisfactory 

utilization processes. 

Gmytrasiewicz and Lisetti (2002) presented a research work where they included a formal 

definition of emotional states and personality in a typical rational agent design based on 

decision theory. This work is especially relevant due to the hypothesis put forward by the 

authors: “the main hypothesis of our work is that notions of personality and emotions are useful 

in designing competent artificial agents that are to operate within complex uncertain 

environments populated by other artificial and human agents”. The authors used the OCC model 

(Ortony et al., 1990) to define the emotional states of the agents. Thus, they correlated these 

emotional states with different modes of decision-making. This means that each emotional state 

is associated with a decision-making situation. They also consider the personality of the agent, 

but do not use any specific personality model. They consider the personality of the agents as a 

set of emotional states the agent is capable of being in. Basically, the agents can vary their 

personality according to the three emotional states considered by them: cooperative, slightly 

annoyed and angry. The transitions that can occur between these states happen due to 

environmental inputs that they divided into 2 categories: cooperative and uncooperative. 

Although they point to several advantages and possible uses of the proposal, one cannot really 

say that there is a true verification of the research hypothesis. This can be seen in their own 

word, in the conclusions “we believe, will significantly enhance the applications of intelligent 

systems ...”. 

Lorini and Falcone (2005) presented work in which they deal with the expectations of pro-active 

agents. They point out that one of the most distinctive aspects of intelligent agents is that they 

are proactive, meaning that they have to be able to deal with the future and to represent that 

future or the possible future effects. For this, in this work they provide a precise characterization 

of anticipatory mental states, to analyze their role in the generation of Surprise, Relief and 

Disappointment. This allows the agents to have a clear comprehension of the surprise 

phenomenon. In addition, the proposed approach allows an 𝐴𝑔𝑒𝑛𝑡𝑖 that expects an 𝐴𝑔𝑒𝑛𝑡𝑗 to 

take an action that is negative for it, develops a negative strong expectation, causing it to 

persuade the 𝐴𝑔𝑒𝑛𝑡𝑗 to stop doing this action. 

Nowadays, there are many proposals that intend to model human-beings’ aspects in agents, such 

as: personality (Dimuro et al., 2007; Padgham & Taylor, 1997), emotions (Ball & Breese, 2000; 

Gmytrasiewicz & Lisetti, 2002), cognitive styles (Frank et al., 2001), etc. There are also some 

few proposals under the topic of GDSS (Ivan Palomares et al., 2014; Iván Palomares et al., 

2013; Recio-García et al., 2013; Santos et al., 2009b). All of them share the idea that the 

inclusion of cognitive/affective aspects may somehow help the decision-making process. 

However, (to the best of our knowledge) most of them are oriented to be used in simulated 

environments. The usage of such techniques in real systems can bring some disadvantages. “A 

real me” can be a bad approach if my persona is less persuasive/intelligent/capable than others. 

No one will be interested in using an application that harms oneself. We will now present some 

recent proposals under the topic of decision-making that include agents and other important 

technical issues. 

Miranda, Abelha, Santos, Machado, and Neves (2008) presented a scientific work where they 

developed a simulated medical practice scenario for intelligent decision support in the area of 



staging of cancer. The decisions were taken in the context of a group meeting in order to 

facilitate the collaborative work. They used agents that could exchange and store information to 

mirror real participants. The system emulated the TNM (Classification of Malignant Tumors) 

cancer staging system, increasing performance and eliminating paper circulation. 

Santos et al. (2009b) presented a scientific work where they proposed a multi-agent architecture 

model designed to support groups in the decision-making process. The novelty of their work is 

the possibility to model the agent’s personality. The idea is to humanize agents and with that, 

facilitate the negotiation process. They used four personality types (Negotiator, Aggressor, 

Submissive and Avoider) based on the Five Factor Model (McCrae & John, 1992) to define the 

agents’ personalities. To select the agent’s personality, each decision-maker needs to answer a 

questionnaire named Big Five Inventory (John, Donahue, & Kentle, 1991). They also proposed 

a simple negotiation model where the agents use the personalities to choose which kind of 

requests they should send and to process the received requests. The publication does not include 

any case study; however, the content is very interesting because the proposed model is based in 

strong assumptions existent in the literature. 

Vallejo, Albusac, Castro-Schez, Glez-Morcillo, and Jiménez (2011) proposed a multi-agent 

architecture for supporting distributed intelligent surveillance based on a scalable normality 

analysis model. This scalable formal model, allows to define and identify the normality of an 

environment based in different issues (object speed, proximity relationships, etc). The proposed 

architecture is composed by three levels: reactive level, deliberative level and user level. The 

researchers implemented a prototype based on the proposed architecture to monitor a real urban 

traffic environment. The objective was to analyze the trajectories and speed of moving objects. 

They concluded that the use of normality analysis improves the flexibility of the proposed 

approach. In addition, they claimed that future systems based on this architecture can be easily 

extended when it is needed. They also stated that the proposed architecture meets some 

important surveillance requirements, such as scalability and robustness. Finally, the prototype 

was proven to work well when the number of situations is higher and the environments are 

tougher. 

Iván Palomares et al. (2013) presented a Web-based consensus support system that permits the 

integration of the decision-makers’ attitude regarding consensus. They study the importance that 

decision-makers place in reaching consensus regarding the possibility of modifying their own 

preferences. Decision-makers can/adopt three attitudes: pessimistic, indifferent and optimistic. 

For example, a decision-maker who adopts an optimistic attitude, means that for him to reach 

the agreement is more important than his own preferences. In this way, the group’s options will 

be given more importance. They argue that (as might be expected) optimistic attitudes help to 

reach consensus while pessimistic attitudes hamper the achievement of consensus. 

Recio-García et al. (2013) presented a group decision support system where each decision-

maker is represented by an agent who argues with the other agents in order to achieve the best 

alternative for the group. The presented negotiation model includes the users’ social factors, 

personality and trust in the argumentative process. The personality of decision-makers is 

represented by a number ranging from [0,1] where 0 means a very cooperative person and the 

reflection of a very selfish one. To study the trust, they use the interaction of decision-makers in 

social networks through a set of 10 factors. For the argumentation model, they used D2ISCO, 

which is a platform for the design and implementation of deliberative and collaborative CBR 

applications. They concluded that the proposed model allows to achieve better satisfaction rates 

when compared to the standard “fully connected” group recommender. 

Abraham, Flager, Macedo, Gerber, and Lepech (2014) performed a study on the impact of using 

a Multi-attribute decision-making (MADM) techniques and data visualization methods in group 



decision-making processes as a way to help reaching consensus. The authors refer that despite 

the benefits of using this type of techniques being generally recognized, their true impact had 

never been previously discussed. In this study they perfomed four charrettes, in each of them 

participants were divided in teams ranging from 3-5 elements and the teams were divided into 4 

groups. The 1st group had no access to MADM techniques nor to visualization methods, the 2nd 

group had access to MADM techniques but had no access to visualization methods, the 3rd 

group had no access to MADM techniques but had access to visualization methods and the 4th 

group had access to both. They concluded that the use of MADM methods helps the group to 

reach consensus, but more important they managed to understand that the use of visualization 

techniques helps decision-makers to show the clients the reasons for which a certain proposal is 

made. 

