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Abstract 

The advent of industry 4.0 has resulted in increased availability, velocity, and volume of 

data as well as increased data processing capabilities. There is a need to determine how best to 

incorporate these advancements to improve the performance of manufacturing systems. The 

purpose of this research is to present a solution for incorporating industry 4.0 into manufacturing 

systems. It will focus on how such a system would operate, how to select resources for the 

system, and how to configure the system. 

Our proposed solution is a smart manufacturing system that operates as a self-

coordinating system. It utilizes a multi-agent system (MAS) approach, where individual entities 

within the system have autonomy to make dynamic scheduling decisions in real-time. This 

solution was shown to outperform alternative scheduling strategies (right shifting and 

dispatching priority rule) in manufacturing environments subject to uncertainty in our simulation 

experiments. 

The second phase of our research focused on system design. This phase involved 

developing models for two problems: (1) resource selection, and (2) layout configuration. Both 

models developed use simulation-based optimization.  We first present a model for determining 

machine resources using a genetic algorithm (GA). This model yielded results comparable to an 

exhaustive search whilst significantly reducing the number of required experiments to find the 

solution. To address layout configuration, we developed a model that combines hierarchical 

clustering and GA. Our numerical experiments demonstrated that the hybrid layouts derived 

from the model result in shorter and less variable order completion times compared to alternative 

layout configurations. 
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Overall, our research showed that MAS-based scheduling can outperform alternative 

dynamic scheduling approaches in manufacturing environments subject to uncertainty. We also 

show that this performance can further be improved through optimal resource selection and 

layout design. 
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Chapter 1  

Introduction 

The rapid advancement of information technologies (IT) has led to great advancements in 

the manufacturing industry and paved the way for Industry 4.0. Industry 4.0, otherwise referred 

to as the 4th Industrial Revolution, is an umbrella term covering a number of technological 

advancements including the industrial Internet of Things (IIoT), cyber-physical production 

systems (CPPS) and cloud manufacturing.  The rise of Industry 4.0 brings with it an increase in 

data availability, data processing and data analysis capabilities, as well as the increased velocity 

of the data, and it is important to understand how to utilize these tools effectively for 

manufacturing. This is specifically the case with scheduling jobs where the manufacturing 

environment is subject to multiple sources of uncertainty and numerous unexpected events 

occurring randomly. The increased availability of data in real-time, as well as the increased data 

processing capabilities make it feasible to better account for stochastic disturbances during 

production by making real-time scheduling adjustments. These advances also raise questions on 

how to effectively design manufacturing systems to take advantage of the changes brought about 

by Industry 4.0. This research aims to investigate how the advent of Industry 4.0 can be 

integrated into smart manufacturing systems (SMS) to improve dynamic scheduling with better 

efficiency and stability. Specifically, our research can be divided into four distinct stages:  

1) Developing a model for dynamic scheduling in smart manufacturing system (Chapter 3) 

2) Evaluating the performance of the SMS model when scheduling in dynamic 

manufacturing environment (Chapter 4) 

3) Developing a model for machine selection for smart manufacturing system (Chapter 5) 
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4) Developing a model for facilities layout design for smart manufacturing system (Chapter 

6)  

In this chapter, we will present background on the SMS as well as discuss the design of 

such systems. We will also outline the objective and scope of this research and highlight the 

main research contributions. The chapter will conclude with the organization of the thesis.  

1.1 Background on the Smart Manufacturing System 

Wang et al. (2016) define a smart manufacturing system as consisting of four layers; the 

physical layer (the smart product, machines, etc.), the industrial network layer (the network over 

which all communication occurs), the cloud layer (which provides data storage and potential 

processing), and the supervisory and control layer (which oversees the system). These layers 

combine to allow the system to self-organize and coordinate its resources to meet the product 

demand. The key benefit of SMS lies in this autonomy. It can allow the system to schedule jobs 

in real-time in order to produce parts as efficiently and quickly as possible. However, this benefit 

comes with increased system complexity which, in turn, comes with potential feasibility 

concerns. As such, it is important to study and confirm the benefits and limitations of using such 

a smart manufacturing system. It is important to determine how such a system would perform 

when subject to differing manufacturing environments. However, there is currently very limited 

literature that demonstrates the actual benefit of implementing smart manufacturing systems. As 

such, it is a goal of this study to develop a model for a smart manufacturing system, and to use 

simulation to analyze this system’s performance relative to alternative approaches for addressing 

mass customization under varying levels of uncertainty.  
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In this study, the SMS will be considered as a CPPS. A CPPS is a Cyber-Physical System 

(CPS) that is geared towards production.  A CPS is a system of collaborating and interconnected 

digital and physical entities, where the digital entities provide data storage and data processing 

services to improve the performance of the physical system (Monostori, 2014). The digital 

entities in a CPPS are representations of the physical entities within the system. These digital 

entities act as the intelligence or the “brain” for the physical entities. As such, they allow for the 

entities within the system to be able to collaborate and coordinate themselves to make system 

decisions. Thus, the CPPS employs a distributed control structure by giving its entities this 

autonomy.  

