

This item was submitted to Loughborough’s Institutional Repository
(https://dspace.lboro.ac.uk/) by the author and is made available under the

following Creative Commons Licence conditions.

For the full text of this licence, please go to:
http://creativecommons.org/licenses/by-nc-nd/2.5/

A Cross Organisation Compatible Workflows Generation and Execution Framework

1

A Cross Organisation Compatible Workflows Generation and

Execution Framework

Mohammad Saleem
1
,

2
, Paul W.H. Chung

2
, Shaheen Fatima

2
, Wei Dai

3
,

Abstract

With the development of the Internet, the demand for electronic and online commerce has

increased. This has, in turn, increased the demand for business process automation. In this

paper, we look at the use of workflows for business process automation. An automatically

generated workflow can save time and resources needed for running online businesses. In

general, due to the interdependencies between their activities, multiple business organisations

will need to work together by collaborating and coordinating their activities with each other.

This gives rise to the need for workflow collaboration across organisations. Current systems

for workflow collaboration are only capable of reconciling existing workflows of the

collaborating organisations. Automatic workflow generation systems only generate

workflows for individual organisations and cannot handle the automatic generation of

compatible workflows for multiple collaborating organisations. To overcome this problem, in

this paper, we present a framework that is able to generate multiple sets of compatible

workflows for multiple collaborating organisations. The proposed framework supports

runtime enactment and runtime collaboration of the generated workflows. This framework

enables users to save the time and resources that would otherwise be spent in modelling,

reconciling and reengineering workflows.

1 Introduction

A Business process can be defined as “a set of one or more linked procedures or activities

which collectively realize a business objective or policy goal, normally within the context of

an organisational structure defining functional roles and relationships” (Workflow

1
 Computer Science Department, Loughborough University, Loughborough, LE11 3TU, UK

{P.W.H.Chung, S.S.Fatima}@lboro.ac.uk

2
 Department of Computer Science, CECOS University, Peshawar, Pakistan

saleem@cecos.edu.pk

3
 School of Management and Information Systems, Victoria University, Melbourne, Victoria, Australia

Wei.Dai@vu.edu.au

mailto:Wei.Dai@vu.edu.au

A Cross Organisation Compatible Workflows Generation and Execution Framework

2

Management Coalition, 1999). It means that a business process is essential for the business

goals of organisations. Workflow is the technology used to model automated business

processes. According to Workflow Management Coalition’s definition, a workflow
1
 is “the

automation of a business process, in whole or part, during which documents, information or

tasks are passed from one participant to another for action, according to a set of procedural

rules” (Workflow Management Coalition, 1999). A workflow has two main stages

(Workflow Management Coalition, 1999):

 Build-time stage – this refers to the stage where workflow descriptions of the business

process are defined or changed. This can be automatic or manual.

 Execution stage – this is where instances of the business process are created, executed

and managed. This is the operational stage.

In the real world, organisations have to interact with other organisations to do business. For

any two organisations to proceed in business, they need to have compatible workflows and

compatible means that there should be an agreed sequence of activities exchanging

collaborative messages and information (Chen and Chung, 2008). The point where exchange

of collaborative messages and information takes place between two collaborating workflows

is called an interface activity. An interface activity can be a sending activity or a receiving

activity. The set of all interface activities in a workflow is called interface process (Chen and

Chung, 2008). The proposed framework uses the idea of interface activities for collaboration

among the interacting organisations. Interface activities decouple the collaborating

workflows. A receiving activity only has to know the details of the corresponding sending

activity and does not need the representational details of the entire collaborative workflow.

When two of more organisations do business together, the need for workflow collaboration

across multiple organisations arises (Chen and Chung, 2007). Such collaboration is referred

to as cross organisational workflow collaboration. Incompatible workflows should be

reconciled before proceeding with business. Considerable amount of effort is needed to

ensure that workflows are compatible (Chiu et al., 2004; Schulz and Orlowska, 2004) and

proceed into the execution stage.

1
 Although, by definition, workflow has a more technical orientation and business process is more business

oriented; the terms workflow, workflow process and business process are used interchangeably in this paper.

A Cross Organisation Compatible Workflows Generation and Execution Framework

3

Recent research on workflow collaboration focuses on reconciling existing incompatible

workflows (Krukkert, 2003; Chen, 2008). This is a bottom-up approach. In an alternative top-

down approach, organisations meet, discuss and design collaborative processes and then

implement them (Chen and Chung, 2007). Both of these approaches are time consuming,

especially, if an organisation has many business partners to collaborate with. Every time an

organisation has to collaborate with another organisation, both the organisations will have to

invest a lot of time and resources to come up with compatible workflows. In case of any

change to the workflow of an organisation, negotiations may have to be done all over again

with all the collaborating organisations.

Another paradigm in the literature is automatic workflow generation, which is based on AI

planning where a workflow is considered as a plan (Chen and Yang, 2005; Dong and Wild,

2008). If every activity in a workflow is treated as a web service, a workflow represents a

plan of web services to achieve the desired goal state from a given initial state (Saleem,

2012). Web services are self-contained units of application logic (Srivastava and Koehler,

2003), which can be can be discovered, connected to and executed over the internet.

Therefore workflow generation can be treated as a web services composition problem (Dong

and Wild, 2008). In web services composition, a planner reasons about a pool of available

services and the service that can bring about the desirable effect is added in the plan.

Executing the plan will result in the goal state (Chen and Yang, 2005).

In web service composition, the planning system requires formal domain ontology for

planning. Domain ontology refers to the formal representation of the environment where

planning takes place (Chen and Yang, 2005). A web service composition environment is

primarily a collection of web services, so the domain ontology is in the form of web services

descriptions (Saleem, 2012).

Existing automatic workflow generation systems automatically generate workflows for single

organisations only and cannot generate compatible workflows for multiple collaborating

organisations (Sirin et al., 2003; Sirin et al., 2004; Okutan and Cicekli, 2010). The proposed

framework automatically generates compatible workflows for multiple collaborating

organisations to meet their high-level goals, without the organisations having to model their

workflows beforehand.

As the proposed framework independently generates compatible workflows for each

collaboration scenario among collaborating organisations, the organisations do not have to

A Cross Organisation Compatible Workflows Generation and Execution Framework

4

worry about keeping their workflows compatible with the other organisations they interact

with. Unlike the approach presented in this paper, in both manual and automatic workflow

collaboration negotiations, the organisations have to change their workflows in such away

that it becomes compatible with the workflow of the negotiating organisation and at the same

time remains acceptable to the existing organisations it is interacting with. Thus the proposed

framework eliminates the need for the time consuming negotiations that might otherwise

have been necessary to reconcile incompatible workflows.

The framework uses SHOP2 for planning because SHOP2 supports complex domains,

extended goals and non-deterministic actions (Peer, 2005). Furthermore, it is a highly

efficient planning system and has a Web Ontology Language for Services (OWLS) type

mechanism for representing atomic tasks and decomposing composite tasks into atomic tasks

(Sirin et al., 2004). The similar mechanism of OWLS and SHOP2 to hierarchically

decompose complex tasks into sub tasks makes it straightforward to map OWLS definitions

directly into SHOP2 domain (Sirin et al., 2004; Wu et al., 2003) and create workflows based

on the translated domain.

SHOP2 is a hierarchical task network (HTN) planner. It requires domain knowledge for

planning. The OWLS web services descriptions can be translated to create the SHOP2

domain. The SHOP2 domain consists of operators and methods. Operators are atomic tasks

that can be executed directly. Methods are specifications to decompose complex tasks into

atomic tasks. SHOP2 is a substantially expressive planner (Sirin and Parsia, 2004). The

expressivity of SHOP2 is similar to Planning Domain Definition Language (PDDL) (Sirin et

al., 2004). In the context of semantic web services, PDDL is neither too restrictive nor too

expressive and is considered as a viable compromise between expressivity and efficiency

(Peer and Vokovic, 2005). It uses a restricted subset of first order logic to describe the

semantics of operations. SHOP2 supports logical connectives such as conjunction,

disjunction, implication, negation and universal quantification to combine logical atoms.

SHOP2 supports the evaluation of arbitrary code at planning time through complex

precondition reasoning. This makes it possible to integrate existing knowledge bases on the

semantic web into SHOP2 domain (Sirin and Parsia, 2004).

Business Process Model and Notation (BPMN) language is the most widely used standard to

represent workflows (Meng et al., 2012). It defines the notation and semantics of business

processes (OMG, 2011). It is a workflow modelling language (OMG, 2011) and lacks the

A Cross Organisation Compatible Workflows Generation and Execution Framework

5

semantic precision required for automatic business process generation and execution (Ouyang

et al., 2008), and so we cannot use it as a notation for the proposed framework. Automatic

workflow generation can be achieved by exploiting web services composition. OWLS is a

language for describing web services (OWL Services Coalition, 2003). It is used to describe

the functionality, access point, execution mechanism and compositional capabilities of web

services. In OWLS, each service is modelled as a process (Sirin et al., 2004). A process can

be atomic, simple or composite. OWLS is a set of ontologies and OWLS process ontology

describes web services composition based on ‘action’ or ‘process’ metaphor. It describes

simple tasks as simple actions or simple processes and complex tasks as composite actions or

composite processes. This similar way of modelling makes it possible to translate OWLS web

services descriptions to SHOP2 domain (Sirin et al., 2004).

In the rest of the paper, section 2 outlines the related work. Section 3 discusses the

assumptions made for the proposed framework. Section 4 gives the general architecture of the

framework. Section 5 presents the functionality of the framework and explains the major

algorithms involved. Section 6 discusses implementation details. Section 7 describes

application examples and Section 8 discusses the paper and highlights future work.

2 Related Work

Most of the existing work on cross organisational workflow collaboration in the literature

deals with build time collaboration. Van-der-Aalst and Weske (2001) applied a three step

Public-to-Private approach to inter-organisational workflows. In the first step, the partner

organisations agree on a common public workflow; in the second step, the common public

workflow is divided between the interacting organisations; and in the third step, the

organisations create their private workflows autonomously. This approach requires manual

negotiations to reach an agreement, which can be very time consuming especially if there are

many partners.

Krukkert (2003) proposed a solution in the openXchange project. Two activity diagrams are

taken as input and compared to find out all common execution sequences. If any common

sequence is found then a common activity diagram is constructed for collaboration. For the

solution to work, there must be a common activity sequence in the workflows or activity

diagrams of the participating organisations. If a common sequence is not found, then

collaboration cannot proceed, which is a limitation of the system. In such cases, manual

A Cross Organisation Compatible Workflows Generation and Execution Framework

6

changes need to be done to the activity diagrams in order to introduce a common sequence

path. Alternatively, a third party collaboration system is required to bring about collaboration.

Both cases undermine the benefit of using Krukkert’s soloution.

Chen (2008) presented an approach for reconciling existing workflows to bring about

compatibility. A software collaboration agent extracts the interface processes from two

workflows that are intending to work together and gives an offer to a candidate provider,

which evaluates the offer and creates a counter-offer. The partner then either accepts or

rejects the offer. The process of offer generation, counter-offer generation, acceptance and

rejection goes on recursively till the negotiation is terminated or reconciliation is achieved.

Since workflows need to be executed, there needs to be runtime collaboration so that the

transfer of files and information happens smoothly among the in-house and cross

organisational activities. Chen and Chung (2006) presented a bottom-up cross organisational

workflow enactment approach. The approach is workflow management system (WfMS)

independent and the enactment is done via progressive linking enabled by runtime agents.

Each interaction point in the collaborating workflows is modelled as interface activity and

agents make sure that outgoing data and incoming data are delivered to the corresponding

activities accordingly. A form filling approach is used to ensure this. The form represents the

progress of interoperation and can be used for historical record.

With the increase in demand for reusability and interoperability, research has considered

composing web services into composite services to automatically generate business

processes. Sirin et al. (2003) created a semi-automatic web services composition system,

which allows users to select from a list of web services at each step of composition. The user

starts the composition process by selecting one of the services registered with the system. The

system then checks for web services that can satisfy the selected service, presents them to the

user and the user selects one to add in the plan. The system then checks for web services that

satisfy the next requirement. The process continues until the composition completes.