Iván Palomares and Martínez (2014b) presented a semisupervised consensus support system 

(CSS) based on the multiagent system paradigm. The main purposes are to overcome the 

difficulties associated with managing large groups of experts and the need for constant human 

supervision. In order to minimize the need for experts’ interactions with the system, they 

defined a strategy that allows the experts to express their individual concerns. To do so, they 

defined three different profiles: sure profile, unsure profile and neutral profile. The first, intends 

to represent experts that are very confident about their preferences. Therefore, they do not 

intend to change them. The second, represents experts that want to achieve a consensus but are 

unsure about their opinions. The third, represent the experts that want to achieve a consensus 

and are moderately sure about their opinions. They conducted a case study made up by a set of 

experiments with the intent of understanding the different evolution of the degree of consensus 

between the proposed semisupervised CSS and a full-supervised CSS. They concluded that 

through the proposed system it was possible to minimize the need for expert human supervision 

and more importantly, they concluded that their proposal helps to achieve high levels of 

consensus faster than the full-supervised CSS. 

Iván Palomares and Martínez (2014a) published a very interesting work about a tool that aims to 

help the decision-makers to reach consensual decisions in urgent situations. To do so, they put 

forward a visual decision support tool that can represent the experts’ preferences. This tool is 

based on Self-Organizing Maps and consists in a two-dimensional visual representation that 

allows to perceive the existing levels of agreement/disagreement. The preferences are visually 

represented based on their similarities. They developed an experiment to demonstrate the 

usefulness of the proposed tool, succeeding to demonstrate that the proposed tool may help 

decision-makers reach consensus more easily, as well as to have a better perception of the 

current status of the decision process. 

4. Styles of behavior in the context of group decision-making 

In order for decision-makers to choose a style of behavior that mirrors their intentions (to model 

the agent that represents them), first and foremost it is necessary to define the mode of action of 

each of the styles considered. The approach proposed in this work was based on the model 

proposed by Rahim (1983) and subsequently studied more thoroughly in Rahim and Magner 

(1995), for being the one we consider to be the most appropriate for the context of this work. As 

we saw earlier (Section 2), Rahim (1983) proposed 5 styles of handling interpersonal conflict 

(Dominating, Integrating, Compromising, Obliging and Avoiding). He differentiated the styles 

of handling interpersonal conflict along two basic dimensions: Concern for self and Concern for 

others. The Concern for self explains the degree (high or low) to which a person attempts to 

satisfy his or her own concerns. The Concern for others explains the degree (high or low) to 

which a person wants to satisfy the concerns of others (Rahim & Magner, 1995). These 

dimensions were considered to represent the motivational orientations of a given individual 

during conflict (Rahim & Magner, 1995). 



In this work, as a first step, we take on the conflict styles proposed by Rahim (1983) and we call 

them behavior styles. The designation of behavior styles is preferred for expressing something 

more comprehensive that serves for example to define the activity level of the agent. In 

addition, the idea is that a decision-maker can select a behavior style for the agent that 

represents him/her in a context of group decision-making. This behavior may vary throughout 

the process, i.e., the decision-maker must be able to change the behavior of the agent whenever 

he/she sees fit. Also, we define each behavior style specifically for the context of group 

decision-making: 

• Dominating: An individual functioning according to a Dominating style feels that 

he/she holds the key to the problem. The individual actively engages in the decision-

making process and seeks to impose his opinion on others; 

• Obliging: An Obliging functioning easily tends to yield his position to follow the 

interests of the group, choosing to follow the opinions of others instead of sharing his 

own; 

• Avoiding: An Avoiding functioning is related to disengagement. Such an individual 

seeks not to be involved in decision-making, devaluing both the process and the opinion 

of all stakeholders; 

• Compromising: A Compromising functioning privileges a collaborative style. It seeks 

to reach consensual decisions, valuing both their own opinions and those of others in 

the group. Here, the individual is moderately involved in the decision-making process; 

• Integrating: An Integrating functioning privileges a collaborative style. It seeks to 

achieve consensual decisions, valuing both their own opinions and those of others very 

much. The individual prefers to manage the entire decision process in a highly 

committed manner. 

As we mentioned earlier, Rahim (1983) used two dimensions (Concern for self and Concern for 

others) to differentiate conflict styles. Each style was rated in these dimensions according to 2 

levels (Low or Mid). Later, in Rahim and Magner (1995), “there are 3 levels”, since they 

consider “Compromising” as a style that “involves moderate concern for self as well as the 

other party involved in conflict”. 

In this work, we also consider the two dimensions proposed by Rahim (1983) to define agent 

behavior due to its high relevance in the context of group decision-making. However, to 

properly define the mode of action of each of the behavior styles in this context, these 2 

dimensions are not sufficient. For this, we correlated the conflict styles proposed by Rahim 

(1983) with conflict styles proposed by Howard and Howard (1995) (see Table 1). 

Table 1. Proposed correspondence between Rahim’s and Howard and Howard’s conflict styles 

Rahim (1983) Howard and Howard (1995) 

Dominating Aggressor 

Integrating Negotiator 

Compromising - 

Obliging Submissive 

Avoiding Avoider 

 

The conflict styles proposed by Howard and Howard (1995) are defined using 4 of the 5 factors 

of the Five Factor Model (McCrae & Costa, 1995). The factors used are: Negative Emotionality 

(N), Extraversion (E), Agreeableness (A) and Conscientiousness (C). Table 2 presents the 

classification of the conflict styles proposed by Howard and Howard (1995). A plus sign (+) 

indicates a score above 55; a minus sign (-) indicates a score below 45, and a letter with no plus 



or minus indicates a score in the 45-55 range. The 45-55 range comprises one standard 

deviation in the middle/from the mean of the population. 

Table 2. Conflict styles proposed by Howard and Howard (1995) 

Theme Components 

Negotiator N, E(+), A, C(-) 

Aggressor N+, E+, A-, C+ 

Submissive N-, E-, A+, C- 

Avoider N+, E-, C- 

 

Because Howard and Howard’s conflict styles are classified in this way, it becomes possible to 

perceive/describe them through the facets that Costa and McCrae (1992) defined for each factor. 

Table 3 presents a small example of some of the facets related to the “Extraversion” factor. We 

can see that the conflict style “Aggressor” (see Table 2) can be described as: “prefers company”, 

“a leader” and vigorous. On the other hand, the “Submissive” can be described as: “prefers 

alone”, “in background” and “leisurely”. 

Table 3. Example of some of the facets related to the “Extraversion” factor 

Extraversion Introvert (E-) Ambivert (E) Extravert (E+) 

Gregariousness Prefers alone Alone / others Prefers company 

Assertiveness In background In foreground A leader 

Activity Leisurely Average pace Vigorous 

… … … … 

 

We use the facets proposed by Costa and McCrae (1992) to identify the remaining dimensions 

necessary to define our behavioral styles. The first dimension is that of “Resistance to change” 

which is related to the facets identified in the “Agreeableness” factor. The second dimension is 

that of “Activity Level” which has to do with the facets identified as the “Extraversion” factor. 