With CPPS, the distributed control is implemented in the form of a multi-agent system 

(MAS). This system consists of multiple intelligent agents that communicate with each other to 

schedule and execute work within the system. These agents typically communicate using 

contract net protocol. Whilst there are multiple agents in the system, it is possible for some 

agents to have more decision-making capabilities than others. The distribution of decision-

making capabilities determines the control architecture. Systems with only one decision-making 

agent are said to be of hierarchical control architectures whilst those where all agents are 

decision-making are heterarchical. The type of control architecture used has a significant impact 

on the system’s ability to perform optimally and its response to stochastic disturbances. Despite 

the research into CPPS implementation approaches, there are very few instances of their 

implementation and very little literature on the quantitative benefits of such systems. The 

literature does suggest, however, that there are potentially great benefits in employing CPPS for 

scheduling. 
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Our research is concerned with the planning and scheduling aspect of CPPS. In that 

regard, the key feature of CPPS lies in its distributed control structure. The traditional 

manufacturing system is typically centralized, scheduling decisions and policies are determined a 

priori by the shopfloor manager. However, due to the increased data processing and storage 

capacity, and the increased interconnectivity between devices (possible due to the incorporation 

of sensors and transmitting capabilities into devices), it is possible to delegate some of the 

decision-making to the components of the system. Also, due to the variety of data that can be 

collected and how quickly this data can be generated (real-time), there is an increase in the 

complexity of the decisions that can be made by the system as well as the speed of the system’s 

response. This makes the CPPS a viable alternative to a conventional manufacturing system. 

CPPS allows for the manufacturing system to shift from a centralized control structure to a more 

distributed control structure which has various benefits. Barbosa et al (2015) findings suggest 

that this distributed control results in a system that is better suited for rapid responses to 

stochastic disturbances to the system. They suggest that implementing elements of distributed 

control into manufacturing systems can result in a system that yields near optimal performance in 

undisturbed states whilst being able to adapt to changes quickly and thus, produces a more robust 

system. Robust but efficient manufacturing systems through the use of distributed control is the 

major appeal of CPPS.  

As mentioned earlier, the CPPS is typically represented in literature as a multi-agent 

system (MAS). This is a system consisting of multiple, intelligent agents. This sort of system is 

sometimes referred to as a holonic manufacturing system (HMS) in literature (Van Brussel et al., 

1998), where instead of the term agent, the term holon is used. An agent can be described as an 

autonomous, decision-making entity within a system. To guide this decision-making, it is 
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assumed that the agents are aware of all information about their current state and environment. In 

the context of a manufacturing environment, this would be akin to a machine agent being aware 

of whether or not the machine it represents is idle, the capabilities of said machine, and the 

current open jobs in the system (its environment) that the machine can fulfill. Each agent is self-

contained with its own characteristics and behaviours. The characteristics and behaviours of the 

agents in a system are dependent on the intention of the system designer with regard to the 

system objective and the resolution to which the physical system is represented through the 

MAS. For example, if each aspect of the physical production system is represented by an agent 

(each part, transporter, machine, operator, etc. has an agent) and the system objective is to 

minimize flow time. Then, a part agent may be designed in such a way that it observes the 

system to find free machines and moves towards the earliest free machine that can service them. 

This, of course, assumes that it is the first agent to occupy this machine. After all, the MAS 

consists of many agents with different behaviours and each agent is able to interact with other 

agents and its environment (Kang & Choi, 2013). These interactions are governed by a 

predetermined negotiation protocol.  

Distributed control of a system requires collaboration and communication between the 

agents that comprise this system. This requires establishing a protocol to guide this process. The 

most commonly used negotiation protocol when discussing distributed system task assignment is 

contract net protocol (CNP) (Kang & Choi, 2013; Jiang et al., 2017). CNP (Smith, 1980) is based 

on auction mechanism where agents are divided into contractors and clients. Clients issue tenders 

for tasks and contractors bid on the task using a currency that is designed for the system. It is an 

auction-based protocol, where task allocation is done based on auctions for each task executed in 

real-time. This protocol is often used when employing distributed control for the purpose of 
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dynamic task allocation in scheduling problems (Ouelhadj & Petrovic, 2009).  As far as we have 

seen, most literature on distributed control of manufacturing systems either uses CNP or some 

variation of it. 

Once a negotiation protocol has been outlined, the control architecture of the system must 

be decided. There are three types of control architectures in relation to CPPS: hierarchical 

(centralized control), heterarchical (decentralized control) and hybrid (combination of 

hierarchical and heterarchical) control. One of the earlier MAS control architectures was “Yet 

Another Manufacturing System” (YAMS) that was developed by Paranuk (1987). YAMS was a 

factory control system based on contract net protocol. Paranuk (1987) employs a hierarchical 

control architecture in their model of a shop floor. Van Brussel et al (1998) developed a 

reference architecture for HMS called product resource order staff architecture (PROSA). Whilst 

this system consisted of three holons (order, product and resource holons), only the order holons 

had autonomy. Both these systems use a hierarchical control structure, and this sort of control 

structure has been found to have poor response to stochastic disruptions to the system. A real 

world manufacturing environment is subject to a number of stochastic disruptions and as such, 

would present a number of problems when utilizing this type of control structure. As a result, 

more recent literature appears to focus on heterarchical and hybrid control architectures. The 

earliest instance of heterarchical control was Duffie and Piper (1987). In their model they use 

agents as representations of parts and operators with the goal of scheduling the production of the 

parts. They found that it addressed some of the issues faced when using hierarchical control. 