Later, Sirin et al. (2004) extended their semi-automatic web service composition system to a

fully automatic system. They implemented an OWLStoSHOP2 translator to translate

collections of OWLS process definitions into SHOP2 domain. The SHOP2 planner then uses

the created domain to produce a valid plan according to the constraints entered by the user

and imposed by the relevant web services. The generated SHOP2 plan is converted to OWLS

format by a plan converter called SHOP2toOWL, and executed by the Execution System. A

A Cross Organisation Compatible Workflows Generation and Execution Framework

7

limitation with this system is that it plans for a single organisation only and does not take

collaboration among multiple business organisations into account.

Okutan and Cicekli (2010) proposed an event calculus based web service composition and

execution (WSCE) system. The system has two phases, namely composition phase and

execution phase. In the composition phase, the OWLS process definitions are translated to

axioms in event calculus domain. Web services are encoded as actions, web service inputs

and outputs as action’s knowledge preconditions and knowledge effects, and web service

preconditions and effects as action preconditions and effects. The user inputs are substituted

as initial condition axioms and the outputs as goals. Based on the domain knowledge, the

Abductive Event Calculus Planner generates plans to reach the given goal state. The plans are

presented to the user in the form of visual graphs, which can be sorted according to user’s

quality of service parameter among execution duration, price, reliability and availability. In

the execution phase, the selected graph is transformed to OWLS descriptions and passed to

the execution engine. The user enters the actual input values, and the actual web services

modelled by the OWLS processes are invoked.

WSCE is a good effort to use event calculus for web service composition. The main benefit

of this system is that it supports concurrent plans and so it is better suited for solving real

world business scenarios. The main issue with this system is that it can compose workflows

for a single organsisation only and does not take the generation of collaborative workflows

for multiple organizations into account. The work, if extended for solving multi-organisation

scenarios, can be a good addition to research.

Recently, there has been some work on composing workflows for multiple organisations.

Chen et al. (2011) suggested a Pi-Calculus based approach to compose web services into

cross organisational business processes. A cross organisational business processes is

modelled as a set of concurrent local processes, which has a global start and a global end

activity. The activities in the local processes can receive external start messages. A cross

organisational controller controls the flow of control and data in the cross organisational

process. The limitation with this work is that it uses a manual modelling approach and the

web services composition is not automatic.

Correˆa da Silva et al. (2013) presented a lightweight, flexible and user-friendly platform for

cross organisational workflow interactions. The platform is named JamSession and it can be

considered as a meeting point for already existing software components to form new and

A Cross Organisation Compatible Workflows Generation and Execution Framework

8

innovative service systems. JamSession is a user-friendly and light-weight platform,

providing an appropriate framework to specify and implement cross organisational workflow

interactions. It uses knowledge-based interaction protocols and predicates to models cross

organisational workflows and activities in such away that the workflow definitions are local

to the respective workflow management systems, and only the interaction protocols are made

public. It makes the workflows highly decoupled. While the paper claims that the interaction

protocols can be used to specify and execute cross organisational workflows, it only shows

examples for the execution of cross organisational workflows. So, it is not possible to deduce

whether the interaction protocols can be used for bringing about collaboration among cross

organisational workflows at build time.

Problem Solving Methods (PSMs) (Crubezy, 2003) is another area that has a conceptual

resemblance to web service composition, due to its focus on reusable domain-independent

reasoning about ontologies (Elenius, 2004). In PSMs, the properties of a method can be

specified as a method ontology. With the help of mapping ontologies, the inputs and outputs

of the PSM can be connected to the entities in the ontologies of different domains. The use of

the idea of PSM and mapping ontologies can be interesting in web services composition

domain.

3 Assumptions

To define a starting point and clear context for the proposed framework, the following

assumptions have been made.

1. It is assumed that the collaborating organisations follow OWLS ontology for services,

as OWLS is the most widely used standard specification for adding semantics to web

services (Dong and Wild, 2008). OWLS provides a standard set of ontologies to the

collaborating organisations for describing and composing web services. Apart from

the service ontology, the collaborating organisations only need to follow the same

domain ontology for the inputs/outputs/preconditions/effects that are not local to a

single organisation and are used by multiple collaborating organisations.

2. Collaborating organisations can pass atomic, simple or composite OWLS processes to

the proposed framework. Atomic process represents a single-step directly executable

web service; simple process is an abstraction of an atomic process or a composite

process; composite process represents a compound web service, which can be

A Cross Organisation Compatible Workflows Generation and Execution Framework

9

decomposed into atomic web services. Composite processes are assumed to have a

complete decomposition into atomic processes. Such composite processes are

executable. The effects and outputs of the processes are assumed to be unconditional.

It is assumed that all atomic services in the workflows will execute without failure.

3. It is assumed that during workflow generation and execution, the world does not

change as a result of the actions of another agent and the initial state contains all the

necessary information of the domain for the planning to be done. It is assumed that

the services are readily available for execution and are always executable.

4. The collaborating organisations are required to know the input preconditions, outputs

and effects of each other’s corresponding interface activities so that compatible

workflows could be generated and collaboration could be carried out at runtime

among the sending and receiving processes. An interface activity can be a sending

activity or a receiving activity. In this paper, an activity name followed by “_s” or

“_r” means it is a sending or receiving activity respectively.

5. To ensure maximum usability of the framework, it is assumed that arbitrary number

of organisations can collaborate with each other. This assumption is in line with the

real world business environment in which more than two organisations can

collaborate simultaneously, e.g. in a Vendor/Customer/Supplier scenario three

organisations need to collaborate together.

4 Architecture

Figure 1 shows the general architecture of the proposed cross organisation compatible

workflows generation and execution framework. Although there can be more than two

collaborating organisations, for clarity the figure only depicts two. The framework requires

OWLS process definitions and high-level goals from collaborating organisations as input.

As shown in Figure 1, the collaborating organisations pass their OWLS process definitions

and high-level goals to the Collaboration and Workflow Generation Manager (CWGM). The

CWGM loads the processes and passes the process definitions to OWLStoSHOP2 Translator,

which translates them into SHOP2 domain descriptions. OWLStoSHOP2 Translator also

translates high-level goals into a SHOP2 problem. Preplanning analysis of the domain and the

problem is done so that operators and workflows of the collaborating organisations can be

A Cross Organisation Compatible Workflows Generation and Execution Framework

10

tracked. CWGM identifies operators in the domain that can enable the creation of multiple

plans. Based on identified operators, methods are inserted into the domain description to

ensure the creation of multiple plans. The inserted methods are used by SHOP2 to identify

alternate composition paths, and hence to create multiple plans.

Figure 1 Architecture of the Proposed Framework

The CWGM can be present on a central system or one of the collaborating organisations. It

is assumed that all the collaborating organisations agree to provide the path to their process

definitions to CWGM. The workflow generation process needs to be repeated for every set of

collaborating organisations. This is necessary because the atomic processes of the

collaborating organisations and the services modelled by the atomic processes can be outside

the boundaries of the collaborating organisations and their availability can change anytime.

So, the generated workflows are always based on the available atomic processes that can be

actually enacted. As the workflow generation process is purely automatic and based on

process definitions, it will not create an explosion of interaction modalities among the

collaborating organisations. Once the process descriptions are specified, the workflow

A Cross Organisation Compatible Workflows Generation and Execution Framework

11

generation process is extremely quick as compared to workflow negotiation process; so this

must not be a concern for the collaborating organisations.

In order to avoid planning against a huge number of irrelevant services, the framework

discards the irrelevant processes from the set of loaded processes to make sure that they are

not translated to SHOP2 format or used in the planning. This approach saves time. The

relevance of web services for workflow generation is decided on the basis of their outputs

and effects and it is achieved by a recursive checking algorithm.

The CWGM collapses SHOP2 domain descriptions of all interacting organisations into a

single joint SHOP2 domain. The SHOP2 problems of all interacting organisations are

collapsed into a single joint SHOP2 problem. The joint SHOP2 problem and the joint SHOP2

domain are passed to SHOP2 planner, which creates all possible joint plans. A joint plan is a

plan for all collaborating organisations; it achieves their combined goals from their combined

initial states, based on their combined domain descriptions. Each joint plan is subdivided to

create a set of collaborating plans, one plan for each organisation. These plans are generated

so that they are compatible with each other.

The set of compatible plans with the least number of activities is highlighted to the

collaborating organisations for execution. The collaborating organisations select the

highlighted set of compatible plans or any other set of compatible plans for execution,

according to their preferences. The selected set of compatible SHOP2 plans is transferred to

SHOP2toOWLS Translator to translate the SHOP2 plans into OWLS workflows. The

selected set of compatible plans represents a set of compatible workflows of OWLS

processes at this stage. The OWLS workflows are further passed to the Runtime Enactment

Manager, which executes the actual Web Service Definition Language (WSDL) services

modelled by the activities (OWLS processes) in the OWLS workflows and makes sure that

the transfer of information and data among the collaborating organisations takes place

smoothly.

5 Functionality

The developed framework takes OWLS process definitions of the collaborating organisations

as input, reads the process definitions, translates them into HTN format, merges the domains

together, creates multiple sets of compatible workflows and executes the selected set of

compatible workflows. The framework presented in the paper is closely related to the system

A Cross Organisation Compatible Workflows Generation and Execution Framework

12

proposed by Sirin et al. (2004). The work presented in this paper extends the application of

AI planning to workflow generation as well as workflow collaboration. Below are some of

the major extensions and improvements the proposed framework makes to the approach taken

by Sirin et al. for workflow generation.

1. Their system considers automatic workflow generation for a single organisation only.

They do not focus on workflow collaboration among business organisations. The

proposed framework integrates automatic workflow generation with cross

organisational workflow collaboration and is capable of generating multiple sets of

compatible workflows for multiple collaborating organisations. Similarly,

collaboration is also supported at runtime.

2. They limit a service to either have outputs or effects. In real world, a service can have

effects and outputs at the same time. The framework presented in this paper does not

have this limitation.

3. Similarly, their system executes information-providing services (services with only

outputs) at planning time to produce the required output. The developed framework

does not execute web services at planning time. It is because a service can have both

effects and outputs and executing a web service at planning time can have real effects

on the world e.g. charging the credit card for a certain amount of money.

4. They look at web service composition as finding an execution path for already

defined composite processes, which limits the automation of workflow generation by

involving users to define composite processes. If atomic processes and goals of the

collaborating organisations are fed up as single unit to Sirin’s system, it will fail to

generate any plan. To enable it to generate a plan, we will need to group the atomic

processes in the form of a composite process. The framework presented in this paper

looks at web service composition as automatically generating a composite process

from the atomic processes and then specialising it to create an execution path for the

composite process. The OWLS to SHOP2 translation mechanism of both systems are

hugely different due to this reason.

The following sub-sections discuss the detailed functionality and present the algorithms

involved at each step.

A Cross Organisation Compatible Workflows Generation and Execution Framework

13

5.1 Translating OWLS Process Definitions to SHOP2 Domain Descriptions

Collaborating organisations can load their OWLS process definitions to the CWGM using an

interactive GUI. The collection of OWLS process definitions of an organisation are loaded in

the form of an OWL file or a single composite process importing the atomic, simple and

composite processes of the organisation.

The OWLSReader module of the CWGM reads the OWLS process definitions included in

the OWL file loaded through GUI. The initial states and goal states of the collaborating

organisations can be selected from GUI. All processes are loaded from the OWLS process

definitions. The loaded processes and their inputs, outputs, preconditions and effects are

prefixed with organisation number for keeping track of the operators and workflows in the

collaboration process. For example an atomic process PaymentCheck of the first organisation

that loads its processes will be prefixed with Org1 and will become Org1PaymentCheck. The

inputs, outputs, preconditions and effects of interface activities are not prefixed. This is

because the outputs/effects of interface activities are used by the corresponding interface

activities of other collaborating organisations.

The OWLStoSHOP2 Translator module translates OWLS process definitions into SHOP2

domain descriptions. OWLStoSHOP2 Translator also translates initial states and high-level

goals selected from GUI into a SHOP2 problem. In order to translate OWLS processes into

SHOP2 format, we propose the following algorithm.

The first step in the algorithm is to translate atomic processes into SHOP2 operators. Simple

processes and composite processes are decomposed until they contain only atomic processes,

which are subsequently translated into SHOP2 operators. The translated atomic processes are

then grouped together in the form of an if-then-else method. The if-then-else method acts as

the top-level composite process of the respective organisations. We present algorithms to

carry out these tasks. The purpose of planning is to create an execution path for this

automatically generated top-level composite process.

