422 research outputs found

    A cross organisation compatible workflows generation and execution framework

    Get PDF
    With the development of the Internet, the demand for electronic and online commerce has increased. This has, in turn, increased the demand for business process automation. In this paper, we look at the use of workflows for business process automation. An automatically generated workflow can save time and resources needed for running online businesses. In general, due to the interdependencies between their activities, multiple business organisations will need to work together by collaborating and coordinating their activities with each other. This gives rise to the need for workflow collaboration across organisations. Current systems for workflow collaboration are only capable of reconciling existing workflows of the collaborating organisations. Automatic workflow generation systems only generate workflows for individual organisations and cannot handle the automatic generation of compatible workflows for multiple collaborating organisations. To overcome this problem, in this paper, we present a framework that is able to generate multiple sets of compatible workflows for multiple collaborating organisations. The proposed framework supports runtime enactment and runtime collaboration of the generated workflows. This framework enables users to save the time and resources that would otherwise be spent in modelling, reconciling and reengineering workflows

    An ontology-based model management architecture for service innovation

    Get PDF
    Organizations have indicated renewed interest in service innovation, design and management, given the growth of service sector. Decision support systems (DSS) play an important role in supporting this endeavor, through management of organizational resources such as data and models. Given the global nature of service value chains, there have been ever increasing demands on managing, sharing, and reusing these heterogeneous and distributed resources, both within and across organizational boundaries, through DSS consisting of database management systems (DBMS) and model management systems (MMS). Analogous to DBMS, model management systems focus on the management of decision models, dealing with representation, storage, and retrieval of models as well as a variety of applications such as analysis, reuse, sharing, and composition of models. Recent developments in the areas of semantic web and ontologies have provided a rich tool set for computational reasoning about these resources in an intelligent manner. In this chapter, we leverage these advances and apply service-oriented design principles to propose an ontology-based model management architecture supporting service innovation. The architecture is illustrated with case study scenarios and current state of implementation. The role of potential information technologies in supporting the architecture is also discussed. We then provide a roadmap to make advancements in research in this direction

    Proceedings of the 2012 Workshop on Ambient Intelligence Infrastructures (WAmIi)

    Get PDF
    This is a technical report including the papers presented at the Workshop on Ambient Intelligence Infrastructures (WAmIi) that took place in conjunction with the International Joint Conference on Ambient Intelligence (AmI) in Pisa, Italy on November 13, 2012. The motivation for organizing the workshop was the wish to learn from past experience on Ambient Intelligence systems, and in particular, on the lessons learned on the system architecture of such systems. A significant number of European projects and other research have been performed, often with the goal of developing AmI technology to showcase AmI scenarios. We believe that for AmI to become further successfully accepted the system architecture is essential

    Proceedings of the 2012 Workshop on Ambient Intelligence Infrastructures (WAmIi)

    Get PDF
    This is a technical report including the papers presented at the Workshop on Ambient Intelligence Infrastructures (WAmIi) that took place in conjunction with the International Joint Conference on Ambient Intelligence (AmI) in Pisa, Italy on November 13, 2012. The motivation for organizing the workshop was the wish to learn from past experience on Ambient Intelligence systems, and in particular, on the lessons learned on the system architecture of such systems. A significant number of European projects and other research have been performed, often with the goal of developing AmI technology to showcase AmI scenarios. We believe that for AmI to become further successfully accepted the system architecture is essential

    Agent-based modeling: a systematic assessment of use cases and requirements for enhancing pharmaceutical research and development productivity.

    Get PDF
    A crisis continues to brew within the pharmaceutical research and development (R&D) enterprise: productivity continues declining as costs rise, despite ongoing, often dramatic scientific and technical advances. To reverse this trend, we offer various suggestions for both the expansion and broader adoption of modeling and simulation (M&S) methods. We suggest strategies and scenarios intended to enable new M&S use cases that directly engage R&D knowledge generation and build actionable mechanistic insight, thereby opening the door to enhanced productivity. What M&S requirements must be satisfied to access and open the door, and begin reversing the productivity decline? Can current methods and tools fulfill the requirements, or are new methods necessary? We draw on the relevant, recent literature to provide and explore answers. In so doing, we identify essential, key roles for agent-based and other methods. We assemble a list of requirements necessary for M&S to meet the diverse needs distilled from a collection of research, review, and opinion articles. We argue that to realize its full potential, M&S should be actualized within a larger information technology framework--a dynamic knowledge repository--wherein models of various types execute, evolve, and increase in accuracy over time. We offer some details of the issues that must be addressed for such a repository to accrue the capabilities needed to reverse the productivity decline