With heterarchical control architectures, the agents typically represent entities within the 

manufacturing system (jobs, machines, parts, etc.) (Ouelhadj & Petrovic. 2009). These systems 

have each agent making local scheduling decisions with no consideration of the global objective. 
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This approach, whilst it has good performance, may not yield the optimal schedule with respect 

to the global objective and could prove problematic computationally when there is a large 

number of agents (Brennan & Norrie 2001; Shen & Norrie 1999; Bongaerts et al. 2000; Shen et 

al. 2001; Tharumarajah 2001). This led to the study of hybrid control structures which try to 

bridge the gap between hierarchical and heterarchical control. Brennan and Norrie (2001), 

Bongaerts et al. (2000), and Cavalieri et al. (2000) present comparative studies that suggest that 

hybrid control architectures provide better performance than heterarchical ones. One of the 

proposed hybrid control architectures for CPPS was by Leitão and Restivo (2006). Leitão and 

Restivo (2006) developed the ADAptive holonic COntrol aRchitecture (ADACOR), a holonic 

architecture for agile and adaptive manufacturing control. ADACOR does this by using a 

supervisor holon to regulate the activities of the operator holons. They found that the balance of 

having the features of a hierarchical and heterarchical systems allows for near optimal response 

when system is undisturbed, but a rapid response to disturbances when one occurs. This finding 

is inline with those of Barbosa et al. (2015). 

Despite the research into CPPS control architecture, there are only a few industrial 

applications of it in literature. Bussman and Schild (2001) present the Production 2000+ project 

for producing cylinder heads in a DaimlerChrysler factory plant. They suggest that their 

proposed system was capable of robust manufacturing in the automotive industry in a high 

product flexibility environment whilst maintaining a nearly optimal production throughput. Also, 

note that whilst a number of works discuss CPPS implementation and design, most of these 

works present conceptual frameworks for implementation and do not quantify the benefits of 

CPPS implementation in tangible a manner such as improvements in factory performance 

measures (machine utilization, wait times, flowtime, etc). There is very little literature that 
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addresses this issue. Gronau & Theurer (2016) were able to demonstrate using their hybrid 

simulation (a combination of virtual and physical models) that CPPS can result in significant 

reductions to wait times. Žapčević and Butala (2013) found that CPPS implementation can 

decrease process variance and increase system productivity. Kamble et al. (2020) found through 

their surveys of companies employing CPPS that they resulted in optimized productivity due to 

optimized use of labor, materials and machines. As such, there is some literature that indicates 

that CPPS are beneficial, but further research is warranted. 

1.2 Designing a Smart Manufacturing System 

Designing a smart manufacturing problem can be seen as two distinct problems. The first 

problem is determining the resources that will be available within the system. Specifically, which 

type of machines will be available in the system, as well as how many of each machine type 

should be in the system. This decision will influence the system’s flexibility and robustness. A 

system with multiple duplicate machines will be better able to accommodate stochastic 

disturbances. However, having too many duplicate machines also means that the system would 

have low average machine utilization due to underutilized machines. Similarly, having many 

machines with different functional capabilities increases the number of operations available to 

the system, and, as such, adds more ways to produce parts. The selection of machines used in the 

system would have a significant impact on the planning process for the parts.  Specifically, the 

machine routing options and operation sequences for each parts’ process plan. This in turn would 

have a significant impact on the decisions available to the SMS agents which in turn would affect 

the system performance. As such, the selection of machines is quite important. 
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The second problem has to do with the facility layout design. The facility layout is an 

aspect of the physical layer of the SMS which refers to the arrangement of machinery, labor 

(operators) and materials in a manufacturing system within the spatial confines of the facility. 

Once the machines that constitute a manufacturing system are known, determining the facility 

layout design generally comes down to determining the type of layout to use, and then the 

location assignment for those machines.  The selection of the best layout type is dependent on 

the variety of products, the volume of demand and the type of product (information relating to 

parts required and operations sequence required to produce these parts). The most common 

layout types are product lines, cellular and functional. In a mass customization environment, 

there is high demand and high product variety as well as volatility in demand and product mix. 

Conventional layout types are not designed for such a manufacturing environment. One way to 

address this need is to use a hybrid layout. A hybrid layout combines aspects of the other layout 

types into one layout. Determining the optimal configuration for the physical layout is important 

to maximizing the performance of the system. The layout of a facility will impact the flow of 

WIP through the facility. This would impact the transfer times for parts through the system, and, 

as such, influence the completion time for orders. As the volume of parts ordered increases, the 

significance of this decision should become more apparent as the effect of any inefficiency 

compounds. An efficient layout should reduce the overall flow time for parts in the system. 