With our dimensions already identified we are now in position to describe them in this context 

of group decision-making. 

• Concern for self: This dimension is concerned with how much the decision-maker 

values achieving his or her own goals. It directly influences the number of requests that 

will be made by the agent. An agent with a higher concern for self makes more requests 

to achieve his/her goals faster; 

• Concern for others: This dimension is related to the extent to which the decision-

maker values achieving the objectives of the group, or of a subgroup of decision-makers 

that he considers important/credible. An agent with a high degree of concern for others 

has a wider ability to accept certain types of requests; 

• Resistance to change: This dimension is related to the ease with which the agent 

accepts requests. This means that an agent with a high resistance to change is much less 

able to accept requests than an agent with a low resistance to change; 

• Activity level: This dimension is related to the level of participation of the agent in the 

process. An agent with a high level of activity level engages more in the process, 

carrying out more questions and affirmations/statements. On the other hand, an agent 

with a low activity level is less interventive, limiting himself to responding rather than 

starting new dialogue topics. 

We present in Table 4 the classification of each of our behavioral styles in each of the 

dimensions identified. This classification is completely theoretical, based on the data found in 

the literature. 



Table 4. Classification of behavioral styles in the considered dimensions (Low, Mid, High) 

Styles of behavior Concern for self Concern for others Resistance to change Activity level 

Dominating High Low High High 

Integrating High High Mid Mid/High 

Obliging Low High Low Low 

Compromising Mid Mid Mid Mid 

Avoiding Low Low Low Low 

 

Seen that there is no conflict style in Howard and Howard (1995) equivalent to the 

“Compromising” conflict style in Rahim (1983), we assume that this behavior style in the 

dimensions of “Resistance to change” and “Activity Level” has a Moderate level. It is important 

to note that in this work and contrary to what happens in other works (Howard & Howard, 

1995; Kilmann & Thomas, 1975; Rahim, 1983), we are not evaluating individuals themselves. 

We are grounding our study in already existing models to define behaviors in agents that 

represent people. This means that the important thing is for people to be able to understand a 

certain style of behavior in the same way when the style is to be selected. This means that if the 

population homogeneously considered the “Dominating” as having a low “Activity Level” low, 

it would not be problematic, as long as this understanding was identical. 

5. Study 1 

In this section, we intend to determine the operating values that can later be used to model our 

agents according to four dimensions: Concern for self, Concern for others, Resistance to change 

and Activity level. Based on these dimensions, we will be able to configure five behavior styles: 

Dominating, Integrating, Obliging, Compromising and Avoiding. In order to achieve this, first, 

as previously put forward in (h1) we needed to empirically validate the values that would 

correspond to each style of functioning. So, the step that follows implies asking a group of 

participants how do they perceive what is expected in terms of the behavior that each style 

would present in the context of group decision-making. 

5.1. Method 

 

5.1.1. Participants 

In this study participants were 64 adults, 39 men and 25 women, aged between 19 and 68 years 

old (M=33,56; SD=10,84) all of which either had higher education degrees or were 

undergraduate students (10%). In respect to their fields of expertise, respondents were 

professionals from a wide variety of backgrounds, ranging from technology to social sciences. 

In Figure 3 we present their distribution. 



 

Figure 3. Distribution of participants according to area of expertise 

5.1.2. Procedure 

In this study, participants were asked to classify the five proposed behavior styles in four 

dimensions: (a) Concern for self; (b) Concern for others; (c) Resistance to change; (d) and 

Activity level in a questionnaire ranging from 0-10 (by means of a visual analogic scale). All 

respondents were asked to fill out the questionnaire in the researcher’s presence to ensure 

engagement in the task and/or to provide assistance in the clarification of concepts or modes of 

signaling the answers. 

To define “Concern for self”, participants were asked “how worried about achieving his/her 

own objectives” is each style of functioning; to define “Concern for others” they were asked 

“how worried about achieving other’s objectives” do they consider each behavioral style to be; 

to measure “Resistance to change” participants were asked “how likely to resist change” do you 

think each behavioral style is; and to measure “Activity level” participants were asked “how 

interventive” do they consider each behavioral style to be. 

To make it apprehensible, an example-situation was presented to the participants, concerning a 

hypothetical planning of a dinner (choosing a restaurant) in the context of a group. 

Actual instructions read as follows: 

The present study intends to contribute to the development of a tool that allows to assist several 

professionals in group decision-making processes. Each person will be represented by a virtual 

decision-maker – a “robot” – that acts according to a type of behavior he chose. You may think 

of him as if he was your “virtual assistant”. This way you may choose your behavior style 

among multiple profiles and then delegate to him the function of making decisions on your 

behalf, in interaction with other agents either real or virtual. 

For a better understanding, note the following example: 

“Imagine that you worked in an organization and that your team would have to take 

part in choosing the restaurant where the Christmas dinner would be held. Certainly, 

there would be several possible options and also several criteria that would guide the 

discussion of the group, such as: the distance to the restaurant, the average price of the 

meal, the waiting time, the existence or not of a smoking area or even the desire to 

please the tastes of the team leader. Whatever the priorities might be, your assistant 

could represent you according to higher or a lower interest in forcing your position or 

let yourself be led by the opinions of others. Here are 5 types of functioning you could 

set for your assistant.” 



After collecting the data from the 64 respondents, we could have values for mean and standard 

deviation for all four dimensions, which allowed us to compare each one according to all five 

behavior styles and also have numeric values for later use (in Study 2). Here, we present mean 

values and standard deviations for Concern for self (Figure 4), Concern for others (Figure 5), 

Resistance to change (Figure 6) and Activity Level (Figure 7). 

5.2. Results 

In this sub-section, we will report the values we obtained from our group of participants, that 

later will be used to model agents with the five behavior styles that we proposed. Values for 

each style will be grouped according to the four behavior dimensions that were evaluated. 

Regarding the dimension Concern for self, the clearly highest scoring styles of behavior are 

Dominating (M=9,47; SD=0,54) and Integrating (M=7,77; SD=1,43), in this order. It is worth 

noting that when defining the values of Concern for self, participants showed more variability 

for the Integrating style. Then we have “medium” values for Compromising (M=5,48; 

SD=0,67) and “low” and “very low” for Obliging (M=1,97; SD=1,19) and Avoiding (M=1,08; 

SD=0,93), respectively. We may be in the presence of a bottom effect regarding this dimension 

and style of behavior. In Figure 4 we present the box plot of each style of behavior regarding the 

dimension Concern for self. 

 

Figure 4. Box plot of concern for self 

Regarding the Concern for others dimension, there are clearly three high scoring styles of 

behavior, in a decreasing order: Obliging (M=8,73; SD=0,97), Integrating (M=8,46; SD=0,81) 

and Compromising (M=6,16; SD=1,33) and two (very) low scoring styles: Dominating 

(M=1,71; SD=1,44) and Avoiding (M=0,90; SD=0,91). In Figure 5 we present the box plot of 

each style of behavior regarding the Concern for others dimension. 



