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Abstract

Workflows are a way to describe a series of computations on raw e-Science data. These data may be
MRI brain scans, data from a high energy physics detector or metric data from an earth observation
project. In order to derive meaningful knowledge from the data, it must be processed and analysed.
Workflows have emerged as the principle mechanism for describing and enacting complex e-Science
analyses on distributed infrastructures such as grids. Scientific users face a number of challenges when
designing workflows. These challenges include selecting appropriate components for their tasks, spec-
ifying dependencies between them and selecting appropriate parameter values. These tasks become
especially challenging as workflows become increasingly large. For example, the CIVET workflow
consists of up to 108 components. Building the workflow by hand and specifying all the links can
become quite cumbersome for scientific users.

Traditionally, recommender systems have been employed to assist users in such time-consuming
and tedious tasks. One of the techniques used by recommender systems has been to predict what the
user is attempting to do using a variety of techniques. These techniques include using workflow se-
mantics on the one hand and historical usage patterns on the other. Semantics-based systems attempt
to infer a user’s intentions based on the available semantics. Pattern-based systems attempt to extract
usage patterns from previously-constructed workflows and match those patterns to the workflow un-
der construction. The use of historical patterns adds dynamism to the suggestions as the system can
learn and adapt with “experience”. However, in cases where there are no previous patterns to draw
upon, pattern-based systems fail to perform. Semantics-based systems, on the other hand infer from
static information, so they always have something to draw upon. However, that information first has
to be encoded into the semantic repository for the system to draw upon it, which is a time-consuming
and tedious task in itself. Moreover, semantics-based systems do not learn and adapt with experience.
Both approaches have distinct, but complementary features and drawbacks. By combining the two
approaches, the drawbacks of each approach can be addressed.

This thesis presents HyDRA, a novel hybrid framework that combines frequent usage patterns
and workflow semantics to generate suggestions. The functions performed by the framework include;
a) extracting frequent functional usage patterns; b) identifying the semantics of unknown components;
and c) generating accurate and meaningful suggestions. Challenges to mining frequent patterns in-
clude ensuring that meaningful and useful patterns are extracted. For this purpose only patterns that
occur above a minimum frequency threshold are mined. Moreover, instead of just groups of specific
components, the pattern mining algorithm takes into account workflow component semantics. This
allows the system to identify different types of components that perform a single composite function.
One of the challenges in maintaining a semantic repository is to keep the repository up-to-date. This
involves identifying new items and inferring their semantics. In this regard, a minor contribution
of this research is a semantic inference engine that is responsible for function b). This engine also
uses pre-defined workflow component semantics to infer new semantic properties and generate more
accurate suggestions. The overall suggestion generation algorithm is also presented.

HyDRA has been evaluated using workflows from the Laboratory of Neuro Imaging (LONI) repos-
itory. These workflows have been chosen for their structural and functional characteristics that help



Acronyms Acronyms

to evaluate the framework in different scenarios. The system is also compared with another existing
pattern-based system to show a clear improvement in the accuracy of the suggestions generated.
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CHAPTER 1

Introduction

Recently scientific projects and applications are being increasingly characterised by their large-
scale computation and data storage requirements. In order to meet these computation and data storage
needs, scientific research is generally carried out using large-scale distributed computing infrastruc-
tures. This type of scientific research is generally termed as e-Science, and the infrastructures that sup-
port these endeavours are termed as e-Science infrastructures. It has been described as being “…about
global collaboration in key areas of science and the next generation of infrastructure that will enable
it.”¹ e-Science spans domains from the Arts and Humanities to Physical Sciences and Engineering.

An e-Science infrastructure generally consists of a set of distributed heterogeneous computing
sites. Such resources are commonly located within different institutions and may be geographically
distributed around the world and connected via the internet. Each site may consist of a set of net-
worked computing, storage, or supercomputing resources. All these resources are generally linked
via a middleware that provides the necessary abstraction to enable the exploitation and use of the in-
frastructure. Some of the state-of-the-art e-Science platforms include grid² middlewares such as EGEE
gLite, Globus and Unicore [1, 2, 3].

Large scale distributed e-Science infrastructures exist in the form of the Enabling Grids for E-
sciencE (EGEE) project , the Open Science Grid, TeraGrid, as well as smaller national-scale grids such
as the National Grid Service [4, 5, 6, 7]. Grid infrastructures were initially developed to support “big
science” projects, such as Astronomy and Particle Physics. However, due to the transformative nature
of these infrastructures e-Science technologies are being used in an ever increasing number of sci-
entific domains. Researchers typically access e-infrastructures in order to use them to run a number
of compute-intensive analyses on their data. These analyses take a significant amount of time and
have interdependencies that need to be managed. Additionally, due to the distributed nature of e-
infrastructures, the execution of these analyses on the distributed resources must also be orchestrated.
Workflows are the primary technology that are used for these purposes. In Section 1.1, scientific

¹John Taylor, Director of Research Councils, Office of Science and Technology, UK
²Grids have been considered synonymouswith e-Science infrastructures. However recently they are no longer considered

the exclusive e-Science infrastructure.
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1.1. SCIENTIFIC WORKFLOWS CHAPTER 1. INTRODUCTION

workflows are discussed in detail.
One domainwhere e-Science is increasingly being applied is the study of neurodegenerative diseases

[8]. A neurodegenerative disease is one in which neurons are progressively damaged. Examples of
neurodegenerative conditions include Alzheimer’s and Parkinson’s disease. These illnesses mostly
occur in elderly people. As the populations of the world are ageing, particularly in Europe, such
diseases are becoming more and more common. The problem with such diseases is that thus far they
are incurable. In fact, even the diagnosis of these diseases is extremely difficult. Generally speaking,
the analysis and diagnosis of these conditions often requires large-scale computing infrastructures.
Thus far, research in this domain has been largely hindered by the absence of such platforms. In
Section 1.2, one application of e-Science in this domain is discussed.

1.1 Scientific Workflows

Raw e-Science data (for example MRI brain scans, data from a high energy physics detector or
metric data from an earth observation project) need to undergo a series of computations before mean-
ingful knowledge can be derived. One way to describe these series of computations on raw e-Science
data are workflows. Workflows have emerged as the principal mechanism for describing and enacting
complex e-Science analyses on distributed infrastructures such as grids [9]. They provide domain sci-
entists with a systematic, repeatable and reproducible means of conducting scientific analyses. This
allows the analysis process to be divided into distinct steps such as design, execution and analysis of
results allowing scientists to concentrate on each step in turn. From a computer science viewpoint
on the other hand, workflows encapsulate the specification of the series of computations and the data
flows required to achieve a specific goal or data product. This data product may be, for example, a
cortical thickness measurement of the brain or a simulated climate model.

Since the 1990s a significant amount of research has been carried out in developing workflowman-
agement systems. These workflow management systems provide the necessary mechanisms to enable
scientists to construct workflows, to enact them and to retrieve workflow output. Workflows have
also been used by the business community to automate business logic as well as to orchestrate various
business components and key personnel. There are many similarities between business workflows and
scientific workflows, however there are some fundamental differences [10].

Due to the demands of state-of-the-art e-Science applications, scientific workflows are increasing
in complexity. This complexity is multi-dimensional [11]; scientific workflows are therefore constantly
growing in terms of the number of computations and tasks they carry out. This has given rise to a
variety of new challenges for researchers developing workflows. One such challenge is that scientists
have to sift through increasingly large workflow component repositories in order to construct their
desired workflows. A number of issues are involved in choosing appropriate workflow components.
There may be many variants of a single component that perform the same computation with only
slight differences. Components also often require various parameter settings. Scientists might not
have a clear idea of appropriate settings when they are starting their analyses. Additionally, some
components may not be compatible with others or may require specific parameters settings to work
correctly.

The issues mentioned previously are compounded by the fact that scientists can only learn about
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CHAPTER 1. INTRODUCTION 1.2. E-SCIENCE IN NEUROSCIENCE

them through trial and error. This renders workflow composition a tedious, repetitive and time-
consuming task. It is interesting to note that quite often different scientists may face similar problems
when composing workflows. Their experiments may require performing related or similar analyses
on their data. By enabling knowledge sharing among different scientists about their successes and
failures, some of the complexities may be alleviated. The next section discusses the role of e-Science
in neuroscience.

1.2 E-Science in Neuroscience

Neuroimaging is the primary tool used in the study of neurodegenerative diseases. It includes the
use of various techniques to image the human brain to study its structure and function. It has been
known for some time that neurodegenerative diseasesmark the brainwith biomarkers ormorphological

signatures [12]. By detecting these morphological signatures, researchers can detect the early onset
of the neurodegenerative diseases. The detection of these biomarkers has been the primary focus of
research in this domain. However, it is not easy to detect such biomarkers in the early stages of the
onset of these diseases since only a small percentage of the brain is affected.

Using a medical imaging technique called MRI, detailed brain scans can be acquired. Due to recent
advances, these scans have sufficient spatial accuracy and resolution to detect subtle changes (up to
0.5% in the images of the same individual [12]). Therefore, they are the ideal tool for detecting the early
onset of the neurodegenerative diseases described earlier. However, in order to reliably identify the
onset of these diseases in a particular individual, they must be monitored for the relevant biomark-
ers over a significant amount of time. Furthermore, with the standardisation of MRI scans, large,
centralised neuroimaging repositories containing scans of many patients have emerged. Neuroimag-
ing data repositories include the Alzheimer’s Disease Neuroimaging Initiative (ADNI) [13] and the
US-NIH MRI Study of Normal Brain Development (NIHPD) [14]. These repositories and various spe-
cialised neuroimaging research centres around the world hold thousands of images and cumulatively
hold data set sizes of hundreds of terabytes which will ultimately grow to perhaps tens of petabytes in
a few years. The emergence of these repositories have opened up avenues for mass analysis of these
scans, allowing neuroscientists to conduct research on a larger scale.

In order to extract the biomarkers from an MRI scan, they must be processed using complex algo-
rithms. Recently, toolkits have emerged that provide different algorithms for processing these scans.
These include FMRIB Software Library (FSL) [15], Medical Image NetCDF (MINC) [16] and Statistical
Parametric Mapping (SPM) [17]. Using these algorithms is extremely compute-intensive and requires
extensive processing power, usually not available to neuroscientists. This is where e-Science infras-
tructures can be utilised. In the following section, one such infrastructure is discussed.

1.2.1 neuGRID

neuGRID is an e-Science infrastructure that was developed to allow neuroscientists to perform
mass analyses of MRI scans to detect biomarkers of Alzheimer’s Disease. It was funded by the Eu-
ropean Commission under the Seventh Framework Programme [8]. The analyses are carried out by
executing complex neuroscience workflows on the MRI scans without knowledge of the underlying
distributed infrastructure. The infrastructure developed consists of a set of generic middleware ser-
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vices that abstract the infrastructure from the services provided to the neuroscientists. The services
provided included:

1) Anonymisation Service for stripping patient identifying data from MRI brain scans.
2) Pipeline Service for enacting and orchestrating workflows.
3) Provenance Service for collecting, storing and managing workflow and data provenance³.
4) Querying Service for querying workflow and provenance repositories in the neuGRID infras-

tructure.
5) Glueing Service for acting as a middleman between the neuGRID services and the underlying

distributed infrastructure, allowing them to be generic and portable.
During neuGRID it was observed that there were only a handful of technically savvy users who had
the expertise to design, construct and debug workflows⁴. Most of the scientists simply treated the
workflows as black boxes. This meant that most of the users did not have the technical expertise to
construct or modify workflows for their individual needs. A mechanism to encourage the transfer
of expertise from more advanced scientists to relatively less advanced ones was missing. This was
a hinderance to the large scale analysis of brain scans since to modify the workflows to suit their
purposes, the scientists had to request the experts. Thus, scientific progress was impeded to some
extent. In order to allow themaximum number of neuroscientists to take advantage of the rich features
current e-infrastructure provide, a mechanism for knowledge-sharing was required. Novice users
(neuroscientists), as well as other expert users, should be able to learn from the experiences of each
other. The focus of this thesis shall be to address this problem and devise a method that will enable
knowledge-sharing between expert and novice users.

1.3 Research Goals and Aims

Ever since the mid-seventies, researchers have recognised that capturing and sharing knowledge is
the key to building large and powerful systems. A significant challenge in the knowledge capture do-
main is representing the knowledge in a way that enables reuse. One approach to knowledge sharing
is by building recommender systems [18]. The aim of such systems is to build user recommendation
systems that suggest options to users and help them in choosing. The suggestions are tailored for spe-
cific users based on various criteria like historical evidence. The system, using the evidence, attempts
to estimate the users’ preferences and suggest options the user is likely to choose. Recommender
systems are discussed in greater detail in Chapter 2.

The novel contribution of this research will be to design a recommender system that will assist
users in composing workflows using a combination of semantics coupled with historical knowledge
sharing. For the purposes of this thesis, historical knowledge is defined as the usage patterns that
emerge as users develop workflows. Therefore, an understanding of the workflow composition pro-
cess is necessary. This will also help in determining where the proposed approach can be applied
to improve the design process. This research will also investigate how semantics can be used to im-
prove the suggestion generation process to generate increasingly relevant suggestions. Examples of
semantics include descriptions of the workflow components’ structure and function as well as the

³The author was involved in developing and implementing the Provenance Service in this project.
⁴It must be noted that no part of the research presented in this thesis was undertaken as part of neuGRID. The project

only served as a motivational tool as well as to provide the initial requirements.
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interrelationships between them.

1.4 Research Scope

The aim of this research is to demonstrate how semantics can be combined with historical knowl-
edge to improve the accuracy of suggestions generated by the system. Therefore, the output of this
research is envisaged to be a prototype implementation of such a system. However, this implementa-
tion will not be a fully-functional product that can be presented to users. The prototype will focus on
generating suggestions but user-oriented aspects such as a graphical interface are out of the scope of
this research. Therefore, user testing as well as other related activities such as usability analysis are
also deemed out of the scope of this research. The prototype implementation will be evaluated using
various other qualitative and quantitative methodologies that do not require user intervention.

1.5 Research Hypothesis andQuestions

A significant problem in scientific workflow composition is the volume of the repository of work-
flow components that scientists have to choose from. As described previously, without prior knowl-
edge, it is not easy for scientists to find the appropriate components for their purposes. Additionally,
inter-component compatibility is also an issue. It is difficult for scientists to determine which com-
ponents are compatible without either prior knowledge or specific annotations by other scientists de-
scribing the incompatibilities. This thesis will investigate how to improve the suggestions offered by
recommender systems that attempt to address these challenges. Therefore, the following hypothesis
is formulated:

“Workflow component semantics along with their historical usage patterns can be used to improve the

suggestions offered by recommender systems.”

In order to thoroughly understand the drawbacks of existing workflow composition systems, a
surveymust be conducted andways to improve themmust be identified. This includes studying related
systems. Therefore, the first research question is:

Question 1. What are the limitations of current workflow composition and related systems?

As mentioned before, additional semantics can help in understanding how components function,
what, if any, inter-component incompatibilities exist, and whether a component is related to the sci-
entists’ purposes or not. Therefore, the second research question is:

Question 2. To what extent can workflow component semantics be used to improve the suggestions?

Historical knowledge-sharing can help various scientists learn from the experiences of other sci-
entists. Historical knowledge is encapsulated in the frequent usage patterns of the components. It is
assumed that the more frequently a pattern is used, the more scientists consider it useful. Therefore,
a mechanism to extract the frequent usage patterns is required. To do so, the following question must
be answered:
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Question 3. What approaches are suitable for mining historical usage patterns and how can they be used

to improve suggestions?

This thesis aims to combine semantics and usage patterns to assist users when designing work-
flows. In order to do so, a hybrid framework is required that leverages both of these sources of infor-
mation. Thus, an investigation into how that can be achieved is required:

Question 4. How can workflow component semantics and historical usage patterns be combined to im-

prove the suggestions?

1.6 Research Methodology

Problem Identification
Hypothesis and Questions

Designing a Suggestion Building Framework

Experiment Design
Determination of Parameters for Qualitative Analysis

Qualitative and Quantitative Analysis

Analysis of Results
Validation of Results

Conclusions

Observation

Modelling

Analysis

Evaluation

Figure 1.1: Research methodology.

This research shall be conducted in a phased and iterative manner. Each phase of the research is
designed to produce a specific outcome that feeds into the next. Figure 1.1 shows all the phases. Dur-
ing the Observation phase, the research hypothesis and associated research questions are formulated
based on an initial literature review. Additionally, a detailed survey of recommender systems and the
workflow composition process will be carried out. Special focus will be given to existing workflow
composition tools and their drawbacks. In the Modelling phase, a solution to address the drawbacks
of existing workflow recommender systems shall be proposed based on historical knowledge sharing.
Parameters to perform qualitative evaluation of the framework shall also be determined in this phase.
In the Analysis phase a prototype implementation of the proposed solution shall be developed. The im-
plementation shall then be evaluated on various datasets using qualitative and quantitative analyses.
The results shall then be analysed in the Evaluation phase. The results of these will help in proving or
disproving the hypothesis and associated research questions. Finally, the research shall be concluded
and the findings shall be summarised at the end of the Evaluation phase. The thesis shall be concluded
with some suggested future directions.

1.7 Thesis Structure

In Chapter 2, the background and literature survey is discussed. In particular, an overview of rec-
ommender systems in general along with their categories and approaches including their application
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in workflow systems used is presented. Furthermore, workflow systems in general are also discussed.
After the literature review, the suggestion building framework is presented in Chapter 3 along with
the various components and what part they play in generating the suggestions. In Chapter 4, the
prototype and implementation of the framework along with the challenges faced during the imple-
mentation phase are outlined. Chapter 5 presents the evaluation methodology. Chapter 6 presents a
detailed account of the evaluation of the framework along with the results and analysis of the results.
The thesis concludes in Chapter 7 with a summary of the research outcomes along with their role in
proving/disproving the hypothesis. It concludes with suggested future outcomes.

1.8 Publications

K. Soomro, K. Munir, and R. McClatchey, “Incorporating semantics in pattern-based sci-
entific workflow recommender systems: Improving the accuracy of recommendations,” in
Science and Information Conference, London, UK, July 2015, in press.
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CHAPTER 2

Background and Related Work

Over the years many workflow managements systems have been developed which assist users
when designing workflows [1, 2, 3, 4]. They achieve this by checking whether the workflows are
syntactically, and in some cases semantically, correct. Moreover, several systems have been developed
that enhance the capabilities of these workflow systems and offer proactive suggestions to users while
they are designing the workflows. Thus far, there exists a dichotomy in the approach adopted by these
systems. They either employ a patterns-based or semantics-based approach. Each approach has its
pros and cons that affect how much user effort and expertise is required to use these systems. This
chapter shall attempt to explore these capabilities and limitations and pave the way for proposing a
solution that combines the two approaches. The aim of this survey shall be to highlight factors that
affect the suggestions offered by these systems so that they may be improved.

This chapter introduces and discusses the various concepts and terms that are used throughout this
thesis. It presents an overview of the relevant literature along with a critical evaluation. Figure 2.1
shows the roadmap that this chapter follows. The major literature categories along with important
papers are shown. The various sections are organised around these categories. The chapter begins by
introducing an example neuroimaging workflow in Section 2.1. This is followed by a discussion of the
workflow design process in general (Section 2.2). This section highlights the various challenges faced
by scientists when designing workflows. Section 2.3 describes various workflowmanagement systems
and how they attempt to address these challenges and to what extent. There exist certain intelligent
assistants that augment the capabilities of theseworkflowmanagement systems. These are discussed in
Section 2.5 alongwith their limitations. Section 2.6 generalises the descriptions presented in Section 2.5
and identifies factors that affect the suggestions. Having surveyed these systems, Sections 2.7 to 2.9
cover various techniques they use in the suggestion generation process. Section 2.10 discusses the
literature review and Section 2.11 draws conclusions and summarises the chapter.
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CHAPTER 2. BACKGROUND 2.1. CASE STUDY

2.1 Case Study

In Chapter 1 the importance of workflows in scientific research was discussed. Neuro-imaging
research is one such domain in which workflows are used as an integral part. This section introduces
a typical neuroimaging workflow as a case study. This study will serve as a template for examples
used in Chapters 3, 4 and 6. The various steps that comprise a neuroscience workflow are summarised
below [5]:

1) Brain extraction: The MRI scan is stripped of the skull. Brain and non-brain voxels (volume
elements) are extracted.

2) Tissue segmentation: Voxels representing different types of brain tissues such as grey and white
matter, and CSF are separated.

3) Registration: Spatial normalisation in which the voxels of an image are matched to a template
image. The template may be an earlier scan of the same patient or in case of cross-sectional
analyses, a typical brain map.

4) Statistical comparison: These determine whether neurodegeneration has occurred. Such dete-
riorations may indicate the onset of neurodegenerative diseases.

The pivotal step of any neuroimaging workflow is the registration step. This is the step that allows
different brains scans to be compared. They may be scans of the same patient taken at different times,
or of different patients acquired via different methods (cross-sectional analysis). In addition, errors
may arise during the brain extraction and segmentation phases. For example, gradual variations in
the intensities of the scanned voxels may occur, resulting in a distortion field known as a bias field.
A workflow may also contain steps to correct these errors. Figure 2.2 shows a partial neuroimaging

Reorient

Bias Field 
Corrector

SSMA

FLIRT

3D B-spline 
Deformation

Figure 2.2: A partial neuroimaging workflow.

workflow that extracts 56 regions of interest (ROIs) from the brain and calculates their volumes [6]. The
portion shown in the figure takes an MRI scan and rotates it to match the orientation of a reference
image. After reorienting the image, bias field correction is applied on it to remove errors from the
scanned images. SSMA is an algorithm that performs brain extraction by stripping the skull from the

11 [File Creation Timestamp: 24/02/2016, 14:13]



2.2. WORKFLOW COMPOSITION CHAPTER 2. BACKGROUND

image, leaving only the brain behind. Once the brain has been acquired, the image is finally registered
to the reference image by the FMRIB’s Linear Image Registration Tool (FLIRT) algorithm. This step
produces a transformation matrix that represents the mapping from the target image to the reference
image. 3D B-spline Deformation is an algorithm that takes this transformation matrix and applies it
to the target image to align it with the reference image. The rest of the workflow (not shown here)
takes the registered image, segments it into various ROIs and calculates the volume of each ROI. These
volumes can serve as one statistical measure to determine whether a brain has degenerated or not.

Recall from Chapter 1 that one of the challenges scientists face when designing workflows is the
selection of appropriate algorithms. For example, there are several algorithms available for image
registration such as FLIRT, FNIRT, Align Linear and Align Warp. Each algorithm has its unique char-
acteristics that make it suitable for use in certain conditions. Each algorithm also has specific require-
ments for inputs and outputs that distinguish it from other similar algorithms. Without experience,
users may not know which algorithms are appropriate for their use case. Similarly, specifying the
data-flows and dependencies between these algorithms is also a challenge. Each of these algorithms
also take certain input values as parameters. Determining appropriate values for these parameters
is another challenge. For example, in Figure 2.2 FLIRT has several input parameters that affect its
functioning such as the number of transformation degrees of freedom and the type of interpolation
applied. This research aims to design an intelligent assistant that can monitor user actions as they are
designing workflows and provide useful suggestions about how to proceed. Therefore, this chapter
attempts to identify the capabilities and limitations of existing systems as well as highlight issues that
can affect the suggestions. Before existing systems can be discussed, an understanding of the scientific
workflow composition process is necessary. The next section attempts to provide this understanding.

2.2 The Scientific Workflow Composition Process

The workflow composition process is depicted in Figure 2.3. It assumes the workflow is being
created from scratch. The process begins with a workflow designer looking at a repository of work-
flow components to identify the appropriate component for their needs (Step 1). Once the appropriate
component has been found, the designer adds the component to the workflow (Step 2). With the com-
ponent in place, the designer then specifies its dependencies and relationships with other components
that may already be in the workflow (Step 3). Moreover, the component may require input parameters
that affect how it functions. These parameters are also provided at this step. Once the module has been
configured, the designer then repeats the process for another component if the workflow is incomplete
(Step 1). If the workflow is complete, it is sent to the computing infrastructure for execution (Step 4).
The designer then waits for the workflow to execute and the results to be retrieved. The efficacy of the
workflow can be determined by looking at the results. If the workflow produces the intended results,
the process is complete. If, on the other hand, the results are not satisfactory, then it may be due
to several reasons. Either the parameters provided to the various components may not be correct, or
the components chosen may not be the right ones. There is no way for the designer to know which of
these two cases is true. Therefore, the designer has to adopt a trial and error approach from this point
onwards. They must either try different parameters for the components already in the workflow (Step
3), or go back to the repository and try different components (Step 1). This process continues until the
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constructed workflow yields the required results.
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Figure 2.3: The workflow composition process.

To illustrate the aforementioned process, consider the partial workflow shown in Figure 2.2. Sup-
pose that a user wishes to construct this workflow from scratch. There are several starting points the
user can choose from. The user can start with the input data, and keep adding components that can
process that data until the desired result is achieved. The user can also start by adding the most sig-
nificant components and then add those required by the significant ones. For example, in the example
workflow, the most significant steps required to segment the brain into various ROIs are registration
and segmentation. Registration normalises the image according to a template so that different regions
in the target image can be reliably identified. Segmentation actually performs the classification of
the normalised brain tissue into the required ROIs. As mentioned previously, there are several com-
ponents that can perform registration. Not all components would be appropriate in this case. For
example, FLIRT is a linear registration tool while FNIRT is a non-linear registration tool. Depending
on the input image, only one of the two would be appropriate here. Reslicing is another step that is
part of the registration process. Again, there are several components like 3D B-spline Deformation,
Reslice, Reslice Warp that perform reslicing. However, only some of these components can work to-
gether. Therefore, putting these components together requires knowledge, experience and effort. This
is one scenario where an intelligent assistant can be helpful for users. In addition, registration cannot
be performed on a raw MRI image. It has to be preprocessed to strip the skull and expose the brain.
Once again, there are several components, such as BET and SSMA that can perform this operation.
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Here again, an intelligent assistant can be helpful. It can determine that the workflow contains a reg-
istration step without a brain extraction step and suggest it to the user. Similarly, the assistant can
also suggest connections between these components and their configuration parameters.

This entire process is error-prone, time consuming and fragile. Quite often, the repository of com-
ponents that workflow designers have to sift through is very large. Finding the appropriate component
is a tedious task. Each component has some inputs that must be satisfied, and some outputs. Inputs
can either be satisfied by connecting to the output of some other component or by providing fixed
values that generally remain the same throughout the execution of the workflow. Here again, there
is a high risk of error. In the first case, it must be ensured that the output of the previous component
is compatible with the input of the latter component. In the second case, determining appropriate
values for correct and desirable functioning of the components is often a challenge. It must also be
ensured that all the inputs of all the components of a workflow are satisfied and all the outputs of all
the components are consumed. This becomes especially difficult when the workflows are large and
contain hundreds of components. In addition, workflows cannot have cycles in them (loops in the
execution). Cycles make it difficult for distributed infrastructures to determine the order of execution
of the components in the workflow. Therefore, workflow management systems generally represent
workflows as acyclic graphs. This makes debugging workflows and ensuring correctness a significant
challenge. However, ensuring correctness only ensures that the workflow will execute successfully
on the computing infrastructure. It may still not produce desirable and useful results. Desirability and
usefulness of results can be achieved by using appropriate components, connected properly to each
other and provided appropriate parameter settings. Such knowledge comes with experience. Conse-
quently, designing complex workflows is an especially daunting task for novice designers. In the next
section, existing workflowmanagement systems and how they address these challenges are discussed.

2.3 Workflow Composition Systems

Recently, workflow composition systems have become an important tool to design and manage
scientific workflows. Yu et al [7] present a taxonomy of different workflow systems. There are two
main approaches to workflow composition; user-directed and automated. In user-directed systems,
users directly edit and compose workflows by hand. In automated systems, users provide descriptions
of the kinds of workflows they want along with input and output data descriptions. The system takes
these descriptions and generates workflows for the user. Such systems are useful for large workflows
containing hundreds of components, but it is very difficult to capture the requirements accurately.

User-directed workflow systems [3, 8] further employ two techniques to modelling workflows;
language-based [8, 9] and graph-based [3, 10]. Language-based workflow systems require a user to
express the workflow in a workflow representation language. Such systems work reasonably well for
simple workflows. However, as the workflows get more complex, the limitations of textual workflow
systems become apparent. In graph-based workflow systems [1, 10], users construct graph-like visual
representations of workflows. The individual components form the nodes or vertices of the graphs
and the connections between them form the edges between the nodes. Graph-based systems make the
job of designing workflows considerably easier. However, for large workflows containing hundreds of
nodes, visual workflow representations become inconvenient. For this reason, such systems usually
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provide some kind of nesting structure for workflows. Using these structures, entire workflows can
be incorporated as a single unit in larger workflows. This simplifies the visual representation of the
workflow, simplifying the task of designing large workflows for users.

Over the years, many graph-based workflow systems have been developed [11, 12, 13]. They have
seen considerable success in domains such as bioinformatics, chemicoinformatics, geoinformatics and
neuroinformatics etc. Features provided by these systems include input/output validation, correctness
checking and visual construction and editing of workflows. Workflow systems also provide designers
with the ability to execute workflows and view results as well as the ability to search the component
repository. However, in most cases the validation performed and search capabilities provided by these
systems are quite rudimentary. They only notify users of incorrect or invalid workflows, but do not
explicitly suggest corrections. For example, LONI Pipeline [10] makes sure a designer does not connect
a file output of one workflow component to a parameter input of another component or the output of
one to the output of another. Triana [3], being a service-based workflow [14] composition tool, uses
WSDL descriptions to describe its components. Therefore, it validates connections by ensuring that
two connected components (web services) have compatible XML types as inputs/outputs. Taverna [15]
performs some simple type checking that ensures that the inputs and outputs match. For example, a
data type can either be a single value or list. Type checking in Taverna involves ensuring that if an
output data type is a single value, the input data type should also be a single value. Kepler [16], how-
ever, provides complex type checking via ontology-based semantic descriptions. It also allows users to
search for components based on these descriptions. LONI and Taverna also provide the capability to
add some semantic annotations to the component repository. Designers may then locate components
by searching these annotations. However, the annotations are simply free-form text. Therefore, unless
a designer knows what they are looking for, it can be difficult to find the right component for their
needs, especially if the size of the repository is large. Similarly, Triana also provides similar search
capabilities where users have to specify what they are looking for. Kepler is the only system that in-
corporates formal semantics. This makes it easier for users to search the repository since the semantic
annotations are standardised. Goderis et al. have investigated the application of workflow discovery
techniques in practice [17]. They conclude that systems that do not take into account semantics when
searching workflows do not perform well for rare workflow components. This finding forms the basis
of this research and is expounded upon in Section 2.5. The complete features and capabilities of work-
flow systems are not central to this thesis, therefore, the reader is directed to [11] for a detailed survey
of these systems.