1.3 Research Objectives and Scope 

The main purpose of this research is to develop a framework for the design of a smart 

manufacturing system for use in a dynamic manufacturing environment subject to multiple 

sources of uncertainty. To that effect, the objectives of this research are as follows: 
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1. To develop a model for a smart manufacturing system that is capable of scheduling in a 

dynamic manufacturing environment. This model will be designed to accommodate high 

product variety and high product demand. (Chapter 3) 

2. To investigate the performance of the model we propose in comparison with alternative 

models using simulation. During this investigation we will examine the performance of 

these models under manufacturing environments subject to multiple, varying sources of 

uncertainty. (Chapter 4) 

3. To develop a simulation-based optimization model for determining the machine resources 

to deploy when designing a smart manufacturing system. The objective here is to design 

a system that minimizes the mean order completion time without excessive variation in 

performance or exceeding an allocated budget. (Chapter 5)  

4. To develop a simulation-based optimization model for determining the optimal machine 

location assignments. The objective is to design a layout that minimize the mean order 

completion time by minimizing the overall time parts spent in transit. This must be done 

within the spatial confines of the facility whilst maintaining adequate space between all 

machines. (Chapter 6) 

1.4 Research Contributions 

The main contributions of this thesis align with the objectives mentioned in the previous 

section. They are as follows: 

1. The development and testing (via simulation) of a model for the operation of a smart 

manufacturing system (SMS). This model treats the SMS as a decentralized problem 

solver consisting of a set of agents that collaborate to schedule jobs. This requires 
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defining the elements of the SMS as well as the rules that govern the how these elements 

operate and interact with each other as parts of the system. 

2. The investigation into how dynamic scheduling strategies perform when used in machine 

environments that are subject to both job-related and resource-related sources of 

uncertainty simultaneously. Typically, in literature, when dynamic scheduling problems 

are studied it is usually in environments subject to a single source of uncertainty 

(Ouelhadj, 2009). This is not representative of a real manufacturing system. Through this 

research, we aimed to study if the conventions in the literature held true when the model 

studied is more representative of the real system. From the literature, it is generally 

accepted that predictive-reactive scheduling should outperform completely reactive 

scheduling approaches. However, we were able to find conditions under which 

completely reactive scheduling outperformed predictive-reactive scheduling. 

3. The development of a model for machine resource deployment using simulation-based 

optimization. The limitation with current models for solving this problem is that they are 

typically limited to small sized problems due to the complexity of these sorts of problems 

(Chtourou et al., 2005). Also, the models typically fail to capture complex aspects of the 

system such as the interaction between the machines and the system inputs, or the 

interdependence and competition between machines. By using simulation-based 

optimization, the model presented in this work should be able to address both of these 

limitations. 

4. The development of a model for location assignment for smart manufacturing systems. 

With the increasing demand for customized products, we have high product variety and 

high demand volume alongside an uncertain demand mix. Conventional layout designs 
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have been either designed for high product variety or high demand (Tompkins et al., 

2002). Also, these layouts have been designed with the assumption that job shop 

scheduling would be done by the shopfloor manager. There is little literature on 

designing layouts for systems that self-coordinate. As such, it is important to develop a 

model for determining the near-optimal layout for such systems. The layout has a direct 

effect on how work-in-progress (WIP) flow through the system. This directly impacts the 

completion time for orders. It is important to understand if the traditional layout design 

options are the best options for use in SMS’s or if new layouts would results in better 

system performance. The results of our experiments present a case for hybrid layouts 

potentially outperforming traditional layouts. 

 

1.5 Organization of the Thesis 

This thesis is organized into seven (7) chapters. Chapter 1 introduces the research 

problem as well as our research objectives and motivation. In chapter 2, we present the literature 

review pertinent to designing our smart manufacturing system. The chapter begins by detailing 

various dynamic scheduling strategies and approaches. After which, we present how these 

approaches have been employed in problems involving manufacturing environments subject to 

different sources of uncertainty. We outline the advantages, limitations, and disadvantages of the 

dynamic scheduling approaches. Finally, the chapter concludes with a review of the literature on 

machine selection, and facilities layout design. 

In chapter 3, we present a detailed description of our proposed model for the smart 

manufacturing system. The proposed system consists of two domains, a physical and agent 

domain. We define and describe the characteristics of the elements of each domain, as well as 
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describe how the overall system functions. This chapter will also include a detailed description 

of the simulation model which we developed for use in our investigation into the performance 

and characteristics of our proposed SMS. As part of this description, we provide the algorithm 

used as well as the results of the demonstrative simulation experiments we conducted. This 

simulation model is intended to only require the demand mix, system machines, layout 

configurations and the information on the uncertainties to the system in order to estimate the 

order completion time. This relationship can be seen in Figure 1.1. 

 

Figure 1.1     System Inputs and Outputs for Proposed Simulation Model 

 

Chapter 4 contains our investigation into the performance of our proposed SMS when 

subject to different manufacturing environments. We will use simulation to evaluate the 

performance of manufacturing system using three distinct scheduling approaches; multi-agent 

systems (our proposed system), right-shifting rescheduling, and dispatching rule prioritization. 
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The chapter will contain a series of numerical experiments as well as the expected results from 

this investigation. The performance of the manufacturing system will be based on mean 

completion time and associated standard deviation after a set number of simulation runs. Chapter 

4 concludes with a summary of our findings from all five sets of experiments and a comparison 

of the performance of the three scheduling approaches evaluated. 

Chapters 5 and 6 focus on the specifics of designing the smart manufacturing system. 

Specifically, in chapter 5, we present a simulation-based optimization model for determining the 

type and number of each machine resource to have in the SMS. We refer to this problem as the 

machine deployment problem (MDP). In chapter 6, we present a simulation-based optimization 

model for determining the layout configuration for our SMS once machine selection has been 

finalized. The problem is referred to as the machine location problem (MLP). 