 

Figure 5. Box plot of concern for others 

In the Resistance to change dimension, the Dominating style clearly stands out as the highest 

scoring style (M=9,16; SD=0,71). Then, in a decreasing manner, Integrating (M=5,43; 

SD=0,49) and Compromising (M=4,16; SD=1,23) score “medium” values, and Obliging 

(M=1,24; SD=0,82) and Avoiding (M=0,96; SD=0,88) present “low” values. In Figure 6 we 

present the box plot of each style of behavior regarding the Resistance to change dimension. 

 

Figure 6. Box plot of resistance to change 

The highest values found for the dimension of Activity level are those of the Dominating 

(M=9,38; SD=0,63) and Integrating (M=9,00; SD=0,87) styles. Compromising (M=5,84; 

SD=1,30) has a “medium” value and both Obliging (M=2,28; SD=1,28) and Avoiding 

(M=0,52; SD=0,59) styles present a “low” activity level. In Figure 7 we present the box plot of 

each style of behavior regarding the Activity level dimension. 



 

Figure 7. Box plot of activity level 

With the purpose of assessing the consistency/reproducibility of the measurements made by our 

participants, next we present Intraclass Correlation Coefficient (ICC) for each of the behavior 

dimensions studied. For all dimensions results are above ,900, more precisely between ,915 and 

,941 so the agreement level can be considered excellent by any standards, for example Cicchetti 

(1994). We also can see that in all dimensions, results are highly significant (p<,001). In sum, 

these results show that our participants highly agree on how to define the dimensions of 

Concern for self, Concern for others, Resistance to change and Activity level both in magnitude 

in relative position across the five behavior styles. The same is to say that there is very high 

agreement on how to attribute different values according to the behavioral styles and also on 

how the 5 of them should be ordered within each of the 4 dimensions, which certainly may 

prove useful when presenting options for a problem/agent configuration. Table 5 presents ICC 

values for each dimension, with the responses of 64 participants for 5 behavior styles. 

Table 5. ICC values for each dimension 

Intraclass Correlation Coefficient – Concern for Self 

 
Intraclass 

Correlationb 

95% Confidence F Test with True Value 0 

Lower 

Bound 

Upper 

Bound 
Value df1 df2 Sig 

Single Measures ,927a ,818 ,991 797,442 4 252 ,000 

Average Measures ,999c ,997 1,000 797,442 4 252 ,000 
Intraclass Correlation Coefficient – Concern for Others 

 
Intraclass 

Correlationb 

95% Confidence F Test with True Value 0 

Lower 

Bound 

Upper 

Bound 
Value df1 df2 Sig 

Single Measures ,915a ,791 ,989 744,848 4 252 ,000 

Average Measures ,999c ,996 1,000 744,848 4 252 ,000 
Intraclass Correlation Coefficient – Resistance to change 

 
Intraclass 

Correlationb 

95% Confidence F Test with True Value 0 

Lower 

Bound 

Upper 

Bound 
Value df1 df2 Sig 

Single Measures ,938a ,842 ,992 1017,069 4 252 ,000 

Average Measures ,999c ,997 1,000 1017,069 4 252 ,000 
Intraclass Correlation Coefficient – Activity Level 

 
Intraclass 

Correlationb 

95% Confidence F Test with True Value 0 

Lower 

Bound 

Upper 

Bound 
Value df1 df2 Sig 

Single Measures ,941a ,849 ,992 1026,275 4 252 ,000 

Average Measures ,999c ,997 1,000 1026,275 4 252 ,000 



Two-way mixed effects model where people effects are random and measures effects are fixed. 

a. The estimator is the same, whether the interaction effect is present or not. 

b. Type A intraclass correlation coefficients using an absolute agreement definition. 

c. This estimate is computed assuming the interaction effect is absent, because it is not estimable otherwise. 

 

After what we presented for mean, standard deviation and ICC values, we are in position to 

state that we can safely rely on the attained values for their usage as operating values for the 

different styles of behavior. This way, we present in Table 6 average operating values for the 5 

behavior styles so that they can be used in Study 2 as well as in future work that may rely on 

these variables. 

Table 6. Mean values of each behavior style in the four dimensions 

Behavior Style Concern for self Concern for others Resistance to change Activity level 

Dominating 9,47 1,71 9,16 9,37 

Obliging 1,97 8,73 1,24 2,28 

Avoiding 1,08 0,9 0,96 0,52 

Compromising 5,48 6,16 4,16 5,84 

Integrating 7,77 8,46 5,43 9 

 

6. Study 2 

In this section, after having presented the attained operating values, we will assess whether 

computer agents can act according to the defined styles of behavior and if a group decision 

support system that uses agents modelled with behavior styles may benefit from their 

heterogeneity. 

As we will see in Sub-Section 6.2, to run our experiments we implemented the argumentation-

based negotiation model proposed in Joao Carneiro et al. (In Press, 2017), with a 

communication environment as proposed in Carneiro, Martinho, Marreiros, and Novais 

(2016b). However, for agents to have a social behavior equivalent to that performed by humans, 

it is necessary to define a correct communication flow. In a face-to-face meeting, decision-

makers share the same space at the same time (DeSanctis & Gallupe, 1987). This means that 

when a decision-maker expresses himself/herself, whether it is verbal communication or 

otherwise, this communication is received by all other decision-makers at the same time. In a 

virtual environment, where agents communicate simultaneously, this reception is not done at the 

same time due to technological limitations. This situation means that at certain moments of time 

there are agents who are in possession of knowledge that other agents still do not have, and can 

benefit from that prior knowledge unintentionally. Therefore, in this work we propose a 

communication flow that guarantees impartiality, promoting a type of interaction similar to that 

realized by real decision-makers, in face-to-face type meetings. 

6.1. Communication Flow 

We assume that each decision-maker is represented in a GDSS by a participating agent (𝐴𝑔𝑃). 
The participating agent seeks to represent the interests of the decision-maker. In addition, we 

also assume the existence of a facilitating agent (𝐴𝑔𝐹). The 𝐴𝑔𝐹 is responsible for managing 

the meeting, initiating/finalizing the process and managing/handling communications. In a 

simplistic way, the communication flow that we propose implements an acknowledgment 

mechanism that ensures the reception of the messages by the 𝐴𝑔𝑃 before a new dialogue can be 

initiated. 

In a first step the 𝐴𝑔𝐹 notifies all 𝐴𝑔𝑃 that the meeting started (Figure 8 – Step 1). Then all 

𝐴𝑔𝑃 notify the 𝐴𝑔𝐹 that they are ready to start the meeting (Figure 8 – Step 2). 



 

Figure 8. Communication Flow’s Step 1 and Step 2 

When the number of participating agents “Ready” equals the number of participants in the 

meeting process (see Figure 12), 𝐴𝑔𝐹 invites 𝐴𝑔𝑃 to start a new dialog topic (Figure 9 – Step 

3). 𝐴𝑔𝑃 generate a participation time based on their style of behavior (if they have something to 

say, otherwise they return “No”) and send it to the 𝐴𝑔𝐹 (Figure 9 – Step 4). 