The Translate-Atomic-Process(Q) algorithm translates OWLS atomic processes into SHOP2

operators. It extends the translation algorithm put forward in (Sirin et al., 2004), to translate

atomic processes with both outputs and post-conditions. It takes a definition Q of an atomic

process A as input and outputs a SHOP2 operator O.

A Cross Organisation Compatible Workflows Generation and Execution Framework

14

Translate-Atomic-Process(Q)

Let Q be the definition of an atomic process A and O be a SHOP2 operator

Pre = collection of all preconditions and inputs of A in Q

Add = the list of positive effects and outputs of A in Q

Del = collection of all negative effects of A in Q

Return O = (A(v
→

) Pre Del Add)

End Translate-Atomic-Process

The Translate-Atomic-Process(Q) algorithm translates an atomic process into a SHOP2

operator. It translates the

1) preconditions and inputs of the atomic process into the preconditions of the SHOP2

operator,

2) positive effects and outputs of the atomic process into positive post-conditions of the

SHOP2 operator, and

3) negative effects of the atomic process into negative post-conditions of the SHOP2

operator.

Unlike the translation algorithm described in Sirin et al. (2004) which translates only the

preconditions of atomic processes into the preconditions of SHOP2 operators, Translate-

Atomic-Process(Q) translates both the preconditions and inputs of atomic processes into the

preconditions of SHOP2 operators. This enables the developed framework to use web

services that have both inputs and preconditions in workflow generation. Similarly, unlike the

translation algorithm described in Sirin et al. (2004) which translates only the effects of

atomic processes into the post-conditions of SHOP2 operators, Translate-Atomic-Process(Q)

translates both the effects and outputs of atomic processes into the post-conditions of SHOP2

operators. This enables the presented framework to use web services that have both outputs

and effects in workflow generation.

The Translate-Composite-Process(Q) algorithm translates an OWLS composite process into

a set of SHOP2 operators. It takes a definition Q of a composite process C as input and

outputs a set L of SHOP2 operators. It works as follows.

Translate-Composite-Process(Q)

Let Q be the definition of a composite process C and L be a set of SHOP2 operators.

A Cross Organisation Compatible Workflows Generation and Execution Framework

15

(b1, . . . , bn) is the list of processes in C as defined in Q

for i = 1, . . . , n

 If bi is an atomic process and qi is the definition of bi

O0 = Translate-Atomic-Process(qi)

Add O0 into L

Else if bi is a composite process and qi is the definition of bi

O = Translate-Composite-Process(qi)

Add O into L

Else if bi is a simple process and qi is the definition of bi

O = Translate-Simple-Process(qi)

Add O into L

 End If

 End for

return L

End Translate-Composite-Process

The Translate-Composite-Process(Q) algorithm translates a composite process into a set of

SHOP2 operators. It calls Translate-Atomic-Process(qi) if its component process is an atomic

process, to translate the component atomic process into a SHOP2 operator. If its component

process is a composite or simple process, it calls Translate-Composite-Process(qi) or

Translate-Simple-Process(qi) to translate it into a set of SHOP2 operators.

The translation algorithm described in Sirin et al. (2004) translates composite processes

directly into SHOP2 methods as it looks at web service composition as finding an execution

path for already defined composite processes. The proposed framework looks at web service

composition as automatically combining atomic processes to form a composite process, for

which an execution path can be found. This enables the proposed framework to automatically

generate compatible workflows from atomic processes of collaborating organisations and

enable the organisations to avoid the time consuming task of creating composite processes on

their own.

The Translate-Simple-Process(Q) algorithm translates OWLS simple processes into a set of

SHOP2 operators. It takes the definition Q of a simple process as input and outputs set L of

SHOP2 operators.

A Cross Organisation Compatible Workflows Generation and Execution Framework

16

Translate-Simple-Process(Q)

Let Q be the definition of a simple process S and L be a set of SHOP2 operators

(b1, . . . , bn) is the list of processes collapsing in S as defined in Q

for i = 1, . . . , n

 If bi is an atomic process and qi is the definition of bi

O0 = Translate-Atomic-Process(qi)

Add O0 into L

If bi is a composite process and qi is the definition of bi

O = Translate-Composite-Process(qi)

Add O into L

End If

 End for

return L

End Translate-Simple-Process

The Translate-Simple-Process(Q) algorithm translates a simple process into a set of SHOP2

operators. It checks each of its constituent processes and

1. calls Translate-Atomic-Process(qi) for each atomic process to translate it into a

SHOP2 operator, and

2. calls Translate-Composite-Process(qi) for each composite process to translate it into a

set of SHOP2 operators.

The basic focus of the implemented framework is to compose the atomic processes of the

collaborating organisations into compatible workflows of OWLS services, capable of

achieving the desired goal states from the initial states, as defined by the collaborating

organisations. Unlike the discussed approaches (Sirin et al., 2004; Wu et al., 2003), the

implemented framework is not focussed on finding an execution path for already defined

composite processes. We believe that forming an execution path for an already built

composite process limits the strength of workflow generation by limiting the automation.

Therefore, the composite processes are decomposed to atomic processes and then the atomic

processes are used to create a single SHOP2 if-then-else method to guide the composition

process.

A Cross Organisation Compatible Workflows Generation and Execution Framework

17

The collection of OWLS processes passed to CWGM is translated into a SHOP2 domain. The

Translate-OWLStoSHOP2(P,G) algorithm that translates a collection of OWLS processes

into SHOP2 domain is as follows. It takes a collection P of OWLS processes and a set G of

goals states as input, and creates a SHOP2 domain D as output.

Translate-OWLStoSHOP2 (P, G)

Let P be a collection of OWLS processes, K be the set of definitions of OWLS

processes in P, G is the conjunct of all goal states as specified by the organisation, M

be a SHOP2 method with the name BP (Business Process), L be a set of SHOP2

operators and D be a SHOP2 domain

Procedure:

D = Ø

For each atomic process definition Q in K

O0 = Translate-Atomic-Process(Q)

add O0 into L

 End For each

For each simple process definition Q in K

O = Translate-Simple-Process(Q)

add O into L

 End For each

For each composite process definition Q in K

O = Translate-Composite-Process(Q)

Add O into L

 End For each

 Let O={O1,O2…Om} be the translated set of SHOP2 operators and Prei = (conjunct of

 preconditions of Oi)

M = (BP() G Nil Pre1 O1 BP Pre2 O2 BP … Prem Om BP)

Add L to D

Add M to D

Return D

End Translate-OWLStoSHOP2

The Translate-OWLStoSHOP2(P,G) works as follows.

A Cross Organisation Compatible Workflows Generation and Execution Framework

18

1. It translates each of the constituent processes of P into SHOP2 operators by calling

the relevant algorithms.

2. Then it creates an if-then-else method M, from the set L of SHOP2 operators and set

G of goals states. The recursive SHOP2 method named BP groups the operators in an

if-then-else format. The method BP represents the top-level business process of the

corresponding organisation. An operator is executed when its preconditions hold. If

the planner achieves all of the goal states in G, Nil is called to quit the method BP. As

obvious in the expression M = (BP() G Nil Pre1 O1 BP Pre2 O2 BP … Prem Om BP),

the BP after every Prei Oi makes it a recursive expression, which will be called by the

planner recursively, until the goals states are achieved or the planners fails to find any

valid plans. L represents the set of all operators created by translating OWLS atomic

processes, and set G represents the conjunct of all goal states as specified by the

respective organisation.

3. Then it adds the SHOP2 operators and SHOP2 method to the domain and returns the

domain.

Unlike the proposed approach described above, the approach by Sirin et al. (2004) does not

combine operators to form a method. This means that their system can generate workflows

only if the user manually defines the composite processes and passes them to the system. The

composite processes and atomic processes are passed to the system together, for translation

into SHOP2 domain.

5.2 Combining the Translated SHOP2 Domains into a Joint Domain

To carry out cross organisational workflow collaboration at workflow generation time, we

introduce the following algorithm that collapses the domain descriptions for all interacting

organisations in a single joint domain. In this way, all the interacting organisations are

considered sub organisations of a single parent organisation. The SHOP2 BP methods

representing the top-level business processes of each collaborating organisation in an if-then-

else format are joined together to create a single joint SHOP2 method named JBP. The

generated SHOP2 method represents the high-level business process of the single parent

organisational structure having cross organisational boundaries.

The Create-Joint-SHOP2-Domain (D) algorithm creates a joint SHOP2 domain by taking set

D of SHOP2 domains as input.

A Cross Organisation Compatible Workflows Generation and Execution Framework

19

Create- Joint-SHOP2-Domain (D)

Let {Org1,Org2,...,Orgm} be the set of all collaborating organisations, D = { D1, D2,…,

Dm } be the set of domains of {Org1,Org2,...,Orgm} respectively and JD is a SHOP2

domain. Let O be an empty set of operators, M be an empty set of methods and G be

an empty set of goal states.

JD = Ø

for i = 1, . . . , m

 let Oi = set of operators in Di

 add Oi into O

 let Mi = set of methods in Di

 add Mi into M

 let Gi = conjunct of goals of Orgi

 add Gi into G

 End for

Add O to JD

Add M to JD

Let O = {O1,O2,…Om} be the set of operators in JD, Preo = {Preo1,Preo2,…Preom} be

the set of conjuncts of preconditions of {O1,O2,…Om} respectively, M =

{M1,M2,…Mn}be the set of methods in JD and {Prem1,Prem2,…Premn} be the set of

conjuncts of preconditions of {M1,M2,…Mn} respectively

JBP = (JBP() G Nil Preo1 O1 JBP Preo2 O2 JBP…Preom Om JBP Prem1 M1 JBP Prem2

M2 JBP… Premn Mn JBP)

Add JBP into JD

return JD

End Create- Joint-SHOP2-Domain

The Create-Joint-SHOP2-Domain(D) algorithm combines the operators and methods of the

collaborating domains and merges them into the joint domain. It then creates a recursive

SHOP2 method JBP, which groups the operators and methods of all collaborating

organisations in an if-then-else format. The planner executes an operator or decomposes a

method when its preconditions hold. If all goal states in G are achieved, Nil is called to quit

the method JBP. In the expression JBP = (JBP() G Nil Preo1 O1 JBP Preo2 O2 JBP…Preom Om

JBP Prem1 M1 JBP Prem2 M2 JBP… Premn Mn JBP), calling JBP after every Preoi Oi and every

A Cross Organisation Compatible Workflows Generation and Execution Framework

20

Premi Mi makes it a recursive expression and JBP will be called recursively by the planner

until valid plans are found or the SHOP2 returns a failure.

As the system proposed by Sirin et al. (2004) targets the creation of workflows for a single

organisation only, it has a single SHOP2 domain to begin with. Therefore, they do not present

any algorithm for collapsing the domains of multiple collaborating organisations into a single

domain.

 5.3 Planning for All Possible Sets of Compatible Plans

To plan for all possible sets of compatible plans, the SHOP2 needs to be extended in order to

enable it to handle data inputs. During planning, the preconditions especially the ones

representing data inputs will remain true in the entire lifecycle of the planning process until

explicitly made false by an operator. If the atomic processes do not explicitly make their

preconditions/inputs false, SHOP2 will keep repeatedly adding the first task list whose

preconditions are true in the workflow. This will create an infinite loop. Similarly, if a

precondition in the if-then-else method is true for which the task list is to decompose a

method, the method will keep repeatedly getting decomposed into primitive tasks and the

loop will continue infinitely. We extend the SHOP2 planning algorithm so that the same tasks

are not repeatedly added to the workflow (plan) or selected for decomposition (see Figure 2).

The extended SHOP2 planner creates a set P = (P1 P2…Pn) of multiple valid plans where

every plan Pi in P is a sequence of instantiated operators (O1,O2,…,Om) that will achieve the

desired goals from the given initial states, in the joint domain. All plans in P are joint plans.