    A MULTI-FUNCTIONAL PROVENANCE ARCHITECTURE: CHALLENGES AND SOLUTIONS

    Get PDF
    In service-oriented environments, services are put together in the form of a workflow with the aim of distributed problem solving. Capturing the execution details of the services' transformations is a significant advantage of using workflows. These execution details, referred to as provenance information, are usually traced automatically and stored in provenance stores. Provenance data contains the data recorded by a workflow engine during a workflow execution. It identifies what data is passed between services, which services are involved, and how results are eventually generated for particular sets of input values. Provenance information is of great importance and has found its way through areas in computer science such as: Bioinformatics, database, social, sensor networks, etc. Current exploitation and application of provenance data is very limited as provenance systems started being developed for specific applications. Thus, applying learning and knowledge discovery methods to provenance data can provide rich and useful information on workflows and services. Therefore, in this work, the challenges with workflows and services are studied to discover the possibilities and benefits of providing solutions by using provenance data. A multifunctional architecture is presented which addresses the workflow and service issues by exploiting provenance data. These challenges include workflow composition, abstract workflow selection, refinement, evaluation, and graph model extraction. The specific contribution of the proposed architecture is its novelty in providing a basis for taking advantage of the previous execution details of services and workflows along with artificial intelligence and knowledge management techniques to resolve the major challenges regarding workflows. The presented architecture is application-independent and could be deployed in any area. The requirements for such an architecture along with its building components are discussed. Furthermore, the responsibility of the components, related works and the implementation details of the architecture along with each component are presented

    Semantics and Planning Based Workflow Composition for Video Processing

    Get PDF
    This work proposes a novel workflow composition approach that hinges upon ontologies and planning as its core technologies within an integrated framework. Video processing problems provide a fitting domain for investigating the effectiveness of this integrated method as tackling such problems have not been fully explored by the workflow, planning and ontological communities despite their combined beneficial traits to confront this known hard problem. In addition, the pervasiveness of video data has proliferated the need for more automated assistance for image processing-naive users, but no adequate support has been provided as of yet. The integrated approach was evaluated on a video set originating from open sea environment of varying quality. Experiments to evaluate the efficiency, adaptability to user’s changing needs and user learnability of this approach were conducted on users who did not possess image processing expertise. The findings indicate that using this integrated workflow composition and execution method: 1) provides a speed up of over 90 % in execution time for video classification tasks using full automatic processing compared to manual methods without loss of accuracy; 2) is more flexible and adaptable in response to changes in user requests than modifying existing image processing programs when the domain descriptions are altered; 3) assists the user in selecting optimal solutions by providing recommended descriptions

    HyDRA Hybrid workflow Design Recommender Architecture

    Get PDF
    Workflows are a way to describe a series of computations on raw e-Science data. These data may be MRI brain scans, data from a high energy physics detector or metric data from an earth observation project. In order to derive meaningful knowledge from the data, it must be processed and analysed. Workflows have emerged as the principle mechanism for describing and enacting complex e-Science analyses on distributed infrastructures such as grids. Scientific users face a number of challenges when designing workflows. These challenges include selecting appropriate components for their tasks, spec- ifying dependencies between them and selecting appropriate parameter values. These tasks become especially challenging as workflows become increasingly large. For example, the CIVET workflow consists of up to 108 components. Building the workflow by hand and specifying all the links can become quite cumbersome for scientific users.Traditionally, recommender systems have been employed to assist users in such time-consuming and tedious tasks. One of the techniques used by recommender systems has been to predict what the user is attempting to do using a variety of techniques. These techniques include using workflow se- mantics on the one hand and historical usage patterns on the other. Semantics-based systems attempt to infer a user’s intentions based on the available semantics. Pattern-based systems attempt to extract usage patterns from previously-constructed workflows and match those patterns to the workflow un- der construction. The use of historical patterns adds dynamism to the suggestions as the system can learn and adapt with “experience”. However, in cases where there are no previous patterns to draw upon, pattern-based systems fail to perform. Semantics-based systems, on the other hand infer from static information, so they always have something to draw upon. However, that information first has to be encoded into the semantic repository for the system to draw upon it, which is a time-consuming and tedious task in it self. Moreover, semantics-based systems do not learn and adapt with experience. Both approaches have distinct, but complementary features and drawbacks. By combining the two approaches, the drawbacks of each approach can be addressed.This thesis presents HyDRA, a novel hybrid framework that combines frequent usage patterns and workflow semantics to generate suggestions. The functions performed by the framework include; a) extracting frequent functional usage patterns; b) identifying the semantics of unknown components; and c) generating accurate and meaningful suggestions. Challenges to mining frequent patterns in- clude ensuring that meaningful and useful patterns are extracted. For this purpose only patterns that occur above a minimum frequency threshold are mined. Moreover, instead of just groups of specific components, the pattern mining algorithm takes into account workflow component semantics. This allows the system to identify different types of components that perform a single composite function. One of the challenges in maintaining a semantic repository is to keep the repository up-to-date. This involves identifying new items and inferring their semantics. In this regard, a minor contribution of this research is a semantic inference engine that is responsible for function b). This engine also uses pre-defined workflow component semantics to infer new semantic properties and generate more accurate suggestions. The overall suggestion generation algorithm is also presented.HyDRA has been evaluated using workflows from the Laboratory of Neuro Imaging (LONI) repos- itory. These workflows have been chosen for their structural and functional characteristics that help� to evaluate the framework in different scenarios. The system is also compared with another existing pattern-based system to show a clear improvement in the accuracy of the suggestions generated
    corecore