 

Figure 9. Communication Flow’s Step 3 and Step 4 

𝐴𝑔𝐹 (Figure 9 – Step 4) selects the 𝐴𝑔𝑃 that sent a higher participation time (of course, 

participating agents with a higher activity level are more likely to be selected). Then the 𝐴𝑔𝐹 

notifies all 𝐴𝑔𝑃 about the 𝐴𝑔𝑃 that was selected (Figure 10 – Step 5). The selected 𝐴𝑔𝑃 sends 

the message that it wants to transmit to 𝐴𝑔𝐹 and 𝐴𝑔𝐹 spreads this message to all other 𝐴𝑔𝑃 

(Figure 10 – Step 6). 



 

Figure 10. Communication Flow’s Step 5 and Step 6 

All agents who have received the message may respond with a new Illocution or if they have 

nothing to respond they send an acknowledgment to notify the 𝐴𝑔𝐹 that they have received 

𝐼𝑙𝑙𝑜𝑐𝑢𝑡𝑖𝑜𝑛𝑥 (Figure 11 – Step 7). The first Illocution-type response that the 𝐴𝑔𝐹 receives is 

sent to all 𝐴𝑔𝑃 (repeating Step 6), causing all 𝐴𝑔𝑃 that have responded to Step 7 with an 

Illocution to automatically know if the message being spread is theirs or not (Figure 11 – Step 

8). For each Illocution that 𝐴𝑔𝐹 diffuses through 𝐴𝑔𝑃 it expects to receive 𝑛 − 1 responses 

(Illocutions or acknowledgments), where 𝑛 is the number of 𝐴𝑔𝑃 involved in the decision 

process. In the case of Figure 11 – Step 7, the 𝐴𝑔𝐹 received 2 Illocution (𝐼𝑙𝑙𝑜𝑐𝑢𝑡𝑖𝑜𝑛𝑦 and 

𝐼𝑙𝑙𝑜𝑐𝑢𝑡𝑖𝑜𝑛𝑧) in response to 𝐼𝑙𝑙𝑜𝑐𝑢𝑡𝑖𝑜𝑛𝑥. Therefore, 𝐴𝑔𝐹 selects the Illocution it received first 

and sends this message to other 𝐴𝑔𝑃 (Figure 11 – Step 8). 𝐴𝑔𝑃3 who had previously attempted 

to make a communication (𝐼𝑙𝑙𝑜𝑐𝑢𝑡𝑖𝑜𝑛𝑧) may try to send his message again if it still makes 

sense given the new knowledge it has received (𝐼𝑙𝑙𝑜𝑐𝑢𝑡𝑖𝑜𝑛𝑦). When for each Illocution sent, 

there are 𝑛 − 1 responses, the process returns to Step 3. 

 

Figure 11. Communication Flow’s Step 7 and Step 8 

Now we will present the internal functioning of each of the agents involved in the process. As 

mentioned, the 𝐴𝑔𝐹 is responsible for “managing” the meeting. In this way, it is responsible for 

initiating/finalizing the process and managing the flow of communication. Figure 12 shows the 

facilitator agent’s flowchart. The 𝐴𝑔𝐹 is responsible for initiating and terminating the decision 



process. Initially he starts by starting the meeting and expects all 𝐴𝑔𝑃 to be ready. He then 

invites the 𝐴𝑔𝑃 to initiate a dialogue and controls the flow of communication (as previously 

described). This process is repeated every time until one of two things happens: no participant 

agent wants to start a new dialogue or consensus has already been reached towards an 

alternative. 

 

Figure 12. Facilitator agent’s flowchart 

Participating agents represent decision-makers in this virtual environment. In the 

communication environment proposed in Carneiro et al. (2016b) and on the basis of which we 

rely, participating agents can conduct two types of conversations: public conversations (as 

previously described) and private conversations of type 1 to 1, which are used only for making 

requests. When a participating agent is notified by the 𝐴𝑔𝐹 that the meeting will is about to 

begin, the 𝐴𝑔𝑃 will notify the 𝐴𝑔𝐹 that it is Ready and sends back other information such as 



preferences and goals (Figure 13). After the meeting has all the conditions to begin, 𝐴𝑔𝐹 invites 

𝐴𝑔𝑃 to start a dialogue, each 𝐴𝑔𝑃 checks if it has something to communicate, if it does, it 

generates a participation number based on its style of behavior (Figure 13). If a certain 𝐴𝑔𝑃 is 

selected to speak, it sends its message to the 𝐴𝑔𝐹 otherwise it waits to receive a message 

(Figure 13). 

 

Figure 13. Participant agent’s flowchart 

Finally (Figure 14), when an 𝐴𝑔𝑃 receives a new message it starts by checking which type of 

message, if it is a request (that is, it is a message from 1 to 1) it processes it and sends the 

response to 𝐴𝑔𝑃 that had made the request. If it accepted the request, it will send a message to 

𝐴𝑔𝐹 to update it with his new preferences. If the message is not a request, it processes the 

message and checks if it has interest or conditions to respond to this message, if it does not send 

an “Ack” otherwise it sends a response. Each time an 𝐴𝑔𝑃 receives a new message other than a 

request type message, it checks if this new information offers the conditions for it to make 

requests to other 𝐴𝑔𝑃, if this happens, it sends the requests (Figure 14). 



 

Figure 14. Participant agent’s flowchart 

6.2. Experiment 

Communication flow was created with the objective of studying two very concrete hypotheses. 

The first one (h2) is to understand if the agents can correctly represent the decision-makers 

taking into account the data obtained in experiment 1. This way, we intend to study if using a 

face-to-face decision scenario, agents can actually display behavior according to the modelled 

values (in each of the dimensions proposed in study 1). The second hypothesis (h3) is related to 

perceiving what kind of “impact” each of the proposed behavioral styles has. As mentioned 

earlier, given that this proposal has as its main objective to be applied in systems that are used in 

the real world by real decision-makers, it would not make sense to have a style of behavior that 

would always be benefited. It would not make sense for decision-makers to know that, in the 

end, whoever chooses a particular style of behavior always wins. That would not represent the 

heterogeneity of the world we live in. The point about representing the intentions of decision-

makers through behavioral styles is that they may serve as an advantage for all decision-makers 

because they would be better represented in the system. 



To perform our simulations, we used a prototype (previously developed) that uses a negotiation 

architecture based on social networks (Carneiro et al., 2016b) and implements the 

argumentation-based negotiation model proposed in Joao Carneiro et al. (In Press, 2017). 

To study (h2) we created 4 simulations environments, the first with 5 agents (1*Dominating, 

1*Integrating, 1*Obliging, 1*Compromising, 1*Avoiding) the second with 10 agents 

(2*Integrating, 2*Obliging, 2* Compromising, 2*Avoiding), the third with 20 agents 

(4*Dominating, 4*Integrating, 4*Obliging, 4* Compromising, 4*Avoiding) and at last the forth 

with 40 agents (8*Dominating, 8*Integrating, 8*Obliging, 8* Compromising, 8*Avoiding). We 

have created several simulation environments because we considered at the outset that because 

agents act using different behavioral styles, their behavior may vary according to the number of 

agents and the behavioral style of the other agents with which they are involved in the decision 

process. We used the multicriteria problem previously used in case studies as presented in 

Carneiro, Martinho, Conceição, Marreiros, and Novais (2017); Carneiro, Martinho, Marreiros, 

and Novais (2016a) and each agent generated its preferences regarding the alternatives and 

criteria in a “random” way. Initially each agent randomly generated its preferences regarding the 

criteria and then, based on these preferences, it generated the preferences of the alternatives with 

a randomness that made would be plausible taking into account the values of the criteria of each 

alternative and preferences of previously generated criteria. For each simulation environment, 

we ran 100 simulations (100*4 in total). 