The joint plans are divided into sub-plans, one for each organisation, compatible with each

other. The division is based on the prefix attached to each operator after reading the OWLS

process definitions. Operators with the same prefix are added into the plan for the

organisation represented by the “Org + Organisation Number”. The control dependencies

and data dependencies are kept the same as in joint plans. The set of compatible plans with

the least number of operators is highlighted to the users for execution. Considering each

operator takes the same time, this is the least cost heuristic. The users can select the

highlighted set or any other set of compatible plans for execution.

If ‘s’ is the current state of the world, ‘T’ is the task list and ‘D’ is the domain, the algorithm

for the extended SHOP2 planner is as follows:

A Cross Organisation Compatible Workflows Generation and Execution Framework

21

Figure 2 Extended SHOP2 Algorithm for Workflow Generation

The compatibility of the plans generated by the division of a joint plan is intuitive. In the joint

plan, the compatible plans for each organisation are arranged together in a particular order

that ensures the achievement of the goal states of all collaborating organisations. This means

there is an agreed sequence of activities that can ensure the achievement of the goals of every

collaborating organisation, which is the definition of compatibility (Yang and Papazoglou,

2000).

 5.4 Runtime Execution and Collaboration

The developed framework provides runtime support for the generated sets of compatible

workflows. The developed runtime execution mechanism is the only execution mechanism so

far that enables the execution of multiple collaborating compatible OWLS based workflows.

A Cross Organisation Compatible Workflows Generation and Execution Framework

22

The existing execution mechanisms from literature enact automatically generated workflows

for single organisations only, however they can handle adhoc processes that are outside the

boundaries of the organisation in the workflows (Chen et al., 2011).

The selected set of compatible plans is passed to SHOP2toOWLS Translator, which converts

it into enactable workflows of OWLS atomic processes. At runtime, the control and data

dependency among the activities in the set of compatible workflows is followed as specified

in the joint workflow that was sub-divided to create the selected set of compatible workflows.

Since each activity in the selected set of compatible workflows is basically an OWLS atomic

process, which is a model of an actual WSDL service, the activity can be enacted directly

using the enactment mechanism of OWLS API. The enactment of an atomic process is a call

to the corresponding web accessible program with its inputs instantiated. The generated

outputs are kept in form of a name-value pair, so that they can be passed as inputs to the

corresponding processes downstream.

In real life, workflows generally run locally in the respective organisations. Although, the

developed runtime execution system provides a centralised system for the execution of the

workflows of collaborating organisations, the actual web services are enacted locally at the

collaborating organisations. It has a similar effect as that of executing workflows locally. To

execute the workflows locally at the respective organisations, the generated plans may be

distributed to the collaborating organisations and the execution system may be hosted at each

collaborating organisation. It can be achieved by extending the system to the client-server

architecture. It would be helpful in cases where the organisations are not comfortable with

sharing their execution data with an external organisation hosting the execution system.

Since the implemented runtime execution mechanism has to deal with workflow enactment of

multiple organisations, collaboration is also required at runtime. The collaboration among

cross organisational activities is enabled by using sending and receiving activities, also

known as interface activities (Chen and Chung, 2008). Whenever a sending activity is

encountered, the data, information or documents to be sent are uploaded to a central server.

Whenever a receiving activity is encountered, the uploaded data, information or documents

are downloaded from the server and processed. The uploading and downloading technique is

used because if an organisation has to send huge documents to many different partners, it

does not have to do it many times. It can upload it to the central server and all partners can

download it accordingly. It also decouples the collaborating organisations from each other

A Cross Organisation Compatible Workflows Generation and Execution Framework

23

completely at runtime, which is a desired quality (Van-der-Aalst, 1999; Van-der-Aalst and

Weske, 2001). The execution mechanism will wait on a receiving activity until the respective

sending activity has been executed.

Unlike the presented enactment mechanism, the mechanism proposed by Sirin et al. (2004)

targets the enactment of a single workflow only, and it is not able to perform runtime

collaboration among the workflows of multiple collaborating organisations.

6 Implementation

A proof-of-concept prototype has been implemented for the proposed framework. The GUI is

developed using Swing and AWT classes of Java. Figure 3 shows the GUI of the

implemented prototype. As shown in the figure; processes, inputs, preconditions, outputs and

effects are loaded to the system from OWLS process definitions. Initial states and goal states

can be selected at GUI. At runtime, the workflow to execute can also be selected from GUI.

The OWLSReader, CWGM, OWLStoSHOP2 Translator, SHOP2toOWLS Translator and

Runtime Execution Manager are also developed using Java. The OWLSReader and Runtime

Execution Manager are based on OWLS API, which is a Java based API for programmatic

access to read, execute and write OWLS service descriptions. The planning is done using a

modified version of JSHOP2 planner. JSHOP2 is Java implementation of the SHOP2 planner.

OWLS process definitions can be created manually or automatically using OWLS editor of

Protégé. Protégé can load WSDL files and generate a skeleton OWLS process. It further

provides graphical control constructs such as sequence, split, join, and choice to create

composite processes from atomic processes. WSDL2OWLS tool can also be used for

automatic generation of OWLS process definitions from WSDL descriptions. Appendix C

shows an atomic OWLS process IssueInspCert from the workflow collaboration example in

Section 8. It has been created automatically from its WSDL descriptions using

WSDL2OWLS tool. WSDL descriptions of the web services are automatically generated

from the Java code of the web services with the help of Apache Axis2. We use Jsch API to

upload and download files over Secure File Transfer Protocol (SFTP). Jsch is a Java

implementation of SSH2.

A Cross Organisation Compatible Workflows Generation and Execution Framework

24

Figure 3 GUI of the Prototype

7 Workflow Collaboration Examples

7.1 Vendor/Customer Example

We will consider a Vendor/Customer example scenario. This is a modification of the example

presented by Chen (2008). The vendor in this example is an overseas exporter. The vendor

waits for the advance payment from a customer, checks the received payment and then starts

the manufacturing process. After manufacturing the goods it issues a commercial invoice

represented as Invoice, carries out factory inspection as an in-house procedure, produces an

inspection certificate and sends it to the customer. The inspection certificate is represented as

InspCert. It waits for the customer’s request for making shipment arrangement. After getting

the request it sends the commercial invoice to the customer and makes shipment and

insurance arrangement. When the arrangement is done, the vendor sends the insurance

certificate and bill of lading to the customer, and applies for a certificate of origin to the local

authority. The bill of lading is represented by BL. The vendor then sends the certificate of

A Cross Organisation Compatible Workflows Generation and Execution Framework

25

origin to the customer. It waits for the payment for the invoice and the process completes

after handling the payment.

The customer is an overseas importer. Customer sends advance payment to the vendor and

waits for the inspection certificate, which is a proof of quality of the goods. It reviews the

inspection certificate and if satisfied then it produces and sends shipment arrangement request

to the vendor. The request is represented by SA. After receiving the commercial invoice, bill

of lading and insurance certificate, the customer takes delivery of the goods, carries out a

presale inspection and waits for the certificate of origin. The customer needs the commercial

invoice and bill of lading to get goods from the shipping company. Certificate of origin is

required to get an import permit from the local authority. After receiving the certificate of

origin, the customer approves payment and sends full payment for the invoice to the

customer.

The OWLS process descriptions simulating the actual activities of Vendor and Customer are

passed to the implemented framework. The Vendor and Customer can have any number of

OWLS processes and the developed framework will filter out any that are not relevant to a

given application scenario. Each activity is represented as an OWLS process, which is

grounded in an actual WSDL service. The OWLS process descriptions for Vendor and

Customer are given in Table 1 and 2 respectively in Appendix A.

Based on the passed OWLS processes, the system generates 20 sets of compatible workflows

in 6816 milliseconds. The generation of the 20 sets of compatible workflows is due to the

identification of different composition paths, when the planner encounters activities that can

be executed concurrently. Figure 4 shows two of the generated workflows for Vendor and

Customer. The graphical representation of the workflows is used to make them more

understandable. The solid lines show control dependencies while the dotted lines show data

dependencies.

Figure 4 shows that the data dependencies are the same in both sets of the workflows but the

control dependencies are different. In the Vendor’s workflow in Set 1, ShippingArrangement

has a control dependency on SA_r, and Inv_s has control dependency on InsuCert_s. In the

Vendor’s workflow in Set 2, Inv_s has a control dependency on SA_r and

ShippingArrangement has control dependency on Inv_s.

A Cross Organisation Compatible Workflows Generation and Execution Framework

26

Figure 4 Sets of Compatible Workflows for Vendor and Customer

A Cross Organisation Compatible Workflows Generation and Execution Framework

27

Figure 5 Interface Processes for Set 1 of Vendor/Customer Workflows in Figure 4

Similarly, in the Customer’s workflow in Set 1, Bl_r has a control dependency on SA_s and

Inv_r has a control dependency on BL_r. In the Customer’s workflow in Set 2, Inv_r has a

control dependency on SA_s and BL_r has control dependency on CustomsDeclaration.

Both sets of workflows are accurate and compatible. The workflows, when executed, are able

to achieve the desired goals of the collaborating organisations. Moreover, the workflows can

be executed to the end in coordination with the collaborating workflows. The compatibility of

the workflows can be verified by considering their respective interface processes. Figure 5

shows the interface processes for the Set 1 of compatible workflows in Figure 4. The

corresponding interface activities have been labelled with the same alphabet to make them

clearer to follow. It can be observed that for every receiving activity there is a corresponding

sending activity. Notice that Inv_r has to wait for InsuCert_s to complete before Inv_s to

complete, so there is a delay of one activity. But there is no deadlock so the interface

processes of both workflows are compatible.

After workflow generation, the user selects one from the sets of compatible workflows for

execution. The sequential order of the activities specified by the control dependencies must

be followed at runtime, e.g. AdvPay_r must be executed before PaymentCheck. Similarly, the

data dependencies must also be followed at runtime. For example, Shipping Arrangement

activity must be executed after IssueInv in both sets of compatible workflows, since Shipping

Arrangement needs commercial invoice (Invoice), which is generated by IssueInv.

For cross organisational activities, the sending activities upload the data to a central server

which is downloaded by the receiving activities. For example, in Figure 4, InspCert_s is a

A Cross Organisation Compatible Workflows Generation and Execution Framework

28

sending activity which uploads inspection certificate to a central server, and InspCert_r is a

receiving activity which downloads the inspection certificate. The complete execution of the

compatible workflows achieves the desired goals.

7.2 Retailer/Wholesaler/Manufacturer/Supplier Example

To illustrate the generality of the framework to handle multiple organisations, a scenario

involving four organisations is used, namely retailer, wholesaler, manufacturer and supplier.

It is a common business collaboration scenario from the real world and therefore we have

used it as an example to test the developed prototype. The retailer, manufacturer, wholesaler

and supplier are represented by Retailer, Manufacturer, Wholesaler and Supplier

respectively. The details and descriptions of OWLS processes of each of the organisations are

given in Table 3, 4, 5 and 6 respectively in Appendix B. The OWLS process definitions as

given in Table 3, 4, 5 and 6 were passed to the system and it generated 10 sets of compatible

workflows for the four organisations in 9832 milliseconds. Figure 6 shows one of the

generated sets. The workflows generated are accurate and compatible.

The workflow generation process starts when goodsreq holds, which means that the Retailer

needs goods. The final goals for the Retailer, Wholesaler, Manufacturer and Supplier are

s_RInvPay, r_RInvPay, r_WInvPay and r_MInvPay respectively. The goals indicate that the

Retailer sends a payment for the invoice to Wholesaler, Wholesaler receives a payment for

the invoice from the Retailer, Manufacturer receives a payment for the invoice from the

Wholesaler and the Supplier receives a payment for the invoice from the Manufacturer.

At runtime, the set of compatible workflows with the least number of OWLS processes will

be highlighted to the users for execution. In this particular scenario all the workflows are of

the same length and so the first plan generated is highlighted to the users for execution. The

users will enter the actual quantity of goodsreq to create a quotation inquiry. The

QuotationInqPrep activity dependent on goodsreq will be executed to start the execution of

the workflows. The in-house and cross organisational control and data dependencies will be

followed, to make sure that all collaborating workflows in the selected set are enacted to the

end.

