13 research outputs found

    Impact of Preventive Maintenance and Machine Breakdown on Performance of Stochastic Flexible Job Shop Scheduling with Setup Time

    Get PDF
    Real-time scheduling problems increase the practical implementation of the manufacturing system. In this study, using a single objective performance measure i.e., Number of Tardy Jobs (NTJ), the influence of 5 input constraints, i.e., reliability level (R_L), percentage of machine failure (%McF), mean time to repair for random machine breakdown (MTR_RMcB), due date tightness factor (Ғ), and routing flexibility level (R_FL) were evaluated for considered stochastic Flexible Job Shop Scheduling Problem (FJSSP). The study integrated reliability-centered preventive maintenance (PMRC) and random machine breakdown (RMcB) environment with sequence-dependent setup time in the considered problem. A statistical response surface methodology was used to assesses NTJ. A second-order regression model was obtained to compute correlation between input constraints and NOTJ at 95% confidence level. The results demonstrate that main effects of R_L, %McF, Ғ, and R_FL; the interaction effects of R_L and Ғ, %McF and R_FL, MTR_RMcB and R­_FL, and Ғ and R_FL; and quadratic effects of Ғ and R_FL, have significant impact on NTJ performance measure. Ғ has emerged as the major factor affecting NTJ. The confirmatory data demonstrate that error is less than 5%, confirming model can be used for future computations. Further, the novelties of the work are shown by the fact that it takes into account the uncertainties in the scheduling issue, as well as the dynamic tasks arrival environment. The aforementioned findings will assist production managers in planning and scheduling flexible job shops in order to satisfy customer demand on time

    Formulações matemáticas para o problema de sequenciamento de tarefas com manutenções periódicas e tempos de setup

    Get PDF
    The single-machine scheduling problem with periodic maintenances and sequencedependent setup times aims at scheduling jobs on a single machine in which periodic maintenances and setups are required. The objective is the minimization of the makespan. We propose an exact algorithm based on the iterative solution of three alternative arc-time-indexed models. Extensive computational experiments are carried out on 420 benchmark instances with up to 50 jobs, and on 360 newly proposed instances involving up to 125 jobs. We compare the results found by all formulations with those obtained by the best available mathematical formulation. All instances from the existing dataset are solved to optimality for the first time.O problema de sequenciamento em uma m´aquina estudado neste trabalho tem como objetivo ordenar tarefas em apenas uma m´aquina com per´ıodos de indisponibilidade fixos, levando em considera¸c˜ao tempos de setup dependentes da sequˆencia. O objetivo ´e minimizar o makespan. Neste trabalho ´e proposto um algoritmo exato que resolve, iterativamente, uma de trˆes formula¸c˜ao matem´aticas de arcos indexados no tempo apresentadas. Experimentos computacionais extensivos s˜ao conduzidos em 420 instˆancias da literatura de at´e 50 tarefas, e em 360 instˆancias, envolvendo at´e 125 tarefas, propostas neste trabalho. Os resultados s˜ao comparados com aqueles obtidos pela melhor formula¸c˜ao matem´atica dispon´ıvel na literatura. Pela primeira vez, todas as instˆancias do conjunto existente foram resolvidas na otimalidade

    Bi-level dynamic scheduling architecture based on service unit digital twin agents

    Get PDF
    Pure reactive scheduling is one of the core technologies to solve the complex dynamic disturbance factors in real-time. The emergence of CPS, digital twin, cloud computing, big data and other new technologies based on the industrial Internet enables information acquisition and pure reactive scheduling more practical to some extent. However, how to build a new architecture to solve the problems which traditional dynamic scheduling methods cannot solve becomes a new research challenge. Therefore, this paper designs a new bi-level distributed dynamic workshop scheduling architecture, which is based on the workshop digital twin scheduling agent and multiple service unit digital twin scheduling agents. Within this architecture, scheduling a physical workshop is decomposed to the whole workshop scheduling in the first level and its service unit scheduling in the second level. On the first level, the whole workshop scheduling is executed by its virtual workshop coordination (scheduling) agent embedded with the workshop digital twin consisting of multi-service unit digital twins. On the second level, each service unit scheduling coordinated by the first level scheduling is executed in a distributed way by the corresponding service unit scheduling agent associated with its service unit digital twin. The benefits of the new architecture include (1) if a dynamic scheduling only requires a single service unit scheduling, it will then be performed in the corresponding service unit scheduling without involving other service units, which will make the scheduling locally, simply and robustly. (2) when a dynamic scheduling requires changes in multiple service units in a coordinated way, the first level scheduling will be executed and then coordinate the second level service unit scheduling accordingly. This divide-and-then-conquer strategy will make the scheduling easier and practical. The proposed architecture has been tested to illustrate its feasibility and practicality