Table 2.1 summarises the comparison of the various workflow composition systems. Simple type-
checking means that the system only ensures compatible datatypes. No semantic information is incor-
porated. Complex type-checking includes semantic information as well. Text-based search capability
means the system only allows the users to search components using free-form text. On the other hand,
semantics-based searching allows users to search components using complex criteria that cannot be
captured using free-form text annotations. Finally, as described earlier, in user-directed workflow
systems, users construct workflows manually by adding individual components.

For most scientific users, all of the previously highlighted issues are challenges. One way to ad-
dress them is to suggest components to add to the workflow as designers design them. The workflow
can be ensured to be correct by incorporating formal semantic descriptions of the components. The
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WMS Type-Checking Search Capabilities Workflow Composition
LONI Simple Text-based User-directed
Triana Simple Text-based User-directed
Taverna Simple Text-based User-directed
Kepler Complex Semantics-based User-directed

Table 2.1: Comparison of various workflow management systems.

issue of finding appropriate components can be addressed by incorporating historical usage patterns
along with the semantic descriptions. Historical patterns are defined as the patterns that exist in
the way users design workflows. By incorporating formal semantic descriptions and historical usage
data, the suggestions can be made increasingly relevant. These approaches are discussed in detail in
Section 2.6. Having surveyed existing workflow systems, the following section discusses various in-
telligent systems that extend the capabilities of these systems by providing intelligent suggestions to
users.

2.4 Usability

Usability is an important aspect of any product and as such it has also been given great importance
in computer software [18]. The International Organisation for Standardisation (ISO) has developed
several standards for usability and how to measure it over time [19]. The latest standard, ISO 25010
specifies usability as consisting of functional suitability, reliability, operability etc among other things
[20]. Due to its importance usability measurement and evaluation is an active area of research [21].

Despite the fact that usability is an important aspect of computer software, it has been largely
neglected in the case of workflow composition systems. Some systems such as Galaxy have employed
standard web usability guidelines to address this challenge [22]. Gordon and Sensen have conducted a
pilot study into the usability of Taverna [23]. Similarly Tan et al. have compared the usability of Tav-
erna with the Business Process Execution Language (BPEL) and presented their results [24]. However
little has been done to address specific usability challenges in workflow management systems. Usabil-
ity is an important aspect to consider when designing a system intended to assist users. However, as
mentioned in Section 1.4, the purpose of this research is to build a prototype. Therefore, the focus is
on the correctness and accuracy of the results only. User-oriented aspects such as usability are out of
scope.

2.5 Recommender Systems

Over the past two decades, there has been a lot of interest in developing systems to suggest rele-
vant items to users. In literature, such systems are termed recommender systems [25]. Such systems
have found many real-world applications such as recommending books, CDs and other products at
Amazon.com [26], movies by MovieLens [27] and news at VERSIFI Technologies [28]. Due to the
large number of items (objects to be recommended) available, recommender systems help users to
simplify the often tedious and cumbersome process of sifting through them. Based on the literature
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Figure 2.4: A classification of recommender systems.

survey conducted during this phase of the research, a classification model for such systems was devel-
oped, shown in Figure 2.4. This model classifies recommender systems according to the strategy they
employ to generate suggestions. Each of the categories is discussed in the following sections along
with a critical review of their strengths and drawbacks in an attempt to identify factors that affect the
suggestions.

2.5.1 Ratings-based systems

Traditionally, the problem of recommending relevant items to users has been most commonly for-
mulated as “estimating ratings for the items that have not been seen by a user” [25, p. 734]. In Figure 2.4,
such systems have been classified as ratings-based systems. Quite often, the estimation is based on
previous ratings given to the same or similar items. To do so, systems employ either memory-based
(heuristics), or model-based (artificial intelligence) techniques. Ratings-based systems are further clas-
sified into three categories; content-based systems, collaboration based systems and hybrid systems.
Content-based systems try to predict ratings for unseen items based on previous ratings assigned to
similar items by the same user. Therefore, content-based systems try to find commonalities between
items. Syskill andWebert [29] is one such algorithm that suggests interesting web pages to users based
on their topics of interest. Collaborative systems on the other hand find similarities between users.
The ratings for a particular user are estimated based on how users with “similar taste” rated those
items in the past. GroupLens [30] is an example of a collaborative system for Usenet news. Hybrid
systems combine both previous approaches to overcome their individual drawbacks [31, 32].

Ratings-based systems attempt to find items based on similarity. For the problem this thesis at-
tempts to address, the system needs to find items based on necessity. In other words, ratings-based
systems try to determine that, given certain items a user has liked in the past, what other items he
might be interested in. In contrast, the problem here is that, given certain items that a user possesses,
what other items does the user most likely require. Moreover, ratings-based systems require explicit
ratings by users. Eliciting explicit ratings from users for every workflow component is not feasible;
particularly when the workflow consists of 100s of components. Therefore, this research stipulates that
traditional ratings-based systems cannot be used in this case. For this reason, they are only superfi-
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cially surveyed here while the focus of this chapter is on pattern-based and semantics-based systems.

2.5.2 Pattern-based Systems

Pattern-based approaches attempt to identify usage patterns using historical data (logs). Frequency
of occurrence is an important metric to determine whether a particular pattern exists or not. Pattern-
based systems have found application in many domains since the theory behind them is easy to un-
derstand and implement. For example, Crowell et al [33] is a pattern-based spelling suggestion system
for medical queries. It uses a usage frequency-based ranking algorithm to sort spelling suggestions
returned by a spell-checking engine such as GSpell [34] or ASpell [35]. Each of these tools assigns
a score to the suggestions it returns based on the degree of matching. The score for each word re-
turned by these tools is combined with a usage frequency extracted from the query logs of a medical
database. This combined score is then used to re-sort the list which is then presented to the user.
Thus, the suggestions are biased towards more frequently used words as opposed to less frequently
used words. The authors stipulate that this bias improves the relevance of the suggestions. Similarly,
Xu et al [36] is a recommender system that suggests tags to users for their uploaded content based on
tagging patterns. The suggestions are generated when a user starts tagging some content. The system
finds other tags that co-occur frequently with the user-supplied tag(s). It also attempts to minimise the
number of suggested tags in order to keep the tags specific and relevant while covering as many facets
of the content as possible. The converse is also taken into account; the suggested tag combination
should not specify a large number of objects. This is done so that users may later be able to find their
tagged content with minimum effort. However, workflow composition systems present some unique
challenges when compared to such systems. For example, there are explicit links between the different
components. In addition, not all components are compatible with each other. Workflow correctness
also has to be ensured when constructing the workflow. Any workflow recommender system must
take all of these factors into account. Therefore, this thesis focuses on recommender systems for work-
flow composition only. VisComplete and Oliveira et al are examples of such systems. These systems
are summarised below and are critically reviewed at the end.

2.5.2.1 VisComplete

VisComplete [37] is a pattern-based system that treats workflows as graphs and tries to find the
most frequent patterns that occur in the graphs. These patterns represent collections of workflow
components that designers frequently use in conjunction with each other. When workflows are repre-
sented as graphs, frequent subgraphs within that set represent the frequent patterns in the workflows.
The suggestions generated consist of entire subgraph structures. However, instead of finding complete
subgraphs, VisComplete only attempts to find frequent paths in the graphs. To represent a workflow
is a graph, each component in the workflow becomes a vertex in the graph and links between the
components become the edges of the graph. Each graph is a Directed Acyclic Graph (DAG).

VisComplete employs a three-step suggestion generation strategy. The first step is to mine the
graphs. To extract patterns, the system generates a summary of all paths in the graphs. Because
suggestions are generated starting from a particular vertex (called the completion anchor), the system
extracts all possible paths that begin or end at that vertex. For the second step in the suggestion gener-
ation process, the system employs an iterative refinement strategy. For the anchor vertex, it takes all
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paths ending or starting at that vertex, and finds all the vertices that are most likely to follow. These
new vertices are then chosen as the anchors and for each anchor, the previous step is repeated. To
order the suggestions, the system uses a measure of the likelihood of the suggested vertex called the
confidence measure. The confidence measure is the likelihood of a particular vertex given a particular
path. To suggest more than just paths, the system iteratively extends the suggested path at differ-
ent vertices, thus suggesting trees as well. It stops iteratively refining the suggestions either after a
given number of steps or when no new suggestions can be generated. Suggestions are also pruned
if their confidence is significantly lower than the parent suggestion’s confidence. This difference in
confidences is currently implemented as a fixed threshold. Finally, the suggestions are sorted by con-
fidence and presented to the user.

2.5.2.2 Connection Frequency-based Suggestion Generation

Oliveira et al [38] have developed a rudimentary pattern-based recommendation system that they
have integrated into the VisTrails [1] workflow composition tool. It works by parsing the repository
of workflows and finding frequent connections. For every connection in the repository, it creates a
tuple ⟨𝑐𝑠, 𝑝𝑠, 𝑐𝑑, 𝑝𝑑,wf⟩ where 𝑐𝑠 is the source component, 𝑝𝑠 is the source port, 𝑐𝑑 is the destination
component, 𝑝𝑑 is the destination port and𝑤𝑓 is theworkflowname. When the list of recommendations
for a particular component 𝑐 is to be generated, the system calculates a recommendation confidence
metric for each suggestion. For every connection originating at 𝑐, this is the ratio of the number
of occurrences of that particular connection in the database to the total number of all connections
originating from 𝑐. The system only provides single-step suggestions at every point.

2.5.3 Semantics-based Systems

Theother category of recommender systems shown in Figure 2.4 is semantics-based systems. These
systems use semantic descriptions of the entities to generate suggestions. Meij et al [39] is such a
query completion system that uses semantic types of entities to generate suggestions. To achieve this,
it divides each query into two parts; an entity and a completion part. The goal of the system is to
suggest a relevant completion given a particular entity. To suggest completions, the system looks at
the entity type, and picks out the most frequent completions for the entire type rather than the entity
itself. This allows the system to suggest relevant completions even if that particular completion does
not occur with that particular entity. Weng et al [40] is a system that suggests interesting products
to users by extracting a set of features they are interested in. It represents the products as a set of
features and determines the level of interest of a particular customer in each feature. It then finds
other customers that share interest in the same features. The final recommendations are made on
the basis of the purchasing habits of similar customers. Like pattern-based systems, semantics-based
approaches also face certain challenges when applied to workflows. Therefore, the focus of this section
is on semantics-based workflow composition systems, which are discussed in the following sections.

2.5.3.1 Multi-Criteria Suggestion Generation

Junaid et al [41] have integrated a semantics-based system into the ASKALON workflow environ-
ment [2]. It employs a top-down three-step suggestion generation process coupled with user-defined
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policies to generate suggestions. When the suggestion generation process is triggered, it uses the

Step 1: Generate list of 
suggestions based on semantic 

compatibility.

Step 2: Filter suggestion list based 
on user-defined policies.

Step 3: Filter suggestion list based 
on correctness measures and 

reorder.

Figure 2.5: Three-step suggestion generation process.

currently selected component as the anchor for the suggestions. Figure 2.5 depicts the suggestion
generation process. First it finds all components that are compatible with the anchor. Compatibil-
ity is determined by the degree to which the various attributes of the two components match. These
include workflow name, workflow domain, component function, component type, component properties,
component constraints, input ports and output ports. A weighted formula is used to calculate a match
factor based on these attributes. This value represents a measure of the compatibility of the candidate
component with the anchor. Table 2.2 shows the default weights used for these attributes. The user

Attribute Weight

Workflow name 5
Workflow domain 5
Component type 10
Component function 10
Component constraints 10
Component properties 10
Input ports 25
Output ports 25

Table 2.2: Default weights assigned to various component attributes used during match factor calcu-
lation.

can also override these defaults if they so choose. If the match factor satisfies a user-defined threshold,
the component is added to the list of suggestion candidates. A high threshold value yields a more
precise and small set of suggestions, while a low threshold value yields a larger set of suggestions.

Once the list of the suggestion candidates has been built, the candidates are filtered based on var-
ious user-defined criteria. This constitutes the second step of the suggestion generation process. The
filtration policy can be used to specify (a) user-specific (b) domain-specific, or (c) time interval-specific
filtration rules. For example, the policy can specify that all suggestions from users A and B be ignored
or that only suggestions from a specific domain or time period be allowed. In addition, users can also
specify any combination of these rules. After the filtration policy has been applied, the suggestions
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are reordered and further filtered in the third step. The filtering at this stage is performed on the ba-
sis of two measures; the design-time and the runtime reliability and correctness of the suggestions.
Design-time reliability and correctness are determined by:

1) The skill level of the users designing the workflows.
2) The frequency of use by expert users.

In order for this to work, the users are classified as novice, intermediate or expert by the system
and actions originating from expert users get higher weightage. In addition, suggestions are ranked
according to their frequency of use. Runtime reliability and correctness are measured by:

1) The number of successful executions of the component.
2) The degree of correctness of the results.
3) The resources previously used by the component currently available in the grid.
4) The resources previously used by the component currently reserved in the grid.

The correctness of past results is rated either by users or an automated evaluation tool on a scale of
one to five. For information about grid resources, the system contacts a grid resource manager. If the
correctness weight does not satisfy the user-defined threshold described previously, the suggestion is
discarded. Otherwise, this correctness weight is added to the match factor calculated in the first step.
Finally, the suggestion list is reordered based on the combined weight of each component calculated
in the three steps and the list is presented to the user.

2.5.3.2 Composition Analysis Tool (CAT)

Composition Analysis Tool (CAT) [42] is another example of a semantics-based system. It was
developed for the Southern California Earthquake Center (SCEC) and is integrated into their Com-
munity Modelling Environment (CME) [43]. CAT represents workflows as a set of components, links
that connect these components, initial inputs and end results. It employs a mixed-initiative approach
to workflow composition; the system can generate complete or partial workflows automatically from
user-defined descriptions as well suggest actions to users as they compose workflows. At every step,
the system uses semantic descriptions coupled with formally defined properties to determine correct-
ness of workflows. These include:

1) Tasked: a workflow contains one or more end results.
2) Satisfied: all input parameters of all components are provided by other components, by default

values, or as user inputs.
3) Grounded: all components are executable and not abstract. These are explained in the subse-

quent discussion.
4) Justified: at least one output parameter of each component is linked to an end result or the input

parameter of a Justified component.
5) Consistent: each link in the workflow connects the output parameter of one component to the

input parameter of another component, where the latter subsumes the former.
6) Unique: no link or component is redundant.

The semantics of the components and their input and output ports are described in a knowledge base
using two separate hierarchical ontologies; a component ontology and a domain term ontology. The
component ontology specifies the relationships between the various components and their descrip-
tions along with default parameter values. The domain term ontology specifies the relationships be-
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tween the data types of the input and output ports of the components. It must be noted that not all
components in the component ontology are executable. Some components are abstract and represent
the most common features of a set of components. As mentioned previously, if a workflow contains an
abstract component, it violates the Grounded property. The abstract component must be specialised
to an executable one for the workflow to be correct.

To generate workflows automatically, users provide descriptions of either the desired results, the
kind of workflow they want or of the initial data. The system uses AI planning techniques to generate
a partial or complete workflow that satisfies both the semantic constraints as well as all the correct-
ness properties. If more than one component can be used at any point, the system uses an abstract
component as described by the component ontology. Once a workflow is returned to the user, he now
has the option to modify it. On the other hand, if the user wishes to construct a workflow manually or
modify an existing workflow, the system critiques the user’s actions at all times and ensures that the
workflow remains correct. If the workflow does not satisfy any of the previously mentioned proper-
ties, CAT suggests a remedial action to the user. In this manner, the system tracks the user’s actions
and provides suggestions to him.

2.5.3.3 CBR-based Systems

In recent years semantics-based systems have employed Case-Based Reasoning (CBR) techniques
for suggestion generation [44, 45]. Such systems treat the repository of workflows as the so-called case
base used in CBR systems. When workflows are being constructed semantic descriptions of the inputs
and outputs of components are compared with the workflows in the case base and similar workflows or
subworkflows are retrieved. Having surveyed recommender systems, the following section identifies
factors that affect the suggestions generated by these systems. Identifying these factors will help in
assessing the efficacy of these systems and pave the way for improving them.

2.5.3.4 Assisted Service Composition Systems

When talking about semantics-based recommender systems, assisted service composition systems
are also relevant. These systems assist users in composing services using pre-defined tasks. This
is analogous to composing workflows using pre-defined workflow components. As with semantics-
based workflow recommender systems, assisted service composition systems leverage the semantics
of available tasks such as their inputs and outputs to suggest next steps to users. Several such systems
have been developed [46, 47]. On the other hand some systems focus on automatic service generation
based on user constraints instead of assisting them at each step [48, 49]. Again such systems are anal-
ogous to automatic workflow generation systems [12]. Semantics-based assisted service composition
systems suffer from the same drawbacks as their counterpart assisted workflow composition systems
(cp. Section 2.10).

2.6 Factors Affecting Suggestions

Since the main job of recommender systems is to provide suggestions to users, the efficacy of
these systems depends on the suggestions presented. It can be measured via the rank of the required
suggestion in the list. The closer the suggestion is to the top, the better the performance; the lower the
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suggestion in the list, the lower the performance. Generalising the survey presented in Sections 2.5.2
and 2.5.3, it can be argued that the suggestions depend on several factors. These are discussed in the
following sections along with a summary of their state-of-the-art in existing systems.

2.6.1 Frequent Usage Patterns

Frequent usage patterns help to identify which components are most appropriate for a particular
purpose. Scientific users in particular are generally not adept at dealing with computer-related issues.
It was observed during neuGRID [50] that due to the issues highlighted in Section 2.2, only a few users
take the time and effort necessary to familiarise themselves with the workflow composition process.
Due to this, most users only act as workflow consumers and have to rely on a handful of expert users
to construct and modify workflows for their needs. By leveraging the frequent usage patterns of other
users during suggestion generation, novice users can take part in the workflow design process as
well. In addition, some components may not be compatible with each other. As users use the system,
such components will appear only rarely in the system since they will not generate workflows that
provide correct results. Therefore, the suggestions will be automatically biased towards compatible
components. Incorporating frequent usage patterns also makes the system dynamic. It allows the
system to learn from user actions as it is used. Therefore, as users acquire expertise and learn better
ways to achieve their desired results, the system can learn along with them. All of these factors would
improve the system.

However, it may also be the case that rare components are more appropriate for a user’s needs than
frequently used ones. This is especially true if a new component is added to the repository. Since it is a
new component, there will not exist many patterns that have that component in them. Using frequent
patterns for suggestion generation has the drawback of ignoring such components. Both VisComplete
and Oliveira et al suffer from this drawback. Another drawback of using frequent patterns is that
when the system is new and patterns do not yet exist, the system will not be able to assist users. These
factors would decrease the efficacy of the suggestions.

2.6.2 Relevance of Results

For any suggestion system, the ultimate goal is to assist the user in achieving their final result. For
a spelling suggestion system, the user must get the word they are looking for. For a search engine, it
is important that users get all the relevant results that they require. Similarly, for a workflow compo-
sition system, it is important that the final workflow yield results that the users require. Therefore, if
a particular workflow provides the required results, giving it a higher weight would bias the results
towards successful workflows. Without this, all workflows would have equal weighting. However,
not all workflows provide results with the same level of relevance. Therefore, biasing the sugges-
tions towards more relevant workflows would improve them. Currently only Junaid et al incorporate
relevance of results in their suggestion generation strategy. This also affects the suggestions.

2.6.3 Expertise of Users

When novice users construct workflows, they generally do not have a very good idea of the kind of
components they want. Because of this, they tend to make mistakes including constructing irrelevant
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workflows. Expert users, on the other hand, are much less likely to make such mistakes. They are
more likely to construct useful and relevant workflows. Without discriminating between expert and
novice users, the system would treat patterns originating from both equally. This would affect the
relevance of the suggestions. Irrelevant workflows may be considered noise in the data. Since they
are likely to originate from novice users, by giving them a lower weight, their effect can be tempered.
This, coupled with the relevance of the final results might provide sufficient information to generate
relevant suggestions. Therefore, by incorporating the expertise of the users during pattern extraction,
another positive bias in the suggestions can be introduced. At the moment only Junaid et al considers
this bias in their suggestions.

2.6.4 Semantic Metadata of the Workflow Components

Semantics about the workflow components can be used by the system to reason about them and
determine which components can be connected together. In addition, the system can determine if
two components that are semantically incompatible can be made compatible by interposing more
components. CAT adopts this approach, but it is only limited to adding one component. The system
does not check if adding multiple components can help. Semantics about the workflow components
can help the system find such components to suggest to the user. In addition to this, if the components
are described using a hierarchy of types in the knowledge base, then users can add generic component
types to the workflow. The system can then suggest specific appropriate components of that type to
the user. CAT uses a similar approach. Moreover, as discussed in the previous section, in rare cases
infrequent components may be more suitable for particular users needs than frequent ones.

The drawback to this is that the user needs to know that a rare component exists that is more
suitable. Therefore, semantics-based suggestions aremostly useful for expert users. Another drawback
to semantics-based approaches is that they require a one-time concentrated effort by users to define
the semantics of the components. Without this effort, the system is unable to generate suggestions.
The system is also static. Once the domain knowledge has been encoded into the knowledge base, the
system does not automatically add new knowledge to it. Therefore, as users become expert and learn
new patterns, the system does not evolve along with them. The knowledge base has to be manually
updated by the users. The system can be made dynamic by incorporating frequent usage patterns.
Another important factor in workflow design is parameters. Their importance is discussed in the next
section.

2.6.5 Parameters

Parameter values are very important for the correct function of workflows. Inappropriate pa-
rameter values can cause components to function incorrectly, causing the results to be inaccurate or
incorrect altogether. Determining appropriate parameter values is a non-trivial task in most cases.
Usually, the optimum value of a parameter is determined through parameter sweep workflows [51].
For this type of analysis, the same workflow is executed with a range of different values for its pa-
rameters. This method is inefficient since each workflow instance may take a long time to execute.
The total time it takes to find the optimum parameter value increases exponentially with this method.
Once the optimum value of a parameter is learned, then it must be shared with other users. CAT al-
lows this by allowing users to define a default value for different parameters in the knowledge base.
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It then suggests that value to users. However, quite often parameter values are dependent on the
specific type of data that is provided as input. Therefore, it would be much more useful to provide
parameter value suggestions based on the context. An intelligent system can learn this by extracting
the most frequently used values in a specific context. Then, when the user constructs a workflow in
that particular context, the system can suggest the frequent parameter values.

2.6.6 Ranking Method

When the suggestions are presented to the user, the ranking method becomes particularly impor-
tant. The better the ranking method, the more relevant the results. Traditionally the ranking method
is based on the frequency of use. This ensures that the most frequently suggestions are presented at
the top. However, in the situation where a rare component is what the user needs, this method would
either rank the component very low, or not suggest it at all. One solution to this is to have alter-
nate ranking systems that the users can switch between at will. CAT uses a heuristics-based ranking
method. The most recent suggestions are ranked at the top, while those generated further back in time
are ranked lower. Without any bias in the ranking of the suggestions, there is no guarantee the system
will suggest the most relevant components.

2.6.7 Workflow Correctness

It is important for a workflow system to be able to tell users that the workflows they are designing
are correct. There are two aspects to correctness; structural correctness and semantic correctness.
Structural correctness insures that all components are connected properly and that there are no cycles
in the workflow. Semantic correctness ensures that all the components connected to each other are
semantically compatible; the data types of their inputs and outputs match. Workflow composition
systems such as Taverna and Triana only perform structural correctness checking and rudimentary
semantic checking. They inform users if a workflow is not correct, but they do not actively offer
suggestions to remedy it. A few systems like CAT and Kepler perform complex semantic correctness
checking. CAT also uses the correctness checks to determine when components need to be removed
and when some components are missing. This feature improves the suggestions. The reader is directed
to Section 2.3 for an overview of workflow composition systems.

2.6.8 Depth of Suggestions

The depth of the suggestions means the number of components the system suggests at a time to
users. If the system only suggests one component at a time, then the user has to perform at least one
click to select each component. This makes the user’s jobmore difficult, especially when the workflows
the users are constructing are quite large (100s of components). Therefore, suggestions of greater depth
may be better. CAT handles this by providing automatic generation of workflows; users describe
the kind of workflows they need including inputs and outputs, and the system generates a workflow
automatically. The user can then modify the workflow as they require. However, it is often difficult
to capture user requirements succinctly and completely. VisComplete on the other hand handles this
by suggesting multiple components at one time. As opposed to CAT, VisComplete’s approach bases
its suggestions on frequent patterns, since it is difficult to tell what users want without having them
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provide a description of their workflows.

2.6.9 Comparison of Recommender Systems

Table 2.3 presents a comparison of the various workflow recommender systems discussed earlier.
Semantics-based systems such Junaid et al and CAT require significant user effort to start generating
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Junaid et al. Concentrated effort required × 𝑆𝑠 𝐷𝑠 𝑅𝑓 × ✓ ✓
CAT Concentrated effort required ✓ 𝑆𝑠 𝐷𝑠 𝑅ℎ ✓ × ×
VisComplete Little effort required × 𝑆𝑝 𝐷𝑚 𝑅𝑓 × × ×
Oliveira et al. Little effort required × 𝑆𝑝 𝐷𝑠 𝑅𝑓 × × ×
CBR-based sytems Concentrated effort required × 𝑆𝑠 𝐷𝑚 𝑅ℎ ✓ × ×

Effort: How much effort is required by users before system can start generating suggestions.
Parameters: Does the system provide parameter value suggestions?; ✓ = Yes, × = No.
Strategy: What strategy does the system employ to generate suggestions?; 𝑆𝑠 = Semantics-based strategy,

𝑆𝑝 = Pattern-based strategy.
Depth: Number of components suggested at a time; 𝐷𝑠 = Single action, 𝐷𝑚 = Multiple actions.
Ranking: Ranking strategy for suggestions; 𝑅𝑓 = Frequency-based, 𝑅ℎ = Heuristics-based.
Correctness: Does the system incorporate correctness checking for workflows?
Relevance: Does the system incorporate relevance of the results?; ✓ = Yes, × = No.
User Expertise: Does the system consider the expertise of the users?; ✓ = Yes, × = No.

Table 2.3: Recommender systems and their features.

suggestions. The reasons for this have already been discussed in Section 2.6.4. On the other hand,
pattern-based systems do not require much user effort (Section 2.6.1). Generally, all systems provide
only single components as suggestions except for VisComplete. Most components rank the sugges-
tions by frequency. Only CAT employs heuristics to rank the suggestions. In addition, CAT is the
only system that incorporates formal workflow correctness checking. Junaid et al is the only system
that incorporates relevance of the final results as well as user expertise. This thesis will investigate
how all these factors affect the suggestions. Assisted service composition systems have been excluded
from this comparison since they share their pros and cons with semantics-based systems. Having
surveyed various workflow recommender systems, a discussion of the technologies they use to rep-
resent the knowledge and patterns is presented. The recommenders use these techniques to generate
suggestions.

2.7 Ontologies

An ontology is defined as “an explicit specification of a conceptuali[s]ation” [52]. A conceptuali-
sation is an abstract, simplified view of the world that we wish to represent for some purpose. In this
case, the purpose is to provide context to data or entities for intelligent reasoning. Ontologies pro-
vide semantic information about real world objects, while actual descriptions of the objects are called
ontology instances. Usually, they are modelled using different modelling languages. The languages
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themselves rely on XML-based syntax. Therefore, XML acts as a meta-language in which all ontology
expression languages are written. These are discussed in the following sections.

2.7.1 RDF & RDFS

Resource Description Framework (RDF) is a model used to represent information about objects
(resources). A resource description in RDF is a 3-tuple (triplet) that consists of a resource, a property that
is to be specified for that resource, and a value for that property. RDF itself provides a domain-neutral
mechanism to describe individual objects. Each triplet is nothing more than a statement describing
some aspect of a resource. It does not define the semantics of any application domain, nor specific
assumptions about a particular domain. In other words, RDF is better suited to specify instances of
ontologies, not the ontologies themselves. Ontologies are better encoded in RDFS.

Unlike RDF, RDF Schema (RDFS) provides a vocabulary to encode domain concepts like classes and
specify relationships between them. Using these features, ontology designers can also create domain
taxonomies. In other words, RDFS provides the domain-specific semantics about entities that RDF
does not capture. For example, the statement that dog is an animal and has legs is a domain concept.
To express such concepts, the RDFS vocabulary includes terms such as Class, subClassOf, Property, and
subPropertyOf. The aforementioned statement can be expressed in an RDFS vocabulary by creating
three classes called dog, animal and leg. A property called has-leg can be defined that links the class
dog to the class leg while the classes dog and animal can be linked via a subClassOf property. It must
be noted that while RDFS is better suited to asserting general statements about concepts, RDF is better
suited to assert statements about instances of those concepts. For example, the statement “Tom is a
dog” can be encoded as an RDF triple (Tom, rdf:type, dog). Combining this with the RDFS semantics,
it can be inferred that Tom is an animal with legs. Even though RDFS provides useful constructs
for expressing ontologies, it is quite simple compared to other full-fledged knowledge representation
languages. These are discussed in the following sections.

2.7.2 DARPA Markup Language+Ontology Inference Layer (DAML+OIL)

DAML+OIL extends RDFS by allowing further constraints and relationships among objects and
their properties to be specified. These include cardinality, domain and range restrictions, and union,
inverse and transitive rules. Its syntax for classes and instances is the same as RDFS. DAML+OIL
distinguishes between the types of entities that exist in an ontology; those that represent objects that
are members of the various classes and those that represent XML datatypes. Similarly, properties are
also of two types; those that relate objects to other objects and those that relate objects to datatype
values. DAML+OIL is much more expressive than RDFS in terms of representing domain knowledge.
For example, using plain RDFS, one cannot specify that a dog can only have four legs. However,
DAML+OIL provides the capability to specify cardinality restrictions. Therefore, one can say that a
dog is related to exactly four instance of class leg via the has-leg property.

2.7.3 Web Ontology Language (OWL)

Web Ontology Language (OWL) is a successor to DAML+OIL. Its vocabulary includes a set of well-
defined XML elements and attributes that are used to describe domain terms and their relationships

27 [File Creation Timestamp: 24/02/2016, 14:13]



2.7. ONTOLOGIES CHAPTER 2. BACKGROUND

in an ontology. OWL’s vocabulary is extremely rich for describing relations among classes, properties
and individuals. For example, relationships such as Symmetric, InverseOf, equivalentProperty and Tran-
sitive can be defined. There can be a specific cardinality,minCardinality ormaxCardinality. A class can
be an intersectionOf, unionOf or complementOf another class. These are all examples of the richness
of the OWL vocabulary. For example, consider an ontology of familial relations. If 𝐴 is a sibling of 𝐵,
that implies that 𝐵 is also a sibling of 𝐴. Such two-way properties are called symmetric properties.
Previous ontology modelling languages did not have the expressiveness to capture this relationship.
However, OWL allows one to do so by specifying the has-sibling relationship as symmetric.