Study of “Concern for self” dimension through the analysis of number of requests made by the 

agents 

To study the dimension of “Concern for self” we have analyzed the number of requests made by 

the agents of each behavior style. Table 7 presents data related to the analysis of Concern for 

self. The µ[0,1] represents the values obtained in experiment 1 relative to the dimension of 

“Concern for self” in each behavior style. G. represents the values µ[0,1] normalized on a scale 

of [0,1], where the sum of all values equals 1. The µ represents the average number of requests 

made by each style of behavior over the 100 simulations. The σ represents the standard 

deviation of the number of requests made by each style of behavior over the 100 simulations. 

The Min. is the minimum number of requests made and the Max. is the maximum number of 

requests made in the 100 simulations. P. represents the values of µ normalized on a scale of 

[0,1], where the sum of all values is equal to 1. 

Table 7. “Concern for self” dimension – number of requests made with n agents for the 5 behavior styles 

 Dominating Integrating Obliging Compromising Avoiding 

 µ[0,1] 0,95 0,78 0,20 0,55 0,11 

 G. 0,36 0,30 0,07 0,21 0,04 

Concern for 

self 

5 

Agents 

µ 12,65 11,91 7,96 10,72 7,2 

σ 4,89 4,67 2,66 3,81 2,79 

Min. 4 2 3 3 2 

Max. 27 24 15 23 15 

P. 0,25 0,23 0,15 0,21 0,14 

10 

Agents 

µ 43,99 40,03 27,06 35,85 23,54 

σ 11,64 9,97 5,05 8,03 4,41 

Min. 22 19 13 21 10 

Max. 74 74 43 59 38 

P. 0,25 0,23 0,15 0,21 0,13 

20 

Agents 

µ 118,69 110,74 75,19 103,06 64,89 

σ 28,93 24,61 12,07 21,08 10,15 

Min. 55 56 42 53 40 

Max. 214 183 118 186 99 

P. 0,25 0,23 0,15 0,21 0,13 

µ 305,75 282,32 186,30 256,97 160,98 



40 

Agents 

σ 62,86 55,65 22,93 42,64 19,47 

Min. 149 147 123 148 94 

Max. 499 540 268 381 227 

P. 0,25 0,23 0,15 0,21 0,13 

 

We can verify that in all simulation environments and as expected, agents with the 

“Dominating” behavior style are the ones that make the most requests. On the other hand, the 

agents that perform the least requests are the “Avoiding” style ones. We also found that the 

values of G. and P. are slightly different. However, this is because although agents with 

behavior styles such as “Dominating” and “Integrating” are more likely to make requests, this 

probability is also affected by the argumentation system used. In this case, using the one 

proposed in Joao Carneiro et al. (In Press, 2017) they have a limited number of requests that can 

be made, which makes that in situations where agents do not quickly obtain consensus, these 

styles of behavior (“Dominating” and “Integrating “) no longer have requests to make, causing 

agents with other styles to approach the number of requests made by them. 

In order to study the dimension “Concern for others” we analyzed the number of appeal to 

prevailing practice accepted by the agents of each style of behavior. The appeal to prevailing 

practice was used to study the “Concern for others” dimension because the only situation in 

which this dimension is used (according to the argumentation-based negotiation model 

implemented) is in the formula for evaluating this type of request. Table 8 presents data related 

to the analysis of “Concern for others”.  

Table 8. “Concern for others” dimension – number of appeals to prevailing practice accepted by n agents for the 5 

behavior styles 

 Dominating Integrating Obliging Compromising Avoiding 

 µ[0,1] 0,17 0,85 0,87 0,62 0,09 

 G. 0,06 0,32 0,33 0,23 0,03 

Concern for 

others 

5 

Agents 

µ 0 0,09 0,16 0,11 0,19 

σ 0 0,28 0,36 0,31 0,39 

Min. 0 0 0 0 0 

Max. 0 1 1 1 1 

P. 0 0,16 0,29 0,20 0,34 

10 

Agents 

µ 0,015 0,11 0,17 0,09 0,11 

σ 0,12 0,31 0,41 0,30 0,31 

Min. 0 0 0 0 0 

Max. 1 1 2 2 1 

P. 0,03 0,22 0,34 0,18 0,22 

20 

Agents 

µ 0,01 0,08 0,18 0,09 0,07 

σ 0,11 0,28 0,42 0,30 0,26 

Min. 0 0 0 0 0 

Max. 1 2 2 2 1 

P. 0,02 0,18 0,40 0,21 0,17 

40 

Agents 

µ 0,008 0,09 0,17 0,06 0,06 

σ 0,09 0,30 0,39 0,25 0,27 

Min. 0 0 0 0 0 

Max. 1 2 2 2 2 

P. 0,02 0,23 0,41 0,16 0,16 

 

The µ[0,1] represents the values obtained in study 1 relative to the dimension of “Concern for 

others” in each behavior style. G. represents the values µ[0,1], standardized on a scale of [0,1], 

where the sum of all values is equal to 1. µ represents the average number of common practices 

accepted by each behavior style over the course of the 100 simulations. The σ represents the 

standard deviation over the 100 simulations. The Min. is the minimum number of accepted 



requests and the Max. is the maximum number of requests accepted in the 100 simulations. P. 

represents the values µ of normalized on a scale of [0,1], where the sum of all values is equal to 

1. In this case, we have verified that agents with the “Dominating” behavior style are the ones 

that accept fewer “common practices” requests. On the other hand, the agents who generally are 

more willing to accept this type of request are the “Obliging”. It is interesting to note that in the 

simulation environment with 5 agents, the “Avoiding” agents were the ones that most accepted 

this type of request, even though “Avoiding” had a low concern for others. However, this 

happens because the formula used to evaluate this type of requests, besides “Concern for others” 

also considers the agents’ “Resistance to change”, which in turn is known to be extremely low 

in the Avoiding. As shown in the 40 agent scenario, the values of G. and P. are quite similar, the 

existing difference is due to the fact that, in the acceptance formula for this type of requests, 

“Resistance to change” is considered as part of the agents’ behavioral style. 

To study the dimension of “Resistance to change” we analyzed the number of requests accepted 

by the agents of each style of behavior. Table 9 presents data related to the analysis of 

Resistance to change. The µ[0,1] represents the values obtained in study 1 regarding the 

dimension of “Resistance to change” in each of the behavior styles. A. represents the average 

percentage of accepted requests for each style of behavior. P. represents the values of A., 

standardized on a scale of [0,1], where the sum of all values is equals 1. 