    THE EFFECT OF HUMAN FACTORS ON JOB PERFORMANCE AMONG WORKERS IN A SMALL MANUFACTURING ENTERPRISE

    Get PDF
    In most small manufacturing enterprises, production planning and production scheduling are the two most important operational management tasks required in a job shop. A typical make-to-order company is plagued by frequent absenteeism, abrupt resignation of skilled workers and workers not being diligent in data entry. These lead to an increase in late delivery of jobs to customer and often a rework of returned jobs. This thesis studied a make-to-order company that manufactures hydraulic cylinders. The effects of some human factors in a job shop environment, such as job skill, job satisfaction, job rotation, and job fatigue, on workers job performance were studied. Questionnaires were designed to identify human factors and measure the insignificance on job performance on the shop floor. Statistical analysis methods were used to test for validity, reliability, and correlation of the data. The null hypotheses of the study were stated as: (1) There is no significant relationship of each of the variables including job rotation, job fatigue, job satisfaction and job skills with respect to the job performance of the shop floor workers; (2) There is no significant combined effect of the variables on the job performance of the shop floor workers; (3) There is no significant individual contribution of each of the variables on the job performance of the shop floor workers. An experiment was designed and conducted to test these hypotheses. The results obtained showed that job skills and job fatigue have a significant relationship on job performance and job performance on the shop floor can be predicted from these human factors considered. These results are expected to improve production planning and production scheduling when making decisions in a real-life manufacturing environment. The main contributions of this thesis are summarized. First, in decision-making for manufacturers in the field of operation and supply chain management, this thesis work has improved the current understanding of human factors and their significance in production planning and scheduling process. Second, in designing a manufacturing scheduling process, this work has also improved the knowledge in the use of various enterprise resource planning tools

    Application of nature-inspired optimization algorithms to improve the production efficiency of small and medium-sized bakeries