OWL is a combination of three increasingly expressive sublanguages; OWL Lite, OWL-DL and
OWL Full. OWL Lite is intended to support the building of simple classification hierarchies with simple
constraints. For example, cardinality can only be 1 or 0 in OWL Lite. OWL-DL uses description-logics
[53]. It provides maximum expressiveness but also ensures that all conclusions are computable and
will finish in finite time. OWL Full supports maximum expressiveness at the expense of computational
completeness and decidability. It can be viewed as an extension of RDF, while OWL-DL and OWL Lite
can be viewed as extensions of a restricted view of RDF.

2.7.4 Web Ontology Language (OWL) 2

OWL 2 extends OWL 1 by adding further expressiveness. The new features are divided into two
categories; those that were possible to express in OWL 1 and those that weren’t. New terms have been
added to the vocabulary for features that could already be expressed in OWL 1 such as disjointUnionOf,
negativeObjectPropertyAssertion and negativeDataPropertyAssertion. New features that could not be ex-
pressed in OWL 1 include self restrictions, qualified cardinality restrictions, reflexive, irreflexive and
asymmetric properties, and property chains. For example, in a familial relations ontology, two indi-
viduals cannot be both siblings and parent-child at the same time. Therefore, these two relationships
are mutually exclusive. There was no way to capture these kinds of semantics in OWL 1. However,
this has been made possible in OWL 2 through the use of disjoint properties. One can now specify
that the properties has-sibling and has-father and has-sibling and has-child are pairwise disjoint.

2.7.5 Semantic Web Rule Language (SWRL)

SWRL is a rule-based semantic language that extends OWL Lite and OWL-DL. It adds inference
capabilities to OWL that are difficult to achieve otherwise. A SWRL rule is a combination of an an-
tecedent and a consequent. The antecedent is a set of conditions that if true, imply that the consequent
must also be true. For example, if two individuals share the same parents, then it must follow that they
are siblings. Such a rule cannot be directly encoded in OWL. However, doing so in SWRL is rather
trivial.

2.7.6 Comparison of Ontology Modelling Languages

This section presents a comparison of the various ontology modelling languages discussed previ-
ously. Since RDF cannot specify domain semantics, it is better suited to instantiating ontologies than
modelling them. For this reason, it is excluded from this comparison. On the other hand SWRL can
model complex semantics, but those models are still expressed using OWL. Consequently, it is also
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excluded from this comparison. Therefore, only RDFS, DAML+OIL, OWL 1 and OWL 2 are compared
in Table 2.4. The comparison covers the major features that affect the expressiveness of the respective
languages. Some of these features, such as Datatypes and Collections exist in all languages, albeit with
varying degrees of utility. As can be seen, there isn’t much of a difference between the expressiveness
of DAML+OIL and OWL. In fact, the major difference between the two is that OWL employs a better
syntax. OWL 2, however, is a significant improvement over OWL 1.

Feature RDFS DAML+OIL OWL 1 OWL 2
Class and Property Subsumption ✓ ✓ ✓ ✓
Domains and Ranges ✓ ✓ ✓ ✓
Datatypes ✓ ✓ ✓ ✓
Collections ✓ ✓ ✓ ✓
Cardinality Restrictions x ✓ ✓ ✓
Qualified Cardinality Restrictions x ✓ x ✓
Complementary Classes x ✓ ✓ ✓
Property Value Restrictions x ✓ ✓ ✓
Disjoint Classes x ✓ ✓ ✓
Equivalence x ✓ ✓ ✓
Enumerations x ✓ ✓ ✓
Transitive Properties x ✓ ✓ ✓
Symmetric Properties x ✓ ✓ ✓
Keys x x x ✓
Property Chains x x x ✓
Asymmetric, Reflexive and Disjoint Properties x x x ✓
Class Punning x x x ✓

Table 2.4: Comparison of various ontology modelling languages.

2.7.7 Neuroimaging Ontologies

The use of semantics in neuroimaging is a fairly recent phenomenon. OntoNeuroLOG [54] is
an application ontology developed as part of the NeuroLOG project. It extends the OntoNeuroBase
[55] ontology developed for NeuroBase. The NeuroLOG project is designed to provide semantics-
based querying capabilities to users. To that end they have developed an application ontology to
classify various kinds of operations that can be performed on neuroimaging workflows as well as the
datasets produced and consumed by them. Moreover, they have also designed an ontology of the
methods through which neuroscientists collect data about different subjects [56]. OntoNeuroLOG has
been developed using the OntoSpec methodology [57]. Using this methodology, ontology designers
are required to justify various design decisions so that any logical or semantic inaccuracies can be
identified during the design phase. The next section discusses various methods for reasoning over
ontologies.
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2.8 Semantic Reasoners

Ontologies themselves are static models of domain semantics. This model is called the asserted
model. To be useful in most real-world applications, some kind of reasoning must be performed on
them. This reasoning capability adds dynamism to the semantic model. It is essentially what provides
intelligence to an artificial system. The model that is obtained as a result of this reasoning is called
the inferred model. To obtain the inferred model, a number of semantic reasoners have been created
[58, 59, 60, 61]. Reasoning tasks can be distinguished into two types; Tbox and Abox [62]. Tbox
reasoning tasks are those related to the structure of the ontology; the classes, their properties and the
relationships between them. Checking whether the various classes in an ontology can have instances
or not and whether one class subsumes another class are typical examples of Tbox reasoning. Abox
reasoning tasks, on the other hand, relate to the instances of the various classes that make up the
ontology. These include retrieving all the instances of a particular class and getting property fillers
for different instances. Therefore, the capability to perform Tbox and Abox querying provides one
criterion for evaluating reasoners.

In addition to simple reasoning tasks, real world applications often require complex querying ca-
pabilities that allow applications to retrieve parts of the ontology model based on certain criteria.
Conjunctive queries are a mechanism to achieve this feature. Such queries can be expressed in lan-
guages such as SPARQL [63] and SPARQL-DL [64]. Typically, conjunctive queries are executed on
the asserted model. However, for most complex real world applications, they must be performed on
the inferred model rather than just the asserted model. In order to achieve this, some reasoners sup-
port conjunctive Abox queries. These queries are a conjunction of statements that comprise the query
criteria. Therefore, support for conjunctive queries provide the second criteria for evaluation.

Another mechanism for adding dynamism to ontologies are semantic rules. They can be expressed
in languages such as SWRL (cp. Section 2.7.5). Rules are particularly useful when new relationships
and new classifications are to be inferred about the instances in the ontology. To be able to do so, the
reasoners must have support for rules. Therefore, they become another criteria for evaluating them.
Table 2.5 shows various reasoners compared according to the criteria discussed previously. Only OWL
reasoners have been chosen for the purposes of this discussion since that is the language that has
been chosen for expressing the semantics required for this research. Reasons for this are discussed
in Section 2.10. The next technique recommender systems use to generate suggestions is frequent
patterns. The problem of finding frequent patterns can be formulated as finding frequent subgraphs
in a set of graphs. The reasons for this are also discussed in the next section.

Feature Types of Reasoning ConjunctiveQueries Rules

Pellet Tbox, Abox SPARQL, SPARQL-DL ✓
RacerPro Tbox, Abox SPARQL ✓
HermiT Tbox - ✓
FaCT++ Tbox, Abox - -

Table 2.5: Comparison of various semantic reasoners.
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2.9 Frequent Subgraph Mining

As discussed in Section 2.5.2, the problem of extracting frequent patterns from workflows is often
formulated as extracting frequent subgraphs from a set of graphs. This is an intuitive approach because
workflows lend themselves to being modelled as graphs because of their inherent graph-like structure.
Frequent subgraph mining is a well-researched area and many efficient algorithms exist [65]. For
this reason, this research uses existing algorithms instead of implementing a custom one. One of the
main challenges in frequent subgraph mining is how to represent a graph internally so that different
graphs can be efficiently stored and compared. Detecting isomorphic graphs is also a challenge since
a graph mining algorithm aims to output each frequent subgraph only once. To detect isomorphism,
a canonical representation is used for the graphs. It is defined as a representation that is the same for
all isomorphic graphs. Another challenge is the search strategy employed, e.g. depth first search or
breadth first search. All of these factors affect the memory requirements and computational time of the
algorithms. In addition, there are other factors that affect the choice of algorithm such as completeness
of output and nature of input. Figure 2.6 shows various frequent subgraph mining algorithms.

This Figure Has Been Redacted For Copyright Purposes

Figure 2.6: Classification of various graph mining algorithms [65].

For the purposes of this research, an algorithm that takes several graphs as input and finds all pos-
sible frequent subgraphs is required. Based on these criteria, the following ones have been shortlisted:

• FARMER
• gSpan
• FFSM
• Gaston

Krishna et al [65] have benchmarked various algorithms and compared their performance. Their
benchmarks show that Gaston [66] and gSpan [67] performmuch better than other algorithms for var-
ious input datasets. Moreover, C and Java implementations of Gaston and gSpan are readily available
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Algorithm Language Runtime (secs)

C 0.5
Gaston

Java 4.9
Java 3.008

gSpan C Crashes for large
outputs

Table 2.6: Comparative runtimes of different frequent subgraph mining algorithms.

online. Therefore, these algorithms were chosen for evaluation. For these evaluations, a dataset of 73
neuroscience workflows was chosen from the LONI workflow repository. These workflows were first
converted into a set of graphs. The various components become nodes in the graphs and links between
them become edges. The graphs were then passed through a frequent subgraph mining algorithm. For
these tests, a minimum frequency threshold of 4 was chosen. Figure 2.7 shows the results of these
tests. The graphs depict the number of subgraphs of various sizes found for each frequency greater
than 4. As can be seen, the different algorithms found approximately the same number of subgraphs.
Table 2.6 shows the execution times of the various algorithms. The C implementation of Gaston is
the fastest while the Java implementation of gSpan performs better than the Java implementation of
Gaston. The C implementation of gSpan crashes if the output dataset is too large.

2.10 Discussion

Based on the literature review, the following shortcomings have been identified in existing work-
flow recommender systems:

1) Pattern-based systems [37, 38] cannot generate suggestions unless sufficient data is available for
them to find useful patterns. In addition, since pattern-based systems prune suggestions and
only keep the most frequent ones, rare cases where the less frequently used components are
more appropriate for the user’s needs get ignored. Therefore, in this scenario, the suggestions
would be both less relevant as well as misleading for the user.

2) Pattern-based systems do not provide parameter suggestions and only focus on links and com-
ponents. However, parameters are an important factor for workflows to function properly and
they should be included as an important aspect of pattern extraction. Both VisComplete and
Oliveira et al suffer from these drawbacks.

3) VisComplete extracts all paths from the workflow graph and uses them to generate suggestions.
However, since the suggested graph structures may not be just paths, the system has to use an
iterative refinement strategy coupled with heuristics to choose vertices to expand from to sug-
gest trees. This increases the computation required at suggestion generation time. If, instead
of just paths, trees are also extracted during the pattern extraction phase, some of the compu-
tation required at suggestion generation time can be reduced. On the other hand Oliveira et
al only extracts individual links between components. The drawback of this is that the system
only suggests one component at a time. Instead, users may find it more useful to have multiple
components suggested in one go such as VisComplete.
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Figure 2.7: Evaluation results of different frequent subgraph mining algorithms.
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4) Pattern-based systems focus on extracting patterns of specific components. It may be more
useful to look at patterns in terms of the types of components that are assembled. Such an
approach would incorporate semantic information with frequent patterns. Moreover, it would
give a better idea of the overall operation that is being performed since quite often, a wholistic
step consists of several operations. Thus far no workflow recommender has focused on these
types of patterns. Somework has been done in this regard [68, 69]. This research shall investigate
how such approaches can be adopted in this case.

5) Semantics-based systems cannot function until semantics about the components in the reposi-
tory have been specified. Specifying the components semantically is a time-consuming task and
requires concentrated efforts by users. In addition, semantics-based systems are static and do
not learn as they are used. Therefore, unless the users put in the time and effort to specify the
semantics of the components, the system will not be able to generate suggestions. Semantics-
based systems are very good at determining which components are compatible with each other.
However, since they do not incorporate frequent usage patterns, in situations where there are
a number of similar components to choose from, they cannot prioritise the suggestions. There-
fore, important expert knowledge encapsulated in the frequent usage patterns of other users is
missing. In addition, two components may be semantically compatible; however the way they
are implemented may make them unsuitable for use together. Semantics-based systems would
be unable to determine this incompatibility unless it is explicitly specified.

6) Junaid et al [41] rank their suggestions according to design-time and runtime correctness. Design-
time correctness includes the skill level of the user designing the workflow. However, a compo-
nent is useful to a user if it allows that user to achieve the results he wants. Consequently, only
those factors are useful to consider during suggestion generation that allow the system to deter-
mine the suitability of the component. The skill level of the user designing the workflow does
not impact this suitability. Provided both users require the same results, an expert user would
require the same components as a novice user. Therefore, incorporating this parameter into
the suggestion ranking algorithm unnecessarily biases the suggestions. In addition, Junaid et al
also incorporate the availability of past resources used by a component in the runtime correct-
ness measure. This implies that the correctness of a suggestion is dependent upon the resources
currently available in the grid. This assumes that the user would execute the workflow imme-
diately after designing it. However, this might not be the case. The user might construct the
workflow at one point, and then execute it at another. The available resources in the grid might
change during this time. Therefore, the suggestions generated by the system would be mislead-
ing for the user. The system determines the compatibility between components on the basis of a
weighted comparison of their attributes and provides some default values for the weights. These
defaults have been determined experimentally. However, it is possible that different values for
the weights in different scenarios would produce better results. The user can override the sys-
tem defaults to suit their needs but this is an error-prone and time-consuming task. In light of
these factors, the optimality of the suggestions can be questioned.

7) CAT is the only system that provides parameter suggestions; however the values are statically
specified in the knowledge base. In most cases, parameter values are dependent on the data
being provided to a component. Therefore, it might be more useful to have the system learn
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parameter values based on usage patterns and suggest those to users.
8) Usability has been identified as an important aspect of any software, especially that which is in-

tended to assist users. Some workflow composition systems such as Galaxy [22] have attempted
to address specific usability challenges, but by and large it has been neglected. Since the focus of
this research is to develop a prototype, user-oriented aspects such as usability are out of scope.

This research attempts to investigate the extent to which the aforementioned factors affect the
suggestions in recommender systems. The goal shall be to address the aforementioned drawbacks.

2.11 Summary and Conclusions

This chapter describes the workflow composition process with the intention of identifying steps
where intelligence can be applied to assist users when designing workflows. These include construct-
ing correct workflows, finding appropriate components for their requirements, selecting parameter
values, determining incompatibilities between components and identifying usage patterns in work-
flows for future suggestions. Most workflow management systems only address some of these chal-
lenges. They attempt to ensure workflow correctness by ensuring that input and output datatypes of
connected components match. They generally lack sophisticated compatibility checks. In addition,
most systems only provide simple text-based searching of components in the repository. However,
some systems exist that add intelligent suggestion features to existing workflow composition systems.
Such systems are termed as recommender systems in literature. This research classifies recommender
systems into three categories according to the approach they adopt to generate suggestions for users
and discusses the pros and cons of each category. The three categories are ratings-based systems,
pattern-based systems and semantics-based systems. Rating-based systems employ explicit ratings for
items provided by users and attempt to find other items that the user may be interested in. Patterns-
based systems attempt to identify patterns in the way users use a system. They then suggest items
to users based on these patters. Semantics-based systems attempt to suggest semantically-compatible
items. It was concluded that pattern-based systemswork for popular or frequently used items; but they
omit rare items that may actually be more useful for the user. Semantics-based systems, on the other
hand, are good at finding all items that the user may need, but cannot determine which of them are
more appropriate in a particular scenario. Moreover, they require significant effort to set up initially.

One approach devised to reduce the effort required to enable the system to generate suggestions
is to generate the semantics of the workflow components automatically [70]. This research attempts
to address the same problem by combining features of both semantics-based and pattern-based sys-
tems. Instead of requiring the user to specify semantics by hand, they can only specify some basic
descriptions. The system can then infer more semantics from the usage patterns of users and update
the specified semantics. While doing so it is important to consider the expertise of the users from
whom the patterns originate. Patterns originating from expert users should be given more weight
than novice or intermediate users since it is likely the expert users are more aware of the different
choices of workflow components and their tradeoffs than non-expert users. Moreover, context-aware
parameter value suggestions are another important area where intelligent assistants can help. Since
OWL 2 provides a rich set of features such as punning and qualified cardinality restrictions, it is the
language chosen to represent the semantics of the workflow components in this research. For pattern
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extraction, several algorithms were tested. Results-wise both Gaston and gSpan (Java and C imple-
mentations) perform similarly. The C implementation of Gaston was the most efficient, however the
Java implementation of gSpan supports Closed graph mining [71]. It was also more efficient as com-
pared to the Java implementation of Gaston. Therefore, gSpan has been chosen for the purposes of
this research.

Based on the literature survey, Research Questions 1 and 3 have been answered. Limitations in
existingworkflow composition systems and related systems have been identified (ResearchQuestion 1)
and suggestions to improve them have been formulated. Various subgraph mining algorithms were
evaluated and gSpanwas chosen for this research (ResearchQuestion 3). In Chapter 3 a novel approach
combining both semantics and usage patterns is proposed. This will pave the way for fully answering
Research Questions 2 and 4.
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CHAPTER 3

HyDRA - A Hybrid Architectural Framework for Patterns and

Semantics-based Recommender Systems

3.1 Introduction

In Chapter 2, several limitations of existing workflow recommender systems were identified. It
was concluded that they either employ pattern-based or semantics-based suggestion generation strate-
gies. Pattern-based strategies work well for frequently-used components, but not for rarely-used ones.
Semantics-based systems, on the other hand, lack the dynamism and empiricism of pattern-based sys-
tems. This is because they use statically defined semantic descriptions of the workflow components.
Additionally, existing workflow management systems either do not provide parameter value sugges-
tions at all, or they use statically-defined default values [1].

This chapter presents HyDRA, a novel hybrid architecture for suggestion generation. HyDRA
combines both patterns and semantics to leverage the benefits of both and overcome their individual
drawbacks. To achieve this, it presents a semi-automated methodology for semantic specification
and enrichment. This chapter describes the overall process and architecture. The specific design and
algorithms developed to realise this architecture are presented in Chapter 4.

In existing systems, users have to manually specify workflow component semantics. There is
no mechanism to automatically infer new semantics. VisComplete [2] calculates frequent paths in
workflow graphs. However, at suggestion generation time it uses heuristics to expand these paths
into trees. This increases the computational overhead during suggestion generation. Precomputing
trees may be more efficient than precomputing just paths. Pattern-based workflow recommenders
consider only patterns of specific components. However, it may be more useful to consider functional
patterns of components instead. Functional patterns carry more information and are more intuitive
than specific patterns.

Current semantics-based workflow recommender systems require considerable user effort to be
able to offer suggestions. This is because they require users to manually specify semantics for all
the workflow components. One way to alleviate this is to allow the system to automatically infer
semantics. In addition to presenting a model that addresses the aforementioned issues, this framework
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will help in answering Research Question 4, reproduced here as well:

Question 4. How can workflow component semantics and historical usage patterns be combined to im-
prove the suggestions?

The suggestion generation process is reviewed in Section 3.2. Once the reader has developed an
idea of the overall process, the hybrid suggestion generation architecture that is the novel contribution
of this thesis is described in Section 3.3. The various components and their functions are also described.
Section 3.4 concludes and summarises the chapter.

3.2 The Suggestion Generation Model

Existing systems use either semantics or patterns to generate suggestions. Both of these sources
provide useful information. Semantics are a useful tool to determine inter-component and input/out-
put data type compatibility. It should be more useful to incorporate aspects of both in a hybrid frame-
work. Semantics provide a more or less static description of the components being used. Adding
reasoning support adds some dynamism to the system. However, the reasoning is still based on static
descriptions. Workflow components, on the other hand, keep evolving. New algorithms emerge and
existing ones get updated. This requires that users update the semantic repository in order for the
suggestions to be relevant. Usage patterns, on the other hand, provide empirical knowledge not en-
capsulated in statically-defined semantics. They capture expert knowledge acquired by users through
experience. This knowledge includes combinations of components that work well together, or compo-
nents that are combined to perform a composite function or one not initially foreseen. This is a differ-
ent aspect of knowledge than that provided by semantics, but an equally useful one. Such knowledge
can conceivably be encoded into the semantic descriptions. However, the job of maintaining such
a semantic repository would be both tedious and time-consuming. It would take up a considerable
amount of a domain expert’s time and effort that might be better spent conducting experiments and
collecting and analysing results.

Because of these reasons, it might be more useful to combine both sources of knowledge. Combin-
ing them may allow the system to leverage the benefits of both aspects. Once some basic semantics
for the components have been defined, they can be updated based on the patterns that are observed in
practice. Additionally, patterns combined with semantics can allow the system to discover functional
groups of components, which can help enhance the knowledge base. Moreover, once new compo-
nents are added to the repository, it might be possible to infer their semantics from their context of
use. Based on these observations, it is clear that a hybrid framework is required that incorporates both
aspects of knowledge. This thesis presents such a hybrid model, described in detail below. Since the
idea is to use patterns to inform and update the semantic descriptions, the semantic repository is the
central entity in this model. As such, the suggestions are generated from this repository instead of
directly from the patterns.

HyDRA’s suggestion generation model is shown in Figure 3.1. Users use a workflow management
system to compose their workflows. These workflows, once composed are stored in theworkflow repos-

itory. The central entity in this process is the domain ontology, which contains the extracted patterns
as well as semantics about the workflow components. These semantics include functional workflow
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Figure 3.1: The suggestion generation process.

units that consist of several workflow components grouped into a logical unit. As mentioned previ-
ously, this framework employs a semi-automated methodology for semantic specification. The initial
classification of components along with a description of their inputs and outputs is specified by do-
main experts. Additional semantic inference such as logical grouping of components is performed
by the ontology update module based on the usage patterns observed. This module also detects new
components and tries to infer their semantic properties from the context of use. The pattern extraction
module is responsible for extracting the patterns from the workflows stored in the workflow reposi-
tory. It performs several functions as well. These include (a) filtering unreliable workflows from the
pattern extraction process, (b) preprocessing workflows for pattern extraction, and (c) generalising the
components in order to extract functional patterns When suggestions are to be presented to a user,
the the suggestion building engine extracts the suggestions from the ontology, formats, reorders and
presents them to the user.

3.3 Hybrid Suggestion Generation Framework Architecture

The various steps described in the previous section perform distinct, but ultimately interconnected
functions with concrete outputs. Moreover errors and failures may occur during their processing.
Traceability of the results is also an important part of the scientific process. In order to facilitate error-
tracking, maintainability and traceability, a modular architecture is required for HyDRA. In order to
provide traceability, the architecture must provide several features such as verification and validation
of the extracted patterns, verification of the domain ontology design and verification of the suggestions
generated. As with traceability, maintainability can also be supported by providing different features.
These include independent specification and administration of the domain ontology and the tweaking
and configuration of the various modules. For error-tracking, each of the steps can be encoded into
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distinct components with tangible inputs and outputs. Such a flexible, modular architecture is shown
in Figure 3.2. It is described in detail in the following sections.

3.3.1 User Action Monitor

In order to be able to determine when suggestions should be presented to the user, monitoring
user actions is required. There are three scenarios in which suggestion generation should be triggered:
(a) when a new component is dropped on the canvas, prompting additional component suggestions,
(b) when the user explicitly requests suggestions, and (c) when a link is specified between two existing
components. This component is responsible for monitoring user actions while designing workflows.
When a suggestion needs to be made, it contacts the Suggestion Building Engine (SBE) and sends the
partially constructed workflow as part of the request. As response, it receives the list of suggestions
from the broker, after which it formats and presents them to the user. The scenarios trigger a Compo-
nent Suggestion Request (CSR). The request is sent to the Suggestion Request Broker (SRB) for further
processing.

3.3.2 Suggestion Request Broker

This component acts as a single point-of-contact and liases between the various components within
the SBE. It takes the partially constructed workflow from the User Action Monitor (UAM) and sends it
first to the Semantic Analyser (SA) component and retrieves the analysed workflow. It then passes the
workflow on to the Component Suggestion Request Handler (CSRH). Once it receives the suggestions
from these components, it passes it on to the UAM.

3.3.3 Semantic Analyser

In order to generate suggestions, the partially constructed workflow must be semantically anal-
ysed to determine which components/patterns can be suggested. This involves propagating semantics
across components. One such example is shown in Figure 3.3. The Cerebro algorithm performs seg-
mentation of the cerebellum. It requires a skull-stripped brain image as shown in Figure 3.3a. The Bias
Field Corrector tool, as mentioned in Chapter 2, performs error correction. As described previously,
sometimes gradual errors occur in the recorded intensity values of the various voxels. This gradual
variation is called the bias field of the image. Since it is simply an error removal tool, it requires an
MRI scan as input. This component does not change the nature of the MRI however. Therefore, if a
skull-stripped brain image is provided as input, it will output a skull-stripped brain image with error
correction. Hence, Cerebro’s requirement of a skull-stripped brain image can be fulfilled by attaching
a component that produces such an image to the input Bias Field Corrector component. The system
can determine this by propagating this requirement across components as shown in Figure 3.3b. The
inferred semantics are added as annotations to the workflow and the annotated workflow is returned
to the SRB.

3.3.4 Component Suggestion Request Handler

When suggestions to complete partial workflows are to be made, this component is invoked. It
takes the semantically annotated partial workflow and uses a mix of OWLAPI calls and SPARQL-
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Figure 3.2: Hybrid suggestion generation framework architecture.
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Figure 3.3: A partial neuroimaging workflow.

DL queries to retrieve viable suggestions from the ontology via the Reasoner. The suggestions are
returned to the SRB after reordering and pruning. The suggestions are generated from the discovered
generalised patterns stored in the ontology. Existing systems that use patterns generate suggestions
directly from the specific patterns. However, such systems do not work if a user is attempting to
construct a workflow with new components. Since the components are new, little to no patterns exist
that contain them. Looking at the patterns from a functional perspective allows the system to predict
what the user is attempting to do and suggest patterns accordingly. In such a scenario, even if the
specific components are new but perform a well-known existing function, the system would be able
to assist the user. Alternatively, if the components perform a novel function, the system might still
be able to suggest relevant components. However, the system might not be able to accurately predict
what a user is attempting to do. In such a case, the relevant components might be suggested based on
semantics, but the ordering might not be optimal. The following algorithm is used for these purposes:

1. The partial workflow is generalised to represent a partial pattern as represented in the ontology.
The generalisation rules are discussed in Section 3.3.8.

2. All generalised patterns that contain the requested pattern as a subgraph are retrieved from the
ontology.

3. The generalised components in the suggested patterns are specialised. During specialisation,
many combinations of specific components are possible. Only combinations that are semanti-
cally valid and contain the requested partial workflow as a subgraph are shortlisted.

The shortlisted suggestions are sent back to the SRB.

3.3.5 Domain Ontology Update Engine

One of the major limitations in existing workflow recommenders concluded in Chapter 2 was that
existing pattern-based systems use static semantic descriptions. The semantic repositories have to be
specified, maintained and updated manually by users. This makes the job of the user very tedious and
time-consuming. Additionally, the semantic descriptions only specify which components are compat-
ible. There is no information about degrees of appropriateness; that is which components perform a
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logical function together. Moreover there is no information about which ones are more appropriate
for a particular task. Various systems have adopted different approaches to automatic/semi-automatic
ontology generation. Some approaches exploit the inherent structure in existing data [3, 4, 5]. Oth-
ers use text mining to extract structured knowledge from relevant literature [6, 7]. However, these
approaches are not suitable for workflows. Often, the semantic descriptions about components are
present in the form of free form text descriptions. There is no structure to the data. Additionally, there
is no information about logical component groupings. Text mining approaches are also not suitable
because quite often, the literature describing the components is sparse. Such approaches are also not
suitable for extracting dependencies between the components. In workflows, usage patterns are a dy-
namic source of information. They provide logical component grouping as well as insight into best
practices. Therefore, this thesis utilises usage patterns combined with user intervention to update and
maintain the domain ontology. In this regard, the methodology is semi-automated. It is discussed in
the following paragraphs.

This component is responsible for: (a) identifying new composite functional units of components,
and (b) inferring semantics of new components. Figure 3.4 shows a partial workflow first introduced in
Section 2.1. In this workflow, the component FLIRT is an alignment algorithm that estimates a trans-

Reorient

Bias Field 
Corrector

SSMA

FLIRT

3D B-spline 
Deformation

Figure 3.4: A functional unit.

formation between two images. The transformation matrix describes how the coordinate space of the
source image can be transformed to match the coordinate space of the target image. The transforma-
tion matrix thus produced is used by 3D B-spline Deformation to actually perform the transformation,
or “reslicing” as it it is also called. Consequently, these two components together represent a func-
tional unit that represents a complete registration operation between two components. This unit is
highlighted by the red border in Figure 3.4. Due to the fact that they represent a logical unit, it is likely
these two components will appear recurrently. Therefore, they can be picked up during the usage
pattern extraction process. Once this pattern makes it into the pattern repository, it is identified by
this component as a logical unit which can then be written back to the ontology as one.

The other kind of update performed by the component is related to adding new components. If a
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component appears in the patterns that is not present in the ontology, then it might be possible to infer
its semantic properties from the context it is used in. Consider the workflow shown in Figure 3.5. This

Brain Surface 
Extractor

Bias Field 
Corrector

Cerebro

Segmented Brain Image

Brain Image

Skull-stripped Brain Image

Skull-stripped Brain Image

Figure 3.5: Inferring new component semantics.

workflow takes a brain image as an MRI, strips the skull and exposes the brain tissue (Brain Surface
Extractor), performs error correction (Bias Field Corrector) and segments the cerebellum in the image
(Cerebro). The output is saved in the target directory. Suppose the Brain Surface Extractor component
has been newly added in the repository and the semantics have not yet been defined in the ontology.
As discussed in Section 3.3.3, Cerebro requires a skull-stripped brain image. Suppose that it is known
that the image provided as input to the workflow (represented in Figure 3.5 by the grey circle labelled
“Brain Image”) is not skull-stripped. Upon semantic analysis of the workflow (Section 3.3.3) it can be
determined that the unknown component must produce such an image. Given that the unknown com-
ponent takes a brain image, and produces a skull-stripped brain image, it can be reasonably inferred
that it represents a skull-stripping algorithm. Using the aforementioned techniques, this component
updates and adds to the ontology.

3.3.6 Workflow Filtering

Some workflow filtering is performed in order to ensure that the learned patterns are useful and
meaningful. Such workflows may arise due to various reasons. It may be because some users may
just be playing around and exploring different options. The workflows may not perform any mean-
ingful function. Novice users are more likely to create such workflows. The workflows may not even
be correct due to incorrect parameter settings or improper connections. Moreover, they may be syn-
tactically correct but may fail on the infrastructure due to various reasons such as inter-component
incompatibilities. Including such workflows in the pattern extraction process will bias the suggestions
towards incorrect/unreliable workflows. Therefore, they are filtered by this component.