Finally, in chapter 7, we present our conclusions and recommendations. This chapter 

begins with a summary of the overall thesis. It then proceeds to an outline of the main 

contributions of this thesis. After which, the chapter concludes with our recommendations for 

future studies. 
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Chapter 2  

Design and Operation of Smart Manufacturing System: Background and Literature Review 

The real-world manufacturing environment is highly dynamic. Unforeseen disruptions 

occurring are not uncommon. This results in the need to reschedule in order to minimize the 

impact of these disruptions on system performance. Industry 4.0 brings with it increased data 

velocity, availability, and processing which provides allows for improved capability to 

reschedule. There is a need to determine how best to integrate Industry 4.0 into the operation of 

manufacturing systems. This requires solving three distinct problems. Firstly, we must determine 

how the system functions. After which, we must decide how to select resources to design the 

system such that it is robust. Finally, we must decide how best to organize these resources into 

the space available. 

  This work will primarily involve determining how a smart manufacturing system should 

schedule work in highly dynamic manufacturing environments. These manufacturing 

environments are subject to various uncertainties that make scheduling difficult; new jobs 

constantly arriving, variable processing times, machines availability issues, etc. Also, with the 

increase in mass customization, the impact of these uncertainties is exacerbated by the higher 

volatility in demand mix and volume that comes with higher variability in products. All of which 

makes this scheduling problem difficult. 

The problem of scheduling work for manufacturing systems is commonly referred to as 

the job shop scheduling problem. A schedule is the assignment of resources towards completion 

of a series of jobs. With job shop scheduling, it refers to the determining the work to be assigned 

to each machine at each time in a production run. The most common approach to job shop 
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scheduling in literature involves assuming little to no uncertainty in the manufacturing system 

inputs when determining schedule. When the inputs are fixed and deterministic, the problem is 

generally referred to as the static job-shop scheduling problem. In the context of the real-world, 

the static job-shop scheduling problem is not representative of the needs of the practical 

manufacturing environment (MacCarthy & Liu, 1993). This approach fails to make use of real-

time data (Cowling & Johansson, 2002) and, as such, cannot be easily adjusted. It assumes that 

there are no unforeseen events or randomness like new job arrivals, changes in demand, machine 

breakdown, variable processing and setup times, changes in due dates, changes in job priority 

etc. However, these events are part of the complexity of real systems and must be considered for 

the development of efficient schedules. This is the basis of dynamic scheduling, and the dynamic 

job-shop scheduling problem (DJSSP). 

 In our research, we propose a smart manufacturing system model for addressing the 

DJSSP. This solution involves the use of smart machines and smart parts to design a multi-agent 

system (MAS) for autonomously scheduling jobs that are requested of the system in real-time. 

There are multiple approaches to addressing the DJSSP. It is important to understand these 

approaches as well as their advantages and disadvantages. Through understanding these 

approaches, we came to our decision to employ MAS as the basis for scheduling in a smart 

manufacturing system. 

Once a model for how the smart manufacturing system should operate has been decided, 

there is now a question of which resources the system requires and how to arrange those 

resources within the facility. These questions are important as machine selection and location 

assignment will affect system performance, and as such affect the scheduling decisions made 
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within the facility. As such it is important to understand the various approaches for selecting 

machines as well as the approaches for designing facility layouts. 

The upcoming sections of this chapter are intended to cover the literature relevant to 

designing a manufacturing system in a highly dynamic environment. We will cover the literature 

on dynamic scheduling, scheduling under uncertainty, machine selection, and facility layout 

design respectively. 

 

2.1 Dynamic Scheduling Approaches 

Dynamic scheduling approaches fall under three categories; (1) completely reactive 

scheduling, (2) predictive-reactive scheduling, and (3) Robust pro-active scheduling (Ouelhadj & 

Petrovic, 2008; Wang et al., 2020). 

1. Completely Reactive Scheduling: With completely reactive scheduling no schedule is 

generated to begin with. Schedules are generated in real-time using priority dispatching 

rules or other heuristics. This approach is quick and easy to implement. However, 

solution quality may be poor, and it is difficult to predict the system performance as 

decisions are made locally without consideration for the global performance measures. 

2. Predictive-Reactive Scheduling: This approach involves creating an initial schedule and 

rescheduling operations in response to real-time events. It is the most common dynamic 

scheduling approach used in manufacturing systems (Ouelhadj & Petrovic, 2008). These 

approaches involve making simple adjustments to the schedule whilst considering only 

shop efficiency and stability. Schedule efficiency is usually reflected in the makespan 

whilst schedule stability is measured in the starting-time deviation and sequence 

deviation (Wu et al., 1991; Abumaizar & Svestksa, 1997). The primary objective with 
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predictive-reactive scheduling is to minimize the impact of disruptions on the 

performance of the revised schedule due to the changes. 

3. Robust Proactive Scheduling: This approach involves building predictive schedules in 

advance that anticipate the effect of disturbances on the system and maintain system 

performance within a predictable threshold (Mehta & Uzsoy 1999; Vieira et al. 2003).  