    Get PDF
    Increasing production efficiency through schedule optimization is one of the most influential topics in operations research that contributes to decision-making process. It is the concept of allocating tasks among available resources within the constraints of any manufacturing facility in order to minimize costs. It is carried out by a model that resembles real-world task distribution with variables and relevant constraints in order to complete a planned production. In addition to a model, an optimizer is required to assist in evaluating and improving the task allocation procedure in order to maximize overall production efficiency. The entire procedure is usually carried out on a computer, where these two distinct segments combine to form a solution framework for production planning and support decision-making in various manufacturing industries. Small and medium-sized bakeries lack access to cutting-edge tools, and most of their production schedules are based on personal experience. This makes a significant difference in production costs when compared to the large bakeries, as evidenced by their market dominance. In this study, a hybrid no-wait flow shop model is proposed to produce a production schedule based on actual data, featuring the constraints of the production environment in small and medium-sized bakeries. Several single-objective and multi-objective nature-inspired optimization algorithms were implemented to find efficient production schedules. While makespan is the most widely used quality criterion of production efficiency because it dominates production costs, high oven idle time in bakeries also wastes energy. Combining these quality criteria allows for additional cost reduction due to energy savings as well as shorter production time. Therefore, to obtain the efficient production plan, makespan and oven idle time were included in the objectives of optimization. To find the optimal production planning for an existing production line, particle swarm optimization, simulated annealing, and the Nawaz-Enscore-Ham algorithms were used. The weighting factor method was used to combine two objectives into a single objective. The classical optimization algorithms were found to be good enough at finding optimal schedules in a reasonable amount of time, reducing makespan by 29 % and oven idle time by 8 % of one of the analyzed production datasets. Nonetheless, the algorithms convergence was found to be poor, with a lower probability of obtaining the best or nearly the best result. In contrast, a modified particle swarm optimization (MPSO) proposed in this study demonstrated significant improvement in convergence with a higher probability of obtaining better results. To obtain trade-offs between two objectives, state-of-the-art multi-objective optimization algorithms, non-dominated sorting genetic algorithm (NSGA-II), strength Pareto evolutionary algorithm, generalized differential evolution, improved multi-objective particle swarm optimization (OMOPSO) and speed-constrained multi-objective particle swarm optimization (SMPSO) were implemented. Optimization algorithms provided efficient production planning with up to a 12 % reduction in makespan and a 26 % reduction in oven idle time based on data from different production days. The performance comparison revealed a significant difference between these multi-objective optimization algorithms, with NSGA-II performing best and OMOPSO and SMPSO performing worst. Proofing is a key processing stage that contributes to the quality of the final product by developing flavor and fluffiness texture in bread. However, the duration of proofing is uncertain due to the complex interaction of multiple parameters: yeast condition, temperature in the proofing chamber, and chemical composition of flour. Due to the uncertainty of proofing time, a production plan optimized with the shortest makespan can be significantly inefficient. The computational results show that the schedules with the shortest and nearly shortest makespan have a significant (up to 18 %) increase in makespan due to proofing time deviation from expected duration. In this thesis, a method for developing resilient production planning that takes into account uncertain proofing time is proposed, so that even if the deviation in proofing time is extreme, the fluctuation in makespan is minimal. The experimental results with a production dataset revealed a proactive production plan, with only 5 minutes longer than the shortest makespan, but only 21 min fluctuating in makespan due to varying the proofing time from -10 % to +10 % of actual proofing time. This study proposed a common framework for small and medium-sized bakeries to improve their production efficiency in three steps: collecting production data, simulating production planning with the hybrid no-wait flow shop model, and running the optimization algorithm. The study suggests to use MPSO for solving single objective optimization problem and NSGA-II for multi-objective optimization problem. Based on real bakery production data, the results revealed that existing plans were significantly inefficient and could be optimized in a reasonable computational time using a robust optimization algorithm. Implementing such a framework in small and medium-sized bakery manufacturing operations could help to achieve an efficient and resilient production system.Die Steigerung der Produktionseffizienz durch die Optimierung von Arbeitsplänen ist eines der am meisten erforschten Themen im Bereich der Unternehmensplanung, die zur Entscheidungsfindung beiträgt. Es handelt sich dabei um die Aufteilung von Aufgaben auf die verfügbaren Ressourcen innerhalb der Beschränkungen einer Produktionsanlage mit dem Ziel der Kostenminimierung. Diese Optimierung von Arbeitsplänen wird mit Hilfe eines Modells durchgeführt, das die Aufgabenverteilung in der realen Welt mit Variablen