49 [File Creation Timestamp: 24/02/2016, 14:13]



3.3. FRAMEWORK CHAPTER 3. ARCHITECTURE

3.3.7 Workflow-to-graph Conversion

In order to mine the workflows for patterns, they are converted to graphs for further processing.
Reasons for this are discussed in Section 3.3.9. During this process, components and modules in the
workflow become nodes in the graph. They are represented by different shapes to facilitate human
readability. Links between components become edges in the graph. Finally, input and output data
ports of modules are represented by labelling the edges in the graphs.

3.3.8 Component Generalisation

In order to identify functional units in the workflows, it is more appropriate to look at the various
components in terms of the functions they perform rather than the specific algorithms they represent.
For this reason, a functional taxonomy is used to generalise the workflow components to functional
components. This taxonomy is encoded into the domain ontology. Algorithms that employ taxonomic
context in this manner have been developed [8, 9]. One challenge in applying such a generalisation
is the extent to which the components should be generalised. For example, suppose a taxonomy of
ingredients is being used to analyse the coffee-making habits of customers with the taxonomy:

ingredient

⎧{{{{{{{
⎨{{{{{{{⎩

beans

⎧{
⎨{⎩

java
ethiopian

italian

milk

⎧{
⎨{⎩

whole

semi-skimmed
skimmed

sugar

⎧{
⎨{⎩

white
brown

artificial

Now, a typical database of coffee recipes might contain patterns such as {java, whole, white, 4} and
{ethiopian, skimmed, brown, 10}. The numbers 4 and 10 represent the frequencies with which these
patterns occur. However, instead of extracting these patterns, it might be more meaningful and useful
to extract the generic pattern {beans, milk, sugar, 14}. Doing so would allow the system to infer that
an item containing these three general ingredients is popular amongst customers, which in this case
is coffee. Notice that the frequency of the generalised pattern is greater than both the individual
patterns. However, this may not always be the case. Suppose that the data only contained the pattern
{java, skimmed, white, 4}. In this case, generalising it to {beans, milk, sugar, 4} yields a pattern with
the same frequency. Generally, the frequency of occurrence of a generalised pattern will always be
greater than or equal to the frequency of the specific patterns.

In the previous example, the ingredients could just as easily have been generalised to {ingredient,
ingredient, ingredient}. However, generalising them in this manner is not useful since the pattern
{ingredient, ingredient, ingredient, 14}, no matter how frequent, provides no meaningful information.
Inokuchi [9] has proposed the pruning of such over-generalised patterns. According to his solution, for
patterns 𝑃1 and 𝑃2, where 𝑃1 is a generalisation of 𝑃2, if 𝑓𝑟𝑒𝑞{𝑃1} = 𝑓𝑟𝑒𝑞{𝑃2}, then 𝑃1 is an over-
generalisation of 𝑃2. However, this solution does not prune all over-generalised patterns. Suppose in
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the previous example, if there were one more pattern in the data {ethiopian, whole, artificial, 4}, then
generalising it to {ingredient, ingredient, ingredient, 4} would result in boosting the frequency of that
pattern to 18. This pattern, according to Inokuchi’s solution would be retained since it satisfies his
criterion. However, it does not provide any useful information. Therefore, it would be better to prune
it. In order to achieve this, this research employs a different generalisation strategy, discussed in the
following paragraph.

It is clear from the preceding example, that the least general taxonomic terms that still differentiate
between the various items in the pattern provide useful information. Therefore, this idea is adopted
by this component to generalise the patterns. The following rules are observed during this process:

1. The algorithm starts with the most general term in the taxonomy that generalises all the various
items.

2. The various items are incrementally specialised until no two items are represented by the same
term.

Following these two steps, the algorithm arrives at the least general terms that generalise the vari-
ous items while still retaining useful information. However, these rules are only suitable for sets of
items with no specific links between them. Since workflows consist of components with explicit links
between them, the rules have to be slightly modified in the following manner. Keep in mind that gen-
eralisation occurs after the workflows have been converted to graphs. Therefore, they are treated as
graphs by the rules:

1. The algorithm starts with the most general node (component) in the taxonomy that generalises
all the nodes in the graph (workflow).

2. All adjacent nodes that are represented by the same ancestor (general component) are iteratively
specialised until they become distinct.

The criterion of adjacent nodes is introduced because a workflow may contain more than one of the
same type of component. However, no two components of the same type will be directly connected
via their inputs and outputs. In this manner, the graph representing a workflow is generalised to the
least general components that still differentiate between the various components and thus retain useful
information. The workflow graph is now ready for pattern mining.

3.3.9 Usage Pattern Extraction

Usage patterns are an important source of empirical knowledge. They capture expert knowledge
acquired by scientific users with time and experience. In this framework, usage patterns are used to
update and enrich the domain ontology. In order to do so, they must be extracted from the workflows
for further processing. Pattern recognition is an appropriate technique that can be employed to do so.

Pattern recognition is a well-known problem in the field of artificial intelligence. It involves iden-
tifying different sorts of entities in a given dataset. These entities could be objects or patterns in the
data. For example, Murty et al [10] have designed an algorithm to assist libraries in managing their
collections. The algorithm organises the books into various groups based on their contents. These
groups then facilitate the retrieval of books related to a particular topic as well as the classification of
newly-added books. This example illustrates two significant problems in pattern recognition; cluster-
ing and classification. Clustering is the process of grouping a number of data points into distinct or
fuzzy clusters. These clusters represent patterns in the data. Classification is the process of assigning
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a particular data point to one of a number of precomputed clusters. In the quoted example, the process
of separating the books into groups is clustering. The process of of assigning a newly-added book to
one of existing groups is classification. Many algorithms that perform these tasks have been developed
such as k-means, decision trees and bayesian networks [11, 12, 13] etc. Fundamentally, pattern recog-
nition approaches rely on the similarity between the different points based on a number of features.
Therefore, a significant challenge in pattern recognition is to identify features relevant to the problem
that is being targeted. For example, in the library example the authors use the similarity between the
tables of contents of the various books to cluster them. However, the patterns in workflows are of a
slightly different nature. They consist of components that are not similar; they perform different, but
complementary functions. Therefore, similarity is not a good metric to identify patterns in workflows.
Instead, this thesis uses frequency of co-occurrence.

The inherent graph-like structure of workflows lends them to graph processing algorithms. The
problem of identifying frequent patterns in graphical workflows can be represented as finding fre-
quent subgraphs in a set of graphs. Frequent subgraph mining is a well-researched problem and many
algorithms exist. Therefore, this thesis uses an existing subgraph mining algorithm for finding fre-
quent patterns in workflows. The usage pattern extraction component is responsible for extracting
the patterns from the generalised workflow graphs and storing them in the repository. As discussed
in Section 2.11, several algorithms were tested for this purpose and gSpan [14] was chosen. The rea-
sons for this have also already been discussed. The output of this component is a set of frequent
functional workflow units that represent functional usage patterns. The following section summarises
and concludes this chapter.

3.4 Summary and Conclusions

In this chapter HyDRA, a novel hybrid framework for suggestion generation was proposed. It
employs both frequent usage patterns and workflow component semantics to generate suggestions.
At the core of this framework is a domain ontology which contains both the semantics and learned
patterns. The framework employs semi-automated methodologies to update and enrich the ontology
based on the learned usage patterns. The framework consists of two distinct phases. One is the user-
initiated processing phase and the other is the offline processing phase. In the user-initiated processing
phase, the framework monitors the user while they compose a workflow. When the user is to be
presented with suggestions, the framework uses the information stored in the ontology to generate
them based on a semantic analysis of the partially-constructed workflow. In the offline processing
phase, the workflow repository is analysed to extract frequent usage patterns. These patterns are then
used to identify new functional units as well as new workflow component semantics.

The framework proposed in this chapter helps us in answering ResearchQuestion 4 as it combines
both semantics and frequent usage patterns. In the next chapter, the suggestions generation process is
discussed in detail along with the various algorithms that are used by the different components. The
details of the domain ontology are also discussed.
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CHAPTER 4

Realising HyDRA

The previous chapter presents HyDRA, a novel hybrid architecture for suggestion generation. This
architecture employs semantics and frequent usage patterns to generate suggestions. The previous
chapter discussed the various components that comprise HyDRA’s framework and presented their
rationale. The information presented gave an overall picture of the functions performed by HyDRA
and how theywere interconnected. In this chapter a prototype implementation of HyDRA is discussed.
Various examples introduced in the previous chapter are used here to highlight how the functions
discussed can be implemented. It is divided into two main parts. The first part discusses the various
algorithms that perform the functions described in the previous chapter. The second part discusses the
contents of the domain ontology, also called the knowledge base, and explains how they can be used
to generate suggestions. The suggestion generation process involves several steps:

1. The partial workflow being constructed has to be semantically analysed to generate contextual
suggestions.

2. The partial workflow being constructed has to be generalised so that the system may attempt to
infer what a user is attempting to do based on the frequent usage patterns previously extracted.

3. The results of the previous two steps have to be combined to generate a unified list of suggestions.

In essence, semantics are applied in the first two steps to generate suggestions. This chapter discusses
prototype implementations of all these steps.

Some essential differentiating terminology is discussed in Section 4.1. The various symbols and
notations that are required for understanding this chapter and the information presented are also
discussed in this section. Section 4.2 discusses the implementation of the semantic analyser along with
a discussion of its inputs and outputs. This is followed by a discussion of the generalisation process and
how it is achieved in Section 4.3. The final list of suggestions is compiled by the algorithm presented
in Section 4.4. This concludes the first part of this chapter. Section 4.5 relates to the second part
about the domain ontology and how the knowledge encoded in it can be used to support suggestion
generation. Section 4.6 presents an illustrative example that conceptually demonstrates how HyDRA
interacts with a user followed by conclusions in Section 4.7.
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4.1 Essential Terminology

In order to understand this chapter, an introduction of some essential notations and terminolo-
gies is required. These notations and terminologies shall be used throughout this chapter as well as
subsequent chapters. There are two types of entities discussed in this research; workflows and on-

tologies. Both entities have their own standard terminologies and concepts, introduced in this section
for convenience. A workflow is an ordered sequence of steps that each perform some kind of data
processing on datasets. Each step is called a workflow component. It represents an executable com-
puter program or algorithm that performs the required processing. An ontology, on the other hand, is
a knowledge base that contains knowledge about some real world entities. It defines the properties,
roles and relationships between those entities. The components of an ontology are concepts, roles and
individuals.

To discuss the representation of knowledge Description-Logic (DL) is used [1]. The rationale be-
hind it is discussed in Section 4.5. Ontologies, and indeed DLs are used to model relationships between
different entities. In DL, as in ontologies, there are three types of entities; concepts, roles and individ-
uals. Concepts denote sets of individuals, while roles denote relationships between entities. Figure 4.1
shows an example ontology that can be modelled using DL. The ontology contains two concepts; Par-
ent and Child. The relationship between them may be expressed via the role has-child. Parent(Tom)

specifies that the individual Tom belongs to the concept Parent. Parent is also called the type of the
individual Tom. has-child(Tom,Jack) states that the individuals Tom and Jack are related to each other
through the role has-child. Similarly, has-child(John,Jill) specifies that John has a child named Jill. In

Parent

John

Tom

Child

Jill

Jack
has-child

has-child

Figure 4.1: Description logic entities.

addition to these entities, DL also defines various constructs for defining complex relationships. For
convenience, the various constructs and notations used in this research and their notations are defined
here:
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Subsumption (⊑) A binary relationship that can exist between two concepts in an ontology,
where one concept denotes a more specific set of individuals than the other.
This construct can be used to describe a taxonomic hierarchy, such as the
one this research requires. For example, 𝐴 ⊑ 𝐵 states that 𝐴 is a speciali-
sation of 𝐵. 𝐴 is said to be subsumed by 𝐵.

Intersection (⊓) A binary relationship that specifies the intersection of two concepts. 𝐴⊓𝐵
specifies all individuals that belong to both 𝐴 and 𝐵.

Union (⊔) A binary relationship that specifies the union of two concepts. 𝐴⊔𝐵 spec-
ifies all individuals that either belong to 𝐴 or 𝐵.

Disjoint A binary relationship that specifies that two concepts are mutually exclu-
sive. 𝑑𝑖𝑠𝑗𝑜𝑖𝑛𝑡(𝐴,𝐵) specifies that no individual can belong to both 𝐴 and
𝐵 at the same time. In DL it can also be expressed as 𝐴 ∩ 𝐵 = ∅.

Concatenation (⊕) This research defines the ⊕ operation as a binary concatenate operation on
two sets. For sets 𝑠1 = {1, 2, 3} and 𝑠2 = {4, 5, 6}, 𝑠1 ⊕ 𝑠2 results in
𝑠1 = {1, 2, 3, 4, 5, 6} and 𝑠2 = {4, 5, 6}.

Difference (−) A binary difference operation on sets that subtracts the second set from the
first one. This means that for the sets 𝑠1 = {1, 2, 3} and 𝑠2 = {2, 3}, 𝑠1−𝑠2
gives {1}.

As discussed in Section 3.3.8, this research uses a taxonomy of workflow components. A taxon-
omy is essentially a mechanism of classifying and organising various entities in a particular domain.
Therefore, intuitively an ontology can also act as a taxonomy. The various concepts of the ontology
can serve as classifying branches of the taxonomy. Its hierarchical nature is ideal for representing the
subsumption relationships in an ontology.

Animal

CatDog

Animal

CatDog

1. Parent concept becomes 
root of taxonomy

2. Subconcepts become
child nodesOntology Taxonomy

is-a

Legend

Figure 4.2: Ontology to taxonomy mapping.

Consider the example ontology shown in Figure 4.2. The concept Animal subsumes the subcon-
cepts Dog and Cat. When converting this ontology to a taxonomy, the parent concept Animal becomes
the root of the taxonomy. All the subconcepts become the children of the root in the taxonomy. More-
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over, the relationships between the various concepts can be expressed using the following DL axioms:

Dog ⊑ Animal

Cat ⊑ Animal

These axioms state that Dog and Cat are specific types of Animal. Thus, the subsumption operator can
be used to specify a taxonomy. This fact will be exploited in later sections.

Component

Registration
Component

AffineRegistration
Componet

Figure 4.3: Example neuroimaging taxonomy.

Scientific workflows consist of various components that constitute the processing steps of the
workflow. This research uses an ontology that classifies the workflow components by their function.
For example, a workflow component called FLIRT, which is part of the FSL [2] suite of algorithms, per-
forms a normalisation process called registration between MRIs. More specifically, there are various
types of registration that can be performed; e.g. affine and non-affine registration. FLIRT is an affine
registration algorithm. Therefore, one way to classify FLIRT is to define the concepts Component, Reg-
istrationComponent and AffineRegistrationComponent in the ontology. The corresponding taxonomy
of this ontology is shown in Figure 4.3. Given this taxonomy, the axiom AffineRegistrationCompo-

nent(FLIRT) states that FLIRT is an affine registration component that is also a registration component
and a workflow component.

During the generalisation process (discussed in Section 4.3), the workflow components are often
replaced by their taxonomic classes. In order to facilitate the discussion of this process and to avoid
confusion, some terminology to distinguish between the actual workflow components and their taxo-
nomic classes is introduced. Generally, the components are executable algorithms that process data in
some way. In contrast, their taxonomic classes are non-executable components that represent generic
functions. In the example discussed, FLIRT is an executable algorithmwhereas the conceptsAffineReg-

istrationComponent, RegistrationComponent and Component are its non-executable taxonomic classes.
The terms introduced exploit this characteristic of the workflow components. They are borrowed from
the work of Kim et al. [3]:
Abstract component: a component that is not executable. A workflow that contains at least one ab-

stract component is called an abstract workflow.
Concrete component: a component that is executable. A workflow that contains no abstract compo-

nents is called a concrete workflow.
According to these definitions, FLIRT is a concrete component while its taxonomic classes are abstract
components. Having presented all of the preliminaries, the subsequent sections discuss the various
functions that the framework performs and how they are implemented.
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4.2 Semantically Analysing Workflows

In order to generate accurate suggestions for workflows, the semantic properties of workflow com-
ponents need to be propagated across the workflow. To understand why this is necessary, an illus-
trative example has already been discussed in Section 3.3.3. The example is reintroduced here for
convenience and for further expansion. Consider the two workflow components, Cerebro and Bias

Field Corrector. Cerebro is a segmentation algorithm that identifies various parts of the brain and la-
bels them accordingly. To achieve this, it requires a skull-stripped MRI, in which the brain tissue has
been extracted from the skull and other materials. Often, an MRI contains noise that must be filtered
before it can be reliably processed for further use. The Bias Field Corrector component is responsible
for doing exactly that.

Bias Field 
Corrector

Cerebro

Skull-stripped 
Brain Image

(a) Component requires skull-stripped brain
image.

Bias Field 
Corrector

Cerebro

Skull-stripped 
Brain Image

Skull-stripped 
Brain Image

(b) Requirements are propagated across com-
ponents.

Figure 4.4: A partial neuroimaging workflow.

Since the function of the Bias Field Corrector component is to reduce the noise in theMRI, it does not
otherwise change the nature of image. If theMRI has already been skull-stripped, it will remain a skull-
stripped image after it has been processed by the Bias Field Corrector component. Now consider the
partial workflow shown in Figure 4.4. Figure 4.4a shows a partial workflow forwhich suggestions are to
be generated. It can be seen that Cerebro requires a skull-stripped MRI.The Bias Field Corrector is not a
skull-stripping component. So how canCerebro’s requirement be fulfilled? It can be seen that if a skull-
stripped image is provided as input to the Bias Field Corrector, it will produce a noise-reduced skull-
stripped image. Because of this transitive behaviour of the Bias Field Corrector, generating accurate
suggestions for a workflow involves propagating semantic properties as shown in Figure 4.4b.

In general, this process is depicted in Figure 4.5. Consider two workflow components 𝑐𝑖 and 𝑐𝑚
with inputs and outputs as shown with a link between them. In addition, there also exists a transitive
dependency from 𝑐𝑚𝑛 to 𝑐𝑚𝑜. That is to say, the workflow component 𝑐𝑚 transfers the semantics
properties from its input 𝑐𝑚𝑛 to its output 𝑐𝑚𝑜. The previously discussed Bias Field Corrector com-
ponent is an example of such a component. It can be seen from the figure that 𝑐𝑚𝑛 gets its semantic
properties from 𝑐𝑖𝑗, which are then transferred to the output 𝑐𝑚𝑜 because of the transitive depen-
dency. If prop(𝑐𝑖𝑗) gives the semantic properties for 𝑐𝑖𝑗, then the operation prop(𝑐𝑚𝑜) ⊕ prop(𝑐𝑖𝑗)
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Legend
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Figure 4.5: Semantic propagation when a transitive dependency exists

transfers those properties to 𝑐𝑚𝑜. As an example, consider the workflow components Brain Surface

Extractor and Bias Field Corrector, both part of the BrainSuite set of algorithms [4]. Brain Surface Ex-
tractor is a skull-stripping component that removes the skull and other extraneous tissue from an MRI
and exposes the brain. It produces a skull-stripped image as a result. If 𝑐𝑖 is replaced by Brain Surface
Extractor and 𝑐𝑚 by Bias Field Corrector, then semantic analysis will reveal that the output of Bias

Field Corrector is also a skull-stripped image in this case. In order to properly propagate the semantic
properties across the workflow, they must be both propagated forward and backward. Therefore se-
mantic analysis involved two steps; forward propagation and backward propagation, explained in the
following sections.

4.2.1 Forward Propagation

The first step in the semantic analysis process is forward propagation. In this step semantics are
propagated from the inputs of workflow components to their outputs. Figure 4.5 is an example of
forward propagation. Suppose that for a particular workflow, 𝐶 is the set of all components in the
workflow. 𝐿 is the set of tuples of the form <source,sink> representing the links between the workflow
components. 𝜎 is the set of tuples of the form <source,target> which represent the transitive rela-

tionships between the component parameters. This research defines a transitive relationship to exist
between two parameters when the semantic properties of an input parameter are transferred to an
output parameter. The Bias Field Corrector component is one such example.

In a transitive relationship the target is said to be transitive dependent on the source. However,
workflow components can have multiple input and output parameters. This may give rise to some
ambiguity as to which parameters are transitive dependent on each other. To resolve this ambiguity,
this approach requires domain experts to specify transitive dependencies between the parameters of
different components. These dependencies are encapsulated in the 𝜎 parameter. In Figure 4.5, 𝑐𝑚𝑜 is
transitive dependent on 𝑐𝑚𝑛. Therefore, for the component 𝑐𝑚, ⟨𝑐𝑚𝑛, 𝑐𝑚𝑜⟩ ∈ 𝜎. For more details
about transitive dependencies see Section 4.5.2.

During forward propagation, for each workflow component, the system must first determine if
semantic propagation needs to be performed. This involves determining if, for each pair of connected
output and input parameters, the input parameter has a transitive dependency. For example, in Fig-
ure 4.5, 𝑐𝑖𝑗 is connected to 𝑐𝑚𝑛. Therefore, ⟨𝑐𝑖𝑗, 𝑐𝑚𝑛⟩ ∈ 𝐿. Recall that 𝐿 is the set of links in the
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workflow. Moreover, 𝑐𝑚𝑜 is transitive dependent on 𝑐𝑚𝑛, therefore ⟨𝑐𝑚𝑛, 𝑐𝑚𝑜⟩ ∈ 𝜎. Given these
two facts, the system can determine that semantic propagation needs to take place from 𝑐𝑖𝑗 to 𝑐𝑚𝑜.
The following conditional statement can be used to determine if semantic propagation needs to be
performed:

∃ 𝑐𝑖𝑗, 𝑐𝑚𝑛, 𝑐𝑚𝑜 | 𝑐𝑖𝑗 ∈ Output(𝑐𝑖) ∧ 𝑐𝑚𝑛 ∈ Input(𝑐𝑚)
∧ 𝑐𝑚𝑜 ∈ Output(𝑐𝑚) ∧ ⟨𝑐𝑖𝑗, 𝑐𝑚𝑛⟩ ∈ 𝐿 ∧ ⟨𝑐𝑚𝑛, 𝑐𝑚𝑜⟩ ∈ 𝜎

This condition states that there exist some 𝑐𝑖𝑗, 𝑐𝑚𝑛 and 𝑐𝑚𝑜 such that 𝑐𝑖𝑗 is an output parameter of 𝑐𝑖
and 𝑐𝑚𝑛 and 𝑐𝑚𝑜 are input and output parameters of 𝑐𝑚 respectively. Additionally, ⟨𝑐𝑖𝑗, 𝑐𝑚𝑛⟩ ∈ 𝐿
meaning 𝑐𝑖𝑗 is connected to 𝑐𝑚𝑛. Finally, ⟨𝑐𝑚𝑛, 𝑐𝑚𝑜⟩ ∈ 𝜎, indicating that there is a transitive depen-
dency from 𝑐𝑚𝑛 to 𝑐𝑚𝑜. If all of these conditions are found to be true, then the semantic properties of
𝑐𝑖𝑗 are to be transferred to 𝑐𝑚𝑜.

Algorithm 1 Forward propagation algorithm.
Require: 𝐶 ∶ Set of components in the workflow.

𝐿 ∶ Set of source-sink tuples representing the links in the workflow.
𝜎 ∶ Set of origin-target tuples representing the transitive dependencies between inputs and outputs of components.

1: procedure ForwardPropagation(𝐶,𝐿,𝜎)
2: for all 𝑐𝑖 ∈ 𝐶 do
3: for all 𝑐𝑖𝑗 ∈ Output(𝑐𝑖) do
4: if ∃ 𝑐𝑚𝑛, 𝑐𝑚𝑜 | 𝑐𝑚𝑛 ∈ Input(𝑐𝑚), 𝑐𝑚𝑜 ∈ Output(𝑐𝑚) ∧ ⟨𝑐𝑖𝑗, 𝑐𝑚𝑛⟩ ∈ 𝐿 ∧ ⟨𝑐𝑚𝑛, 𝑐𝑚𝑜⟩ ∈ 𝜎 then
5: prop(𝑐𝑚𝑜) ⊕ prop(𝑐𝑖𝑗) | ∄ 𝑝𝑖, 𝑝𝑗 ∶ 𝑝𝑖 ∈ prop(𝑐𝑖𝑗), 𝑝𝑗 ∈ prop(𝑐𝑚𝑜) ∧ 𝑝𝑖 ⊓ 𝑝𝑗 = ∅
6: end if
7: end for
8: end for
9: end procedure

The following statement transfers the semantic properties from 𝑐𝑖𝑗 to 𝑐𝑚𝑜:

prop(𝑐𝑚𝑜) ⊕ prop(𝑐𝑖𝑗)

However, care must be taken at this point as this step may give rise to sets of conflicting properties.
For example, consider the situation where prop(𝑐𝑖𝑗) = ⟨UnsegementedDataset⟩ and prop(𝑐𝑚𝑜) =
⟨SegmentedDataset⟩. This situation arises in the case of a workflow component that takes an unseg-
mented MRI and produces a segmented one such as Cerebro. In this case, transferring the semantic
properties from 𝑐𝑖𝑗 to 𝑐𝑚𝑜 will result in prop(𝑐𝑚𝑜) = ⟨UnsegmentedDataset, SegmentedDataset⟩. This
is absurd because no image can be both unsegmented and segmented at the same time. This situation
can be avoided by declaring these two properties as disjoint. All that is then required is to add an addi-
tional check when propagating the semantics to ensure disjoint properties are excluded. The following
statement achieves this purpose:

prop(𝑐𝑖𝑗) ⊓ prop(𝑐𝑚𝑜) = ∅

This states that prop(𝑐𝑖𝑗) and prop(𝑐𝑚𝑜) do not contain any properties that are mutually disjoint. The
complete algorithm is shown in Algorithm 1.

The algorithm iterates over all of the components in the workflows (Line 2). Each component 𝑐𝑖
has some input and output parameters denoted by 𝑐𝑖𝑗. Input parameters are denoted by Input(𝑐𝑖).
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Similarly, output parameters are denoted by Output(𝑐𝑖). For each output parameter of each compo-
nent, the algorithm first checks if it is connected to the input parameter of another component (Line 4).
If there exists a transitive dependency between that input parameter and an output parameter of the
same component, the semantics are propagated (Line 5). The process continues until all semantics
have been propagated across the workflow.

4.2.2 Backward Propagation

The second step in the semantic analysis process is backward propagation of semantic properties.
This is equivalent to determining what the semantic requirements for a partial workflow are since
these have to be satisfied by some additional workflow components. The backward propagation pro-
cess mirrors the forward propagation process. It is depicted in Figure 4.6. In this case, 𝑐𝑖𝑗 is an input

Legend
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dependency

prop(cmo) ⊕ prop'(cij)

Figure 4.6: Backward propagation.

to 𝑐𝑖 with specific semantic properties. These properties have to be satisfied by 𝑐𝑚𝑛 since the two are
connected. Moreover, there is a transitive dependency between 𝑐𝑚𝑜 and 𝑐𝑚𝑛. This means that any
semantic properties available at 𝑐𝑚𝑜 will be propagated to 𝑐𝑚𝑛. Therefore, the semantic requirements
for 𝑐𝑖𝑗 can also be satisfied by 𝑐𝑚𝑜 if they are not satisfied by 𝑐𝑚𝑛. This is the key difference be-
tween forward propagation and backward propagation. The semantic properties are back-propagated
iff they have not been satisfied. Otherwise, there is no point. The example shown in Figure 4.4 depicts
backward propagation in practice.

Formally, the following conditional statement can determinewhether semantic propagation should
take place:

∃ 𝑐𝑖𝑗, 𝑐𝑚𝑛, 𝑐𝑚𝑜 | 𝑐𝑖𝑗 ∈ Input(𝑐𝑖) ∧ 𝑐𝑚𝑛 ∈ Output(𝑐𝑚)
∧ 𝑐𝑚𝑜 ∈ Input(𝑐𝑚) ∧ ⟨𝑐𝑚𝑛, 𝑐𝑖𝑗⟩ ∈ 𝐿 ∧ ⟨𝑐𝑚𝑜, 𝑐𝑚𝑛⟩ ∈ 𝜎

This states that there should be some workflow components 𝑐𝑖 with input 𝑐𝑖𝑗 and 𝑐𝑚 with output 𝑐𝑚𝑛
and input 𝑐𝑚𝑜. There should also be al link between 𝑐𝑚𝑛 and 𝑐𝑖𝑗 and a transitive dependency between
𝑐𝑚𝑜 and 𝑐𝑚𝑛. If these conditions are satisfied, then semantic propagation needs to be performed.

Similarly to forward propagation, the operation prop(𝑐𝑚𝑜) ⊕ prop(𝑐𝑖𝑗) will transfer the semantic
properties from 𝑐𝑖𝑗 to 𝑐𝑚𝑜. However, as mentioned previously, only semantic properties that have not
been satisfied must be transferred. Those that have been satisfied should be excluded from this. Now
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the semantic properties of 𝑐𝑖𝑗 are satisfied by those of 𝑐𝑚𝑛. Therefore, the system must check if there
are any common properties between 𝑐𝑚𝑛 and 𝑐𝑖𝑗 as those will be the ones that have been satisfied.
The final operation can be written as:

prop(𝑐𝑚𝑜) ⊕ prop′(𝑐𝑖𝑗) | prop′(𝑐𝑖𝑗) ← prop(𝑐𝑚𝑛) − prop(𝑐𝑖𝑗)

This states that transfer all properties from 𝑐𝑖𝑗 to 𝑐𝑚𝑜 that are not also properties of 𝑐𝑚𝑛. The complete
algorithm is given in Algorithm 2. Similar to forward propagation, the algorithm iterates over all the

Algorithm 2 Backward propagation algorithm.
Require: 𝐶 ∶ Set of components in the workflow.

𝐿 ∶ Set of source-sink tuples representing the links in the workflow.
𝜎 ∶ Set of origin-target tuples representing the transitive dependencies between inputs and outputs of components.

1: procedure BackPropagation(𝐶,𝐿,𝜎)
2: for all 𝑐𝑖 ∈ 𝐶 do
3: for all 𝑐𝑖𝑗 ∈ Input(𝑐𝑖) do
4: if ∃ 𝑐𝑚𝑛, 𝑐𝑚𝑜 | 𝑐𝑚𝑛 ∈ Output(𝑐𝑚) ∧ 𝑐𝑚𝑜 ∈ Input(𝑐𝑚) ∧ ⟨𝑐𝑚𝑛, 𝑐𝑖𝑗⟩ ∈ 𝐿 ∧ ⟨𝑐𝑚𝑜, 𝑐𝑚𝑛⟩ ∈ 𝜎 then
5: prop(𝑐𝑚𝑜) ⊕ prop′(𝑐𝑖𝑗) | prop′(𝑐𝑖𝑗) ← prop(𝑐𝑚𝑛) − prop(𝑐𝑖𝑗)
6: end if
7: end for
8: end for
9: end procedure

component inputs during back propagation (Line 3). For each input parameter 𝑐𝑖𝑗 of each component
𝑐𝑖, the algorithm checks if it is connected to the output parameter 𝑐𝑚𝑛 of another component 𝑐𝑚
(Line 4). If so, and 𝑐𝑚𝑛 is transitive dependent on an input 𝑐𝑚𝑜, then the semantics are propagated
to 𝑐𝑚𝑜 (Line 5). Only semantics which have not already been satisfied by 𝑐𝑚𝑛 are propagated back-
wards. The next section talks about the other step that is necessary to generate suggestions for users;
component generalisation.