Table 9. “Resistance to change” dimension – number of requests accepted by n agents for the 5 behavior styles 

 Dominating Integrating Obliging Compromising Avoiding 

 µ[0,1] 0,92 0,54 0,12 0,42 0,10 

 G. 0,02 0,15 0,30 0,20 0,31 

Resistance to 

change 

5 

Agents 

A. 2,20% 9,81% 26,88% 14,66% 23,57% 

P. 0,02 0,12 0,34 0,19 0,30 

10 

Agents 

A. 0,71% 6,18% 11,45% 7,51% 10,19% 

P. 0,01 0,17 0,31 0,20 0,28 

20 

Agents 

A. 0,45% 2,71% 5,19% 3,39% 5,04% 

P. 0,02 0,16 0,30 0,20 0,30 

40 

Agents 

A. 0,21% 1,23% 2,45% 1,65% 2,40% 

P. 0,02 0,15 0,30 0,20 0,30 

 

Irrespectively of the calculation the acceptance of any type of requests used in the 

argumentation-based negotiation model proposed in Joao Carneiro et al. (In Press, 2017), and of 

having the agents expressing preferences for several alternatives and different criteria, it was 

verified that, in the long term, the values of G. and P. remain practically the same. The agents 

presented a resistance to change almost equal to that identified in study 1 for each of the 

behavior styles. 

In order to study the dimension “Activity level” we analyzed the average number of statements 

and questions made by the agents of each style of behavior during the 100 simulations. Table 10 

presents the data related to the analysis of “Activity level”. The µ[0,1] represents the values 

obtained in study 1 regarding the dimension of “Activity level” in each behavior style. G. 

represents the values µ[0,1] normalized on a scale of [0,1], where the sum of all values equals 1. 

µ represents the mean number of statements and questions performed by each style of behavior 

over 100 simulations. The σ represents the standard deviation over 100 simulations. The Min. is 

the minimum number of interventions performed and the Max. is the maximum number of 

interventions in the 100 simulations. P. represents normalized values of µ on a scale of [0,1], 

where the sum of all values equals 1. 



Table 10. “Activity level” dimension – number of statements and questions made by n agents for the 5 behavior styles 

 Dominating Integrating Obliging Compromising Avoiding 

 µ[0,1] 0,94 0,90 0,23 0,58 0,05 

 G. 0,34 0,33 0,08 0,22 0,02 

Activity level 

5 

Agents 

µ 3,6 3,28 1,31 2,19 0,65 

σ 1,48 1,82 1,06 1,30 0,71 

Min. 0 0 0 0 0 

Max. 8 9 4 6 2 

P. 0,32 0,29 0,11 0,19 0,05 

10 

Agents 

µ 3,28 3,41 0,8 1,65 0,59 

σ 1,41 1,50 0,79 1,13 0,69 

Min. 0 0 0 0 0 

Max. 8 9 4 5 3 

P. 0,33 0,35 0,08 0,16 0,06 

20 

Agents 

µ 2,56 2,56 0,38 0,87 0,18 

σ 1,41 1,52 0,63 0,89 0,41 

Min. 0 0 0 0 0 

Max. 8 9 3 5 2 

P. 0,39 0,39 0,05 0,13 0,02 

40 

Agents 

µ 1,82 1,54 0,11 0,33 0,05 

σ 1,27 1,21 0,34 0,61 0,24 

Min. 0 0 0 0 0 

Max. 8 7 2 5 2 

P. 0,47 0,4 0,02 0,08 0,01 

 

We have verified that in relation to the dimension of “Activity level” the values of G. and P. 

were very similar. It is interesting to note that as the number of agents was increased in the 

various simulation environments, the fact that there were several “Dominating” and 

“Integrating” agents in the same decision process led to the monopolization of the conversation 

by them. 

To study (h3) we created 2 simulation environments where 5/12 agents sought to achieve 

consensus. We created groups of 5 simulations where in these 5 simulations each of the 5/12 

agents always had the same preferences regarding the alternatives and criteria. In addition, 4/11 

agents always maintained the same behavioral style and there was 1 agent (which was the target 

agent) that in each of the 5 simulations had each of the 5 possible behavior styles (without 

repetition). The idea was to compare each of the styles of behavior under the same context. Each 

group of 5 simulations was repeated 20 times, the difference from one group to another being 

that the agents generated new preferences for alternatives and criteria and the other 4/11 agents 

adopted a new behavioral styles (randomly). A total of 200 simulations were performed 

(2*5*20). To understand the impact of the decision on each of the agents, satisfaction was used 

as a metric, according to Carneiro, Santos, Marreiros, and Novais (In Press, 2017). Satisfaction 

varies on a scale of [-1,1], where -1 means extremely dissatisfied and 1 means extremely 

satisfied. 

Table 11 shows the average satisfaction and the standard deviation of the target agent using 

each behavior style in a simulation environment with 5 agents. We found that on average, 

satisfaction was higher using the “Dominating” behavior style, however, it was also with the 

“Dominating” behavior style that satisfaction showed the most variability. Through the use of 

the “Obliging” behavior style, the agent achieved on average the lowest satisfaction but also less 

variable. 

Table 11. Mean and standard deviation of satisfaction with five agents 

 Dominating Integrating Obliging Compromising Avoiding 



µ 0,33 0,21 0,19 0,21 0,25 

σ 0,54 0,30 0,23 0,29 0,27 

 

Table 12 shows the number of times the target agent achieved more or less satisfaction in each 

of the groups of 5 simulations with each behavior styles (5 agent). “1st means the highest 

satisfaction” and “5th” means the lowest satisfaction within each set of 5 simulations. For 

example, with the Dominating behavior style, the agent was able to achieve 14 times the best 

satisfaction result in relation to the other behavior styles (under the same conditions). However, 

the Dominating behavior style also caused the agent to get the worst satisfaction result 6 times. 

We found that by using the “Integrating” style of behavior in this simulation environment most 

of the times, the satisfaction obtained was intermediate. 

Table 12. Number of times each style appears in the several ranks of satisfaction 

 Dominating Integrating Obliging Compromising Avoiding 

1º 14 0 4 1 1 

2º 0 2 3 4 11 

3º 0 15 2 3 0 

4º 0 2 2 10 6 

5º 6 1 9 2 2 

 

Figure 15 shows the satisfaction obtained by the target agent in the 5-agent simulation 

environment using the Dominating and Obliging behavior styles. As we can see, although most 

of the time the “Dominating” achieves greater satisfaction, when it cannot achieve its goals it is 

also much more dissatisfied. On the other hand, the “Obliging” shows that its satisfaction 

throughout the various simulations is more stable. 

 

Figure 15. Satisfaction with Dominating and Obliging in 100 simulations 

Table 13 shows the average satisfaction and standard deviation of the target agent using each of 

the behavior styles in a 12 agent environment simulation. It was again verified that the agent 

with the “Dominating” style continues to achieve the highest average satisfaction, showing also 

the most variability. With 12 agents, the average satisfaction of “Integrating” was quite close to 

that of “Dominating” with the advantage of showing much less variability. 