und relevanten Einschränkungen nachbildet, um die Produktion zu simulieren. Zusätzlich zu einem Modell sind Optimierungsverfahren erforderlich, die bei der Bewertung und Verbesserung der Aufgabenverteilung helfen, um eine effiziente Gesamtproduktion zu erzielen. Das gesamte Verfahren wird in der Regel auf einem Computer durchgeführt, wobei diese beiden unterschiedlichen Komponenten (Modell und Optimierungsverfahren) zusammen einen Lösungsrahmen für die Produktionsplanung bilden und die Entscheidungsfindung in verschiedenen Fertigungsindustrien unterstützen. Kleine und mittelgroße Bäckereien haben zumeist keinen Zugang zu den modernsten Werkzeugen und die meisten ihrer Produktionspläne beruhen auf persönlichen Erfahrungen. Dies macht einen erheblichen Unterschied bei den Produktionskosten im Vergleich zu den großen Bäckereien aus, was sich in deren Marktdominanz widerspiegelt. In dieser Studie wird ein hybrides No-Wait-Flow-Shop-Modell vorgeschlagen, um einen Produktionsplan auf der Grundlage tatsächlicher Daten zu erstellen, der die Beschränkungen der Produktionsumgebung in kleinen und mittleren Bäckereien berücksichtigt. Mehrere einzel- und mehrzielorientierte, von der Natur inspirierte Optimierungsalgorithmen wurden implementiert, um effiziente Produktionspläne zu berechnen. Die Minimierung der Produktionsdauer ist das am häufigsten verwendete Qualitätskriterium für die Produktionseffizienz, da sie die Produktionskosten dominiert. Jedoch wird in Bäckereien durch hohe Leerlaufzeiten der Öfen Energie verschwendet was wiederum die Produktionskosten erhöht. Die Kombination beider Qualitätskriterien (minimale Produktionskosten, minimale Leerlaufzeiten der Öfen) ermöglicht eine zusätzliche Kostenreduzierung durch Energieeinsparungen und kurze Produktionszeiten. Um einen effizienten Produktionsplan zu erhalten, wurden daher die Minimierung der Produktionsdauer und der Ofenleerlaufzeit in die Optimierungsziele einbezogen. Um optimale Produktionspläne für bestehende Produktionsprozesse von Bäckereien zu ermitteln, wurden folgende Algorithmen untersucht: Particle Swarm Optimization, Simulated Annealing und Nawaz-Enscore-Ham. Die Methode der Gewichtung wurde verwendet, um zwei Ziele zu einem einzigen Ziel zu kombinieren. Die Optimierungsalgorithmen erwiesen sich als gut genug, um in angemessener Zeit optimale Pläne zu berechnen, wobei bei einem untersuchten Datensatz die Produktionsdauer um 29 % und die Leerlaufzeit des Ofens um 8 % reduziert wurde. Allerdings erwies sich die Konvergenz der Algorithmen als unzureichend, da nur mit einer geringen Wahrscheinlichkeit das beste oder nahezu beste Ergebnis berechnet wurde. Im Gegensatz dazu zeigte der in dieser Studie ebenfalls untersuchte modifizierte Particle-swarm-Optimierungsalgorithmus (mPSO) eine deutliche Verbesserung der Konvergenz mit einer höheren Wahrscheinlichkeit, bessere Ergebnisse zu erzielen im Vergleich zu den anderen Algorithmen. Um Kompromisse zwischen zwei Zielen zu erzielen, wurden moderne Algorithmen zur Mehrzieloptimierung implementiert: Non-dominated Sorting Genetic Algorithm (NSGA-II), Strength Pareto Evolutionary Algorithm, Generalized Differential Evolution, Improved Multi-objective Particle Swarm Optimization (OMOPSO), and Speed-constrained Multi-objective Particle Swarm Optimization (SMPSO). Die Optimierungsalgorithmen ermöglichten eine effiziente Produktionsplanung mit einer Verringerung der Produktionsdauer um bis zu 12 % und einer Verringerung der Leerlaufzeit der Öfen um 26 % auf der Grundlage von Daten aus unterschiedlichen Produktionsprozessen. Der Leistungsvergleich zeigte signifikante Unterschiede zwischen diesen Mehrziel-Optimierungsalgorithmen, wobei NSGA-II am besten und OMOPSO und SMPSO am schlechtesten abschnitten. Die Gärung ist ein wichtiger Verarbeitungsschritt, der zur Qualität des Endprodukts beiträgt, indem der Geschmack und die Textur des Brotes positiv beeinflusst werden kann. Die Dauer der Gärung ist jedoch aufgrund der komplexen Interaktion von mehreren Größen abhängig wie der Hefezustand, der Temperatur in der Gärkammer und der chemischen Zusammensetzung des Mehls. Aufgrund der Variabilität der Gärzeit kann jedoch ein Produktionsplan, der auf die kürzeste Produktionszeit optimiert ist, sehr ineffizient sein. Die Berechnungsergebnisse zeigen, dass die Pläne mit der kürzesten und nahezu kürzesten Produktionsdauer eine erhebliche (bis zu 18 %) Erhöhung der Produktionsdauer aufgrund der Abweichung der Gärzeit von der erwarteten Dauer aufweisen. In dieser Arbeit wird eine Methode zur Entwicklung einer robusten Produktionsplanung vorgeschlagen, die Veränderungen in den Gärzeiten berücksichtigt, so dass selbst bei einer extremen Abweichung der Gärzeit die Schwankung der Produktionsdauer minimal ist. Die experimentellen Ergebnisse für einen Produktionsprozess ergaben einen robusten Produktionsplan, der nur 5 Minuten länger ist als die kürzeste Produktionsdauer, aber nur 21 Minuten in der Produktionsdauer schwankt, wenn die Gärzeit von -10 % bis +10 % der ermittelten Gärzeit variiert. In dieser Studie wird ein Vorgehen für kleine und mittlere Bäckereien vorgeschlagen, um ihre Produktionseffizienz in drei Schritten zu verbessern: Erfassung von Produktionsdaten, Simulation von Produktionsplänen mit dem hybrid No-Wait Flow Shop Modell und Ausführung der Optimierung. Für die Einzieloptimierung wird der mPSO-Algorithmus und für die Mehrzieloptimierung NSGA-II-Algorithmus empfohlen. Auf der Grundlage realer Bäckereiproduktionsdaten zeigten die Ergebnisse, dass die in den Bäckereien verwendeten Pläne ineffizient waren und mit Hilfe eines effizienten Optimierungsalgorithmus in einer angemessenen Rechenzeit optimiert werden konnten. Die Umsetzung eines solchen Vorgehens in kleinen und mittelgroßen Bäckereibetrieben trägt dazu bei effiziente und robuste Produktionspläne zu erstellen und somit die Wettbewerbsfähigkeit dieser Bäckereien zu erhöhen