4.3 Component Generalisation

The components in a workflow are generalised to abstract components that represent the functions
they perform. This is useful when identifying and extracting logical functional units from workflows.
In addition, these generalised units are useful when the system is attempting to intelligently infer the
kind of workflow a user is attempting to build. For a detailed discussion of the approach adopted to
generalise components, the reader is directed to Section 3.3.8.

The algorithm that implements the approach discussed in Section 3.3.8 is shown in Algorithm 3. 𝐺
is the graph representing the convertedworkflow that is to be generalised. The ontology containing the
taxonomy of the nodes is𝑂. 𝑁(𝐺) is a predicate that returns all the nodes in graph𝐺while𝑛𝑖 and𝑛𝑖+1
are the 𝑖𝑡ℎ and 𝑖 + 1𝑡ℎ nodes respectively. 𝑙(𝑛𝑖) gives the label of the 𝑖𝑡ℎ node. This label corresponds
to the taxonomic category to which this node belongs. The Generalise_All(G) operation generalises all
the nodes in graph𝐺 to themost general term in the ontological taxonomy. The Specialise(n) operation,
on the other hand replaces the label of the node 𝑛 with the next specific label in the taxonomy. The
algorithm begins by generalising all the nodes in the graph to the most general term in the taxonomy
(Line 2). In the main loop, it checks all adjacent node to determine whether they have the same label
(Lines 4 and 5). If they do, each of them is specialised to the next specific label in the taxonomy (Lines 6
and 7). The loop ends when all nodes in the taxonomy have been specialised such that no adjacent
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Algorithm 3 Component generalisation algorithm.
Inputs:
𝐺: The input graph to be generalised.
𝑂: Ontology describing algorithm taxonomy.

1: procedure Generalise(𝐺,𝑂)
2: Generalise_All(𝐺)
3: loop ▷ loop over the workflow until all nodes have been generalised
4: for all 𝑛𝑖, 𝑛𝑖+1 ∈ 𝑁(𝐺) do
5: if 𝑙(𝑛𝑖) = 𝑙(𝑛𝑖+1) then
6: Specialise(𝑛𝑖)
7: Specialise(𝑛𝑖+1)
8: end if
9: end for
10: end loop
11: end procedure

nodes have the same label. The result is an abstract workflow that still retains useful information.
Having covered both preprocessing steps required to generate suggestions, the actual algorithm that
compiles and sorts the suggestions is discussed in the next section.

4.4 Generating Suggestions

In order to generate suggestions for a partial workflow, it must undergo a series of processing
steps. The Component Suggestion Request Handler component is responsible for this task in conjunc-
tion with a number of other components. It is discussed in Section 3.3.4. The algorithm that performs
this processing and generates suggestions is discussed in Algorithm 4. The inputs to the algorithm
are the partial workflow 𝑊𝑝 and the domain ontology 𝑂 containing semantic information about the
workflow components. The algorithm consists of two procedures. It starts with the GenerateSugges-

tions procedure. This procedure begins by converting the partial workflow consisting only of concrete
components to a graph representing the workflow 𝑊𝑔. This is done by invoking the Workflow to
graph conversion component (cp. Section 3.3.7). Once this is complete, the various components in the
workflow graph are generalised (Line 3). Some components perform different functions depending on
how they are configured. Since HyDRA generalises components based on their functions, a mecha-
nism to deal with such multi-function components is required. In this case HyDRA takes into account
additional semantics such as the input and output datatypes of the components to determine which
function they are performing in the workflow being generalised. Once generalisation is complete,
the generalised graph now contains components which are abstract. As discussed in Section 3.3.8,
this allows the system to attempt to intelligently infer what kind of workflow a user is attempting
to build. In the third step, the system searches the mined generic patterns stored in the ontology for
matching patterns (Line 4). Any matching patterns found are added to a list of suggestion candidates.
These candidate are then specialised using the Specialise operation. This operation takes the abstract
components in the generalised workflow graph and replaces them with concrete components.

Having acquired suggestion candidates from the patterns, the algorithm then attempts to find
matching components based on semantics (Line 9). Before that is possible, the workflow has to be se-
mantically analysed to determine what kind of components are compatible with the ones in the partial
workflow (Line 8). 𝐶(𝑊𝑝) and 𝐿(𝑊𝑝) are the sets of components and links within the partial work-
flow 𝑊𝑝. 𝜎(𝑂) denotes the set of transitive relationships specified in ontology 𝑂 (cp. Section 4.2).
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Algorithm 4 Suggestion generation algorithm.
Inputs:
𝑊𝑝 : Partial workflow that is to be comple𝜏ed.
𝐺 : Set of original workflow graphs stored in the workflow repository.
𝑂 : Domain ontology containing semantic descriptions and taxonomic classifications of workflow components.
𝐺𝑔 : Abstract partial workflow.
𝐺𝑟𝑒𝑓 : Original specialised partial workflow graph.

1: procedure GenerateSuggestions(𝑊𝑝,𝐺,𝑂)
2: 𝑊𝑔 ← ConvertToGraph(𝑊𝑝)
3: 𝑊 ′

𝑔 ← Generalise(𝑊𝑔,𝑂) ▷ see Algorithm 3
4: 𝒞 ← SearchPatterns(𝑊 ′

𝑔,𝑂) ▷ get candidates patterns
5: for all 𝑐 ∈ 𝒞 do
6: Specialise(𝑐,𝑊𝑔,𝐺)
7: end for
8: Analyse(𝐶(𝑊𝑝),𝐿(𝑊𝑝), 𝜎(𝑂)) ▷ see Section 4.2
9: 𝒞 ← FindMatchingComponents(𝑊𝑝,𝑂) ▷ append suggestions to candidates
10: Sort(𝒞)
11: return 𝒞
12: end procedure

13: procedure SearchPatterns(𝑊𝑔,𝑂)
14: for 𝑝 ∈ 𝑃(𝑂) do ▷ iterate over every pattern in the ontology
15: if 𝑊𝑔 ⊆ 𝑝 then ▷ if partial workflow is a subset of the pattern
16: 𝒞 ← 𝑝 ▷ add to candidates
17: end if
18: end for
19: return 𝒞
20: end procedure

21: procedure Specialise(𝐺𝑔,𝐺𝑟𝑒𝑓,𝐺)
22: for all 𝑔 ∈ 𝐺 do
23: return 𝑔|𝑔′ ⊆ 𝑔 ∧ 𝑔′ ⊑ 𝐺𝑔 ∧𝐺𝑟𝑒𝑓 ⊆ 𝑔′

24: end for
25: end procedure

After matching components have been found, the algorithm searches for matching patterns in the
ontology using the same principle in Line 9. Performing semantic analysis on a pattern allows the
system to more accurately determine what kind of patterns can be suggested for the current partial
workflow. Finally, the accumulated candidates are sorted and then returned to the workflow com-
position tool being used (Lines 10 and 11). In order to find matching patterns the algorithm uses the
SearchPatterns procedure. This procedure iterates over all of the patterns stored in the ontology. Every
pattern of which the partial workflow graph is a subset is a candidate for suggestions. These candi-
dates are stored in a list and returned to the main calling procedure. Since the patterns as well as the
partial workflow graph are generalised, this is equivalent to inferring what kind of workflow a user is
attempting to build.

The Specialise procedure takes the abstract partial workflow 𝐺𝑔 as input along with the original
concrete partial workflow 𝐺𝑟𝑒𝑓 . In addition, it also takes the set of original concrete workflow graphs
𝐺 from the workflow repository as input. It then searches the set𝐺 for a subgraph that satisfies certain
criteria. This subgraph must be a supergraph of the partial workflow graph 𝐺𝑟𝑒𝑓 being considered. It
must also be a specialisation of the abstract workflow graph𝐺𝑔 provided as input to the algorithm. This
criterion is introduced because by definition each abstract workflow may have many valid concrete
workflows. However, concrete workflows that do not contain the original partial workflow being
considered are of no interest to the user building the workflow. Using this criterion ensures that the
subgraph returned contains the original partial workflow graph. This concludes the discussion of the
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first part of the chapter related to the various algorithms. The next section talks about the domain
ontology and its relevance to suggestion generation.

4.5 Domain Ontology

This section talks about the domain ontology used in this research. The ontology is used to perform
semantic reasoning about the various workflow components as well as store frequent patterns as func-
tional units. More specifically, during suggestion generation, it is consulted by various components
to perform the following functions:

1) Perform semantic analysis of workflows (complete or partial). This involves propagating seman-
tics across workflow components. Transitive dependencies are utilised for this purpose.

2) Match partial workflows to patterns in order to infer what a user is attempting to do.
3) Identify new components using their semantic properties.
4) Determine semantic compatibility between two components.
5) Specify the taxonomy classification of components required for workflow generalisation.
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Figure 4.7: Interaction of components with domain ontology.

All of the components that interact with the domain ontology are shown in Figure 3.2. A sim-
plified diagram is shown in Figure 4.7. Each of the functions mentioned previously is covered in the
following sections. In order to perform these functions, knowledge about the workflow components
and their inter-relationships must be represented in the ontology. Although this section focuses on
discussing the ontology implemented as part of this research, the ontology in itself is not the ultimate
goal. By discussing the specifics of the ontology this section attempts to illustrate how knowledge
representation tools like DL can be used in workflow recommender systems. It can be realised in any
ontology modelling language as long as the required features are present.
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4.5.1 Taxonomic Classification

One of the functions this framework performs is to generalise the components in a workflow in
order to identify functional units. For the generalisation process to work, the components have to be
classified in a hierarchical taxonomy. Several criteria can be used to classify the components such as
function, package (part of the same software suite), component author, domain etc. However, since
the goal here is to identify functional patterns, a taxonomy based on the functions of the components
is required. Therefore, this thesis uses an ontology that classifies components according to function.
The process of developing a taxonomy based on the functions of workflow components involves the
following steps:

1. Perusal of relevant literature and documentation by domain experts to determine the functional
classification of the workflow component.

2. Mapping of the functional classification of the component to ontology concepts.
For example, consider the FLIRT component introduced earlier. From the relevant documentation,

it was identified that it is an affine registration component. This was mapped to the eponymous on-
tology concept AffineRegistrationComponent which in turn is a RegistrationComponent. The resultant
taxonomy is shown in Figure 4.3. Following this process, the prototype taxonomy shown in Figure 4.8
has been developed. This taxonomy is an extension of OntoNeuroBase [5]. Since it is a prototype
ontology, it is not domain complete. It covers only the dataset that is being used to evaluate this re-
search. For example, another workflow component, also part of FSL, is the Brain Extraction Tool (BET).
This component takes an MRI as input and delineates various parts of the brain, a process called brain

segmentation. To represent this component in the taxonomy, a concept called BrainSegmentationCom-
ponent was created which is itself a SegmentationComponent since other types of segmentations are
also possible. In this manner, the prototype taxonomy was incrementally developed.

Component

DatasetProcessingComponent DatasetExpressionProcessing

StatisticalProcessingCompoent SegmentationComponent ReconstructionComponent RegistrationComponent. . .. .

Figure 4.8: Workflow component taxonomy based on function.

During the development of this taxonomy, the OntoClean [6] methodology was followed to jus-
tify the design choices made. This methodology and its application are discussed in more detail in
Chapter 6. In addition to components, the ontology also contains a taxonomy of the datasets that
components take as input and produce as output. These datasets are categorised according to the type
of components they are inputs or outputs for. This taxonomy helps to classify components that are
new and are not known to the ontology. The methodology for this is discussed in Section 4.5.5. The
taxonomy is shown in Figure 4.9. This taxonomy is useful for:
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Figure 4.9: Datasets classified according the components that consume or produce them.

1) Determining semantic compatibility between components based on inputs and outputs.
2) Categorising unknown components.

In order to perform these functions, the inputs and outputs of components must first be represented
in the ontology. The following section discusses how this is achieved.

4.5.2 Representing Inputs and Outputs

Workflow components have input and output parameters that are primarily of two types; a) lit-
erals (strings, integers, floats, etc.), and b) files (datasets) . Input literals often represent configuration
parameters for components and the algorithms they represent. They affect the behaviour of the com-
ponents and sometimes determine what function they actually perform. This is true for components
that can be configured to perform multiple functions. Input files constitute the actual data that is to be
processed by the component. On the other hand output literals often represent statistical information
about the data that is provided as input to the component. This statistical information is calculated
by the component and output for further consumption. Output files usually constitute the actual data
that is produced by the component after processing the input data. In neuroimaging, files usually rep-
resent the MRI scans that are to be processed by the workflow to extract meaningful information for
users (in this case neuroscientists).

A scientific workflow is a sequence of components. It is composed by attaching the output of
one component to the input of another. Usually, it is the file inputs and outputs of the components
that provide the link between components. Literal inputs and outputs are usually not connected to
any other component. This is so because the actual data is constituted by the files that represent the
flow of data through the workflow. Since the file parameters form the links between components, a
workflow recommender system that helps users build workflows must focus on them. Therefore, for
the purposes of this research, only file parameters are considered. In order to support reasoning about
the inputs and outputs of components, they must be represented in the ontology as concepts. Since, in
the context of workflows, files only make sense when they are thought of as inputs to, or products of
components, they are encoded as such in the ontology. The taxonomy shown in Figure 4.9 categorises
various files (datasets) using semantics derived from the components they are consumed or produced
by.

For example, the FLIRT component takes a segmented MRI as input and produces a registered image
as output. These relationships can be modelled in the ontology by defining two roles has-for-output
and has-for-input. The fact that a DatasetProcessingComponent has an input DatasetParameter and an
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output DatasetParameter can be modelled using the following axioms:

∃ has-for-input .DatasetProcessingComponent ⊑ DatasetParameter

∃ has-for-output .DatasetProcessingComponent ⊑ DatasetParameter

Furthermore, a RegistrationProcessingComponent is aDatasetProcessingComponent that takes a Segmen-

tationParameter as input and produces a RegistrationParameter as output. A SegmentationParameter
is defined as a dataset that has been segmented while a RegistrationParameter is defined as a dataset
that has been registered. In addition to this, a registration component also takes a ReferenceDataset as
input to which it aligns the input dataset. These relations can be modelled in the following way:

∃ has-for-input .RegistrationComponent ⊑ SegmentationDataset

∃ has-for-input .RegistrationComponent ⊑ ReferenceDataset

∃ has-for-output .RegistrationComponent ⊑ RegistrationDataset

In addition to having some processing applied on them by workflow components, datasets are also
stored in a particular file format. Since the file format pertains to the physical instance of the dataset,
it is modelled using the concept DatasetExpressionFormat. The role has-expression-format relates a
DatasetParameter to a DatasetExpressionFormat:

∃ has-expression-format .DatasetParameter ⊑ DatasetExpressionFormat

Given all of these axioms combined, the simple assertion:

RegistrationComponent(FLIRT)

would allow the system to determine that FLIRT is a registration component that takes as input a ref-
erence and a segmented parameter. It produces a registered dataset as a consequence. Thus far, this is
more information than is generally stored in a workflow management system about any component.
Usually, this information is provided in a free-form text description and is only human-readable. Mod-
elling this information in an ontology makes it machine-readable. To specify semantics of the inputs
and outputs more completely, they must be instantiated within the ontology. As a convention, for
any workflow component 𝑐𝑖, 𝑐𝑖𝑗 will be used to refer to its inputs and 𝑐𝑖𝑘 to its outputs. Assuming
𝑐1 = FLIRT, it can be modelled in the ontology as:

RegistrationComponent(𝑐1)
SegmentationDataset(𝑐11)
ReferenceDataset(𝑐12)

RegistrationDataset(𝑐13) (4.1)

has-for-input(FLIRT, 𝑐11)
has-for-input(FLIRT, 𝑐12)
has-for-output(FLIRT, 𝑐13)
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Moreover, FLIRT takes its inputs and produces outputs in the IMG format. This can be asserted in the
following manner:

DatasetExpressionFormat(IMG)
has-expression-format(𝑐11, IMG)
has-expression-format(𝑐12, IMG)
has-expression-format(𝑐13, IMG)

Making the input/output parameters explicit like this instead of simply treating them as links between
components allows the system to reason about them. This helps the system when identifying un-
known components as well as for finding matching components. Both these aspects are covered in
Sections 4.5.5 and 4.5.6. In the next section, another important element of the ontology is discussed;
transitive dependencies. These are required for performing semantic analysis of a workflow as de-
scribed in Section 3.3.3.

4.5.3 Representing Transitive Dependencies

A workflow can be thought of as an assembly line. Parts are added to a product in stages until
a finished product is achieved. Similarly, in a workflow, data passes through the workflow in stages,
being transformed along the way until some meaningful results are achieved. While there are some
components that consume data and produce completely new data, there are others that only transform
the input data in some way. For example, the MRI SegStats component [7] takes a segmented dataset
as input and calculates various statistics for it such as the volume of each segment. On the other
hand, there are components like FLIRT that transform an image, but retain its other properties. It
performs linear registration of an input segmented image to a reference image. The output image is
also segmented since the input image is segmented. Due to this property of components, sometimes
semantic compatibility is not easy to determine. Such an example is discussed in Section 3.3.3 and
expanded in Section 4.2. The example shows that sometimes it is not enough to just consider the
semantics of the component under immediate consideration. In some cases semantics can be carried
across components, requiring a more sophisticated analysis mechanism.

Since semantics cannot be carried across all kinds of components (e.g. MRI Segstats), some mech-
anism is required to discern whether semantic propagation is possible or not. One way to do this
automatically would be to analyse the source code of the algorithm behind the component. However,
this is not a feasible approach since the source code is generally not available. Moreover, often com-
ponents have several inputs and several outputs, e.g. FLIRT. It is also not generally possible to discern
which inputs transfer their semantics to which outputs. Therefore, a semi-automatedmethodology has
been developed to allow the system to perform semantic analysis. This research defines a transitive

dependency as a relationship between the input and output of a component where the former trans-
fers its semantic to the latter. These dependencies are encoded into the ontology by domain experts.
They are later used by the semantic analysis algorithm to propagate semantics across components (cp.
Section 4.2).

Transitive dependencies can be captured in the ontology via roles. In the prototype ontology used
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in this research, two such roles have been defined; is-transitive-to and is-transitive-from. Formally:

∃ is-transitive-to.DatasetParameter ⊑ DatasetParameter

is-transitive-from ≡ is-transitive-to−

These state that is-transitive-to is a role that related a DatasetParameter to another DatasetParameter.
Also, is-transitive-from is the inverse role of is-transitive -to. For the component FLIRT as defined
in (4.1), there exists a transitive dependency between the output 𝑐13 and the input 𝑐11. This can be
captured using the following axiom:

is-transitive-to(𝑐11, 𝑐13)

Consequently, it can be inferred that:

is-transitive-from(𝑐13, 𝑐11)

This relationship is used byAlgorithms 1 and 2. For the purposes of the algorithm, the tuple ⟨𝑐11, 𝑐13⟩ ∈
𝜎 specifies transitive dependency between 𝑐13 and 𝑐11. Now that components can be represented in
the ontology, the next section discusses how patterns can be encoded using these components.

4.5.4 Representing Patterns

As discussed in Section 3.2, this framework uses frequent usage patterns to identify functional re-
lationships between components. Once these functional relationships have been identified, the com-
ponents can be grouped into functional units. Functional units are discussed more in Section 3.3.5. In
order to utilise these units for generating suggestions, they must be encoded into the knowledge base.

A functional unit is basically a sub-workflow within a workflow. As such it also consists of a set
of components connected to each other via their inputs and outputs. In this case, the functional units
consist of generalised components as discussed in Section 3.3.8. Because the generalisation process
utilises the functional taxonomy encoded into the ontology, the components comprising the functional
units are already present in the ontology. All that remains to be done is to specify the functional
relationships between them. The generalised components themselves are represented by concepts
in the ontology. To represent the functional unit itself, however, a new concept is required in the
ontology. For the purposes of this research, this concept is called a Pattern. A functional unit can be
thought of as having generalised components as its members. Therefore, it can be modelled in the
ontology by specifying that a Pattern has Components as its members. For this purpose a new role
has-member is defined. Formally, it can be stated as:

∃ has-member . Pattern ⊑ Component

A component 𝑐1 is connected to a component 𝑐2 if 𝑐1 has an output parameter that is an input for
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𝑐2 or vice versa. To capture this relationship, a SWRL [8] rule can be defined in the following manner:

is-connected(?𝑐1, ?𝑐2) ←Component(?𝑐1) ∧ Component(?𝑐2)
∧ has-for-output(?𝑐1, ?𝑖) ∧ has-for-input(?𝑐2, ?𝑖)

(4.2)

Moreover, is-connected is a symmetric relationship, i.e. is-connected(𝑐1, 𝑐2) ⟹ is-connected(𝑐2, 𝑐1).
Thus:

is-connected ≡ is-connected−

Once it is known that two components are connected, it is easy to determine if a particular component
is part of a pattern. A component 𝑐1 is part of a pattern 𝑝 if 𝑐1 is connected to component 𝑐2 and 𝑐2 is
part of 𝑝:

has-member(?𝑝, ?𝑐1) ←Component(?𝑐1) ∧ Component(?𝑐2) ∧ Pattern(?𝑝)
∧ is-connected(?𝑐1, ?𝑐2) ∧ has-member(?𝑝, ?𝑐2)

(4.3)

With the required axioms and rules in place a pattern can now be encoded into the ontology.
To understand how this can be done, consider the partial workflows shown in Figure 4.10a. Both
snippets are taken from neuroscience workflows and the highlighted snippets essentially perform the
same function. They take MRIs as input, segment and register them. Registration itself is a two-
step process consisting of registration and reslicing. The workflow components SSMA, FLIRT and
3D B-spline Deformation perform these functions in the first workflow respectively. For the second
workflow these functions are performed by BET, Align Linear and Align Warp. Figure 4.10b shows the
workflow snippets after they have been generalised. As can be seen, once this happens, the system
can determine that there is a recurring pattern in the workflows, i.e. the three abstract components
SegmentationComponent, RegistrationComponent and ReslicingComponent. These three components
can now be grouped into a pattern and added to the ontology. Suppose this pattern is called 𝑝1.
The components RegistrationComponent, ReslicingComponent and SegmentationComponent are already
present in the ontology as concepts. Therefore, the following axioms can be used to specify that these
components are part of the pattern 𝑝1:

SegmentationComponent(𝑠𝑐)
RegistrationComponent(𝑟𝑐)
ReslicingComponent(𝑟𝑒𝑐)

SegmentationDataset(𝑠𝑑)
RegistrationDataset(𝑟𝑑)
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Figure 4.10: Identifying functional units.

has-for-output(𝑠𝑐, 𝑠𝑑)
has-for-input(𝑟𝑐, 𝑠𝑑)
has-for-output(𝑟𝑐, 𝑟𝑑)
has-for-input(𝑟𝑒𝑐, 𝑟𝑑)

Pattern(𝑝1)
has-member(𝑝1, 𝑠𝑐)

Given these axioms in the ontology, it can be inferred from Rule 4.2 that 𝑠𝑐 is connected to 𝑟𝑐 and
𝑟𝑐 is connected 𝑟𝑒𝑐. Since 𝑠𝑐 is a member of 𝑝1, Rule 4.3 dictates that 𝑟𝑐 and 𝑟𝑒𝑐 are also members
of 𝑝. Patterns stored in this way are then used by Algorithm 4 in the SearchPatterns procedure. Thus
far the discussion has only focussed on representing the knowledge. However, it is is only useful if it
can help in generating suggestions. The following sections discuss how this knowledge is useful for a
workflow recommender system.
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4.5.5 Identifying New Components

The dynamic nature of the workflow repository means that at any given point in time, there is a
significant probability that the knowledge base will be incomplete / outdated. In order to keep the
repository up to date, a mechanism to detect the changes and update the ontology accordingly is
required. It is assumed that when an algorithm is updated, it is represented as a separate component
instead of changing existing components. Therefore, the problem of keeping the ontology up to date
can be formulated as detecting new components and inferring their types. For this purpose a novel
semi-automated methodology has been defined. The process of identifying new components involves:

1. Propagating semantics across the workflow to estimate what the semantic properties of the
unknown component probably are.

2. Pruning extraneous semantic properties.
3. Using the inferred semantic properties of the unknown component to retrieve matching candi-

date components from the workflow.

The following sections cover each of these steps in turn using examples introduced earlier.

4.5.5.1 The Example

Since in this research components are described using their function, inputs and outputs, if there is
enough information available about the inputs and outputs, their function can be inferred. To under-
stand how this is possible, consider the example shown in Figure 4.11, first discussed in Section 3.3.5.
Following the conventions introduced earlier, let 𝑐1 = BrainSurfaceExtractor, 𝑐2 = Cerebro and 𝑐3 =
BiasFieldCorrector. As before, for each component 𝑐𝑖, 𝑐𝑖𝑗 refers to its inputs while 𝑐𝑖𝑘 its outputs. Since
each component in this example only has one input and one output each, it can be further specified
that 𝑐𝑖1 will refer to the input of component 𝑐𝑖 and 𝑐12 will refer to its output. Using these conven-
tions, the components can then be encoded into the ontology. The Brain Surface Extractor component

Brain Surface 
Extractor

Cerebro

Skull-stripped Brain Image

(a) Simple example.

Bias Field 
Corrector

Cerebro

Skull-stripped Brain Image

Brain Surface 
Extractor

Skull-stripped Brain Image

(b) Complex example.

Figure 4.11: Satisfying semantic requirements.

is a skull-stripping algorithm that extracts brain tissue from an MRI by removing the skull and other
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tissue. It can be described in the ontology using the following axioms:

SkullStrippingComponent(𝑐1)
DatasetParameter(𝑐11)

SkullStrippedDataset(𝑐12)
has-for-input(𝑐1, 𝑐11)
has-for-output(𝑐1, 𝑐12)

The Cerebro component takes a skull-stripped MRI and delineates the various regions of the brain. The
following axioms capture this knowledge:

BrainSegmentationComponent(𝑐2)
SkullStrippedDataset(𝑐21)

SegmentationComponent(𝑐22) (4.4)

has-for-input(𝑐2, 𝑐21)
has-for-output(𝑐2, 𝑐22)

The Bias Field Corrector is merely a noise-reduction tool. It does not otherwise change the nature of
the input MRI. Therefore:

FilteringComponent(𝑐3)
DatasetParameter(𝑐31)
DatasetParameter(𝑐32)
has-for-input(𝑐3, 𝑐31)
has-for-output(𝑐3, 𝑐32)
is-transitive-to(𝑐31, 𝑐32)

Suppose that the Brain Surface Extractor is a new component for which semantics have not yet been
specified. In the simplest case shown in Figure 4.11a, it is easy for the system to determine Brain
Surface Extractor is a skull-stripping algorithm since that’s what Cerebro requires. All that is required
is the knowledge that a SkullStrippingComponent produces a SkullStrippedDataset. This knowledge can
be captured using the following axiom:

∃ has-for-output . SkullStrippingComponent ⊑ SkullStrippedDataset

∃ has-for-input . SkullStrippingComponent ⊑ DatasetParameter
(4.5)

However, in the more complex example (Figure 4.11b), it is not so trivial to determine how the require-
ment is being satisfied.

In order to identify the Brain Surface Extractor, semantic analysis such as the one performed in
Section 4.2 is required. After the semantic analysis algorithm is applied, the requirement for a skull-
stripped MRI for Cerebro will be propagated backwards to the Bias Field Corrector. The system can then
determine that Brain Surface Extractor is a skull-stripping component. Finally, there is an additional
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step that must be performed to ensure that components are identified correctly. Suppose that instead
of the Brain Surface Extractor, it is the Bias Field Corrector that is the unknown component. After
semantic propagation, the system now sees that the unknown component is one that takes a skull-
stripped image as input and also produces one as output. This is of course, an erroneous conclusion.
The correct interpretation is that the skull-stripped property of the image is being transferred from the
input to the output, which means that there is a transitive dependency between them. To compensate
for this, after semantic propagation is performed, all semantic properties that are common to both the
inputs and outputs of a component must be removed. Hence, it must be ensured that given a set of
components 𝐶 in a workflow, ∀𝑐𝑖 ∈ 𝐶 ∶ prop(𝑐𝑖𝑗)∩ prop(𝑐𝑖𝑘) = ∅. 𝑐𝑖𝑗 and 𝑐𝑖𝑘 are inputs and outputs
of the component respectively.

4.5.5.2 Retrieving Candidate Components

Once the semantics are in place, the next step is to query the knowledge base to retrieve candi-
date components. These are components that have the same semantics as the unknown component.
Consider the simplest case shown in Figure 4.11a, i.e. when there are only two components 𝑐𝑖 and 𝑐𝑚
connected to each other via a link ⟨𝑐𝑖𝑗, 𝑐𝑚𝑛⟩, 𝑐𝑖𝑗 and 𝑐𝑚𝑛 being output and input parameters for 𝑐𝑖 and
𝑐𝑚 respectively. For this example, it is fairly trivial to find relevant candidates. If 𝑐𝑖 is the unknown
component, then a query of the following form can retrieve relevant results:

get_candidate(𝑐𝑖) = 𝑥 | ∃𝑥, 𝑦 ∶ Component(𝑥) ∧ has-for-output(𝑥, 𝑦) (4.6)

where

prop(𝑐𝑖𝑗) ⊑ prop(𝑦)
has-expression-format(𝑐𝑖𝑗) ⊑ has-expression-format(𝑦)

The set of candidate components for 𝑐𝑖 is the set of components 𝑥 such that 𝑥 has an output 𝑦. The
semantic properties of 𝑐𝑖𝑗 are subsumed by the semantic properties of 𝑐𝑦. The reason only the output
parameter is considered is because only it is relevant. For any component, once semantic analysis is
complete and transitive properties have been filtered, any semantic properties available at the output
parameter are being likely produced by the component. The same is not necessarily true of the in-
put parameters, however. The semantic properties available at the input may not by required by the
component. Therefore, only the output is considered relevant for identifying the component.

To understand how this query gives the desired result, consider the workflow in Figure 4.11a.
After the semantic analysis process is complete, prop(𝑐12) = {SkullStrippedDataset} (from (4.4)).
Combining (4.5) and (4.6) it can be seen that BrainSurfaceExtractor satisfies the required criteria since
it has an output that has the semantic property SkullStrippedDataset. Therefore, it is the required
candidate component type. However, there is one more case when the process of identifying the
component becomes more complex.