 

Dynamic scheduling problems are typically solved using heuristics, exact optimization 

algorithms and artificial intelligence, or by instituting policies for addressing system 

disturbances. In this research, we use an agent-based scheduling approach. We will compare our 

proposed method against a predictive-reactive scheduling and a completely reactive scheduling 

approach. For predictive-reactive scheduling, we will make use of partial schedule repair, 

specifically right-shifting. Schedule repair is employed because schedule repair approaches are 

the main approaches used by predictive-reactive scheduling systems (Sun & Xue, 2001; Dorn et 

al.,1995; Abumaizar & Svetska; 1997). Also, schedule repair has been shown to be more 

effective in maintaining schedule stability than complete rescheduling and requires less 

computation time (Sabuncuoglu & Bayiz, 2000). For the completely reactive scheduling 

approach, we will be comparing the performance to that achieved using priority dispatching 

rules. This is because they are the most commonly employed in real manufacturing systems 

(Ouelhadj & Petrovic, 2008) 

In the upcoming subsections, we will discuss the approaches to scheduling under 

uncertainty in more detail. We will provide the advantages and drawbacks of each approach as 

presented in literature. The latter sections of this chapter will address the common causes of 
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uncertainty or disturbance to the manufacturing system that will be investigated in our study 

(uncertain processing times, new job arrivals, and machine breakdown). 

 

2.1.1 Scheduling Under Uncertainty - Completely Reactive Scheduling 

With completely reactive scheduling no firm schedule is generated in advance, all 

decisions are made locally in real-time (Ouelhadj & Petrovic, 2008).  The most common 

approaches to completely reactive scheduling involve employing priority dispatching rules and 

agent intelligence (Ouelhadj, 2009; Aytug et al., 2005). Typically, with completely reactive 

scheduling, there is no consideration, context, or impact of the decisions being made. Work is 

scheduled for the immediate future using simple, readily available information on the system 

status. This approach might be better in regard to the global objective. However, they are rarely 

used due to the computation time and potential schedule instability that may result (Ouelhadj & 

Petrovic, 2008). Two commonly used approaches for completely reactive scheduling in the 

literature are dispatching rules, and multi-agent systems. In the upcoming subsections we will 

discuss the literature on both these approaches to completely reactive scheduling. 

 

Dispatching Rules  

Of the two approaches seen in literature, priority dispatching rules are the most prominent 

(Ouelhadj & Petrovic, 2008). When a machine becomes idle, dispatching rules are used to select 

the next job to be processed at a machine from a given set of jobs waiting for service. The jobs 

are selected based on a priority index calculated from job and machine attributes. This approach 

is usually quick, intuitive, and easy to explain to users and implement. This is why dispatching 

rules are the most common approach to job shop scheduling in real manufacturing environments 
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(Demirkol et al., 1997). However, it is important to note that this approach to dynamic 

scheduling is myopic (Ovacik & Uzsoy, 1997; Ouelhadj & Petrovic, 2008). It relies on local 

scheduling policies and does not consider future effects of the current decisions. As a result, 

global scheduling approaches have the potential to significantly improve performance of job 

shops when compared to dispatching rules (Ouelhadj & Petrovic, 2009; Demirkol et al., 1997). 

However, these global scheduling approaches are significantly more computationally taxing in 

comparison to priority dispatching rules. 

Some of the earliest literature on dispatching rules are for their implementation in the 

semiconductor industry (Mohan & Clancy, 1990; Golovin, 1989). It is also roughly around this 

time that researchers began focusing on dispatching rules as we start seeing a lot of literature on 

the material (Bhaskaran and Pinedo, 1991; Haupt, 1989; Ramasesh, 1990). Most of this research 

explored their application in flexible manufacturing systems (FMS). Around the same time, the 

idea of dynamically selecting dispatching rules as the state of the job shop changes emerged as 

an extension to the dispatching rules. Wu & Wysk (1989) are some of the early pioneers of this 

extension. They separate the production cycle into short intervals. At the beginning of each 

interval, a variety of dispatching rules are simulated, and the one that yields the best performance 

is implemented in the next time period. There are numerous studies that expand upon this area of 

research in literature. Piramuthu et al. (1991) developed a decision tree to select dispatching rules 

when a change to the system state occurs. They used a simulation model to generate data to 

which they apply an inductive learning algorithm which allowed them to develop their decision 

tree. Aytug et al. (1994) employ genetic learning to select a population of rules for a given 

system state. Kim & Kim (1994) developed a scheduling method that varies dispatching rules 

dynamically in real-time based on information from discrete event simulations using candidate 
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rules. Chen & Yih (1996) use a neural network to predict the appropriate dispatching rule to use 

under a given system state. Jeong and Kim (1998) expanded on the work done by Kim & Kim 

(1994). They presented a more systematic framework for simulation based real-time scheduling 

with eight scheduling strategies. Their results showed that system performance improved more 

by strategies that more directly respond to changes in system state during the planning horizon. 

However, it is important to note that these extensions do increase the computational power 

required to solve the dynamic job shop problem. 

 

Multi-Agent Systems 

The other common approach to completely reactive scheduling is the use of agent 

intelligence in the form of a multi-agent system (MAS). In our application, an agent can be 

described as an autonomous, decision-making entity within a system. The agent is self-contained 

with its own characteristics and behaviors. Each agent is able to interact with other agents and 

their environment (Kang & Choi, 2013). An agent receives inputs from other agents and the 

environment and decides on what actions to take based on its behavior pattern and then takes that 

action. A multi-agent system is one that consists of multiple, intelligent agents. 