    Recent Research Trends in Genetic Algorithm Based Flexible Job Shop Scheduling Problems

    Get PDF
    Flexible Job Shop Scheduling Problem (FJSSP) is an extension of the classical Job Shop Scheduling Problem (JSSP). The FJSSP is known to be NP-hard problem with regard to optimization and it is very difficult to find reasonably accurate solutions of the problem instances in a rational time. Extensive research has been carried out in this area especially over the span of the last 20 years in which the hybrid approaches involving Genetic Algorithm (GA) have gained the most popularity. Keeping in view this aspect, this article presents a comprehensive literature review of the FJSSPs solved using the GA. The survey is further extended by the inclusion of the hybrid GA (hGA) techniques used in the solution of the problem. This review will give readers an insight into use of certain parameters in their future research along with future research directions

    Desenvolvimento de uma ferramenta de apoio à decisão ao escalonamento dinâmico da produção

    Get PDF
    A atual exigência e instabilidade do mercado global provocam um grande impacto nos problemas industriais, podendo destacar-se o escalonamento e o sequenciamento de trabalhos. Esta situação implica que mais recursos, para além do fator tempo, sejam considerados críticos, como máquinas, mão-de-obra e instalações. O objetivo geral das organizações prende-se com a satisfação dos clientes, quer em termos de qualidade de produtos quer no cumprimento das datas estabelecidas. Por norma, os problemas de escalonamento são classificados como problemas de otimização combinatória sujeitos a restrições, com uma natureza dinâmica e de resolução bastante complexa, cujos elementos básicos são as máquinas e as tarefas. Uma maneira de promover a sobrevivência e a sustentabilidade das organizações é o uso eficiente dos seus recursos. Uma falha completa na preparação adequada das tarefas pode facilmente levar a um desperdício de tempo e recursos, o que pode resultar num baixo nível de produtividade e altas perdas monetárias. Diante do exposto, é essencial analisar e desenvolver continuamente novos modelos de programação de produção. O escalonamento da produção na presença de eventos em tempo real é de grande importância para a implementação bem-sucedida dos sistemas de escalonamento no mundo real. A maioria das empresas opera em ambientes dinâmicos, vulneráveis a vários eventos estocásticos em tempo real, o que força a contínua reconsideração e revisão de programas pré-estabelecidos. Num ambiente incerto, maneiras eficientes de adaptar as soluções atuais a eventos inesperados são preferíveis às soluções ótimas que logo se tornam obsoletas assim que são lançadas para o chão de fábrica. Tal realidade foi a principal motivação para o desenvolvimento de uma ferramenta de apoio ao escalonamento dinâmico, a qual tenta começar a preencher a lacuna entre a teoria e a prática do escalonamento. A presente dissertação pretende contribuir para facilitar a compreensão dos problemas e melhorar o processo de escalonamento na indústria, apresentando contribuições no domínio do escalonamento da produção em duas envolventes principais: uma a um nível teórico, conceptual e outra ao nível prático da resolução de problemas através do desenvolvimento de uma ferramenta dinâmica de apoio à decisão. Ao nível conceptual contribui para uma ontologia de problemas de escalonamento da produção e conceitos relacionados, tais como ambiente de escalonamento, características dos trabalhos e dos recursos, critérios de otimização, medidas de desempenho, ferramentas de escalonamento, tipos de escalonamento e técnicas de resolução de problemas combinatórios e sua parametrização, providenciando um enquadramento comum para a compreensão e partilha de conhecimento acerca destes conceitos. Ao nível da resolução de problemas, desenvolveu-se uma ferramenta simples, moderna e autónoma de apoio à decisão ao escalonamento dinâmico onde os critérios de desempenho são classificados através do modelo de Kano. Ou seja, o protótipo desenvolvido simula a sua conexão ao software MRP e usa meta heurísticas para gerar um escalonamento preditivo. Assim, sempre que ocorrem eventos não planeados, como a chegada de novas tarefas ou cancelamento de outras, a ferramenta começa a reagendar através de um módulo de eventos dinâmicos