Now suppose that get_candidate is an operation that retrieves candidate types form the ontology
according to (4.6). The system must combine the results from get_candidate for all of the output pa-
rameters. Therefore, an inclusive method of combining the results from all of the individual outputs
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is required. For a particular component 𝑐, this can be formally stated as:

∀𝑐𝑖 ∈ Output(𝑐) ∶ 𝒞 =
𝑖
⋃
𝑗=1

get_candidate(𝑐𝑗)

This equation combines the results for get_candidate for all of the output parameters of 𝑐 via the union
operation. The results is a list of candidate types from the ontology for the unknown component based
on the semantics of the output parameters that could be inferred from semantic analysis. This list can
then be presented to a user to choose from. The user intervention required at this point to identify the
correct component type is what makes this methodology semi-automated. The semantic properties
obtained after the semantic analysis step may contain some extraneous properties that can be filtered.
The principle and methodology for this is discussed in the next section.

4.5.5.3 Pruning Extraneous Semantic Properties

A component may not have just one output. It may have several outputs. It is not possible before-
hand to know which outputs are relevant. Therefore, the identification mechanism must take into
account all of the output parameters. At this point, it is possible to filter some semantic properties to
retrieve more concise candidates. The basic idea is that if one property is more generic than another
property, then the more generic property can be filtered. The more specific property will give more
targeted results. Formally, it can be stated that for any output parameter 𝑐𝑖𝑗 and semantic properties
𝑝1, 𝑝2 ∈ prop(𝑐𝑖𝑗), if 𝑝1 ⊑ 𝑝2, then 𝑝2 can be pruned. For example, if prop(𝑐𝑖𝑗) = ⟨DatasetParameter,
SkullStrippedDatasetParameter⟩, then SkullStrippedParameter ⊑ DatasetParameter. Therefore, Dataset-
Parameter can be pruned as it does not provide any meaningful information. The same principle can
be applied across all the output parameters of the component, i.e. ∃𝑝1 ∈ prop(𝑐𝑖𝑗), 𝑝2 ∈ prop(𝑐𝑖𝑘) ∶
𝑝1 ⊑ 𝑝2 for 𝑗 ≠ 𝑘, then 𝑝2 can be pruned.

The other main function of the ontology in workflow recommender systems is to allow the system
to determine matching components. That aspect of the ontology is discussed in the following section.

4.5.6 Determining Matching Components

When suggestions are to be generated, two sources of information are tapped. One are the gener-
alised usage patterns using Algorithm 4. The other source is the semantic information which is used
to find components that are semantically compatible with the current one under consideration but
may not have been picked up by the usage patterns. Since components are represented using their
function, inputs and outputs in the ontology, semantic compatibility must be determined on the basis
of these attributes. The function of a component in itself does not provide any useful information to
determine semantic compatibility. That information is captured by the usage patterns. Since compo-
nents interact with each other through their parameters, they must provide the required information.
Since component parameters are represented as separate individuals in the ontology, certain semantic
assertions can be made about them which can later be reasoned upon.

To determine compatibility based on component parameters, this research utilises the mechanism
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used by CAT. In CAT, two components 𝑐𝑖 and 𝑐𝑚 are compatible iff:

∃𝑐𝑖𝑗, 𝑐𝑚𝑛 ∶ 𝑐𝑖𝑗 ∈ Output(𝑐𝑖) ∧ 𝑐𝑚𝑛 ∈ Input(𝑐𝑚) (4.7)

where
𝑐𝑖𝑗 ⊑ 𝑐𝑚𝑛

That is to say that 𝑐𝑖 has an output and 𝑐𝑚 has an input such that the former is subsumed by the latter.
This ensures that 𝑐𝑚 is a component that can process the output produced by 𝑐𝑖. However, this research
stipulates that component compatibility is dependent on one more factor not considered by CAT. All
datasets produced and consumed by workflow components have a specific format. A dataset produced
in a specific format cannot be consumed by a component that does not accept that format. Therefore,
the dataset format is important to consider. In the ontology the concept DatasetExpressionFormat

captures this format. Therefore, this research modifies (4.7) in the following way:

∃𝑐1𝑖, 𝑐2𝑗 ∶ 𝑐1𝑖 ∈ Output(𝑐1) ∧ 𝑐2𝑗 ∈ Input(𝑐2) (4.8)

where

𝑐𝑖𝑗 ⊑ 𝑐𝑚𝑛

has-expression-format(𝑐𝑖𝑗) ⊑ has-expression-format(𝑐𝑚𝑛)

This states all of what (4.7) stated and introduces an additional condition. 𝑐𝑖𝑗 has the same format as
𝑐𝑚𝑛. Moreover, CAT determines compatibility based only on the immediate semantics. It is does not
take into account semantics that can be propagated across components. Contrary to that, this research
first performs the semantic analysis discussed in Section 4.2. Consider the workflow in Figure 4.11b.
Suppose that Cerebro has not yet be added and the system suggests possible completions. At this point,
CAT would not consider Cerebro a viable candidate since it requires a SkullStrippedDataset which Bias
Field Corrector does not provide. However, since this framework first performs semantic analysis,
it will see that there is a SkullStrippedDataset available and will thus include Cerebro in the list of
suggestions. To enable this, (4.8) must include a final modification:

∃𝑐𝑖𝑗, 𝑐𝑚𝑛 ∶ 𝑐𝑖𝑗 ∈ Outputs(𝑐𝑖) ∧ 𝑐𝑚𝑛 ∈ Inputs(𝑐𝑚) (4.9)

where

prop(𝑐𝑖𝑗) ⊑ prop(𝑐𝑚𝑛)
has-expression-format(𝑐𝑖𝑗) ≡ has-expression-format(𝑐𝑚𝑛)

By comparing the semantic properties of the component parameters instead of the parameters them-
selves, the system utilises the results of the semantic analysis process. This concludes the description
of the ontology and how the knowledge encoded in it can be utilised to generate suggestions for users.
The next section presents an illustrative example of the interaction of HyDRA with a user followed by
conclusions and summarises.
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4.6 Illustrative Example

To understand and visualise the interaction of the system with the user, this section demonstrates
howHyDRA assists a user in constructing a neuroimagingworkflow. Please note this example presents
a conceptual visualisation of the way HyDRA would interact with the user. Actual implementations
may vary. The example workflow is taken from the LONI repository called “Automated ROI Extrac-
tion/Volume Calculation” [9]. As a user adds components to it, the system actively suggests possible
completions. Once the user adds the first component “Reorient”, HyDRA presents the user with a list
of candidates. Selected suggestions are shown in Figures 4.12a to 4.12c. The user can switch between
the various suggestions by clicking on the arrows. By clicking ‘Ok’, the current suggestion can be
selected. For this example, the correct candidate consists of the subworkflow in Figure 4.12a. This is
because the added component appears in the suggested subworkflow in the repository.

Adding the subworkflow triggers another suggestion generation request. This time, the correct
suggestion “MRI Convert” is not in the list, so the user has to manually add the correct component
from a list of all components. The next batch of suggestions originate from semantic compatibility
between components as they do not appear in any frequent patterns. Once again, selected suggestions
are shown in Figures 4.13a to 4.13c and the user can select the correct suggestion by clicking ‘’Ok”. It
takes a total of 9 steps to complete this workflow. The completed workflow is shown in Figure 4.14,
which is less than the number of components in the workflow. Without HyDRA, the user would
require at least as many steps as the number of components in the workflow to complete it.

4.7 Summary and Conclusions

This chapter discusses the novel architecture presented in Chapter 3 from a functional perspec-
tive. The chapter is subdivided into two main sections. The first section deals with the details of the
various components such as algorithms and examples. The second section deals with the details of the
domain ontology that is used for generating suggestions. It discusses how knowledge about workflow
components can be encoded into the knowledge base and how it can be used to support suggestion
generation. The components are represented via a functional taxonomy that classifies them according
to function. In addition to this, their output and input parameter types are also encoded. The param-
eters are represented as datasets that are produced or consumed by the components. Representing
them as distinct entities in the knowledge base allows the system to reason about the parameters later
on. An illustrative example is also presented to conceptually demonstrate how HyDRA interacts with
a user.

Together with Chapter 3, this chapter shows how semantics and frequent usage patterns can be
combined to generate suggestions. The semantics are applied in two phases. In the first phase, the us-
age patterns are combined with the functional taxonomy to identify generalised patterns in the work-
flows. These patterns allow the system to attempt and infer what a user is attempting to do to provide
contextual recommendations. Shortcomings in existing generalisation approaches are identified and
addressed in this research with specific regards to workflows. In the second phase, the semantics of the
workflow components are utilised to identify compatibility between components. A novel semantic
analysis mechanism is introduced that ensures that the system takes into account sufficient semantic
information to produce context-sensitive suggestions. The lack of this semantic analysis mechanism
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Figure 4.12: Alternative suggestions offered to users while constructing the example workflow. Click-
ing the arrows allows the user to switch between the suggestions.
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Figure 4.13: Alternative suggestions offered to users while constructing the example workflow. Click-
ing the arrows allows the user to switch between the suggestions.
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Figure 4.14: Example workflow after 9 steps.

in existing approaches means that the suggestions are generated in the absence of a useful context.
The chapter also addresses the question of how the ontology can be kept up to date by introducing
a novel semi-automated methodology to detect and identify new components. The drawback to this
approach is that it is sensitive to the granularity of semantics specified in the ontology. It is possible
in certain cases that there is just not enough semantic information provided for the system to iden-
tify the unknown components. Additionally, the approach may not work if multiple components in a
workflow are unknown.

Together, Chapters 3 and 4 cooperate to answer Research Question 4:

How can workflow component semantics and historical usage patterns be combined to im-

prove the suggestions?

An architectural framework has been described and analysed that combines both semantics and pat-
terns to generate suggestions. This framework combines the results of querying both sources of knowl-
edge. The semantics of the workflow components are also used to extend the semantic matching of
components to entire patterns. This allows the system to determine if a workflow can be completed by
suggesting entire patterns instead of single components. In the next chapter the evaluation method-
ology for this framework is presented.

Bibliography

[1] M. Krötzsch, F. Simancik, and I. Horrocks, “A description logic primer,” arXiv.org, vol. cs.AI, Jan.
2012.

[2] M. Jenkinson et al., “FSL,” NeuroImage, vol. 62, no. 2, pp. 782 – 790, 2012, <ce:title>20 {YEARS}
{OF} fMRI</ce:title> <ce:subtitle>20 {YEARS} {OF} fMRI</ce:subtitle>. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S1053811911010603

81 [File Creation Timestamp: 24/02/2016, 14:13]

http://www.sciencedirect.com/science/article/pii/S1053811911010603


BIBLIOGRAPHY CHAPTER 4. REALISING HYDRA

[3] J. Kim, A. Gil, and M. Spraragen, “A knowledge-based approach to interactive workflow composi-
tion,” in In Proceedings of the 2004 Workshop on Planning and Scheduling for Web and Grid Services,
at the 14th International Conference on Automatic Planning and Scheduling (ICAPS 04), 2004.

[4] D. W. Shattuck and R. M. Leahy, “BrainSuite: an automated cortical surface identification tool,”
Medical image analysis, vol. 6, no. 2, pp. 129–142, 2002.

[5] L. Temal et al., “Ontoneurobase: a multi-layered application ontology in neuroimaging,” in Second

Workshop: Formal Ontologies Meet Industry (FOMI 2006), 2007.

[6] N. Guarino and C. A. Welty, “An overview of OntoClean,” in Handbook on ontologies. Springer,
2009, pp. 201–220.

[7] https://surfer.nmr.mgh.harvard.edu/fswiki/segstats [Last accessed: 30ᵗʰ June, 2013].

[8] I. Horrocks et al., “SWRL: A semantic web rule language combining OWL and RuleML,” W3C
Member submission, vol. 21, p. 79, 2004.

[9] “AutoROIExtraction,” http://bit.ly/1bJiZ9G.

82 [File Creation Timestamp: 24/02/2016, 14:13]

http://bit.ly/1bJiZ9G


CHAPTER 5

Evaluation Methodology

5.1 Introduction

Chapter 4 presented algorithms for the various components that constitute HyDRA’s framework
which must now be verified and evaluated. However, before diving into a discussion of the experimen-
tal setup used and results obtained, it is necessary to introduce the evaluation methodology adopted.
This chapter serves this purpose. Section 5.2 presents an overview of themethodologywith subsequent
sections diving into its details. Section 5.7 summarises the chapter.

5.2 Evaluation Methodology

HyDRA’s framework (shown in Figure 3.2) comprises several components that embody various
sub-processes in the overall suggestion generation process. For this reason, a two-pronged, bottom-up
evaluation methodology has been adopted. This methodology consists of both qualitative and quanti-
tative methods. Since there are two main pillars of the framework; patterns and semantics; there are
two main branches in the evaluation methodology. The evaluation of each component builds upon the
evaluation of other components in the corresponding branch. The methodology along with the eval-
uation mechanism used for each component is depicted in Figure 5.1. The fundamental component of

Workflow to Graph 
Converter

End-to-End
Evaluation

Pattern Extraction

Ontology Update Engine

Domain Ontology

Comparison against other 
algorithms

OntoClean

Quantitative analysis on sample 
data

Quantitative analysis on sample 
data + Comparative analysis

Figure 5.1: Evaluation Methodology

the framework is the domain ontology that contains the semantics used to perform semantic analysis
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and generate suggestions. To evaluate it, the OntoClean methodology has been used [1]. The domain
Ontology Update Engine (cp. Section 4.5.5) employs the ontology to infer the semantic properties of
the unknown component. Therefore, the engine can be successfully evaluated once the ontology itself
has been verified. For this purpose, a quantitative analysis method has been used. The engine was
tested using sample data (set of sub-workflows). The list of suggestions thus generated was then eval-
uated using the Mean Reciprocal Rank (MRR) [2]. The MRR is discussed in more detail in Section 5.5.
Together these components constitute the semantics-related branch of the evaluation methodology.

The other main branch of the evaluation methodology is the pattern-related branch. Since an ex-
isting algorithm has been used to extract patterns, it has been compared to other algorithms that could
otherwise have been used. The results are discussed in Section 6.3. Once all of these components have
been evaluated, the overall evaluation of the framework can be performed. Since the output of the
framework as a whole is also a list of suggestions, an analogous methodology to the domain ontol-
ogy update engine was applied. The list of suggestions generated by this component have also been
analysed using the MRR and also compared to those of another workflow design recommender sys-
tem (cp. Section 6.5). In the next section, the evaluation of the domain ontology using the OntoClean
methodology is discussed.

5.3 The OntoClean Methodology

An ontology consists of structured knowledge about a particular domain. The completeness of
an ontology deals with the breadth of knowledge covered by it. The correctness, on the other hand
is related to the accuracy of the various design choices made such as the relationships between the
various concepts and roles. This research attempts to show how knowledge encoded in a knowledge
base such as ontologies can be exploited by workflow recommender systems. Keeping this in mind,
we do not endeavour to build a complete ontology. It contains only as much knowledge as is required
to cover the available dataset.

The correctness of the ontology, however, is a more complex issue. It consists of two aspects: an
objective aspect which pertains to the logical consistency of the ontology, and a more subjective aspect
that pertains to the validity of the ontology. The logical consistency can be ascertained automatically
with the help of a semantic reasoner such as Pellet [3]. The validity of the ontology, however, is
more difficult to test automatically. Generally speaking, there is usually no single way to model an
ontology correctly. Depending on the application, a domain may be modelled in several ways, all
logically consistent. Due to this ambiguous nature of ontology modelling, they are usually evaluated
indirectly [4]. Since the ontology used in this research has been extended from an existing ontology
(OntoNeuroBase), the same evaluation methodology that was adopted by its predecessor was used.
Therefore, this research adopts the OntoClean methodology for this purpose [1]. The methodology is
described below.

The OntoClean methodology consists of applying a set of meta-properties to ontological concepts.
These meta-properties impose constraints on whether a subsumption relationship can exist between
two concepts or not. OntoClean is designed to be applied throughout the design phase of an ontology.
In this sense, the methodology is a qualitative one and helps ontology designers to evaluate different
ontology modelling choices and to justify design decisions. It should be noted that OntoClean only
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deals with the subjective validity of the ontology. The methodology is shown in Figure 5.2. The first

Start

Apply OntoClean 
metaproperties to 
ontology concepts

All concepts 
defined?

Apply OntoClean 
constraints to 

ontology

Ontology 
satisfies 

constraints?

Modify ontology to 
satisfy constraints

Stop

No Yes

No

Yes

Figure 5.2: Applying the OntoClean methodology.

step is to apply the metaproperties to all the concepts that are part of the ontology. Once all concepts
have been defined, the ontology is checked to ensure that the OntoClean constraints are satisfied. If
any of the constraints are not satisfied, the ontology is modified appropriately. Once all constraints
are satisfied, the process is complete. OntoClean defines the following metaproperties:

1) Identity
2) Rigidity
3) Unity

These metaproperties are discussed in more detail along with appropriate examples in Section 6.2. The
constraints imposed by the methodology are also expounded upon later in that section. The next sec-
tion presents the evaluation methodology adopted for ensuring the correctness of the mined patterns.

5.4 Mining Correct Patterns

In this research pattern mining is performed using the gSpan sub-graph mining algorithm with
Closed graph mining enabled. To ensure that the patterns mined are correct and to justify the choice
of algorithm, a quantitative evaluation methodology was adopted. The methodology is shown in Fig-
ure 5.3. A dataset consisting of a number of workflows was used. In order to ensure correctness,
different pattern mining algorithms were applied to this dataset and their outputs compared. In order
for the algorithms to be considered interchangeable, their outputs needed to be comparable in two
aspects, (a) the number of patterns mined of different sizes, and (b) the number of patterns mined
with different frequencies. For example, if one algorithm mines two patterns of size 2 with frequency
4, then all the algorithms must mine those same patterns. The results showed that the outputs from
all the algorithms were indeed comparable and are discussed in Section 6.3.
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Figure 5.3: Evaluation methodology for ensuring correctness of mined patterns.
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5.5 Domain Ontology Update Engine Evaluation

The engine is responsible for identifying the type of an unknown component in a workflow by
inferring its semantics. To determine if the component performs its function correctly, it is necessary
to determine the accuracy of the suggested types. In information theory, there are standard metrics
for evaluating the relevance of suggestions for any process that generates them such as Mean Average
Precision (MAP) and MRR [2, 5]. MAP is more appropriate for processes that produce suggestions
with multiple relevant items. However, for processes that produce suggestions with few relevant
items, MRR is suitable [6]. Since in this case there is only one correct suggestion, the MRR is used
to quantifiably evaluate the accuracy and usefulness of the suggestions. The measure of MRR in turn
gives a measure of the performance of the component. For any suggestion 𝑖 in a list of suggestions,
the MRR of 𝑖 is given by:

MRR = 1
|𝑄|

|𝑄|
∑
𝑖=1

1
rank𝑖

where |𝑄| is the number of times the suggestions are generated and rank𝑖 is the rank of 𝑖 in the list
of suggestions. The higher a suggestion is placed in the list, the higher the MRR and the lower the
placement, the lower the MRR. The methodology is depicted in Figure 5.4.

A dataset of sub-workflows was chosen as input to the component. For each sub-workflow, this
component tried to infer the semantics of the unknown workflow component. The result was a list
of suggested workflow component types for which the MRR of the correct suggestion was recorded
for every sub-workflow. Once all the sub-workflows had been processed, the results were stored and
analysed. The process is further expounded upon in Section 6.4.

5.6 End-to-End Evaluation

In addition to evaluating each of the constituent components, the overall framework was also eval-
uated. This end-to-end evaluation methodology followed the same pattern as the semantic inference
component evaluation methodology. It is shown in Figure 5.5. To evaluate the framework, its per-
formance when constructing a number of workflows was evaluated. After selecting a workflow to
construct, components were incrementally added to it. After adding each component, the suggestions
generated by the system were evaluated using the MRR of the relevant suggestion. This process was
repeated until the workflow was completely constructed. The overall performance of the framework
for the workflow was measured by the average MRR for the individual components. Finally, the re-
sults were collected and analysed. The experimental setup, along with the results are discussed in
Section 6.5.

5.7 Summary

This chapter serves as a prelude to the next chapter in which HyDRA’s framework is evaluated.
A two-pronged, mixed qualitative and quantitative methodology has been adopted for this purpose.
This methodology involves evaluating the different components of the framework separately using
methodologies appropriate to those components. These components are the domain ontology, the
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Figure 5.5: End-to-end evaluation methodology.
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pattern extraction component and the domain ontology update engine. The semantics-related compo-
nents; the domain ontology and the domain ontology update engine form one prong of the methodol-
ogy. The pattern extraction component forms the other prong. In addition, an end-to-end evaluation
of the framework is also presented. In the next chapter, the results of the various methodologies are
presented and discussed.
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CHAPTER 6

Evaluation and Experimentation

6.1 Introduction

In Chapter 4 the various components of HyDRA’s hybrid architecture and their algorithms were
discussed. An evaluation of the various components is presented in this chapter and their performance
investigated in different scenarios. The various components of the framework that need to be evaluated
comprise:

1. The domain ontology.
2. The pattern extraction component.
3. The domain ontology update engine.
4. End-to-end evaluation of the overall system.

The overall evaluation methodology is discussed in Section 5.2. This chapter starts by evaluating the
domain ontology by using the OntoClean methodology [1], discussed in Section 6.2. This is followed
by an evaluation of the pattern extraction component in Section 6.3. Section 6.4 discusses the input
data for the domain ontology update engine as well as the results of the evaluation. Lastly, an overall
end-to-end evaluation is presented in Section 6.5 and the chapter is concluded in Section 6.6.

6.2 The OntoClean Methodology

The OntoClean methodology is a set of domain-independent metaproperties that constitute the
criteria using which an ontology can be evaluated. These metaproperties help to explicitly evaluate
various design choices and justify those made. In addition, it forces ontology modellers to think about
why they are modelling the ontology in a particular way and to make their thought process explicit.
This is especially important since generally speaking there is no single correct way to model an on-
tology. The correctness of an ontology is heavily dependent on the application it is intended for. For
example, if one is attempting to model the concepts, time interval and time duration, intuitively one
might say that every time interval is a time duration. This would generally be modelled as a subsump-
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tion relationship:
timeinterval ⊑ timeduration

One of the consequences of modelling the two concepts in this manner is that any two time intervals
𝑖1 ≠ 𝑖2 must also be two distinct time durations. They cannot be two distinct time intervals while
being the same time duration. However, using the OntoClean methodology, it can be shown that this
is not the case. One of the metaproperties used in this methodology is the identity criteria. The identity
criteria are the characteristics of individuals that allow us to distinguish between them. In essence,
these are the criteria that we can use to determine if 𝑖1 = 𝑖2 or not. Suppose that in the previous
example, we have various time durations like 1 hour, 2 hours, 3 hours etc. We also have certain time
intervals like 1:00–2:00, 2:00–3:00 etc. Now, both the intervals 1:00–2:00 and 2:00–3:00 are the same
duration, i.e. 1 hour. However, they are separate time intervals. Therefore, it is clear that the identity
criteria for time interval and time duration are different. According to the OntoClean methodology, it
would not be correct to model them as a subsumption relationship. It would be more appropriate to
say that every time interval has a time duration. This can be captured by defining a new role:

∃ has-duration . timeinterval ⊑ timeduration

The previous example illustrates how applying the OntoClean methodology can help ontology
modellers to evaluate various design choices and identify any logical inconsistencies. The rest of the
metaproperties defined by this methodology are discussed in subsequent sections along with examples
relevant to the neuroimaging domain.

6.2.1 Identity

As discussed previously, the identity criteria help in determining whether two individuals that be-
long to a particular concept in an ontology are the same or different. It should be noted that identity
criteria are different from the membership criteria that allow those individuals to belong to those con-
cepts. With regards to neuroimaging, consider the ontology shown in Figure 6.1. A DatasetParameter

is an MRI that is produced or consumed by a workflow component. A SkullStrippedDatasetParameter

is an MRI that is produced by a SkullStrippingComponent. It is intuitive to say that a SkullStripped-
DatasetParameter is also a DatasetParameter, i.e.:

SkullStrippedDatasetParameter ⊑ DatasetParameter

But to determine if this choice of modelling is correct, it must pass the identity criteria test that Onto-
Clean recommends. A dataset is characterised by several properties. Amongst them are the patient to
whom it belongs and the mechanism through which it was acquired or produced. It can be said that
two datasets are the same if they belong to the same patient and the method through which they were
acquired or produced is the same. Both of these criteria hold true for a SkullStrippedDatasetParameter
as well as a DatasetParameter. Therefore, it can be said they both carry the same identity criteria and
thus they pass the test. This implies that the choice of modelling can be deemed correct or valid. Let
us now look at a more complex example of applying this criteria to the neuroimaging domain.

In addition to simple semantics, the ontology in this research also stores frequent usage patterns.
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Figure 6.1: Domain ontology.
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A pattern is composed of various workflow components linked together. Now workflow components
have already been modelled as the concept Component. However, when workflow components are
part of a pattern, they can be seen as different entities. A workflow component takes an input dataset
and produces an output dataset. The dataset produced by one instance of the component when it
is part of one pattern will not be the same as the dataset produced by another instance of the same
component when it is part of another pattern. This is so because the dataset will have undergone
different processes in different patterns. Therefore, using the identity criteria, it can be argued that
each workflow component that is part of a pattern has a type that is a Component. This can be modelled
using a role:

∃Fragment. has-type ⊑ Component

The concept Fragment represents all workflow components that are part of some pattern. This way,
workflow components that are part of different patterns can have the same type, signifying that they
perform the same function.

6.2.2 Rigidity

The second metaproperty specified by OntoClean is rigidity. Properties that must hold true for
every instance in an ontology are called rigid properties. Properties that must hold true for only some
of the instances are called semi-rigid properties. Those that must not hold true for all of the instances
are called anti-rigid. The rigidity of properties imposes restrictions on the subsumption relationship.
More specifically, an anti-rigid property cannot subsume a rigid property. For example, a Dataset-
ProcessingComponent in the prototype ontology is a workflow component that performs some kind of
processing on an MRI. FLIRT is an example of such a component. Now, a dataset processing compo-
nent will always be a dataset processing component. There is no situation where such a component
can cease to be one. Therefore, being a dataset processing component is an essential property for such
a component, and thus it is rigid. Similarly, a RegistrationComponent is a DatasetProcessingCompo-

nent that performs registration. There is no situation where a registration component stops being one.
Therefore, it is also a rigid property. Thus, it can be safely stated that a DatasetProcessingComponent

can subsume a RegistrationComponent. Generally speaking, all of the different types of components
are rigid.

Contrary to workflow components, datasets themselves undergo various processing as they pass
through theworkflow. These processing steps transform them, changing their properties. For example,
an unsegmented MRI becomes a segmented MRI after it has been processed by a SegmentationCompo-

nent. Therefore, all dataset instances might be a particular type of dataset in one situation, and another
type of dataset in another situation. Hence, the dataset types are anti-rigid properties since they are
non-essential for all datasets. However, a dataset will always remain a dataset. There is no situation
where a dataset can become something else. Therefore, the concept DatasetParameter, representing
a dataset in an ontology, is a rigid property. All dataset types such as Statistical DatasetParameter
and SegmentedDatasetParameter are subsumed by DatasetParameter. Since in this case a rigid prop-
erty is subsuming anti-rigid properties, this is not a violation of the restriction OntoClean imposes on
subsumption relationships.
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6.2.3 Unity

The third metaproperty used in OntoClean is Unity. The unity of an entity is the means through
which the parts of the entity are described. The unity criteria of an entity are the relationships that
must exist between the parts of the entity. Entities whose parts must be wholes with common unity
criteria are said to have unity. Entities whose parts must be whole but with no common criteria are
said to have no unity. Lastly, entities whose parts may not necessarily be wholes are said to have
anti-unity. Due to their nature, it can be argued that entities with anti-unity cannot subsume entities
with unity or no unity. With reference to neuroimaging, workflow components are wholes that have
an executable algorithm and inputs and outputs that are themselves wholes. Since the executable
algorithms are clearly different entities from their parameters, the components can be said to have no
unity. Therefore, the conceptComponent in our ontology has no unity. Any specific type of component,
such as RegistrationComponent has the same unity criteria. Therefore, it also has no unity. Thus, it can
be safely stated that Component subsumes RegistrationComponent.

Datasets, on the other hand consist of image(s). Images may have different parts that can be iden-
tified by segmentation but on the whole it can be said that an image is an indivisible whole. Therefore,
a dataset has unity. Similarly, it can be shown that all the different types of datasets also have unity.
This fact allows the generic DatasetParameter concept to subsume all the various dataset types such
as SegmentedDatasetParameter.

6.2.4 Discussion

The metaproperties and their semantics have some repercussions for the subsumption relation-
ship. Some of these have already been hinted at. They are expressed more formally here. Given two
ontological concepts 𝑝 and 𝑞 where 𝑞 subsumes 𝑝, the following constraints must be observed:

1. If 𝑞 is anti-rigid, then 𝑝 must be anti-rigid.
2. If 𝑞 carries an identity criterion, then 𝑝 must carry the same identity criterion.
3. If 𝑞 carries a unity criterion, then 𝑝 must carry the same unity criterion.
4. If 𝑞 has anti-unity, then 𝑝 must also have anti-unity.

The application of the OntoClean methodology in essence involves analysing the ontology using the
aforementioned metaproperties and ensuring that these constraints are observed. They help to justify
the design choices made and also make the semantics of the ontological concepts explicit. Examples
of how this methodology can be applied in this research have already been presented. The concepts in
the ontology are described exhaustively using these metaproperties in Appendix A. Having described
the ontology evaluation methodology, the next section discusses the evaluation of the other major
component of HyDRA; the pattern mining component.

6.3 Mining Correct Patterns

The problem of mining frequent patterns in workflows can be formulated as a frequent subgraph
mining problem. This is due to the inherent graph-like structure of workflows. Frequent subgraph
miners attempt to exhaustively find subgraphs in a graph or set of graphs that occur with a certain
frequency. Generally, they start by finding the smallest subgraphs in a graph, and extend them incre-
mentally. The search space in such problems is generally quite large. Therefore, for reasons of time and
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space efficiency, only subgraphs that occur frequently are extended further. Those that are not found
to be frequent are not extended. Thus, the search algorithm prunes certain parts of the search space
intelligently. To determine whether a subgraph is frequent or not, a minimum frequency threshold is
used. This threshold often appears as an externally configurable parameter of the search algorithm.

The search mechanism described previously can be thought of as a combinatorial process since it
starts with the smallest subgraphs and extends them incrementally. For this reason, the number of
subgraphs of size 𝑟 for a graph of size 𝑛 can be given by:

number of subgraphs = (𝑛𝑟)

The total number of subgraphs of all sizes for a particular graph is thus:

total number of subgraphs =
𝑛
∑
𝑟=1

(𝑛𝑟)

The number of subgraphs of each size follow the patterns shown in Figure 6.2. Figures 6.2a to 6.2d
show the maximum number of subgraphs of different sizes that are possible for graphs of sizes 7, 8, 9
and 10. The number of actual frequent subgraphs found will be less than this theoretical limit for each
subgraph size. To determine whether the patterns or subgraphs mined by the chosen algorithms are
correct, they must satisfy two criteria:

1) Different algorithms applied on the same dataset must produce approximately the same number
of subgraphs.