Table 13. Mean and standard deviation of satisfaction with 12 agents 

 Dominating Integrating Obliging Compromising Avoiding 

µ 0,15 0,11 -0,03 0,09 -0,05 

σ 0,47 0,32 0,38 0,36 0,36 
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Table 14 shows the number of times the target agent achieved more or less satisfaction in each 

of the 5-simulation groups with each of the behavior styles (12 agents) – “1st” means/refers to 

the highest satisfaction and “5th” means the lowest satisfaction within each set of 5 simulations. 

Table 14. Number of times each style appears in the several ranks of satisfaction 

 Dominating Integrating Obliging Compromising Avoiding 

1º 6 4 2 4 4 

2º 4 5 3 5 3 

3º 2 4 4 6 4 

4º 3 4 6 0 7 

5º 5 3 5 5 2 

 

Figure 16 presents the satisfaction obtained by the target agent in the 12-agent simulation 

environment using the Dominating, Obliging and Compromising behavior styles. 

 

Figure 16. Satisfaction with Dominating, Obliging and Compromising in 100 simulations 

7. Discussion 

Using agents to represent decision-makers in group decision-making processes is a widely used 

strategy in our field. The representation of the decision-makers may have different levels of 

complexity and should be conceived according to the context and objectives of the system that 

will operate. We must be extremely mindful when designing the representation of decision-

makers in group decision support systems that will be used by the decision-makers themselves 

during the decision process. Let us imagine a decision-maker, who has certain limitations, so 

that he/she is not able to dialogue with the other decision-makers in a face-to-face meeting. This 

decision-maker has no persuasive skills and the only influence he/she has in the decision is 

his/her own vote. If such a decision-maker was literally represented by an agent, he would 

generate a purely reactive agent, not having any influence in the decision (except for the fact 

that his/her own preferences would be taken into account). The question that arises is: would 

this decision-maker be interested in using a system that would represent him/her in this way, 

mimetizing his unwanted characteristics? This means that this decision-maker may have interest 

in the process and also knowledge that would add value to the decision-making process, but still 

could not show it in face-to-face meetings. Thus, the decision-making process would only 

benefit from representing the decision-maker in a way that he/she is not, or at least in a way 

he/she cannot be in face-to-face meetings. Moreover, as we have previously asserted, it would 

be impossible (with the current knowledge) to define a decision-maker in a way that allows 

him/her to be used in all future meetings. Regardless of the decision make’s personality, due to 

his/her intentions/goals, the behavior will invariably shift according to his/her interests and 
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context. Rather than a point in time, the decision-making process unfolds over a period of time. 

It requires several steps such as the exchange of ideas, reflection on the others’ opinions, the 

maturing of ideas, etc. Therefore, the duration of the decision-making process depends on 

several factors, but what we would like to point out is that the important decisions made in large 

organizations do not happen over a short period of time. This means that a GDSS will be used 

throughout the process and it should allow the decision-makers to express different intentions 

during that same process. All of this led us to focus on defining behavioral styles rather than 

defining the decision-makers’ personality. 

The results we obtained with this work were way stronger than we anticipated. However, at this 

point we consider that although we have verified the hypotheses h2 and h3, the results we 

achieved still aren’t as beneficial as they could be in real scenarios. This happens because of the 

scarcely human way by which the variables are randomly generated. For example, in our 

simulations, agents with obliging behavior tend to reach/seek the goals of all other agents, 

which is a rather unrealistic scenario. In a real situation, an obliging agent will probably seek to 

achieve the goals of a subgroup of decision makers who, in turn, may even agree with each 

other. Also, in a real context, decision-makers are able to reconfigure their preferences 

throughout the process. This can happen (for example) because the decision maker may agree 

with arguments that support certain opinions and thereby change their preferences. 

Another key feature in the development of this work was to verify that no style of behavior is 

the most or the least advantageous every single time, (which may occur in real situations), 

making it impossible for decision-makers to think that “it is worth trying to deceive the system” 

to their own benefit. The idea is that, for decision makers, best results may be achieved by 

selecting the behavior style that best represents their intentions. Besides demonstrating the 

interest of selecting a behavior that meets the intentions of decision makers, it helps decision-

makers to feel motivated to make a rational choice of the behavioral style. In turn, GDSS may 

use this information (of what decision makers want) to, by means of algorithms or other 

strategies, promote consensus and the quality of the decision. In the experiments we ran, we 

showed that agents configured with the Dominating behavior style tend to reach their goals 

more often, whilst also being the ones who are the most harmed when they don’t succeed. 

8. Conclusions and Future Work 

Ultimately, with the ever-increasing profusion of large organizations, group decision-making 

has become the rule in terms of decision format over the last decades. Organizational growth 

has posed new challenges, namely due to the difficulties experienced by top managers and 

executives when they need to meet in a same place at the same time. To support decision 

processes, Web-based Group Decision Support Systems have been widely proposed in literature 

as means to allow the decision-makers to participate in the decision process anytime and 

anywhere. The fact that they are web-based makes them multiplatform systems prone to be 

rendered accessible through almost any kind of device. However, several limitations make it 

hard for them to succeed, such as: endowing the representation, the interests and intentions of 

the decision-makers with accuracy. 

In this work, we suggested a set of behavior styles that can be used to model agents that can 

represent decision-makers in the context of group decision-making. Our option renders the 

agents much more reality-based because, besides allowing the typical configurations related to 

the problem (alternatives and criteria), it makes them capable of representing the decision-

makers’ intentions. In this context, we conceive intentions as what the decision-makers wants to 

get from the decision-making process, i.e., not only what they intend to achieve (objectives) but 

also how they intend to face them. This means that in our approach, a decision-maker may 

consider (for instance) Alternative i: a) the best solution for a certain problem and his main 



intention is to achieve that solution, b) the best solution but his main intention may be to please 

and meet a subset of decision-makers’ interests, or c) in an earlier stage of the decision-making 

process but, because he considers his position to be less solid and by having little knowledge 

about the problem, he prefers to remain less interventive until he constructs a more solid and 

substantiated opinion. 

This approach is intended to be used not only in simulators but also in real systems. This raised 

concerns that normally are not considered in the literature in this field, such as assessing how 

consensual is the understanding of the proposed behavioral styles and of how people classify 

them. Since we were able to validate our hypotheses, there are now exact operating values for 

each behavioral style that from now on, can be used elsewhere. Also, we developed a prototype 

that allowed us to perceive and interpret the results of using behavioral styles as the basis for 

modeling agents. We found that using behavioral styles allows the automatic negotiation 

mechanisms to enjoy the typical heterogeneity of real meetings. 

In the future, the use of other models either derived from personality or attachment theory, or 

possibly both, may open new avenues for agent modeling, with further improvements in the 

quality of their representativeness. We foresee that these developments may meet the ever-

changing needs of decision-makers, that may often be willing to shift from simulating their own 

traits to change functioning styles to optimize performance in different environments depending 

on the situation, present or absent he may be. If one can even configure his/her own pattern of 

changes, then intelligence systems will really keep pace with the complexities and subtleties of 

human behavior either for purposes of simulation/representation or intended enhancement. 

These changes may help a system to support group decision-making to perceive important 

information and to use that same knowledge to support the decision. 
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