que combina regras de despacho que melhor se ajustam às medidas de desempenho pré-classificadas pelo modelo de Kano. A ferramenta proposta foi testada em um estudo computacional aprofundado com entradas dinâmicas de tarefas com tempos de execução estocásticos. Além disso, foi realizada uma análise mais robusta, que demonstrou que há evidência estatística de que o desempenho do protótipo proposto é melhor que o método único de programação e comprovou a eficácia do mesmo. O conceito da presente dissertação já deu origem a três publicações em revistas indexadas, o que motivou ainda mais ao desenvolvimento e aperfeiçoamento do sistema desenvolvido (L. Ferreirinha et al., 2019; Luis Ferreirinha et al., 2019; Luís Ferreirinha et al., 2020).The current demand and instability of the global market have a major impact on industrial problems, including the staggering and sequencing of jobs. This situation means that more resources than time are considered critical, such as machines, labor and facilities. The overall goal of organizations is customer satisfaction, both in terms of product quality and meeting set dates. Usually, scheduling problems are classified as constrained combinatorial optimization problems, with a dynamic nature and very complex resolution, whose basic elements are machines and tasks. One way to promote the survival and sustainability of organizations is the efficient use of their resources. A complete failure to properly prepare tasks can easily lead to a waste of time and resources, which can result in low productivity and high monetary losses. Given the above, it is essential to continuously analyze and develop new production scheduling models. Production scheduling in the presence of real-time events is of great importance for the successful implementation of real-world scheduling systems. Most companies operate in dynamic environments that are vulnerable to multiple stochastic events in real time, which forces continuous reconsideration and review of pre-established programs. In an uncertain environment, efficient ways to adapt current solutions to unexpected events are preferable to optimal solutions that soon become obsolete as they are dropped to the shop floor. Such reality was the main motivation for the development of a dynamic scheduling support tool, which attempts to begin to bridge the gap between scheduling theory and practice. This dissertation aims to contribute to facilitate the understanding of the problems and improve the process of scheduling in the industry, presenting contributions in the field of production scheduling in two main environments: one at a theoretical, conceptual level, and another at the practical level of problem solving through the development of a dynamic decision support tool. At the conceptual level it contributes to an ontology of production scheduling problems and related concepts such as scheduling environment, job and resource characteristics, optimization criteria, performance measures, scheduling tools, scheduling types, and resolution techniques regarding combinatorial problems and their parameterization, providing a common framework for understanding and sharing knowledge about these concepts. In terms of problem solving, a simple, modern and autonomous dynamic scheduling decision support tool has been developed where performance criteria are classified through Kano’s model. This is, the developed prototype simulates its connection to MRP software and uses metaheuristics to generate predictive schedules. Thus, whenever unplanned events such as new tasks arrive or others are canceled, the tool begins to reschedule through a dynamic event module that combines dispatch rules that best fit the performance measures pre-classified by the Kano’s model. The proposed tool was tested in an in-depth computational study with dynamic task inputs with stochastic runtimes. In addition, a more robust analysis was performed, which showed that there is statistical evidence that the performance of the proposed prototype is better than the single programming method and proved its effectiveness. The concept of this dissertation has already given rise to three publications in indexed journals, which further motivated the development and improvement of the developed system (L. Ferreirinha et al., 2019; Luis Ferreirinha et al., 2019; Luís Ferreirinha et al., 2020)