2) The number of subgraphs found must follow the pattern shown in Figure 6.2.
To determine the correctness, various algorithms were applied to a dataset of 73 neuroimaging

workflows from the LONI repository [2]. For these tests, the minimum frequency was set to 4 since
it is approximately equal to 5% of 73, which is the significance value used in statistical significance
tests [3]. The results of the tests are shown in Figure 6.3. As can be seen, for each size, the number of
subgraphs follows the patterns shown in Figure 6.2. The total number of subgraphs also matches for
the different algorithms. Thus it can be concluded that the patterns mined are correct.

6.4 Domain Ontology Update Engine

This engine is responsible for identifying unknown components based on their inferred semantics.
The setup used to evaluate this component is shown in Figure 6.4. A set of sub-workflows, after being
semantically analysed, are provided as input to this engine, which generates the list of suggestions. It
should be noted that complete workflows could just as easily have been used. However, to facilitate
brevity and conciseness when presenting the input dataset and discussing the results, sub-workflows
were chosen. These suggestions are evaluated using the MRR of the correct suggestion. This gives
a quantitative measure of the performance and correctness of the engine. For the input dataset, five
sub-workflow have been chosen. These sub-workflows have been taken from the LONI dataset being
used to evaluate this research for their illustrative characteristics pertinent to the performance of this
engine. Each sub-workflow helps to demonstrate a particular aspect of the engine or its performance
in a particular scenario. The sub-workflows and their details are discussed in the following sections.
These are followed by a description of the experimental setup along with results.

95 [File Creation Timestamp: 24/02/2016, 14:13]



6.4. DOMAIN ONTOLOGY UPDATE ENGINE CHAPTER 6. EVALUATION

●

● ●

●

●

●

0 2 4 6 8

0
10

20
30

40

Size of combinations (r)

N
um

be
r 

of
 c

om
bi

na
tio

ns

(a) 𝑛 = 7

●

●

●

●

●

●

●

0 2 4 6 8

0
20

40
60

80

Size of combinations (r)

N
um

be
r 

of
 c

om
bi

na
tio

ns

(b) 𝑛 = 8

●

●

● ●

●

●

●

●

0 2 4 6 8 10

0
20

40
60

80
10

0
12

0
14

0

Size of combinations (r)

N
um

be
r 

of
 c

om
bi

na
tio

ns

(c) 𝑛 = 9

●

●

●

●

●

●

●

●

●

0 2 4 6 8 10

0
50

10
0

15
0

20
0

25
0

Size of combinations (r)

N
um

be
r 

of
 c

om
bi

na
tio

ns

(d) 𝑛 = 10

Figure 6.2: Total number of subgraphs of different sizes for different sized graphs.
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Figure 6.3: Results of frequent subgraph mining tests with minimum frequency = 4.
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Figure 6.4: Experimental setup used to evaluate the domain ontology update engine.
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6.4.1 Dataset

This section describes the sub-workflows used to evaluate the domain ontology update engine.

6.4.1.1 Sub-Workflow 1 (SW1)

Bias Field 
Corrector BET FLIRT 3d B-spline 

Deformation

Figure 6.5: Sub-workflow taken from “BrainParser (Hippocampus)”

The sub-workflow shown in Figure 6.5 is taken from the “BrainParser” workflow [4]. This work-
flow detects the hippocampus in an MRI. It achieves this by first registering the MRI of a patient to
a reference MRI. The registered image is then segmented by a segmentation algorithm. The image is
then warped back into its original form before registration and the segmented result is output. The
snippet shown in Figure 6.5 performs the following steps:

• Bias Field Correction: takes the MRI and performs noise-reduction to improve signal-to-noise
ratio.

• BET: this component takes theMRI and removes the surrounding skull-tissue to expose the brain.
It is a skull-stripping component.

• FLIRT: takes the MRI and performs linear registration according to a reference image.
• 3D B-spline Deformation: this component is also a registration component. However, contrary
to FLIRT, it performs non-linear registration of the image with respect to a reference image.

In this snippet, both FLIRT and 3D B-spline Deformation require a skull-stripped image as input since
they are both registration components.

6.4.1.2 Sub-Workflow 2 (SW2)

Brain 
Surface 
Extractor

Bias Field 
Corrector Cerebro Pial Surface 

Generator

Figure 6.6: Sub-workflow taken from the “Cortical Surface Extraction” workflow.

The sub-workflow shown in Figure 6.6 is taken from the Cortical Surface Extraction workflow. This
workflow is part of the BrainSuite suite of algorithms [5]. This workflow takes an MRI, segments it and
separates the two hemispheres of the brain. The snippet shown in the diagram performs the following
steps:

1. Brain Surface Extractor: takes an MRI and strips the skull to extract the brain.
2. Bias Field Corrector: removes noise from an input MRI and homogenises the intensities of the

voxels.
3. Cerebro: this components segments the brain and labels the cerebellum.
4. Pial Surface Generator: this component computes and generates the pial surface of the brain.
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In this snippet, the Pial Surface generator requires a segmented image while Cerebro requires a skull-
stripped brain image.

6.4.1.3 Sub-Workflow 3 (SW3)

Brain Surface 
Extractor

Bias Field 
Corrector

Cerebro Partial Volume 
Classifier

Pial Surface 
Generator

Figure 6.7: Sub-workflow taken from the “Cortical Surface Extraction” workflow.

As with SW2, SW3 (Figure 6.7) is also taken from the Cortical Surface Extraction workflow. Com-
pared to SW2, however, SW3 has two parallel branches of execution. One branch performs the same
function as SW2. The other branch takes theMRI, segments it and extracts the brain cortex. In addition
to the brain surface extraction and bias field correction, SW3 contains the following steps:

1. Partial Volume Classifier: segments an input MRI and classifies brain tissue. The input image
should be bias-corrected and skull-stripped before it can be segmented by this component.

2. Cortex: extracts the cerebral cortex from the segmented brain image.

6.4.1.4 Sub-Workflow 4 (SW4)

SW4, shown in Figure 6.8 is taken from the “fMRI Processing Using AIR” workflow [6]. This work-
flow takes a set of MRIs, registers them and then outputs their mean. It is a rather complex workflow
and involves a number of steps to achieve the desired output. The intermediate outputs produced are
also saved along the way. SW4 is the slice of the workflow that takes an MRI, resizes it, registers it
and then saves the output. The steps involved in this process are:

• Resize: resizes an input MRI to dimensions specified as input.
• Align Linear: estimates the transformation matrix required to align (register) an input image to
a template image.

• Reslice: applies the transformation matrix calculated in the previous step to the input image.
After this step the input image matches the coordinate system and proportions of the template
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Resize

Align Linear

Reslice

Figure 6.8: Sub-workflow taken from “fMRI Preprocessing Using Air”.

image. Together with the previous step, these two steps constitute a registration process be-
tween an input MRI and a template MRI.

6.4.1.5 Sub-Workflow 5 (SW5)

Bias Field 
Corrector

Image Historgram 
Equalize

Align Linear

Air Reconcile

Reslice Hard Mean

Data flow 
link

Control flow 
link

Figure 6.9: Sub-workflow taken from the “Air Reconcile (V2) workflow.”

SW5 is a workflow slice taken from the Air Reconcile (V2) workflow, shown in Figure 6.9. It takes
a number of MRIs, bias-corrects them and equalises their intensities. It then registers them to each
other, calculates their mean and saves the output. It consists of the following steps:

• Bias Field Corrector: removes inhomogeneity in the intensity values of the voxels, thus removing
errors from the images.
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• Image Histogram Equalise: this step equalises the intensity values of all the images to ensure
that they all are uniform for further processing.

• Air Reconcile: this step removes discrepancies between the various .air files.
• Align Linear: estimates a transformation matrix to align an input MRI to a template MRI.
• Save Common Air: saves the intermediate output.
• Reslice: applies the transformation matrix to register the input MRI.
• Hard Mean: calculates the mean of the input MRIs.

Air Reconcile is a unique component that does not produce any data output in this workflow. It merely
reconciles the input files. That is why there is only one data input to it with a control input and output.
The control parameters ensure that workflow execution does not proceed to Reslice until Air Reconcile
has finished executing. Since there is no data flowing through Air Reconcile, this workflow may be
considered as a sequential workflow with no parallel branches.

6.4.2 Experimental Setup

The sub-workflows described previously, besides their structural differences, are also differentiated
by their complexity. We define the complexity of a workflow to be based on two factors; density and
richness. This classification model differentiates the workflow based on their semantics as opposed to
their structural or functional characteristics. The density is the number of unknown components in
the workflow. A workflow with only one unknown component has unit density. The richness of a
workflow is defined as the amount of semantic information that is available for the engine to reason
with. A workflow with sparse semantic information has low richness and vice versa. These factors
together contribute to whether a workflow has low, medium or high complexity. The effect of these
parameters on the performance of the engine is explored experimentally. Table 6.1 summarises the
relationship between complexity and its factors.

Density Richness Complexity

unit high low
unit low medium
multi high or low high

Table 6.1: Relationship between density, richness and complexity.

In general workflows are modelled using specific structural patterns shown in Figure 6.10 [7]. The
sub-workflows in the dataset and the structural characteristics they contain are shown in Table 6.2.

(a) Sequential (b) Parallel split (c) Parallel merge

Figure 6.10: Structural workflow patterns.
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Sub-Workflow Characteristics

SW1 Sequential
SW2 Sequential
SW3 Sequential, parallel split, parallel merge
SW4 Sequential
SW5 Sequential, parallel split

Table 6.2: Structural characteristics of the chosen dataset.

Based on these patterns, multi-density workflows are further sub-categorised in this research. Work-
flows in which the unknown components are present in one sequential branch are termed sequential

multi-density workflows. On the other hand workflows in which the unknown components are present
in parallel branches are termed parallelsaf multi-density workflows. There are several possible scenar-
ios depending on the number of unknown components and how they are distributed. The following
experiments explore the performance of the engine in these scenarios. It will be shown experimentally
that the unknown components affect each other in sequential multi-density workflows while they may
not interact in parallel multi-density workflows. As discussed in Section 5.2, the parameter used to
assess the performance of the component is the MRR.

Since workflows generally comprise the structural patterns shown in Figure 6.10, they can be used
to demonstrate the completeness of the engine. All of the structural patterns are contained within the
sub-workflows used for this evaluation as shown in Table 6.2. Therefore, it may be concluded that the
engine can handle any type of workflow, and is therefore, for the purposes of this research, complete.
The next section presents the results of this evaluation and is followed by a discussion of the results.

6.4.3 Results

Exp No Workflow Complexity MRR

1 SW1 low 0.33
2 SW1 medium 0.00
3 SW1 medium 0.25
4 SW2 low 1.00
5 SW2 medium 0.00
6 SW2 medium 0.40
7 SW4 low 1.00
8 SW4 medium 0.00
9 SW5 low 1.00
10 SW5 medium 0.00

Table 6.3: Sequential Unit-Density Workflow Results

The results shown in Table 6.3 summarise the performance of the algorithm for sequential sub-
workflows with unit density. Each sub-workflow only had one branch of execution and one unknown
component that had to be identified. In experiments with low-complexity, there was enough semantic
information encoded in the ontology for the system to identify the component. For example, in Exper-
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iment 1, BET was the unknown component to be identified. Because FLIRT requires a skull-stripped
MRI in the IMG format, the system was able to suggest BET since it produces a skull-stripped MRI. In
comparison, for Experiment 2 the information that BET produces a skull-stripped MRI was removed
from the ontology. This time the system could not identify BET as a suitable candidate. Therefore it
was missing from the suggestions. In Experiment 3, however, the ontology contained the information
that BET produces a skull-stripped image. The information that FLIRT takes a skull-stripped image,
on the other hand, was removed from the ontology. Therefore, the system assumed that FLIRT can
accept any image. Therefore, BET was amongst the suggestions. However, this time there were many
irrelevant suggestions, potentially making it difficult for the user to choose the correct component
type. The rest of the experiments follow a similar pattern.

Exp No Workflow Complexity MRR

1 SW1 high 0
2 SW1 high 0.33
3 SW2 high 0.14
4 SW2 high 0
5 SW4 high 0.5
6 SW4 high 0
7 SW4 high 0
7 SW5 high 0.5
8 SW5 high 0.5
9 SW5 high 0.33
10 SW5 high 0

Table 6.4: Sequential Multi-Density Workflow Results

While Table 6.3 was intended to explore the effects of the level of information present in the ontol-
ogy on the performance of the algorithm, Table 6.4 explores the effects of having multiple unknown
components in the sub-workflow. For example, in Experiment 1, BET and FLIRT were both unknown
and had to be identified. The system was able to identify neither correctly, since in the case of FLIRT,
there is no component in its downstream that requires a registered image. In the case of BET, 3D B-
spline Deformation requires a skull-stripped image. However, since FLIRT is also unknown, the system
cannot determine if the semantic requirements can be propagated backwards across it. Therefore, the
system cannot identify BET either. In the case of Experiment 2, however, BET and 3D B-spline are
the unknown components. BET can be easily identified since FLIRT requires a skull-stripped image.
However, 3D B-spine cannot be identified since there is not enough semantic information available.
The MRR in this case is the average of the MRR for BET and for 3D B-spline.

Exp No Workflow Complexity MRR

1 SW3 low 1
2 SW3 low 0.17
3 SW3 low 0.14

Table 6.5: Parallel Unit Density Workflow Results

103 [File Creation Timestamp: 24/02/2016, 14:13]



6.4. DOMAIN ONTOLOGY UPDATE ENGINE CHAPTER 6. EVALUATION

Table 6.5 shows the results of the algorithm for parallel multi-density workflows. There are a number
of different situations that are possible for this case. The unknown component might be present in one
of the parallel branches, or in the sequential part of the workflow. All of these different possibilities
are explored in these experiments. For Experiment 1, the Brain Surface Extractor component was
unknown and had to be identified. There was enough semantic information from both Partial Volume
Classifier and Cerebro (both require a skull-stripped image), to suggest the Brain Surface Extractor
component. Experiments 2 and 3 were similar.

Exp No Workflow Complexity MRR

1 SW3 high 0.16
2 SW3 high 0.57
3 SW3 high 0.08
4 SW3 high 0.04

Table 6.6: Parallel Multi-Density Workflow Results

The last set of experimental results are shown in Table 6.6. These experiments were designed to ex-
plore the performance of the algorithm for parallel multi-density sub-workflows. For these purposes, it
was assumed there was always sufficient information in the ontology to identify the components. The
possibilities explored were whether the unknown components existed in parallel branches of execu-
tion, or sequential branches of execution. For example, in Experiment 1, Partial Volume Classifier and
Cerebro were the unknown components in parallel branches of execution. Since there was sufficient
ontological information to determine that they provide segmented images (Cortex and Pial Surface
Generator both require the same), the algorithm was able to correctly suggest both components. For
Experiment 2, Brain Surface Extractor and Cerebro were unknown. The system was still able to sug-
gest both components since Partial Volume Classifier requires a skull-stripped image. This allowed the
system to determine that the Brain Surface Extractor component must be providing that. However,
in Experiment 3, in addition to the previous two components, Partial Volume Classifier was also un-
known. In this case, the system was able to identify both Cerebro and Partial Volume Classifier, but
Brain Surface Extractor could not be identified. It should be noted, however, that once Cerebro and
Partial Volume Classifier have been identified, Brain Surface Extractor can be identified in the next
iteration. For Experiment 4, all the previous three components as well as Cortex were unknown. For
this experiment only Cerebro could be identified. In a subsequent iteration Brain Surface Extractor
can also be identified, but it is not possible for the algorithm to identify the other two components.

6.4.4 Discussion

The results shown in the previous section lead us to several conclusions. They show that the
algorithm is highly-sensitive to the amount of semantic information available in the ontology. Without
sufficient information, it is difficult for the algorithm to provide any meaningful suggestions. Provided
sufficient semantic information, the performance of the algorithm also depends on the number and
distribution of the unknown components. For example, for sequential unit-density workflows, the
algorithm can usually generate meaningful suggestions. The situation becomes more complicated in
the case of multi-density workflows. In this case, a component may or may not be identified. Its
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success or failure depends upon whether enough known components exist to provide the appropriate
semantic context to identify the unknown components. In the following sections, the significance of
the results with respect to the structural workflow patterns specified earlier are discussed.

In the case of parallel unit-density workflows, if the unknown component exists in the sequential
part of the workflow, then the required semantic information may come from either of the subsequent
parallel branches. However, if the unknown component is in one of the parallel branches, then for all
intents and purposes it may be thought of as a sequential workflow. Any semantic information in the
other parallel branch is irrelevant. However, in parallel multi-density workflows, the situation is more
complex. Depending on the distribution of the unknown components, the workflow may be treated
as a single sequential workflow, or several sequential workflows. The rules governing the success
or failure of the algorithm for each parallel branch remain the same as for sequential multi-density
workflows.

6.4.4.1 Sequential Patterns

In a sequential workflow pattern, tasks are executed one after the other with no parallel branches
of execution. For unit density sequential workflows, two typical possibilities are shown in Figure 6.11.
In Figure 6.11a, the unknown component and the component that provides the necessary semantic
information to determine its type (the semantic source) are adjacent to each other. In Figure 6.11b,
the two components are not adjacent. Experiment 1 in Table 6.3 is an example of the former scenario
while Experiment 4 is an example of the latter scenario. From the results it can be concluded in the
case of unit-density workflows, the distance between the unknown component and semantic source
is irrelevant. Provided there is enough semantic information, the system is able to suggest a relevant
candidate component. This situation is a bit more complicated in the case of multi-density workflows.

(a) Example 1 (b) Example 2 (c) Example 3 (d) Example 4

Known Component Unknown Component Semantic Source

Figure 6.11: Sequential Workflow Examples

For sequential multi-density workflows, Figures 6.11c and 6.11d represent typical scenarios. Ex-
periment 2 in Table 6.4 is an instance of Example 3 and Experiment 1 is an instance of Example 4.
As can be seen, the system was unable to identify the unknown component in Experiment 1 but was
successful in Experiment 2. This is because even though the semantic source existed in the workflow,
the additional unknown component in between the two in the case of Experiment 1 prevented the
system from propagating the semantics across. Recall from Chapter 4 that doing so requires a tran-
sitive dependency to be specified. Since the middle component is unknown and there is no semantic
information about it, the system is unable to determine if semantics can be propagated across it or not.
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This shows that in multi-density workflows, the distance between the unknown component and the
semantic source may or may not matter.

6.4.4.2 Parallel Split

In a parallel split, a task or sequence of tasks are succeeded by two or more parallel branches
of execution. The parallel nature of the workflow affects the performance of the system in various
scenarios. Typical scenarios include those shown in Figure 6.12. The scenario shown in Example 1
represents Experiment 1 in Table 6.5. As can be seen the unknown component was easily identified
by the system. The system still performed well in Experiment 2, typified by Figure 6.12b. This shows
that for the two simple cases where there is only one unknown component, its location in the work-
flow does not matter as long as there is sufficient semantic information available. As with sequential
workflows, the situation is more complex when there are more than one unknown components in the
workflow. Themulti-density parallel workflow example shown in Figure 6.12c represents the situation

(a) Example 1 (b) Example 2 (c) Example 3 (d) Example 4

Known Component Unknown Component Semantic Source

Figure 6.12: Parallel Workflow Patterns

in Experiment 2 of Table 6.6. The system was still able to identify one component; the one at the top
because there was still sufficient semantic information. However, in Experiment 4, represented by Fig-
ure 6.12d, the system could not identify any component because sufficient semantic information was
not available. This shows that in a parallel split, each branch acts as a separate sequential workflow.
As long as sufficient semantic information is available in either branch, components can be identified.
The rules regarding the distance between the unknown component and the semantic source remain
the same as in sequential workflows.

6.5 End-to-End Evaluation of the Entire Framework

The end-to-end framework evaluation methodology follows the same pattern as the methodology
for evaluating the domain ontology update engine, shown in Section 5.5 and also bears similarity
with the work of Goderis et al. [8]. They have devised a methodology to study the effectiveness
of workflow discovery tools. This methodology is based on behaviour models describing the users’
attitudes towards workflow reuse and discovery. As such most of their benchmarks are related to
these behaviour models and not relevant to the purposes of this research. One of the benchmarks,
however, involves users creating workflows that either contain or are part of other workflows. The
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same approach is used to perform end to end evaluation of this framework. The experimental setup
used is shown in Figure 6.13. Since the framework works in two phases; the offline and the user-

Framework

Semantic 
Analyser

1) _________
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3) _________

:
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+Performance 
Evaluation

MRR

Suggestions

..

..

..

Suggestion 
Building Engine

Semantically
Enriched

Workflows

Pattern 
Extraction

Workflow 
repository

Workflows

Workflows

Figure 6.13: End-to-End Evaluation Methodology

initiated processing phases; the evaluation was also carried out in two phases. For the offline phase,
workflows from the workflow repository were first input to the pattern extraction component. The
extracted patterns were then written into the ontology. For the user-initiated processing phase, three
sets of workflows were provided to the framework as input. Within the framework, the workflows
were first semantically-enriched. The Suggestion Building Engine then generated the suggestions
based on those workflows. Similar to the domain ontology update engine, the MRR coupled with the
number of steps required to construct the workflow were used to evaluate the suggestions. A higher
MRR indicates that the relevant suggestion was ranked highly by the system. For the number of steps
required to construct the workflow, a lower number is desirable. This would indicate that the system
was of greater assistance by minimising user involvement. On the contrary, a high number of steps
would indicate that the user needed to be more involved in the design process. As with the domain
ontology update engine, the completeness of the framework can be demonstrated by evaluating its
performance on various types of workflows. Since the structural patterns shown in Figure 6.10 are
also contained within the workflows in the repository, it can be said that they represent all types of
workflows. Therefore, the framework may be considered complete.

To evaluate the algorithm, 65 neuroscienceworkflows from the LONI repositorywere used. During
the pattern extraction phase, the minimum frequency threshold for each pattern was set at 4. It was
so chosen because it is approximately equal to 5% of the total workflows, which is the significance
level commonly used in statistical significance testing [3]. In addition, Closed Graph [9] mining was
enabled to eliminate overlapping patterns and reduce the number of overall patterns mined. These
patterns were written into the ontology for use by the Suggestion Building Engine. The ontology
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ID Name Si
ze

In
Re

po
si
to
ry

Wf1 BrainParser (Hippocampus) 14 ✓
Wf2 BrainParser (56 Structures) 14 ✓
Wf3 Automated ROI Extraction/Volume Calculation 22 ✓
Wf4 BrainParser (Hippocampus) 14 ⨯
Wf5 BrainParser (56 Structures) 14 ⨯
Wf6 Automated ROI Extraction/Volume Calculation 22 ⨯
Wf7 MDT with KLMI (Existing Atlas) 15 ⊗
Wf8 MDT with KLMI (1 Subject Bias) 13 ⊗
Wf9 MDT with KLMI (Multiscale Symmetric) 27 ⊗

✓: Workflow is present in repository with overlapping patterns.
⨯: Workflow is not present in repository but has overlapping patterns with other workflows.
⊗: Workflow is not in repository and has no overlapping patterns.

Table 6.7: Workflows used to perform overall evaluation.

already contained descriptions of the various algorithms along with their inputs and outputs.
The three sets of workflows constituted three categories from the dataset. These were workflows

that (a) already existed in the repository, (b) did not exist in the repository but had overlapping patterns
with it, and (c) did not exist in the repository and had no overlapping patterns with it. The first
two categories are similar to the tasks used by Goderis et al. The third category has been added in
order to evaluate the benefits of combining semantics with usage patterns. For the experiments, three
workflows of each category were chosen and are shown in Table 6.7. The table also lists their size in
terms of the number of components they comprise and whether they were present in the repository or
not. For workflows that were not present in the repository, it is also indicated whether there were any
overlapping patterns with other workflows. For (b) and (c), the workflows were first removed from the
original repository in turn, reducing the total count to 62 workflows. The results of the experiments
are presented in the next section.

6.5.1 Results

For each of the workflows provided as input to the framework, Table 6.8 shows the number of
steps it took to construct the workflow and the average MRR for each workflow. The average MRRwas
calculated by averaging the MRRs for each individual step required to construct the workflow using
the suggestion framework. Overall it can be seen that the framework requires few steps to construct
workflows that have overlapping patterns with other workflows in the repository. For Wf1 it took
only one step to construct since the entire workflow appears as a sub-workflow in other workflows
in the repository. Similarly, for Wf2 it took only two steps. This is possible since the framework does
not suggest only one component at a time; instead it can suggest as many as required. For Wf3 it took
9 steps to complete the workflow even though it consisted of 22 components. This was again made
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Workflow No. of steps MRR

Wf1 1 0.14
Wf2 2 0.20
Wf3 9 0.22
Wf4 1 0.17
Wf5 1 0.18
Wf6 10 0.20
Wf7 12 0.50
Wf8 13 0.18
Wf9 18 0.17

Table 6.8: Overall results.

possible by the existence of overlapping patterns. For workflows Wf4, Wf5 and Wf6, the number of
steps required to complete the workflowswere still much less than the sizes of the workflows. This was
true even though the workflows themselves did not exist in the repository. The results for workflows
Wf7, Wf8 and Wf9 show that even though the workflows did not exist in the repository and did not
have any overlapping patterns, the number of steps required to construct them were still less. This is
possible because even though there were no overlapping patterns directly, the framework was able to
find patterns after generalisation.

Workflow No. of steps MRR

Wf1 18 0.84
Wf2 19 0.90
Wf3 24 0.85
Wf4 17 0.87
Wf5 18 0.90
Wf6 24 0.85
Wf7 15 0.08
Wf8 11 0
Wf9 27 0

Table 6.9: Oliveira results.

Table 6.9 shows the results of experiments run using an alternative system developed by Oliveira
et al [10]. It was chosen for comparison because it is a system that does not employ any semantics. It
only relies on frequent patterns. Since this research attempts to show how combining semantics with
patterns can improve the suggestions, Oliveira et al’s system is a suitable candidate for comparison.
In contrast to the results shown in Table 6.8, it can be seen that this system works well for workflows
that are already present in the repository (Wf1,Wf2,Wf3). The results are similar for workflows that
have overlapping patterns with other workflows in the repository. However, the system does not work
well for workflows that are not present in the repository and have no overlapping patterns. For Wf1,
Wf2 and Wf3, the average MRR was quite high. However, the number of steps required to construct
the workflow was equal to or greater than the size of the workflow. This is because the system only
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suggests one component at a time. Therefore, even though the accuracy of the system was high, it still
required a significant number of steps to complete the workflow.

The reason the number of steps was greater than the size of the workflow in some cases was
because some components had multiple links between them. So in some cases it took several steps
to connect two components together. For workflows Wf4, Wf5 and Wf6 the results were similar to
the results of the previous three workflows because of overlapping patterns. The major difference
between HyDRA and this system is highlighted in the results for workflows Wf7, Wf8 and Wf9. In
these cases the compared system was not useful in constructing the workflow. This is because there
were no patterns in the repository for the system to draw upon for suggestions. And since the system
does not consider semantics, it could not make any suggestions.

 0

 0.2

 0.4

 0.6

 0.8

 1

Wf1 Wf2 Wf3 Wf4 Wf5 Wf6 Wf7 Wf8 Wf9

Av
er

ag
e 

M
R

R

Workflow

HyDRA
Oliveira et al. (2008)

(a) Average MRR

 0

 5

 10

 15

 20

 25

 30

 35

 40

Wf1 Wf2 Wf3 Wf4 Wf5 Wf6 Wf7 Wf8 Wf9

N
u

m
b

e
r 

o
f 

st
e

p
s

Workflow

Hybrid Suggestion Generation Framework
Oliveira et al. (2008)

Workflow Size

(b) No. of steps

Figure 6.14: Comparison of HyDRA and Oliveira et al.

Figure 6.14 show a comparison of the two systems with respect to the average MRR and the total
number of steps required to construct the workflows. For workflows that are already in the repository
or have overlapping patterns, the MRR is low when compared to Oliveira et al. because HyDRA
suggests more than one component at a time whereas Oliveira suggests only one. In general, the larger
the pattern, the less frequent it is. Since both systems employ frequency-based ranking mechanisms,
Oliveira’s suggestions occur more frequently, and thus are ranked higher. On the other hand HyDRA’s
suggestions occur less frequently because they consist of multiple components. Thus they are ranked
lower. In the case of workflows with no overlapping patterns, HyDRA clearly outperforms Oliveira.
In Figure 6.14b, HyDRA clearly outperforms Oliveira et al.’s system since the fewer steps it takes to
construct a workflow, the more efficient the system is.

6.5.2 Discussion

This framework employs semantics in a two-step process to generate suggestions; a) before the
pattern mining process to extract generalised patterns, and b) when generating suggestions as an
alternative to the pattern-based suggestions. In order to understand the benefits semantics afford in
this process, an analysis of the different possible scenarios is necessary. Based on the results shown in
the previous section, these scenarios are given below:

1. There are overlapping patterns between the workflow being constructed and the workflows in
the repository.

2. There are no overlapping patterns before the workflow has been generalised, but they emerge
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post-generalisation.
3. There are no overlapping patterns at all.

This section discusses how the framework performs in each of these scenarios.

6.5.2.1 When Overlapping Patterns Exist

When overlapping patterns exist generating suggestions is quite straightforward for the system.
This can be seen by the fact that the number of steps required to construct Wf1, Wf2, Wf3 was very
small for this framework compared to their size. For the same workflows, Oliveria’s system also per-
formed well. Even though the number of steps required was quite high, the average MRR was also
quite high. This shows semantics do not afford any significant benefits in this scenario. However, they
do not degrade performance either; HyDRA performs well for this scenario as well. Therefore, it can
be concluded that in this incorporating semantics does not provide any improvement over existing
systems.

6.5.2.2 When No Overlapping Patterns Exist Before Generalisation

Another possible scenario is when there are no overlapping patterns pre-generalisation. However,
patterns may emerge once generalisation is performed. Such an example is shown in Figure 6.15.
These examples are taken from the “Atlas-based ROI Analysis for DTI Data” [11] workflow and Wf7.

Align Warp

Reslice Warp

KL_MI_Register

KL_MI_Deform

NonAffineRegistration
Component

ReslicingComponentSP1 SP2

GP

Figure 6.15: Patterns emerging after generalisation.