In the context of a manufacturing environment, machines, operators, transporters, and 

parts can be treated as agents. A manufacturing system comprised of all or even a subset of these 

agents collaborating with each other to produce parts is an example of a MAS. This collaboration 

and communication between these agents to produce parts is in the form of assigning jobs to 

machines at specific times (scheduling). This is the basis of MAS-based scheduling for 

manufacturing systems. 
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With a MAS-based scheduling system, each agent is designed with a local objective. For 

example, a part agent could have the objective of minimizing flow time. A machine agent could 

have the objective of maximizing its utilization. There is also a global objective for the system as 

a whole. This is typically minimizing order completion time or minimizing production cost. Each 

agent acts autonomously to fulfill its objective and, in the process (depending on the system 

design), should collectively fulfill the global objective. 

Typically, with MAS-based scheduling approaches, there is a need to establish how 

negotiations between agents will occur. The most common approach in literature is to use a 

market-based negotiation approach, of which contract net-protocol (Smith 1980) and modified 

versions of this protocol are the most prevalent in the literature (Kang & Choi, 2013). This 

protocol requires agents to propose bids (and evaluate offers) and other agents to bid on these 

proposals. Through this auction process, tasks are allocated. With MAS-based scheduling 

approaches, the schedule is not planned a priori, however, it is generated in real-time by the 

dynamic interaction between the agents. 

There are two architectures that are typically implemented for MAS-based scheduling: 

autonomous and mediator architectures. With autonomous architectures, the agents directly 

represent entities within the manufacturing system (jobs, machines, parts, etc.) (Ouelhadj & 

Petrovic. 2009). These systems are purely heterarchical with each agent making local scheduling 

decisions with no consideration of the global objective. This approach, whilst it has good 

performance, may not yield the optimal schedule with respect to the global objective and could 

prove problematic computationally when there is a large number of agents (Brennan & Norrie 

2001; Shen & Norrie 1999; Bongaerts et al. 2000; Shen et al. 2001; Tharumarajah 2001).  

Brennan and Norrie (2001), Bongaerts et al. (2000), and Cavalieri et al. (2000) present 
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comparative studies that suggest that mediator architectures provide better performance than an 

autonomous structure in these regards. 

Mediator architectures are more of a hybrid control architecture. Similar to autonomous 

architecture, they have local agents (machines, parts, jobs, etc.) working towards their local 

objectives. However, there are also mediator agents that act as supervisors to the local agent. 

These agents’ primary objective is the global objective. They can advise, intervene, or update 

decisions made by local agents in order to resolve conflicts and to ensure that the system tends 

towards to global objective. Whilst the local agent is concerned with local situations, the 

mediator agent sees the entire system. This hybrid control architecture results in a system that 

can react well to disturbances but tends towards to optimal schedule (Barbosa et al., 2015).  

The literature on agent-based scheduling and MAS-based scheduling is quite extensive. 

Ranging from Yet Another Manufacturing System (YAMS) (Paranuk, 1987) to the various 

MAS-based scheduling for industry 4.0 (Barenji et al, 2017; Chao et al, 2021; Shi et al, 2021). 

The field is quite interesting, requiring that the agent intelligence be set to ensure good system 

performance. This process of setting agent intelligence is an area of major interest as it is unclear 

as to how to select agent intelligence for near optimal performance.  

 

2.1.2 Scheduling Under Uncertainty – Predictive-Reactive Scheduling 

Predictive-reactive scheduling is the most common approach to addressing the dynamic 

job shop scheduling problem (DJSSP) (Ouelhadj & Petrovic, 2009; Mohamed et al, 2018). Most 

of the definitions reported in the literature on dynamic scheduling refer to predictive-reactive 

scheduling (Ouelhadj & Petrovic, 2009). Predictive-reactive scheduling can be viewed as a two-

step process (Aytug et al., 2005). It is a scheduling/rescheduling process in which a schedule is 
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first created which represents the optimal schedule for the shop floor over a given time horizon 

assuming no disturbances. This schedule is then revised to account for real-time events/ 

disturbances to the system to minimize their impact on system performance. The final schedule 

that is executed (with all its revisions) on the shop floor is referred to as the realized schedule. 

With predictive-reactive scheduling, as with any strategy that involves rescheduling, 

there are two main issues that need to be addressed. The first is when to initiate rescheduling, 

and the second is which strategy should be employed when rescheduling. 

 

When to Reschedule – Rescheduling Policies 

Literature presents three main rescheduling policies: periodic, event-driven, hybrid 

(Church & Uzsoy, 1992; Vieira et al. 2003; Sabuncuoglu & Bayiz, 2000). In this subsection we 

will discuss these policies and highlight their advantages and disadvantages. 

With the periodic rescheduling policy, rescheduling actions occur at fixed intervals 

referred to as rescheduling points (Ayutug et al., 2005). These rescheduling points are at time kT, 

where k is an integer, and T is the time interval between. The schedule created at each of these 

rescheduling points is executed as planned and is only revised at the next rescheduling point.  

Any events that occur during or between rescheduling points are ignored. By rescheduling at 

fixed intervals, the DJSSP is broken up into a series of static problems each of which can be 

treated as a traditional job shop scheduling problem (JSP). Period rescheduling results in having 

more schedule stability and less nervousness (Ouelhadj & Petrovic, 2009). However, given that 

the schedule is followed regardless of events occurring, there is risk of poor system performance. 