    Esnek atölye tipi hücre çizelgeleme problemleri için çok amaçlı matematiksel model ve genetik algoritma ile çözüm önerisi

    Get PDF
    06.03.2018 tarihli ve 30352 sayılı Resmi Gazetede yayımlanan “Yükseköğretim Kanunu İle Bazı Kanun Ve Kanun Hükmünde Kararnamelerde Değişiklik Yapılması Hakkında Kanun” ile 18.06.2018 tarihli “Lisansüstü Tezlerin Elektronik Ortamda Toplanması, Düzenlenmesi ve Erişime Açılmasına İlişkin Yönerge” gereğince tam metin erişime açılmıştır.Günümüz rekabetçi iş ortamında, müşteriler daha düşük maliyetle daha yüksek kalitede çeşitli ürünleri satın almak istemektedir. İmalat firmaları, talep çeşitliliğini karşılamak için yüksek derecede ürün çeşitliliğine ve küçük imalat parti büyüklüğüne ihtiyaç duymaktadır. Üretimdeki ürün çeşitlilikleri uzun hazırlık ve taşıma süreleri, karmaşık çizelgeleme problemleri gibi birçok probleme neden olmaktadır. Geleneksel imalat sistemleri, bu tip değişikliklere cevap vermede yeterince esnek değilken Hücresel Üretim Sistemleri üreticilerin bu ihtiyaçlarına cevap verebilecek özelliklere sahiptir. Ayrıca gerçek hayat problemlerinin çoğunda, bir parçanın bazı ya da bütün operasyonları birden fazla makinede işlem görebilmekte ve bazen de bu operasyonlar bir makineyi ya da iş merkezini birden fazla kez ziyaret etmektedir. Bu seçenek sisteme esneklik kazandırırken bu kadar karmaşık bir üretim sisteminin başarılı ve doğru bir şekilde işletilebilmesi kaynakların etkin kullanılmasını da gerektirmektedir. Bu çalışma, istisnai parçaları, hücrelerarası hareketleri, hücrelerarası taşıma sürelerini, sıra bağımlı parça ailesi hazırlık sürelerini ve yeniden işlem gören parçaları dikkate alarak hücresel imalat ortamında esnek atölye tipi çizelgeleme probleminin çözümüne dair bir matematiksel model ve çözüm yöntemi sunmaktadır. Mevcut bilgilerimiz ışığında yapılan bu çalışma Esnek Atölye Tipi Hücre Çizelgeleme Probleminde (EATHÇP) çok amaçlı matematiksel model ve meta-sezgiselinin kullanımı için ilk girişimdir. Bununla birlikte gerçek hayat uygulamaları için EATHÇP süreci, birçok çelişen amacı dikkate almayı gerektirdiği için ele alınan skalerleştirme metodu pratik uygulama ve teorik araştırma açısından oldukça önemlidir. Önerilen karma tamsayılı doğrusal olmayan matematiksel modelle küçük ve orta boyutlu problemler çözülebilmektedir. Büyük boyutlu problemlerin çözümü, doğrusal olmayan modellerle makul zamanlarda olamayacağı ya da çok uzun süreceği için konik skalerleştirmeli çok amaçlı matematiksel modeli kullanan bir Genetik Algoritma (GA) meta-sezgisel çözüm yöntemi önerilmiştir. GA yaklaşımının en iyi veya en iyiye yakın çözüme ulaşmasına etki eden parametrelerin en iyi kombinasyonu belirlemek amacı ile bir deney tasarımı gerçekleştirilmiştir. Bu tez çalışması için Eskişehir Tülomsaş Motor Fabrikası'nda bir uygulama çalışması yürütülmüştür. Yürütülen bu çalışma, altı farklı amaç ağırlık değerleri kullanılarak hem konik skalerleştirmeli GA yaklaşımı ile hem de ağırlıklı toplam skalerleştirmeli GA yaklaşımı ile çözülmüştür. Amaç ağırlıklarının beşinde çok amaçlı konik skalerleştirme GA yaklaşımının daha baskın sonuçlara ulaşabildiği vurgulanmıştır. Ayrıca, önerilen çok amaçlı modelin gerçek hayat problemleri için de makul zamanda uygun çözümler üretebildiği gösterilmiştir.In today's highly competitive business environment, customers desire to buy various products with higher quality at lower costs. Manufacturing firms require a high degree of product variety and small manufacturing lot sizes to meet the demand variability. The product variations in manufacturing cause many problems such as lengthy setup and transportation times, complex scheduling. Cellular Manufacturing Systems contain the characteristics, which will respond to the needs of manufacturers, even though Conventional Manufacturing Systems are not flexible enough to respond to changes. In addition, in most real life manufacturing problems, some or all operations of a part can be processed on more than one machine, and sometimes operations may visit a machine or work center more than once. It is necessary to use resources effectively in order to run such a complex production system successfully. In this study, a mathematical model and a solution approach that deals with a flexible job shop scheduling problem in cellular manufacturing environment is proposed by taking into consideration exceptional parts, intercellular moves, intercellular transportation times, sequence-dependent family setup times, and recirculation. To the best of our knowledge, this is the first attempt to use multi-objective mathematical model and meta-heuristic approach for a Flexible Job Shop Cell Scheduling Problem (FJCSP). However, in the real-life applications, the scalarization method considered is highly important in terms of theoretical research and practical application because the FJCSP process is not easy because of many conflicting objectives. The proposed mixed integer non-linear model can be used for solving small and middle scaled problems. Solution of large scaled problems is not possible in reasonable time or takes too long time, so a Genetic Algorithm (GA) meta-heuristic approach that uses a multi-objective mathematical model with conic scalarization has been presented. An experimental design was used to determine the best combination of parameters which are affected performance of genetic algorithm to achieve optimum or sub-optimum solution. In this thesis study, a case study was conducted in Tülomsaş Locomotive and Engine Factory in Eskişehir. This study was solved by using both conic scalarization GA approach and weighted sum scalarization GA approach with six different weights of objective. It is emphasized that the multi-objective conic scalarization GA approach has better quality than other approach for five different weights of objective. In addition, it has been shown that the multi-objective model could also obtain optimum results in reasonable time for the real-world problems

    Flexible Job-shop Scheduling Problem with Sequencing Flexibility: Mathematical Models and Solution Algorithms