A Cross Organisation Compatible Workflows Generation and Execution Framework

29

Figure 6 A Set of Compatible Workflows for Retailer, Wholesaler, Manufacturer and

Supplier

A Cross Organisation Compatible Workflows Generation and Execution Framework

30

The execution of the compatible workflows to the end achieves the desired goals. During the

execution phase, the actual WSDL web services modelled by the OWLS atomic processes in

the workflows of Retailer, Manufacturer, Wholesaler and Supplier are enacted with the help

of Simple Object Access Protocol (SOAP).

7.3 Further Application Scenarios

The case studies above illustrated how collaboration between different partners in a supply

chain in industry could be supported. The proposed framework and technologies can be used

to support a wide range of cross organisation collaboration in different domains. For

example, in the higher education sector it is common that a higher education institution

would apply to different government funding bodies, charities or companies for research

funding. Each of these organisations has their own workflows for application submission,

review, and award notification and monitoring. These organisations typically work with

many institutions and each of these institutions has its own workflows for grant preparation,

grant expenditure, project monitoring and project reporting. It is clear that there is a huge

potential and need for workflow support for cross organisation collaboration in this sector

too. The proposed framework as illustrated can be modelled to support research grant

management across different organisations and institutions.

Another application scenario is support for libraries. Each library normally has a workflow

for lending out books. A library may be required to automatically obtain books from other

libraries or buy it from bookstores like Amazon, if a required book is not available in the

database of the library. Different libraries may have their own respective workflows for

lending out books, and book stores like Amazon also have their workflows including

activities like book searching, book selection based on certain criteria, card validation,

payment and shipping etc. This scenario requires multi-organisation collaboration.

The proposed framework can also be used in the mortgage trading domain. A mortgage

trading consultancy may be required to automatically obtain mortgage information from

various banks, select the best available option based on the limitations and goals of the client

and connect to the selected bank to begin the mortgage application process for the client.

For the above and other multi-organisation workflow collaboration scenarios, the proposed

framework can be used to generate compatible workflows for the collaborating organisations,

based on their web services descriptions and high level goals.

A Cross Organisation Compatible Workflows Generation and Execution Framework

31

8 Discussion and Future Work

This paper presented a framework for the generation and execution of compatible workflows

for multiple collaborating organisations. The presented framework is different from existing

systems because the existing systems reconcile pre-modelled workflows. This is a time

consuming technique, more so, if the organisation is collaborating with many partners.

Automatic workflow generation is the solution to tackle this problem. Existing systems that

can automatically generate workflows can do so for single organisations only and cannot

handle the generation of compatible workflows for multiple organisations. This leaves the

organisation to reconcile the workflows with the collaborating partners on their own if there

is any incompatibility, which again requires time and resources. The presented framework

solves this problem by integrating workflow generation and workflow collaboration. It

generates compatible workflows for multiple collaborating organisations, so that the time and

resources invested in modelling and reconciling collaborating workflows can be saved. It also

has the capability to handle the execution of the generated collaborating workflows.

Since the workflow generation is based on web services composition, the implemented

framework supports reusability and interoperability. Web services from highly diverse

sources can be composed in a workflow, and invoked to achieve a desired goal. So the

already developed functionalities do not need to be redeveloped and can be reused to save

time and resources. The implemented framework encourages cohesiveness and modularity.

The scenarios given in Section 7 show that the developed framework can generate compatible

workflows for two or more collaborating organisations and it can support the collaborative

enactment of workflows of two or more interacting organisations.

As obvious from the time taken for the generation of workflows in Section 8, the developed

system makes the generation of compatible workflows for collaborating organisations

extremely efficient. While the time required by the system presented in this paper is in

milliseconds, the usual time required for manual collaborations is in days. Practically, the

maximum number of organisations or the number of processes that the developed system can

handle is dependent on the available memory of the hardware system running it.

SHOP2 does not follow a specific model of time (Parkinson et al., 2011). The time taken by

the system to generate workflows is dependent on several factors, including: the number of

collaborating organisations, the number of activities in the workflow of each collaborating

A Cross Organisation Compatible Workflows Generation and Execution Framework

32

organisation and the quality of the domain knowledge used for planning (Saleem, 2012). The

SHOP2 domain for workflow generation problem is in the form of web services descriptions

and OWLS process definitions translated into SHOP2 format. The order in which the

methods are specified in the domain can influence the efficiency of SHOP2 (Sohrabi and

McIlraith, 2009; Shivashankar et al., 2011). The order in which the if-else conditions are

specified in the JBP method can also influence the efficiency of the system. So a linear

increase in the planning time as a function of number of participating organisations cannot be

concluded. Nonetheless, planning time for the scenario involving four organisations is also

sufficiently fast for practical application.

The developed framework uses AI planning for workflow generation. AI planners are not

usually designed for the web scale planning problems. A mismatch between SHOP2 and

OWLS that exists is that the logic used for describing SHOP2 domain is differently

expressive than OWL used for describing web services (Sirin and Parsia, 2004) i.e. while

OWL assumes an open world, the SHOP2 has a closed world assumption. Similarly, SHOP2

assumes that the modelled domain must be correct which is not easy to ensure in the web

domain (Sirin and Parsia, 2004). The data in the semantic web domain can be too huge for

the relatively limited inferencing capabilities of AI planners. The integration of an OWL

reasoner with SHOP2 will minimise these issues (Sirin and Parsia, 2004). The replacement of

the theorem-prover of SHOP2 with a sound and complete OWL reasoner to exploit its

inferencing capabilities, suitability to the semantic web and its usability for workflow

generation will be investigated and implemented in future. The effect of the integration of

OWL reasoner with SHOP2 on the efficiency of the developed framework also needs

investigation.

The framework currently focuses on the compositional capabilities of OWLS processes and

does not focus on the automatic discovery of OWLS processes from the web. The reasoning

capability of OWL reasoners can be used for automatic web services discovery, which will be

targeted in future. Similarly, the paper does not focus on the security aspects of web services

invocation.

SHOP2 does not support concurrency (Sirin et al., 2004) and hence it cannot create parallel

workflows. SHOP2 can be extended to support concurrency, which will in turn enable the

support for parallel workflows. ConGolog supports concurrency (Giacomo et al., 2000) and

therefore can be used to create parallel workflows. The extension of SHOP2 for concurrency

A Cross Organisation Compatible Workflows Generation and Execution Framework

33

and the use of ConGolog interpreter for parallel cross organisational compatible workflows

generation need further investigation.

Many small organisations carry out electronic commerce using online business platforms like

eBay and Amazon. In such situations, the automatic workflow generation, collaboration and

enactment is dependent on the permissions and functionalities provided by the host e-

commerce platforms and the standards that they follow to provide point-to-point interaction.

To investigate the effort required to migrate or adapt such platforms to provide flexible cross-

organisation collaboration would be an interesting and challenging area for further research.

9 Acknowledgements

This work is funded by Engineering and Physical Sciences Research Council (EPSRC)

through Innovative Manufacturing and Construction Research Centre (IMCRC).

References

Chen, F., Ren, C., Dong, J., Wang, Q., Li, J. and Shao, B., 2011. Modeling cross-

organizational services composition with Pi-calculus, in Proceedings of the IEEE

International Conference on Service Operations, Logistics, and Informatics, pp. 51–56.

Chen, L. and Yang, X., 2005. Applying AI Planning to Semantic Web Services for Workflow

Generation, in Proceedings of First International Conference on Semantics, Knowledge and

Grid, IEEE Computer Society, Washington DC, USA, pp. 65.

Chen, X., 2008. IT supported business process negotiation, reconciliation and execution for

cross-organisational e-business collaboration, Thesis at the Faculty of Computer Science,

Loughborough University, UK; Available from: https://dspace.lboro.ac.uk/dspace-

jspui/handle/2134/4873.

Chen, X. and Chung, P., 2006. Cross-Organisational Workflow Enactment Via Progressive

Linking by Run-Time Agents, in Proceedings of International Conference on Industrial,

Engineering & Other Applications of Applied Intelligent Systems, pp. 54–59.

Chen, X. and Chung, P.W.H., 2007. A simulation-based difference detection technique for

bottom-up process reconciliation, in Proceedings of the 9th International Conference on

Enterprise Information Systems, pp. 72–77.

Chen, X. and Chung, P.W.H., 2008. Facilitating B2B E-business by IT-supported business

process negotiation services, in Proceedings of IEEE International Conference on Service

Operations and Logistics, and Informatics, pp. 2800–2805.

Chiu, D.K.W., Cheung, S.C., Karlapalem, K., Li, Q., Till, S. and Kafeza, E., 2004. Workflow

View Driven Cross-Organizational Interoperability in a Web-Services Environment,

Information Technology and Management, 5, pp. 221–250.

A Cross Organisation Compatible Workflows Generation and Execution Framework

34

Chung, P.W.H. and Chen, X., 2008. Reconciling and Enacting Cross-Organisational

Workflow for B2B E-Commerce, BPM and Workflow Handbook, Digital Edition v2, pp.

347–360.

Correˆa da Silva, F.S., Venero, M.L.F., David, D.M., Saleem, M. and Chung, P.W.H., 2013.

Interaction Protocols for Cross-organisational Workflows, in Knowledge Based Systems, 37,

pp. 121–136.

Crubezy, M. and Musen, M., 2003. Ontologies in Support of Problem Solving, in Staab, S.

and Studer, R., Editors, Handbook on Ontologies, pp. 321–342.

Dong, X. and Wild, D., 2008. An Automatic Drug Discovery Workflow Generation Tool

Using Semantic Web Technologies, in Proceedings of the Fourth IEEE International

Conference on eScience, IEEE Computer Society, pp. 652–657.

Elenius, D., 2004. Modelling Services with Protégé, in Seventh International Protégé

Conference.

Giacomo, G.D., Lesperance, Y. and Levesque, H.J., 2000. Congolog, a Concurrent

Programming Language Based on the Situation Calculus, in Artificial Intelligence, 121(1-2),

pp. 109–169.

Krukkert, D., 2003. Matchmaking of ebXML Business Processes, Technical Report IST-

28584-OX_D2.3_v.2.0.

Meng, L.X., He, F. and Sun, L.L., 2012. Research on Semantic Business Process Model in

Logistics Distribution Field, in Applied Mechanics and Materials, 198-199, pp. 899–904.

Okutan, C. and Cicekli, N.K., 2010. A monolithic approach to automatic composition of

semantic web services with the Event Calculus, in Knowledge Based Systems, 23(5), pp.

440–454.

OMG, 2011. Business Process Model and Notation (BPMN).

Ouyang, C., Marlon D. and van der Aalst, W.M., 2008. Pattern-based translation of BPMN

process models to BPEL web services, in International Journal of Web Services Research

(IJWSR), 5(1), pp. 42–62.

OWL Services Coalition, 2003. OWLS: Semantic markup for web services; Available from:

http://www.ai.sri.com/daml/services/OWLS.

Parkinson, S., Longstaff, A.P., Crampton, A. and Gregory, P., 2011. in Proceedings of the

22
nd

 International Conference on Automated Planning and Scheduling, pp. 216–224.

Peer, J. and Vokovic, M., 2005. A proposal for a semantic web service description format, in

Proceedings of the European Conference on Web Services, Springer-Verlag, pp. 285–299.

Peer, J., 2005. Web Service Composition as AI Planning – a Survey, University of St. Gallen,

Switzerland.

Saleem, M., 2012. Cross Organisational Compatible Workflows Generation and Execution,

Thesis at the Faculty of Computer Science, Loughborough University, UK.

http://www.ai.sri.com/daml/services/owl-s

A Cross Organisation Compatible Workflows Generation and Execution Framework

35

Schulz, K.A. and Orlowska, M.E., 2004. Facilitating cross-organisational workflows with a

workflow view approach, in Data and Knowledge Engineering, 51(1), pp. 109–147.

Shivashankar, V., Kuter, U. and Nau, D. S., 2011. Hierarchical Goal Network Planning:

Initial Results, Technical Report CS-TR-4983 and UMIACS-TR-2011-0.

Sirin, E., Hendler, J. and Parsia, B., 2003. Semi-automatic composition of Web services using

semantic descriptions, in Web Services: Modeling, Architecture and Infrastructure workshop

in conjunction with ICEIS, pp. 17–24.

Sirin, E. and Parsia, B., 2004. Planning for semantic web services, in Semantic Web Services

Workshop at 3
rd

 International Semantic Web Conference.