BothAlignWarp andKL_MI_Register are components of typeNonAffineRegistrationComponent. Reslice
Warp and KL_MI_Deform, on the other hand, are both components of the type ReslicingComponent.
Individually the patterns SP1 and SP2 do not occur frequently enough to be mined by the patternminer.
After generalisation is performed, however, both these patterns are generalised to the same general
pattern 𝐺𝑃 . Since SP1 and SP2 are present in several workflows, the total frequency of 𝐺𝑃 crosses
the minimum frequency threshold and it is picked up by the pattern mining algorithm. Thus when
constructingWf7 this pattern is suggested. This does not occur in Oliveira as there is no generalisation
process involved. Each individual pattern SP1 and SP2 remains infrequent. Therefore, the relevant
suggestion is ranked relatively lowly by Oliveira during suggestion generation. Ranking a suggestion
low indicates that the system has low confidence in its correctness. Moreover, it also decreases the
probability that the user will choose that sugggestion, thereby reducing the utility of the system for
the user.
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6.5.2.3 No Overlapping Patterns

When no overlapping patterns exist either pre or post generalisation, pattern-based systems like
Oliveira are unable to make any useful recommendations. However, by leveraging semantics, HyDRA
is still able to make recommendations. An example is shown in Figure 6.16. Reslice takes a transfor-

Reslice Warp

KL_MI_Deform

Figure 6.16: An example semantics-based recommendation.

mation matrix from Align Linear and applies it to an input image to register it to a template image.
The final output is a RegistrationDataset in IMG format. KL_MI_Deform takes a template image in
the IMG format and registers an input image to it. There are no patterns in the workflow repository
that link these two components together. However, by looking at the semantic descriptions of the
both components, the system determines that KL_MI_Deform can be connected to Reslice. Therefore,
it suggests the former as a successor to the latter. This is a scenario where Oliveira fails to produce
any suggestions. Thus semantics afford a clear advantage here.

These scenarios together clearly demonstrate that semantics, applied in the two-stage fashion this
framework adopts, help to generate more accurate recommendations. In one instance patterns emerge
after generalisation where there were none before. In another semantics provide additional informa-
tion where no patterns were available at all. Thus, an improvement is achieved over pattern-based
systems. The next section concludes this chapter.

6.6 Summary and Conclusions

This chapter presents an evaluation of the various components in the framework along with an
end-to-end evaluation of the overall framework. The various components in the framework include
the domain ontology, the pattern extraction component, and the workflow component identification
algorithm. In addition to these components is the overall suggestion-building engine. The OntoClean
methodologywas used to evaluate the domain ontology. This methodology specifies a set of metaprop-
erties that place constraints on the way different concepts in the ontology can be related. Specifically,
the constraints place limits on the subsumption relationship. Using this methodology, one can justify
various design choices. This is necessary because there is generally no single correct way to design
an ontology. For the pattern extraction component, a number of different algorithms were applied
on the dataset and the results compared. It was shown experimentally that the results from the algo-
rithms match. Additionally, the results also comply to theoretical patterns that are characteristic of
combinational problems such as subgraph enumeration.

In order to evaluate the component identifier, a set of sub-workflows were chosen from the eval-
uation dataset. These workflows were chosen for their illustrative capabilities to demonstrate various
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aspects of this algorithm. Generally, scientific workflows consist of various patterns such as sequential
and parallel branches. These experiments were designed to explore the performance of the algorithm
for various possibilities. These possibilities arise from the number and distribution of unknown com-
ponents in the workflow as well as the level of semantic information available in the ontology. The
parameter used to evaluate the performance of the algorithm was the MRR. It was shown experimen-
tally that even for parallel branches, the behaviour of the algorithm was equivalent to each branch
being treated as a sequential workflow.

The end-to-end evaluation was conducted along the same lines as the evaluation of the component
identification algorithm. A set of workflows were chosen from the dataset and constructed using
suggestions from the framework. The results were evaluated and compared using two factors; the
MRR and the number of steps required to complete the workflow. For comparison, a pattern-based
systems developed by Oliveira et al. was also evaluated using the same methodology. Experiments
show that there are three scenarios possible when designing workflows. These are a) the workflow
being designed has overlapping patterns with other workflows in the repository, b) the workflow being
designed does not have any overlapping patterns before generalisation, and c) the workflow does not
have any overlapping patterns at all. The results show that HyDRA shows no improved performance
in the first scenario. However, it clearly performs better than the compared system in the latter two
scenarios. The next chapter concludes this thesis and discusses future work.
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CHAPTER 7

Conclusions and Future Work

7.1 Introduction

This thesis explores the extent to which semantics can be combined with frequent usage patterns
by workflow recommender systems to generate suggestions. In this regard a framework has been de-
veloped that can a) infer the semantics of unknown components in a workflow, and b) assist scientific
users when designing workflows by suggesting workflow components. HyDRA comprises a semantic
inference as well as a semantic analysis algorithm that support the suggestion generation process (cp.
Chapter 4). The framework is intended to be used by scientific users that wish to run workflow-based
data analyses on distributed infrastructures. For example, referring to the neuGRID example intro-
duced in Section 1.2.1, a neuroscientist studying neurodegenerative diseases may wish to compare the
MRIs of several patients to determine if a particular patient shows signs of suffering from such a dis-
ease. Such comparisons are typically compute-intensive and thus ideally suited for workflow-based
execution on distributed infrastructures. Moreover, this research also helps in addressing the problem
of transference of expertise also introduced in Section 1.2.1. Less technically-knowledgeable users can
take advantage of the expertise of advanced suers via the mechanisms employed by this body of work.

Workflow design poses some challenges for users including selecting appropriate components and
specifying links correctly between them. HyDRA can intelligently assist such scientists design their
workflow-based analyses. This scenario is typified in Figure 7.1. HyDRA, once integrated in a work-
flow composition tool, can communicate with a component repository as well as a semantic repository
to generate suggestions for the users as they are constructing the workflows. The framework helps
alleviate the aforementioned challenges. Moreover, it also assists the users in keeping the semantic
repository up-to-date by identifying unknown components and inferring their semantics.

This chapter concludes the thesis by answering the various research questions formulated in Chap-
ter 1, culminating in the resolution of the stated research hypothesis.
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Figure 7.1: Proposed framework in practice.

7.2 Answering the ResearchQuestions

The following research questions were posed in Chapter 1:

Question 1. What are the limitations of current workflow composition and related systems?

This thesis describes the workflow composition process with the intention of identifying steps
where intelligence can be applied to assist users when designing workflows (cp. Section 2.2). These
include constructing correct workflows, finding appropriate components for their requirements, se-
lecting parameter values, determining incompatibilities between components and identifying usage
patterns in workflows for future suggestions. Most workflowmanagement systems only address some
of these challenges (cp. Section 2.3). They attempt to ensure workflow correctness by ensuring that in-
put and output data types of connected components match such as LONI, Triana and Taverna [1, 2, 3].
They generally do not take into account any additional information. In addition, most systems only
provide simple text-based searching of components in the repository. However, some systems exist
that add intelligent suggestion features to existing workflow composition systems. Such systems are
termed recommender systems in literature.

This research classifies recommender systems into three categories according to the approach they
adopt to generate suggestions for users and discusses the pros and cons of each category (cp. Sec-
tion 2.5). The three categories are ratings-based systems, pattern-based systems and semantics-based
systems. Rating-based systems employ explicit ratings for items provided by users and attempt to find
other items that the user may be interested in. Pattern-based systems attempt to identify patterns in
the way users use a system. They then suggest items to users based on these patterns. Semantics-based
systems attempt to suggest semantically-compatible items. Ratings-based systems are not suitable for
workflow composition since they attempt to find items based on similarity which does not apply to
workflows. Regarding pattern-based systems it was concluded that theywork for popular or frequently
used items; but they omit rare items that may actually be more useful for the user. Semantics-based
systems, on the other hand, are good at finding all items that the user may need, but cannot determine
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which of them are more appropriate in a particular scenario. Moreover, they require significant effort
to set up initially.

A system that addresses the aforementioned drawbacks, therefore, should have the following prop-
erties:

1) It should include additional information (such as semantics) when determining inter-component
compatibility.

2) It should not neglect rare items if they are more suitable for users.
3) The suggestions generated should be dynamic and adapt with the availability of more informa-

tion.
4) It should not require significant effort to set up.

A framework that addresses these points has been designed in this research by combining semantics
and pattern-based approaches. Patterns can help find useful items for users based on historical data.
Semantics can fill in the gap when relevant historical data is not available. The comparision of Hy-
DRA with Oliveira et al.’s system confirms the usefulness of incorporating semantics (cp. Figure 6.14).
Moreover, they can also help inform the pattern extraction process to improve it.

Question 2. To what extent can workflow component semantics be used to improve the suggestions?

Existing systems use semantics only to determine compatibility between components (cp. Sec-
tion 2.5.3). In HyDRA, semantics are applied in two phases to generate suggestions when constructing
workflows. In the first phase the set of workflows in the repository are generalised so that functional
units of workflow components can be mined. In the second phase, the semantics are used to suggest
compatible components duringworkflow creation. Another way inwhich semantics are utilised in this
research is to infer the semantics of unknown components in a workflow as shown in Section 6.4.3.
Doing so enables the semantic repository to be automatically updated without user intervention. All
three use cases of semantics are discussed in Chapter 4. These use cases together help us to answer
Research Question 2 and show how semantics can be utilised by workflow recommender systems.
Moreover, Figure 6.14 shows a comparison of the performance of HyDRA with a similar system that
does not employ semantics. Results show a clear improvement in two out of three scenarios as dis-
cussed in Section 6.5.2;

1) When there exist overlapping patterns between the workflow under construction and the work-
flow repository. In this scenario semantics do not improve the quality of suggestions.

2) When there are no overlapping patterns before generalisation. In this case generalisation may
result in overlapping patterns emerging.

3) When there are no overlapping patterns after generalisation. In this case the system may still
able to offer suggestions based on semantic compatibility.

Question 3. What approaches are suitable for mining historical usage patterns and how can they be used

to improve suggestions?

Pattern-based systems employ two main approaches to mining patterns. They either extract sub-
graphs from workflows or extract individual links based on frequency of occurrence. Extracting sub-
graphs allows the system to generate suggestions with little computational overhead but the pattern-
mining process is expensive. On the other handmining individual links is computationally economical
but the suggestion generation process is complicated if more than one component is to be suggested.
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Because the user experience is more concerned with the efficiency of the suggestion generation pro-
cess, this research has focused on mining entire subgraphs. Several subgraph mining algorithms were
evaluated and results show that gSpan with Closed graph mining is both efficient and mines com-
plete patterns. This helps us to answer the first part of the question and is discussed in more detail in
Section 2.9. Semantics by themselves can only enable reasoning based on static information unless up-
graded manually by users. Including frequent usage patterns in the process allows the suggestions to
be dynamic and history-based. The performance of HyDRA has been evaluated when historical usage
patterns are present in comparison with its performance when they are not (cp. Table 6.8). The results
empirically prove the benefit of using historical usage patterns as they both improve the MRR of the
suggestions as well as reduce the number of steps required to construct a workflow. This dynamism
improves the suggestion generation process and helps us to answer the second part of the question.

Question 4. How can workflow component semantics and historical usage patterns be combined to im-

prove the suggestions?

Existing approaches adopted by workflow recommender systems employ either semantics or fre-
quent usage patterns to generate suggestions. In this research both of these techniques have been
combined. The semantics are used to mine generalised frequent workflow patterns from the reposi-
tory. Generalising the patterns allows the system to mine patterns that otherwise may not have been
picked up. The reason for this is expounded upon in Section 3.3.8. This section illustrates how seman-
tics can be combined with patterns to generate suggestions. The quality of the suggestions themselves
is evaluated empirically in Section 6.5. It has been shown in Figure 6.14 that combining semantics with
frequent usage patterns improves the quality of the suggestions generated by the system. Improving
the quality of suggestions in turn improves the utility of the recommender system for the user. It helps
users to construct and design complex workflows in a time-efficient and reliable manner. Moreover,
it also reduces the effort required by users to construct workflows.

7.3 Answering the Research Hypothesis

The research hypothesis is restated here for convenience:

“Workflow component semantics along with their historical usage patterns can be used to improve the

suggestions offered by recommender systems.”

Answering ResearchQuestions 2 and 3 allows us to conclude that semantics andworkflow patterns
can be used separately to generate suggestions. By answering ResearchQuestion 4, it can be concluded
that together, semantics and workflow patterns can be used to improve the quality of the suggestions
generated. This fact has also been proven empirically in this research. Therefore, the hypothesis can
be said to have been proven true. Thus, a new category of recommender systems can be said to have
been created. This thesis had earlier classified recommender systems into three categories; rating-
based, pattern-based and semantics-based. The new category comprises HyDRA that combines the
properties of pattern-based and semantics-based systems. It has also been shown in Chapter 6 that
HyDRA offers an improvement over existing systems.

HyDRA can assist users in several scenarios where traditional workflow design recommender sys-
tems cannot:
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1) When the relevant component is rare.
2) When functional groups of components are more frequent than specific groups of components.
3) When the semantics of some components in a workflow are unknown.

In the case of 1) a component that is rare may not be picked up by the pattern extraction process
since it does not satisfy the minimum frequency of occurrence criterion. In 2) groups of components
often perform a composite function and thus co-occur frequently. However, they may not be frequent
enough to satisfy the frequency threshold. Often there are several components that perform the same
function but are appropriate in different circumstances. Such alternative components may perform
the same composite function as another group of components. Using semantics, HyDRA can identify
such alternative components and treat them as the same group, consequently rendering it sufficiently
frequent to be extracted as a pattern. This would not be possible in traditional systems. In 3) the system
uses the semantics of surrounding components to infer the unknown semantics. This can help keep
the semantic repository up-to-date. The next section presents the key contributions of this research.

7.4 Key Contributions

This section lists and summarises the key contributions of this research :

A Hybrid Suggestion Generation Approach: this research shows how semantics can be used along
with frequent usage pattern extraction to improve the quality of suggestions. Semantics-based
systems cannot function until semantics about the components in the repository have been spec-
ified. Specifying the components semantically is a time-consuming task and requires concen-
trated efforts by users. In addition, semantics-based systems are static and do not learn as they
are used. Therefore, unless the users put in the time and effort to specify the semantics of the
components, the system will not be able to generate suggestions. Semantics-based systems are
very good at determining which components are compatible with each other. However, since
they do not incorporate frequent usage patterns, in situations where there are a number of sim-
ilar components to choose from, they cannot prioritise the suggestions. Therefore, important
expert knowledge encapsulated in the frequent usage patterns of other users is missing. In addi-
tion, two components may be semantically compatible; however the way they are implemented
may make them unsuitable for use together. Semantics-based systems would be unable to deter-
mine this incompatibiity unless it is explicitly specified. Pattern-based systems cannot generate
suggestions unless sufficient data is available for them to find useful patterns.

In addition, since pattern-based systems prune suggestions and only keep the most frequent
ones, rare cases where the less frequently used components are more appropriate for the user’s
needs get ignored. Therefore, in this scenario, the suggestions would be both less relevant as
well as misleading for the user. Combining both approaches helps to address the drawbacks of
each.

Using Semantics to Improve theQuality of Suggestions: this research applies semantics in two phases.
In the first phase, the usage patterns are combined with a functional taxonomy of workflow
components to identify generalised patterns in the workflows. These patterns allow the system
to attempt and infer what a user is attempting to do to provide contextual recommendations.
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Shortcomings in existing generalisation approaches are also identified and addressed in this re-
search with specific regards to workflows. In the second phase, the semantics of the workflow
components are utilised to identify compatibility between components. A novel semantic analy-
sis mechanism is introduced that ensures that the system takes into account sufficient semantic
information to produce context-sensitive suggestions. The lack of this semantic analysis mecha-
nism in existing approaches means that the suggestions are generated in the absence of a useful
context.

Updating the Ontology: this research also addresses the question of how the ontology can be kept up
to date by introducing a novel semi-automated methodology to detect and identify new compo-
nents. A semantic inference algorithm has been devised in this regard that infers the semantic
properties of unknown components in a workflow. It attempts to do so by analysing the known
semantic properties of other components in the workflow, and then by inferring the most likely
properties of the unknown component. The ontology is then queried on the basis of those in-
ferred properties and all possible candidates are returned to the user.

Inferring the Semantics of Unknown Components: for the semantic inference algorithm, provided
sufficient semantic information is available, the performance of the algorithm also depends on
the number and distribution of the unknown components. For example, for workflows with
only one branch and one unknown component, the algorithm can usually generate meaningful
suggestions. The situation becomes more complicated in the case of workflows with multiple
unknown components. In this case, a component may or may not be identified. Its success
or failure depends upon whether enough known components exist to provide the appropriate
semantic context to identify the unknown components.

In the case of workflows with parallel branches and one unknown component, if the unknown
component exists in the sequential part of the workflow, then the required semantic information
may come from either of the subsequent parallel branches. However, if the unknown compo-
nent is in one of the parallel branches, then for all intents and purposes it may be thought of as a
sequential workflow. Any semantic information in the other parallel branch is irrelevant. How-
ever, in parallel workflows with multiple unknown components, the situation is more complex.
Depending on the distribution of the unknown components, the workflow may be treated as a
single sequential workflow, or several sequential workflows. The rules governing the success or
failure of the algorithm for each parallel branch remain the same as for sequential workflows.

Comparative Evaluation: comparison against a pattern-based system shows that semantics combined
with usage patters can indeed be used to improve the quality of suggestions. The comparison
was performed for three scenarios;

a) When there exist overlapping patterns between the workflow under construction and the
workflow repository. In this case generating suggestions is quite straightforward for the
both systems. There was not much difference in the results for both systems in this sce-
nario. Thus shows semantics do not afford any significant benefits in this scenario. How-
ever, they do not degrade performance either; HyDRA performs well for this scenario as
well.
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b) When there are no overlapping patterns before generalisation. The process of generali-
sation replaces workflow components with their abstract components that represent the
functions those components perform. This process may result in new patterns emerging
that did not exist before since there may be many different types of components that per-
form the same functions. In this scenario, HyDRA would be able to extract those patterns,
while the compared system could not. Thus, incorporating semantics in this case improves
the quality of the suggestions.

c) When there are no overlapping patterns after generalisation. In this case the system may
still able to offer suggestions based on semantic compatibility. The compared system, since
it does not take into account semantics at all, would not be able to offer any suggestions
int his case.

Having discussed the key contributions of this research, a critical analysis of the same is presented in
the next section.

7.5 Critical Analysis

While the research presented herein addresses some important questions, there is some room for
improvement in the way they are addressed. These are identified subsequently:

1) Currently the process of inferring the semantic properties of an unknown component considers
only one workflow. This may result in properties that the component does not actually posses
or properties that are not helpful because they are too generic. To mitigate this effect generic
properties that do not provide any meaningful information regarding the identity of the com-
ponent are filtered. However, some extraneous properties may still be left over. A more robust
method of filtering extraneous properties may be to consider several workflows containing the
component instead of just one. In this approach, the semantic inference algorithm could be run
on all workflows containing the unknown component. Selecting only the most common subset
of properties might result in a more accurate set of properties of the unknown component. For-
mally, if𝑃𝑖 is the set of all semantic properties inferred for the unknown component in workflow

𝑖, then
𝑛
⋂
𝑖=1

𝑃𝑖 would give the most common subset of properties.

2) In order for the semantic analysis algorithm to propagate semantic properties across workflow
components, a relationship between the inputs and outputs needs to be specified (cp. Sec-
tion 4.5.3). This allows the algorithm to avoid ambiguities when a component hasmultiple inputs
or outputs. Currently this relationship is specified manually by domain experts. It may be pos-
sible, however, to infer this relationship automatically by analysing multiple workflows. If a
particular property always appears at a particular input and output of a component in different
instances, then it can be inferred that that property is being transferred from the input to the
output. The algorithm can then encode that relationship into an ontology. This would remove
some of the burden from domain experts to specify the semantics of workflow components.

3) The semantic analysis process propagates workflow semantics across components. This provides
the systemwith additional informationwhen generating suggestions and allows them to bemore
accurate. Currently only a single workflow is considered for this process. Considering multiple
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workflowsmay improve this process aswell. The algorithm could select themost common subset
of semantic properties available after semantic analysis. This could filter extraneous information
that the algorithm considers when generating suggestions.

4) When suggestions are being generated, the system converts the partial workflow to a graph.
It then searches for patterns in the repository that contain the converted subgraph. However,
it may be possible that patterns that contain only subsets of the partially-constructed work-
flow exist. By searching the repository for patterns that have overlapping subgraphs with the
partially-constructed workflow, the quality of suggestions might further be improved.

In the next section future avenues for research are identified.

7.6 Future Directions

The following potential future directions have been identified during the course of this research:

7.6.1 Rank Suggestions Based on Semantics and Frequency of Occurrence

Suggestions are currently ranked first by frequency of occurrence. Suggestions generated by se-
mantic compatibility are not ranked at all. One of the future directions for this research may be to
develop a composite method of ranking suggestions based on both frequency of occurrence and se-
mantic compatibility. For example, to retrieve semantically-compatible components, the system first
analyses a partial workflow to propagate semantic properties across components. The propagated
properties are then used to retrieve semantically-compatible components from the ontology. In order
to improve accuracy, some propagated properties are pruned (cp. Section 4.5.5.3). However, there
may still be semantic properties left that do not contribute to the components retrieved. Therefore, a
composite mechanism can be developed that ranks the semantically-generated suggestions according
to the number of semantic properties they satisfy as well as the frequency of occurrence. Such a com-
posite approach may help to rank relevant suggestions higher than frequency-based methods, thereby
improving the quality of the suggestions.

7.6.2 Assign Weights to Extracted Patterns Based on Expertise of Authors

It was argued in Section 2.6.3 that different authors with different expertise levels should be given
proportional weights when extracting patterns from their workflows. The reason for this is that novice
users are likely to make more mistakes when creating workflows. By indiscriminately including all
workflows in the pattern extraction process, the potential for adding noise is introduced. To alleviate
this shortcoming, it may be desirable to assign a score to every pattern that is extracted. The score
can be a weighted sum of the various workflows the pattern was extracted from based on author
expertise. This score can be used when generating suggestions to rank them, thus ranking workflows
from unreliable authors lower than those from reliable authors. This can help in reducing the noise in
the extracted patterns and making the suggestions more reliable.
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7.6.3 Parameter Suggestions

Parameter values are an important aspect when constructing workflows. The correct functioning
of workflows often depends on appropriate parameter values. In this research only file parameters
are considered. However, they may be of many different types such as string, integer, floating point
numbers etc. Often the correct values of certain parameters depend on the values of other parameters.
These dependencies between parameters can be captured in the ontology by domain experts and can
then be used by a parameter value extraction algorithm to extract conditional frequently-used values
for those parameters. Furthermore, some distance metric such as the Hamming distance [4] between
the values of the dependent parameters in the repository and the partial workflow being constructed
can be used. This distance measure can be used to derive a confidence measure for the suggested
values that can then be used as a ranking mechanism as well. Doing so would ensure that context-
aware values for parameters are extracted. Therefore, context-appropriate suggestions can then be
generated for parameter values.

7.6.4 Workflow Correctness

It is important for a workflow system to be able to tell users that the workflows they are designing
are correct. There are two aspects to correctness; structural correctness and semantic correctness.
Structural correctness ensures that all components are connected properly and that there are no cycles
in the workflow. Semantic correctness ensures that all the components connected to each other are
semantically compatible; the data types of their inputs and outputs match. Semantic correctness has
been addressed in this research. However, structural correctness is also important. Debugging a large
workflow can be a tedious and time-consuming task. A system can be designed that takes this aspect
into account when generating suggestions using the proposed mechanisms. Such a system can ensure
that the suggestions it generates lead to correct workflows. While constructing a workflow, such a
system could, for example, check that no cycles have been introduced. Another check could be that
all the parameters are connected to appropriate inputs. This approach would make the tedious task
of debugging large workflows simpler by breaking it down into discrete, incremental chunks, thereby
improving the usability of the system.

7.6.5 Goal State

In addition to specifying how different parts of a workflow fit together, semantics can also be used
to specify the initial or final conditions of a workflow. Some work has already been done in this regard
[5]. In HyDRA, a description of the final output that is expected of the workflow could help guide the
suggestion generation process at each step. For example, given a partial workflow, the system could
backtrack from the description of the final output to determine what components would be required
to achive the desired output. The various options could be included in the suggestions.

7.6.6 Relevance of Results

For any suggestion system, the ultimate goal is to assist the user in achieving their final result. For
a spelling suggestion system, the user must get the word they are looking for. For a search engine, it is
important that users get all the relevant results that they require. Similarly, for a workflow composition
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system, it is important that the final workflow yield results that the users require or might find useful.
Therefore, if a particular workflow provides the required results, giving it a higher weight would bias
the results towards successful workflows. Without this, all workflows would have equal weighting.
However, not all workflows provide results with the same level of relevance. Therefore, biasing the
suggestions towards more relevant workflows would improve them. Such a system could incorporate
the relevance of results into the suggestion ranking algorithm.

In conclusion, HyDRA combines semantics and frequent usage patterns for workflow design rec-
ommendations. The framework on the one hand helps keep the semantic repository up-to-date. On the
other it uses semantics to inform the pattern extraction process. This allows the system to mine pat-
terns in situations where traditional pattern-based systems cannot. Semantics are also used to suggest
components in situations where the relevant component is rare, which is not possible for traditional
pattern-based systems. However, this framework has primarily been designed for grid/cluster-based
distributed systems. A potential future direction could also be to investigate the feasibility of this re-
search for cloud-based distributed infrastructures and the challenges they afford. Moreover, another
possible avenue could be the automatic or semi-automatic generation of the ontology supporting this
framework.
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APPENDIXA

Applying the OntoClean Methodology

DatasetParameter (+I, ~R, +U)

A DatasetParameter is an MRI that is identified by the patient it belongs to and the method used
to obtain it. Therefore, it carries unique identity criteria (+I). Moreover, all types of MRIs have the
same identity criteria. A DatasetParameter may become a different type of dataset as it is processed a
by workflow. For example, it may be an unsegmented dataset at one point and become a segmented
dataset at another. Therefore, it is anti-rigid (~R). An MRI is an indivisible whole with no distinct parts,
so it has unity (+U). Different types of dataset parameters are shown Table A.1.

Component Type Metapropertiers Description

Registration
DatasetParameter

+I, ~R, +U A RegistrationDatasetParameter is an
MRI that is produced by a Registra-
tionProcessing Component. Since it is an
MRI, it carries identity criteria (+I), is
anti-rigid (~R) and had unity (+U).

SkullStripped
DatasetParameter

+I, ~R, +U A SkullStrippedDatasetParameter is an
MRI that is produced by a SkullStripping
Component. Since it is an MRI, it carries
identity criteria (+I), is anti-rigid (~R) and
had unity (+U).

NonSegmented
DatasetParameter

+I, ~R, +U A SkullStrippedDatasetParameter is an
MRI that has not been segmented and
serves as input to a SegmentationCompo-
nent. Since it is an MRI, it carries iden-
tity criteria (+I), is anti-rigid (~R) and had
unity (+U).
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Component Type Metapropertiers Description

Reference
DatasetParameter

+I, ~R, +U A ReferenceDatasetParameter is an MRI
that is used as a reference point for
registering another MRI and serves as
input to a RegistrationProcessingCompo-
nent. Since it is an MRI, it carries iden-
tity criteria (+I), is anti-rigid (~R) and had
unity (+U).

Segmented
DatasetParameter

+I, ~R, +U A SegmentedDatasetParameter is an MRI
that has been segmented and serves as
the output to a SegmentationComponent.
Since it is an MRI, it carries identity cri-
teria (+I), is anti-rigid (~R) and had unity
(+U).

Floating
DatasetParameter

+I, ~R, +U A FloatingDatasetParameter is an MRI
that is being registered to a reference im-
age and serves as input to a Registra-

tionProcessingComponent. Since it is an
MRI, it carries identity criteria (+I), is
anti-rigid (~R) and had unity (+U).

Reconstructed
DatasetParameter

+I, ~R, +U A ReconstructedDatasetParameter is an
MRI that has been reconstructed and
serves as the output to a Reconstruction-
Component. Since it is an MRI, it carries
identity criteria (+I), is anti-rigid (~R) and
had unity (+U).

Table A.1: DatasetParameter components and their OntoClean metapropertiers.

DatasetProcessingComponent (+I, +R, -U)

A DatasetProcessingComponent consists of an executable algorithm along with some inputs and
outputs. Since each component has certain characteristics that clearly distinguish one from the other
such as name, function and version of the executable algorithm, it carries identity criteria (+I). A
particular dataset processing component always remains the same component, hence it is rigid (+R).
Since a dataset processing component consists of parts that are wholes but different, it carries no unity
(-U). In general, all types of dataset processing components posses the same metaproperties. They are
shown in Table A.2.
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Component Type Metapropertiers Description

Statistical
ProcessingComponent

+I, +R, -U A component that performs some
statistical processing on an MRI
and outputs the statistics.

Registration
ProcessingComponent

+I, +R, -U A component that registers one
MRI to another.

Arithmetical
ProcessingComponent

+I, +R, -U A component that performs
some arithmetical processing on
between two MRIs.

SkullStrippingComponent +I, +R, -U A component that extracts the
brain and other tissue from the
skull in an MRI.

SegmentationComponent +I, +R, -U A component that segments an
MRI and identifies various brain
regions.

ReconstructionComponent +I, +R, -U A component that reconstructs
MRIs and outputs reconstructed
images.

QuantitativeParameter
EstimationComponent

+I, +R, -U A component that estimates a spe-
cific physiological parameter such
as regional cerebral blood volume
and absolute proton density etc.

ResamplingComponent +I, +R, -U A component that resamples an in-
put MRI and produces a resampled
MRI. Examples of resampling in-
clude changing or orientation of an
image.

RestorationComponent +I, +R, -U A component that restores an in-
put MRI be reducing defects that
degrade an image.

Table A.2: DatasetProcessingParameter components and their OntoClean metapropertiers.
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Sample Workflow Analysis XML

1 <module id=”BiasFieldCorrector_1 ” exists =”true”>
<input id=” inputfile ” type=”IMG” transitive−to=” outputfile ”>

3 <properties>
<property>

5 DatasetParameter
</property>

7 </ properties >
</input>

9 <output id=” outputfile ” type=”IMG” transitive−from=” inputfile ”>
<properties>

11 <property>
DeNoisedDatasetParameter

13 </property>
</ properties >

15 </output>
</module>

17 <module id=”BET1_1” exists=” false ”>
<input id=” inputfile ” />

19 <output id=” outputfile ”></output>
</module>

21 <module id=”FLIRT_1” exists=”true”>
<input id=” initialmatrixfile ” type=”XFM”>

23 <properties>
<property>

25 DatasetParameter
</property>

27 </ properties >
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</input>
29 <input id=”input” type=”IMG” transitive−to=”output”>

<properties>
31 <property>

DatasetParameter
33 </property>

<property>
35 SkullStrippedDatasetParameter

</property>
37 </ properties >

</input>
39 <output id=”output” type=”IMG” transitive−from=”input”>

<properties>
41 <property>

RegistrationDatasetParameter
43 </property>

</ properties >
45 </output>

<input id=”reference ” type=”IMG”>
47 <properties>

<property>
49 ReferenceDatasetParameter

</property>
51 </ properties >

</input>
53 </module>
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