    Get PDF
    Marketing strategists usually advocate increased product variety to attend better market demand. Furthermore, companies increasingly acquire more advanced manufacturing systems to take care of the increased product mix. Manufacturing resources with different capabilities give a competitive advantage to the industry. Proper management of the current productions resources is crucial for a thriving industry. Flexible job shop scheduling problem (FJSP) is an extension of the classical Job-shop scheduling problem (JSP) where operations can be performed by a set of candidate capable machines. An extended version of the FJSP, entitled FJSP with sequencing flexibility (FJSPS), is studied in this work. The extension considers precedence between the operations in the form of a directed acyclic graph instead of sequential order. In this work, a mixed integer programming (MILP) formulation is presented. A single objective formulation to minimize the weighted tardiness for the FJSP with sequencing flexibility is proposed. A different objective to minimize makespan is also considered. Due to the NP-hardness of the problem, a novel hybrid bacterial foraging optimization algorithm (HBFOA) is developed to tackle the FJSP with sequencing flexibility. It is inspired by the behaviour of the E. coli bacteria. It mimics the process to seek for food. The HBFOA is enhanced with simulated annealing (SA). The HBFOA has been packaged in the form of a decision support system (DSS). A case study of a small and medium-sized enterprise (SME) manufacturing industry is presented to validate the proposed HBFOA and MILP. Additional numerical experiments with instances provided by the literature are considered. The results demonstrate that the HBFOA outperformed the classical dispatching rules and the best integer solution of MILP when minimizing the weighted tardiness and offered comparable results for the makespan instances. In this dissertation, another critical aspect has been studied. In the industry, skilled workers usually are able to operate a specific set of machines. Hence, managers need to decide the best operation assignments to machines and workers. However, they need also to balance the workload between workers while accomplishing the due dates. In this research, a multi-objective mathematical model that minimizes makespan, maximal worker workload and weighted tardiness is developed. This model is entitled dual-resource FJSP with sequencing flexibility (DRFJSPS). It covers both the machine assignment and also the worker selection. Due to the intractability of the DRFJSPS, an elitist non-dominated sorting genetic algorithm (NSGA-II) is developed to solve this problem efficiently. The algorithm provides a set of Pareto-optimal solutions that the decision makers can use to evaluate the trade-offs of the conflicting objectives. New instances are introduced to demonstrate the applicability of the model and algorithm. A multi-random-start local search algorithm has been developed to assess the effectiveness of the adapted NSGA-II. The comparison of the solutions demonstrates that the modified NSGA-II provides a non-dominated efficient set in a reasonable time. Finally, a situation where there are multiple process plans available for a specific job is considered. This scenario is useful to be able to react to the current status of the shop where unpredictable circumstances (machine breakdown, current product mix, due dates, demand, etc.) can be accurately tackled. The determination of the process plan also depends on its cost. For that, a balance between cost, and the accomplishment of due dates is required. A multi-objective mathematical model that minimizes makespan, total processing cost and weighted tardiness are proposed to determine the sequence and the process plan to be used. This model is entitled flexible job-shop scheduling problem with sequencing and process plan flexibility (FJSP-2F). New instances are generated to show the applicability of the model

    Decentralized Scheduling Using The Multi-Agent System Approach For Smart Manufacturing Systems: Investigation And Design

    Get PDF
    The advent of industry 4.0 has resulted in increased availability, velocity, and volume of data as well as increased data processing capabilities. There is a need to determine how best to incorporate these advancements to improve the performance of manufacturing systems. The purpose of this research is to present a solution for incorporating industry 4.0 into manufacturing systems. It will focus on how such a system would operate, how to select resources for the system, and how to configure the system. Our proposed solution is a smart manufacturing system that operates as a self-coordinating system. It utilizes a multi-agent system (MAS) approach, where individual entities within the system have autonomy to make dynamic scheduling decisions in real-time. This solution was shown to outperform alternative scheduling strategies (right shifting and dispatching priority rule) in manufacturing environments subject to uncertainty in our simulation experiments. The second phase of our research focused on system design. This phase involved developing models for two problems: (1) resource selection, and (2) layout configuration. Both models developed use simulation-based optimization. We first present a model for determining machine resources using a genetic algorithm (GA). This model yielded results comparable to an exhaustive search whilst significantly reducing the number of required experiments to find the solution. To address layout configuration, we developed a model that combines hierarchical clustering and GA. Our numerical experiments demonstrated that the hybrid layouts derived from the model result in shorter and less variable order completion times compared to alternative layout configurations. Overall, our research showed that MAS-based scheduling can outperform alternative dynamic scheduling approaches in manufacturing environments subject to uncertainty. We also show that this performance can further be improved through optimal resource selection and layout design
    corecore