Sirin, E., Parsia, B., Wu, D., Hendler, J. and Nau, D., 2004. HTN planning for web service

composition using SHOP2, Journal of Web Semantics, 1(4), pp. 377–396.

Sohrabi, S. and Mcilraith, S. A., 2009. Optimizing web service composition while enforcing

regulations, in The Semantic Web-ISWC 2009, Springer Berlin Heidelberg, pp. 601–617.

Srivastava, B. and Koehler, J., 2003. Web Service Composition - Current Solutions and Open

Problems, in ICAPS 2003 Workshop on Planning for Web Services, pp. 28–35.

Van-der-Aalst, W.M.P., 1999. Process-oriented architectures for electronic commerce and

interorganizational workflow, in Information Systems, 24(8), pp. 639–671.

Van-der-Aalst, W.M.P. and Weske, M., 2001. The P2P Approach to Interorganizational

Workflows, in Proceedings of the 13th International Conference on Advanced Information

Systems Engineering, Springer-Verlag, pp 140–156.

Workflow Management Coalition, 1999. Terminology & Glossary, Technical Report

WFMC-TC-1011.

Wu, D., Parsia, B., Sirin, E., Hendler, J. and Nau, D., 2003. Automating DAML-S web

services composition using SHOP2, in Proceedings of 2nd International Semantic Web

Conference (ISWC2003), pp. 195–210.

Yang, J. and Papazoglou, M.P., 2000. Interoperation support for electronic business, in

Communications of the ACM, 43(6), pp. 39–47.

A Cross Organisation Compatible Workflows Generation and Execution Framework

36

Appendix A. Process Details of Vendor and Customer

S. No Process Details

1 Name: AdvPay_r (Receive advance payment)

Inputs/ Preconditions: s_Payment (Advance payment sent by Customer)

Outputs/ Effects: r_Payment (Advance payment received from

 Customer)

Description: This process receives advance payment from the Customer.

2 Name: PaymentCheck (Check payment)

Inputs/ Preconditions: r_Payment (Advance payment received from

 Customer)

Outputs/ Effects: ok_PC (Payment Check OK)

Description: This process checks the advance payment received from the

 Customer.

3 Name: GoodsManufacture (Manufacture Goods)

Inputs/ Preconditions: ok_PC (Payment check OK)

Outputs/ Effects: goods (Manufactured goods)

Description: This process manufactures goods.

4 Name: IssueInv (Issue commercial invoice)

Inputs/ Preconditions: goods (Manufactured Goods)

Outputs/ Effects: Invoice (Commercial Invoice)

Description: This process issues a commercial invoice.

5 Name: FactoryInspection (Inspect manufactured goods)

Inputs/ Preconditions: Invoice (Commercial Invoice)

Outputs/ Effects: ok_Insp (Factory Inspection OK)

Description: This process inspects the manufactured goods.

6 Name: IssueInspCert (Issue inspection certificate)

Inputs/ Preconditions: ok_Insp (Factory Inspection OK)

Outputs/ Effects: InspCert (Inspection certificate)

Description: This process issues an inspection certificate.

7 Name: InspCert_s (Send inspection certificate)

Inputs/ Preconditions: InspCert (Inspection certificate)

Outputs/ Effects: s_InspCert (Inspection certificate sent)

Description: This process sends the inspection certificate to the Customer.

8 Name: SA_r (Receive shipment arrangement notification)

Inputs/ Preconditions: s_SA (Shipment arrangement notification sent by

A Cross Organisation Compatible Workflows Generation and Execution Framework

37

 Customer)

 s_InspCert (Inspection certificate sent)

Outputs/ Effects: r_SA (Shipment arrangement notification received

 from Customer)

Description: This process receives the shipment arrangement notification.

9 Name: Inv_s (Send commercial invoice)

Inputs/ Preconditions: r_SA (Shipment arrangement notification received)

 Invoice (Commercial Invoice)

Outputs/ Effects: s_Inv (Commercial invoice sent)

Description: This process sends the commercial invoice to the Customer.

10 Name: ShippingArrangement (Arrange Shipment)

Inputs/ Preconditions: r_SA (Shipment arrangement notification received

 from Customer)

 Invoice (Commercial Invoice)

Outputs/ Effects: BL (Bill of lading)

Description: This process arranges shipment of goods.

11 Name: InsuranceArrangement (Arrange insurance)

Inputs/ Preconditions: s_BL (Bill of lading sent)

 Invoice (Commercial Invoice)

Outputs/ Effects: InsuCert (Insurance certificate)

Description: This process arranges the insurance of the goods.

12 Name: InsuCert_s (Send insurance certificate)

Inputs/ Preconditions: InsuCert (Insurance certificate)

Outputs/ Effects: s_InsuCert (Insurance certificate sent)

Description: This process sends the insurance certificate to the Customer.

13 Name: BL_s (Send bill of lading)

Inputs/ Preconditions: BL (Bill of lading)

Outputs/ Effects: s_BL (Bill of lading sent)

Description: This process sends the bill of lading to the customer.

14 Name: CertOriginApp (Apply for certificate of origin)

Inputs/ Preconditions: s_Inv (Commercial invoice sent)

 s_InsuCert (Insurance certificate sent)

 Invoice (Commercial Invoice)

Outputs/ Effects: OrigCert (Certificate of origin)

Description: This process applies for certificate of origin.

15 Name: CertOrigin_s (Send certificate of origin)

A Cross Organisation Compatible Workflows Generation and Execution Framework

38

Inputs/ Preconditions: OrigCert (Certificate of origin)

Outputs/ Effects: s_OrigCert (Certificate of origin sent)

Description: This process sends the certificate of origin to the Customer.

16 Name: InvPay_r (Receive payment for invoice)

Inputs/ Preconditions: s_OrigCert (Certificate of origin sent)

 s_InvPay (Payment for the invoice sent by Customer)

Outputs/ Effects: r_InvPay (Payment for the invoice received from

 Customer)

Description: This process receives the payment for the invoice from the

 Customer.

17 Name: PaymentHandling (Handle payment)

Inputs/ Preconditions: r_InvPay (Payment for the invoice received from

 Customer)

Outputs/ Effects: ok_PH (Payment handling OK)

Description: This process handles payment.

Table 1 Vendor’s OWLS Processes

S. No Process Details

1 Name: AdvPay_s (Send advance payment)

Inputs/ Preconditions: Payment (Advance payment)

Outputs/ Effects: s_Payment (Advance payment sent)

Description: This process sends advance payment to the Vendor.

2 Name: InspCert_r (Receive inspection certificate)

Inputs/ Preconditions: s_Payment (Advance payment sent)

 s_InspCert (Inspection certificate sent by Vendor)

Outputs/ Effects: r_InspCert (Inspection certificate received from Vendor)

Description: This process receives the inspection certificate from the

 Vendor.

3 Name: CheckInspCert (Check inspection certificate)

Inputs/ Preconditions: r_InspCert (Inspection certificate received from

 Vendor)

Outputs/ Effects: ok_InspCert (Inspection certificate OK)

Description: This process checks the inspection certificate received from the

 Vendor.

4 Name: IssueSA (Issue shipment arrangement notification)

Inputs/ Preconditions: ok_InspCert (Inspection certificate OK)

A Cross Organisation Compatible Workflows Generation and Execution Framework

39

Outputs/ Effects: SA (Shipment arrangement notification)

Description: This process issues the shipment arrangement notification.

5 Name: SA_s (Send shipment arrangement notification)

Inputs/ Preconditions: SA (Shipment arrangement notification)

Outputs/ Effects: s_SA (Shipment arrangement notification sent)

Description: This process sends the shipment arrangement notification to

 the Vendor.

6 Name: BL_r (Receive bill of lading)

Inputs/ Preconditions: s_SA (Shipment arrangement notification sent)

 s_BL (Bill of lading sent by the Vendor)

Outputs/ Effects: r_BL (Received bill of lading from Vendor)

Description: This process receives the bill of lading from the Vendor.

7 Name: Inv_r (Receive commercial invoice)

Inputs/ Preconditions: s_SA (Shipment arrangement notification sent)

 s_Inv (Commercial invoice sent by Vendor)

Outputs/ Effects: r_Inv (Commercial invoice received from Vendor)

Description: This process receives the commercial invoice from the Vendor.

8 Name: CustomsDeclaration (Declare goods to customs)

Inputs/ Preconditions: r_Inv (Commercial invoice received from Vendor)

Outputs/ Effects: CD (Customs declaration report)

Description: This process declares the delivered goods to customs.

9 Name: InsuCert_r (Receive insurance certificate)

Inputs/ Preconditions: CD (Customs declaration report)

 s_InsuCert (Insurance certificate sent by Vendor)

Outputs/ Effects: r_InsuCert (Insurance certificate received from Vendor)

Description: This process receives the Insurance certificate from the

 Vendor.

10 Name: TakeDelivery (Take Delivery)

Inputs/ Preconditions: r_InsuCert (Insurance certificate received from

 Vendor)

 r_Inv (Payment for invoice received from Vendor)

 r_BL (Bill of lading received from Vendor)

Outputs/ Effects: Delivery (Goods Delivered)

Description: This process takes delivery of the goods.

11 Name: PresaleInspection (Presale inspection of goods)

Inputs/ Preconditions: Delivery (Goods delivered)

A Cross Organisation Compatible Workflows Generation and Execution Framework

40

Outputs/ Effects: ok_PI (Presale inspection OK)

Description: This process inspects the goods after the delivery is taken.

12 Name: CertOrigin_r (Receive the certificate of origin)

Inputs/ Preconditions: ok_PI (Presale inspection OK)

 s_OrigCert (Certificate of origin sent by Vendor)

Outputs/ Effects: r_ OrigCert (Certificate of origin received from Vendor)

Description: This process receives the certificate of origin from the Vendor.

13 Name: ApprovePayment (Approve Payment)

Inputs/ Preconditions: r_ OrigCert (Certificate of origin received from

 Vendor)

 r_Inv (Commercial invoice received from Vendor)

Outputs/ Effects: InvPay (Payment for invoice)

Description: This process approves payment to the Vendor.

14 Name: InvPay_s (Send payment for invoice)

Inputs/ Preconditions: InvPay (Payment for the invoice)

Outputs/ Effects: s_InvPay (Payment for the invoice sent)

Description: This process sends payment for the invoice to the Vendor.

Table 2 Customer’s OWLS Processes

Appendix B. Process Details of Retailer, Wholesaler, Manufacturer and

Supplier

The OWLS processes for Retailer, Wholesaler, Manufacturer and Supplier are given in Table

3, 4, 5, and 6 respectively. Only the processes relevant to this collaboration scenario are

given.

S.No OWLS Process Details

1 Name: QuotationInqPrep (Quotation inquiry preparation)

Inputs/ Preconditions: goods_req (Goods required)

Outputs/ Effects: RInq (Retailer’s inquiry for quotation)

Description: This process creates a quotation inquiry.

2 Name: QuotationInq_s (Send quotation inquiry)

Inputs/ Preconditions: RInq (Retailer’s inquiry for quotation)

Outputs/ Effects: s_RInq (Retailer’s inquiry for quotation sent)

Description: This process sends a quotation inquiry to the Wholesaler.

3 Name: Quotation_r (Receive quotation)

A Cross Organisation Compatible Workflows Generation and Execution Framework

41

Inputs/ Preconditions: s_RInq (Retailer’s inquiry for quotation sent)

 s_WQuotation (Quotation sent by the Wholesaler)

Outputs/ Effects: r_WQuotation (Quotation received from the Wholesaler)

Description: This process receives the quotation sent by the Wholesaler.

4 Name: QuotationEvaluation (Evaluate the quotation)

Inputs/ Preconditions: r_WQuotation (Quotation received from the Wholesaler)

Outputs/ Effects: EvalReport (Evaluation report)

Description: This process evaluates the quotation received from the

 Wholesaler.

5 Name: CreatePO (Create a purchase order)

Inputs/ Preconditions: EvalReport (Evaluation report)

Outputs/ Effects: RPO (Retailer’s purchase order)

Description: This process creates a purchase order.

6 Name: PO_s (Send the purchase order)

Inputs/ Preconditions: RPO (Retailer’s purchase order)

Outputs/ Effects: s_RPO (Retailer’s purchase order sent)

Description: This process sends the purchase order to the Wholesaler.

7 Name: POAcpt_r (Accept the purchase order approval/acceptance)

Inputs/ Preconditions: s_RPO (Retailer’s purchase order sent)

 s_POA (Purchase order approval sent by Wholesaler)

Outputs/ Effects: r_POA (Received purchase order approval from the

 Wholesaler)

Description: This process receives the purchase order approval from the

 Wholesaler.

8 Name: ComInv_r (Receive commercial invoice)

Inputs/ Preconditions: s_WInv (Commercial invoice sent by the Wholesaler)

 r_POA (Received purchase order approval from the

 Wholesaler)

Outputs/ Effects: r_WInv (Received commercial invoice from the Wholesaler)

Description: This process receives the commercial invoice from the

 Wholesaler.

9 Name: TakeDelivery (Take Delivery)

Inputs/ Preconditions: r_WInv (Received commercial invoice from the

 Wholesaler)

Outputs/ Effects: WDelivery (Goods delivered by the Wholesaler)

Description: This process takes delivery of goods shipped by the Wholesaler.

A Cross Organisation Compatible Workflows Generation and Execution Framework

42

10 Name: ApprovePayment (Approve payment)

Inputs/ Preconditions: WDelivery (Goods delivered by the Wholesaler)

Outputs/ Effects: RInvPay (Retailer’s payment for invoice)

Description: This process approves payment to the Wholesaler.

11 Name: InvPayment_s (Send payment for invoice)

Inputs/ Preconditions: RInvPay (Retailer’s payment for invoice)

Outputs/ Effects: s_RInvPay (Retailer’s payment for the invoice sent)

Description: This process sends the Retailer’s payment for the invoice to the

 Wholesaler.

Table 3 Retailer’s OWLS Processes

S.No OWLS Process Details

1 Name: QuotationInq_r (Receive quotation inquiry)

Inputs/ Preconditions: s_RInq (Quotation inquiry sent by the Retailer)

Outputs/ Effects: r_RInq (Quotation inquiry received from the Retailer)

Description: This process receives the Retailer’s inquiry for quotation.

2 Name: QuotationPreparation(Prepare quotation)

Inputs/ Preconditions: r_RInq (Quotation inquiry received from the Retailer)

Outputs/ Effects: WQuotation (Wholesaler’s quotation)

Description: This process prepares a quotation.

3 Name: Quotation_s (Send Quotation)

Inputs/ Preconditions: WQuotation (Wholesaler’s quotation)

Outputs/ Effects: s_WQuotation (Wholesaler’s quotation sent)

Description: This process sends the Wholesaler’s quotation to the Retailer.

4 Name: PO_r (Receive purchase order)

Inputs/ Preconditions: s_WQuotation (Wholesaler’s quotation sent)

 s_RPO (Purchase order sent by the Retailer)

Outputs/ Effects: r_RPO (Purchase order received from the Retailer)

Description: This process receives the purchase order sent by the Retailer.

5 Name: POApproval (Purchase order approval)

Inputs/ Preconditions: r_RPO (Purchase order received from the Retailer)

Outputs/ Effects: POA (Purchase order approval)

Description: This process approves the purchase order received from the

 Retailer.

6 Name: POAcpt_s (Send the purchase order approval/acceptance)

Inputs/ Preconditions: POA (Purchase order approval)

A Cross Organisation Compatible Workflows Generation and Execution Framework

43

Outputs/ Effects: s_POA (Purchase order approval sent)

Description: This process sends the purchase order approval/acceptance to the

 Retailer.

7 Name: CreateInquiry (Create quotation inquiry)

Inputs/ Preconditions: s_POA (Purchase order approval sent)

Outputs/ Effects: WInq (Wholesaler’s quotation inquiry)

Description: This process creates a quotation inquiry to send to the

 Manufacturer.

8 Name: QuotationInquiry_s (Send the quotation inquiry)

Inputs/ Preconditions: WInq (Wholesaler’s quotation inquiry)

Outputs/ Effects: s_WInq (Wholesaler’s quotation inquiry sent)

Description: This process sends the quotation inquiry to the Manufacturer.

9 Name: Quotation_r (Receive quotation)

Inputs/ Preconditions: s_WInq (Wholesaler’s quotation inquiry sent)

 s_MQuotation (Quotation sent by the Manufacturer)

Outputs/ Effects: r_MQuotation (Quotation received from the Manufacturer)

Description: This process receives the quotation sent by the Manufacturer.

10 Name: ApproveQuotation (Approve quotation)

Inputs/ Preconditions: r_MQuotation (Quotation received from the

 Manufacturer)

Outputs/ Effects: QuotApp (Quotation approval)

Description: This process approves the quotation received from the

 Manufacturer.

11 Name: QuotationApproval_s (Send quotation approval)

Inputs/ Preconditions: QuotApp (Quotation approval)

Outputs/ Effects: s_ QuotApp (Quotation approval sent)

Description: This process sends the quotation approval to the Manufacturer.

12 Name: Invoice_r (Receive commercial invoice)

Inputs/ Preconditions: s_QuotApp (Quotation approval sent)

 s_MInv (Commercial invoice sent by the Manufacturer)

Outputs/ Effects: r_MInv (Commercial invoice received from the

 Manufacturer)

Description: This process receives the commercial invoice from the

 Manufacturer.

13 Name: InsuCert_r (Receive insurance certificate)

Inputs/ Preconditions: r_MInv (Commercial invoice received from the

A Cross Organisation Compatible Workflows Generation and Execution Framework

44

 Manufacturer)

 s_InsuCert (Insurance certificate sent by the

 Manufacturer)

Outputs/ Effects: r_InsuCert (Insurance certificate received from the

 Manufacturer)

Description: This process receives the insurance certificate from the

 Manufacturer.

14 Name: CustomsDeclaration (Customs Declaration)

Inputs/ Preconditions: r_InsuCert (Insurance certificate received from the

 Manufacturer)

Outputs/ Effects: CDR (Customs declaration report)

Description: This process declares the delivered goods to the customs.

15 Name: TakeDelivery (Take delivery)

Inputs/ Preconditions: r_MInv (Commercial invoice received from the

 Manufacturer)

 CDR(Customs declaration report)

Outputs/ Effects: MDelivery (Delivery taken from the Manufacturer)

Description: This process takes delivery of goods sent by the Manufacturer.

16 Name: PaymentApproval (Approve Payment)

Inputs/ Preconditions: MDelivery (Delivery taken from the Manufacturer)

Outputs/ Effects: WInvPay (Payment for invoice)

Description: This process approves payment to the Manufacturer.

17 Name: InvoicePayment_s (Send payment for invoice)

Inputs/ Preconditions: WInvPay (Payment for invoice)

Outputs/ Effects: s_ WInvPay (payment for the invoice sent)

Description: This process sends the payment for the invoice to the

 Manufacturer.

18 Name: IssueComInv (Issue commercial invoice)

Inputs/ Preconditions: s_ WInvPay (payment for the invoice sent)

Outputs/ Effects: WInv (Wholesaler’s commercial invoice)

Description: This process issues the Wholesaler’s commercial invoice.

19 Name: ComInv_s (Send commercial invoice)

Inputs/ Preconditions: WInv (Wholesaler’s commercial invoice)

Outputs/ Effects: s_ WInv (Wholesaler’s commercial invoice sent)

Description: This process sends the Wholesaler’s commercial invoice to the

 Retailer.

A Cross Organisation Compatible Workflows Generation and Execution Framework

45

20 Name: ShipGoods (Ship goods)

Inputs/ Preconditions: s_ WInv (Wholesaler’s commercial invoice sent)

Outputs/ Effects: WSR (Wholesaler’s shipment report)

Description: This process ships the goods to the Retailer.

21 Name: InvPayment_r (Receive payment for invoice)

Inputs/ Preconditions: WSR (Wholesaler’s shipment report)

 s_RInvPay (Payment for the invoice sent by the

 Retailer)

Outputs/ Effects: r_RInvPay (Payment for the invoice received from the

 Retailer)

Description: This process receives the payment for the invoice from the

 Retailer.

Table 4 Wholesaler’s OWLS Processes

S.No OWLS Process Details

1 Name: QuotationInquiry_r (Receive quotation inquiry)

Inputs/ Preconditions: s_WInq (Quotation Inquiry sent by the Wholesaler)

Outputs/ Effects: r_WInq (The Wholesaler’s quotation inquiry received)

Description: This process receives the quotation inquiry from the Wholesaler.

2 Name: PrepareQuotation (Prepare Quotation)

Inputs/ Preconditions: r_WInq (Quotation Inquiry received from the

 Wholesaler)

Outputs/ Effects: MQuotation (Manufacturer’s quotation)

Description: This process creates the Manufacturer’s quotation.

3 Name: Quotation_s (Send the Manufacturer’s quotation)

Inputs/ Preconditions: MQuotation (Manufacturer’s quotation)

Outputs/ Effects: s_MQuotation (Manufacturer’s quotation sent)

Description: This process sends the Manufacturer’s quotation to the

 Wholesaler.

4 Name: QuotationApproval_r (Receive quotation approval)

Inputs/ Preconditions: s_MQuotation (Manufacturer’s quotation sent)

 s_QuotApp (Quotation approval sent by the

 Wholesaler)

Outputs/ Effects: r_QuotApp (Quotation approval received from the

 Wholesaler)

Description: This process receives the quotation approval from the

A Cross Organisation Compatible Workflows Generation and Execution Framework

46

 Wholesaler.

5 Name: PrepareInquiry (Prepare quotation inquiry)

Inputs/ Preconditions: r_QuotApp (Quotation approval received from the

 Wholesaler)

Outputs/ Effects: MInq (Manufacturer’s quotation inquiry)

Description: This process creates a quotation inquiry.

6 Name: QuotationInquiry_s (Send the quotation inquiry)

Inputs/ Preconditions: MInq (Manufacturer’s quotation inquiry)

Outputs/ Effects: s_MInq (Manufacturer’s quotation inquiry sent)

Description: This process sends the Manufacturer’s quotation inquiry to the

 Supplier.

7 Name: ReceiveQuotation_r (Receive quotation)

Inputs/ Preconditions: s_MInq (Manufacturer’s quotation inquiry sent)

 s_SQuotation (Supplier’s quotation sent)

Outputs/ Effects: r_SQuotation (Supplier’s quotation received)

Description: This process receives the quotation from the Supplier.

8 Name: QuotationApp (Approve quotation)

Inputs/ Preconditions: r_SQuotation (Supplier’s quotation received)

Outputs/ Effects: QApp (Quotation approval)

Description: This process approves the quotation received from the Supplier.

9 Name: QuotationApp _s (Send quotation approval)

Inputs/ Preconditions: QApp (Quotation approval)

Outputs/ Effects: s_QApp (Quotation approval sent)

Description: This process sends the quotation approval to the Supplier.

10 Name: CommercialInvoice_r (Receive commercial invoice)

Inputs/ Preconditions: s_SInvoice (Supplier’s commercial invoice sent)

 s_QApp (Quotation approval sent)

Outputs/ Effects: r_SInvoice (Supplier’s commercial invoice received)

Description: This process receives commercial invoice sent by the Supplier.

11 Name: InsuranceCertificate_r (Receive Insurance Certificate)

Inputs/ Preconditions: r_SInvoice (Commercial invoice received from the

 Supplier)

 s_InsuranceCert (Insurance certificate sent by the

 Supplier)

Outputs/ Effects: r_InsuranceCert (Insurance certificate received from

 the Supplier)

A Cross Organisation Compatible Workflows Generation and Execution Framework

47

Description: This process receives the insurance certificate sent by the

 Supplier.

12 Name: DeclareToCustoms (Declare goods to customs)

Inputs/ Preconditions: r_SInvoice (Commercial invoice received from the

 Supplier)

 r_InsuranceCert (Insurance certificate received from

 the Supplier)

Outputs/ Effects: DeclarationReport (Goods declaration report)

Description: This process declares goods to customs.

13 Name: TakeRawDelivery (Take delivery of raw material)

Inputs/ Preconditions: r_SInvoice (Commercial invoice received from the

 Supplier)

 DeclarationReport (Goods declaration report)

Outputs/ Effects: SDelivery (Delivery taken from the Supplier)

Description: This process takes delivery of raw material shipped by the

 Supplier.

14 Name: ApprovePaymentInvoice (Approves payment for the invoice)

Inputs/ Preconditions: SDelivery (Delivery taken from the Supplier)

Outputs/ Effects: MInvPay (Manufacturer’s payment for the invoice)

Description: This process approves payment for the invoice to the supplier.

15 Name: PaymentInvoice_s (Send payment for invoice)

Inputs/ Preconditions: MInvPay (Manufacturer’s payment for invoice)

Outputs/ Effects: s_ MInvPay (Manufacturer’s payment for invoice sent)

Description: This process sends the payment for the invoice to the Supplier.

16 Name: GoodsManufacturing (Manufacture goods)

Inputs/ Preconditions: s_MInvPay (Manufacturer’s payment for the invoice

 sent)

Outputs/ Effects: Goods (Manufactured goods)

Description: This process manufactures goods.

17 Name: CreateInvoice (Create commercial invoice)

Inputs/ Preconditions: Goods (Manufactured goods)

Outputs/ Effects: MInv (Manufacturer’s commercial invoice)

Description: This process creates the Manufacturer’s commercial invoice.

18 Name: Invoice_s (Send commercial invoice)

Inputs/ Preconditions: MInv (Manufacturer’s commercial invoice)

Outputs/ Effects: s_ MInv (Manufacturer’s commercial invoice sent)

A Cross Organisation Compatible Workflows Generation and Execution Framework

48

Description: This process sends the Manufacturer’s commercial invoice to the

 Wholesaler.

19 Name: ArrangeShipment (Arrange shipment of goods)

Inputs/ Preconditions: s_ MInv (Commercial invoice sent)

Outputs/ Effects: MSR (Manufacturer’s shipment report)

Description: This process arranges shipment of goods to the Wholesaler.

20 Name: ArrangeInsurance (Arrange insurance of goods)

Inputs/ Preconditions: MSR (Manufacturer’s shipment report)

Outputs/ Effects: InsuCert (Insurance certificate)

Description: This process arranges insurance of the shipped goods.

21 Name: InsuCert_s (Send Insurance certificate)

Inputs/ Preconditions: InsuCert (Insurance certificate)

Outputs/ Effects: s_ InsuCert (Insurance certificate sent)

Description: This process sends the insurance certificate to the Wholesaler.

22 Name: InvoicePayment_r (Receive payment for invoice)

Inputs/ Preconditions: s_InsuCert (Insurance certificate sent)

 s_WInvPay (Payment for the invoice sent by the

 Wholesaler)

Outputs/ Effects: r_WInvPay (Payment for the invoice received from the

 Wholesaler)

Description: This process receives the payment for the invoice from the

 Wholesaler.

Table 5 Manufacturer’s OWLS Processes

S.No OWLS Process Details

1 Name: QuotationInquiry_r (Receive quotation inquiry)

Inputs/ Preconditions: s_MInq (Quotation inquiry sent by the Manufacturer)

Outputs/ Effects: r_MInq (Quotation inquiry received from the Manufacturer)

Description: This process receives the quotation inquiry from the

 Manufacturer.

2 Name: QuotationPrep (Prepare quotation)

Inputs/ Preconditions: r_MInq (Quotation inquiry received from the

 Manufacturer)

Outputs/ Effects: SQuotation (Supplier’s quotation)

Description: This process creates a Supplier’s quotation.

3 Name: SendQuotation_s (Send the Supplier’s quotation)

A Cross Organisation Compatible Workflows Generation and Execution Framework

49

Inputs/ Preconditions: SQuotation (Supplier’s quotation)

Outputs/ Effects: s_SQuotation (Supplier’s quotation sent)

Description: This process sends the Supplier’s quotation to the Manufacturer.

4 Name: QuotationApp_r (Receive quotation approval)

Inputs/ Preconditions: s_SQuotation (Supplier’s quotation sent)

 s_QApp (Quotation approval sent by the Manufacturer)

Outputs/ Effects: r_QApp (Quotation approval received from the

 Manufacturer)

Description: This process receives the quotation approval from the

 Manufacturer.

5 Name: IssueInv (Issue commercial invoice)

Inputs/ Preconditions: r_QApp (Quotation approval received from the

 Manufacturer)

Outputs/ Effects: SInvoice (Supplier’s commercial invoice)

Description: This process issues a commercial invoice.

6 Name: CommercialInvoice_s (Send the commercial invoice)

Inputs/ Preconditions: SInvoice (Supplier’s commercial invoice)

Outputs/ Effects: s_ SInvoice (Supplier’s commercial invoice sent)

Description: This process sends the Supplier’s commercial invoice to the

 Manufacturer.

7 Name: AssembleGoods (Assemble raw material components)

Inputs/ Preconditions: s_ SInvoice (Supplier’s commercial invoice sent)

Outputs/ Effects: RawComps (Raw material components assembled)

Description: This process assembles different components of raw material.

8 Name: InsureRaw (Insure the raw material)

Inputs/ Preconditions: s_ SInvoice (Supplier’s commercial invoice sent)

Outputs/ Effects: InsuranceCert (Insurance certificate)

Description: This process insures the raw material.

9 Name: InsuranceCertificate_s (Send insurance certificate)

Inputs/ Preconditions: InsuranceCert (Insurance certificate)

Outputs/ Effects: s_ InsuranceCert (Insurance certificate sent)

Description: This process sends the insurance certificate to the Manufacturer.

10 Name: ShipRaw (Ship raw material)

Inputs/ Preconditions: RawComps (Assembled raw material components)

Outputs/ Effects: SSR (Supplier’s shipment report)

Description: This process ships the raw material to the Manufacturer.

A Cross Organisation Compatible Workflows Generation and Execution Framework

50

11 Name: Documentation (Do the necessary documentation)

Inputs/ Preconditions: SSR (Supplier’s shipment report)

Outputs/ Effects: Doc (Necessary book keeping documentation done)

Description: This process does the necessary book keeping documentation

 after the shipment and insurance has been done.

12 Name: UpdateRecords (Update records)

Inputs/ Preconditions: SInvoice (Supplier’s commercial invoice)

 Doc (Documentation done)

 s_InsuranceCert (Insurance certificate sent)

Outputs/ Effects: RecUpd (Records updated)

Description: This process updates the database records after the necessary

 documentation has been done.

13 Name: PaymentInvoice_r (Receive payment for invoice)

Inputs/ Preconditions: s_MInvPay (Payment for the invoice sent by the

 Manufacturer)

 RecUpd (Records updated)

Outputs/ Effects: r_MInvPay (Manufacturer’s payment for the invoice

 Received)

Description: This process receives the payment for the invoice sent by the

 Manufacturer.

Table 6 Supplier’s OWLS Processes

Appendix C. OWLS Definition for IssueInspCert

<?xml version="1.0"?>

<rdf:RDF

 xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"

 xmlns:process="http://www.daml.org/services/OWLS/1.1/Process.owl#"

 xmlns:grounding="http://www.daml.org/services/OWLS/1.1/Grounding.owl#"

 xmlns:service="http://www.daml.org/services/OWLS/1.1/Service.owl#"

 xmlns:profile="http://www.daml.org/services/OWLS/1.1/Profile.owl#"

 xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#"

 xml:base="http://158.125.103.196/OWLS%20processes/Vendor/IssueInspCert.owl ">

 <!-- Service description -->

 <service:Service rdf:ID="IssueInspCertService">

 <service:presents rdf:resource="#IssueInspCertProfile"/>

 <service:describedBy rdf:resource="#IssueInspCertProcessModel"/>

 <service:supports rdf:resource="#IssueInspCertGrounding"/>

 </service:Service>

 <!-- Profile description -->

 <profile:Profile rdf:ID="IssueInspCertProfile">

 <service:isPresentedBy rdf:resource="#IssueInspCertService"/>

http://www.w3.org/2000/01/rdf-schema

A Cross Organisation Compatible Workflows Generation and Execution Framework

51

 <profile:serviceName xml:lang="en">Issuing Inspection Certificate</profile:serviceName>

 <profile:textDescription xml:lang="en">This service issues inspection certificate.

 </profile:textDescription>

 <profile:hasInput rdf:resource="#ok_Insp"/>

 <profile:hasOutput rdf:resource="#InspCert"/>

 </profile:Profile>

 <!-- Process Model description -->

 <process:ProcessModel rdf:ID="IssueInspCertProcessModel">

 <service:describes rdf:resource="#IssueInspCertService"/>

 <process:hasProcess rdf:resource="#IssueInspCertProcess"/>

 </process:ProcessModel>

 <process:AtomicProcess rdf:ID="IssueInspCertProcess">

 <process:hasInput rdf:resource="#ok_Insp"/>

 <process:hasOutput rdf:resource="#InspCert"/>

 </process:AtomicProcess>

 <process:Input rdf:ID="ok_Insp">

 <process:parameterType rdf:resource="http://www.w3.org/2001/XMLSchema#String"/>

 <rdfs:label>Presale Inspection Successful</rdfs:label>

 </process:Input>

 <process:Output rdf:ID="InspCert">

 <process:parameterType rdf:resource="http://www.w3.org/2001/XMLSchema#String"/>

 <rdfs:label>Inspection Certificate</rdfs:label>

 </process:Output>

 <!-- Grounding description -->

 <grounding:WsdlGrounding rdf:ID="IssueInspCertGrounding">

 <service:supportedBy rdf:resource="#IssueInspCertService"/>

 <grounding:hasAtomicProcessGrounding rdf:resource="#IssueInspCertProcessGrounding"/>

 </grounding:WsdlGrounding>

 <grounding:WsdlAtomicProcessGrounding rdf:ID="IssueInspCertProcessGrounding">

 <grounding:owlsProcess rdf:resource="#IssueInspCertProcess"/>

 <grounding:wsdlDocument>

 http://158.125.103.196/OWLS%20processes/Vendor/IssueInspCert.wsdl

</grounding:wsdlDocument>

 <grounding:wsdlOperation>

 <grounding:wsdlOperationRef>

<grounding:portType>

http://158.125.103.196:8080/IssueInspCert/services/IssueInspCert/IssueInspCertHttpSoap11E

ndpoint

 </grounding:portType>

<grounding:operation>

http://158.125.103.196:8080/IssueInspCert/services/IssueInspCert/IssueInspCert

</grounding:operation>

 </grounding:wsdlOperationRef>

 </grounding:wsdlOperation>

 <grounding:wsdlInputMessage>

 http://158.125.103.196:8080/IssueInspCert/services/IssueInspCert.IssueInspCertRequest

</grounding:wsdlInputMessage>

 <grounding:wsdlInputMessageParts rdf:parseType="Collection">

 <grounding:wsdlMessageMap>

 <grounding:owlsParameter rdf:resource="#ok_Insp"/>

 <grounding:wsdlMessagePart>ok_Insp</grounding:wsdlMessagePart>

 </grounding:wsdlMessageMap>

 </grounding:wsdlInputMessageParts>

 <grounding:wsdlOutputMessage>

file:///D:/PHD/Runtime%20Section/OWLS%20processes/Vendor/IssueInspCert.wsdl
http://158.125.103.196:8080/IssueInspCert/services/IssueInspCert/IssueInspCertHttpSoap11Endpoint
http://158.125.103.196:8080/IssueInspCert/services/IssueInspCert/IssueInspCertHttpSoap11Endpoint
http://158.125.103.196:8080/IssueInspCert/services/IssueInspCert/IssueInspCert
http://158.125.103.196:8080/IssueInspCert/services/IssueInspCert.IssueInspCertRequest

A Cross Organisation Compatible Workflows Generation and Execution Framework

52

http://158.125.103.196:8080/IssueInspCert/services/IssueInspCert.IssueInspCertResponse

</grounding:wsdlOutputMessage>

 <grounding:wsdlOutputMessageParts rdf:parseType="Collection">

 <grounding:wsdlMessageMap>

 <grounding:owlsParameter rdf:resource="#InspCert"/>

 <grounding:wsdlMessagePart>InspCert</grounding:wsdlMessagePart>

 </grounding:wsdlMessageMap>

 </grounding:wsdlOutputMessageParts>

 </grounding:WsdlAtomicProcessGrounding>

</rdf:RDF>

http://158.125.103.196:8080/IssueInspCert/services/IssueInspCert.IssueInspCertResponse