As such, it is important to determine the appropriate time interval T for rescheduling, and this is 

difficult. Muhlemann et al. (1982), in their investigation of rescheduling frequency, found that 
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the scheduling performance negatively correlates with rescheduling interval. Whilst this might 

imply that the best approach would be to decrease the interval between rescheduling points, 

doing so has been shown to have diminishing returns with increased schedule nervousness 

(Aytug et al. 2005). This is corroborated by a number of other researchers (Sabuncuoglu & 

Bayiz, 2000; Sabuncuoglu & Karabuk, 1998; Perry & Uzsoy, 1993; Fang & Xi, 1997). 

With event-driven rescheduling policies, rescheduling is initiated when an event that 

could cause a disruption to the system occurs. Most approaches to dynamic scheduling use this 

approach (Ouelhadj & Petrovic, 2009).  Given that rescheduling only occurs as a result of a 

disruptive event, this policy is less computationally taxing than periodic policy whilst 

outperforming it (Yamamoto & Nof, 1985). These findings are corroborated by other researchers 

in the field (Vieira et al. 2000a; Vieira et al., 2000b). The consensus is that event-driven 

rescheduling is better than periodic. 

A hybrid rescheduling policy is one in which the system is rescheduling periodically and 

in the event of a specified disruption. Typically, these events are machine breakdowns, new job 

arrivals, job cancellations, and job priority changes. There is very little research into this area, 

Church & Uzsoy (1992) seems to be the most prominent work in this area. Their findings 

suggest that effectiveness of periodic scheduling decreases with increasing rescheduling periods. 

However, the event-driven policy achieved reasonably good performance.  

 

How to Reschedule - Rescheduling Strategies  

Most literature on rescheduling present three options for rescheduling: (1) right-shifting, 

(2) partial schedule repair, and (3) complete rescheduling (Sabuncuoglu & Bayiz, 2000; Cowling 

& Johanson, 2002; Vieira et al., 2003; Ouelhadj & Petrovic, 2009; Wang et al., 2020). 
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Right-shifting refers to delaying every subsequent operation affected by a disruption to a 

point in time where the disruption is resolved. For instance, if a machine in the system breaks 

down, all operations scheduled on that machine are delayed until the machine is brought back 

online. Right-shifting is a very particular subset of partial schedule repair. 

Partial schedule repair refers to a local adjustment of the nominal schedule in response to 

real-time disturbances to the system. With this approach, only the operations directly or 

indirectly influenced by the disruption are rescheduled, all other operations in the schedule 

proceed as scheduled. For example, if a machine in the system breaks down in a system where 

there are alternatives or duplicates to the current machine, the operations previously assigned to 

that machine may be rescheduled to other machines in the system. Once the machine that broke 

down becomes available again, another rescheduling event is triggered. This approach has been 

shown to be less computationally taxing than complete schedule repair (Ouelhadj & Petrovic, 

2009). 

Complete schedule repair refers to the rescheduling of all operations that have not yet 

been initiated in response to a disturbance to the system. Complete rescheduling may yield the 

best results, but they are rarely achievable in practice and are very computationally taxing 

(Ouelhadj & Petrovic, 2009).  This approach also results in schedule instability and increased 

schedule nervousness. 

The consensus from the literature is that in most practical settings partial schedule repair 

or right-shifting are used (Sun & Xue, 2001; Dorn et al., 1995; Abumaizar & Svestka, 1997; 

Sabuncuoglu & Bayiz, 2000). In fact, there is literature that shows that the partial schedule repair 

approaches outperform complete scheduling.  Yamamoto & Nof (1985) compared the 

performance of right-shifting against dispatching rules and complete schedule repair. Their 
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experiments show that right-shifting outperforms these other approaches. The partial scheduling 

approach also offers more schedule stability and predictability (Mehta & Uzsoy, 1999; 

O’Donovan et al., 1999). It is for this reason that in our study, we will be using partial schedule 

repair to address disruptions to the nominal schedule we will be using as the basis of our 

comparison to our proposed MAS real-time scheduling approach. 

 

2.1.3 Scheduling Under Uncertainty – Robust Proactive Scheduling 

 

Robust proactive scheduling involves producing a schedule a priori that tries to anticipate 

the effect of disturbances on the manufacturing system and attempts to minimize its effect on 

(Wang et al., 2020; Ouelhadj & Petrovic, 2009; Mehta & Uzsoy, 1999; Vieira et al., 2003). The 

main issue with robust proactive scheduling is how to implement it. 

One approach is to develop a schedule that has optimal performance under the worst 

possible scenario (Daniels & Kouvelis, 1995; Daniels & Carillo, 1997; Kouvelis et al., 2000). 

The objective of this approach is to determine a schedule with good performance over a wide 

range of possible disturbances. These studies show that this approach does, in fact, yield results 

with performance over several scenarios with little deterioration in performance. 

Another approach to robust proactive scheduling is to develop predictive schedules by 

optimizing to maximize predictability of the realized schedule (Mehta & Uzsoy, 1999; 

O’Donovan et al., 1999; McKay et al., 2000). With this approach there is a primary measure 

(tardiness, lateness, etc.) and a measure for predictability. Despite using different measures to 

estimate schedule predictability, all these studies came to similar conclusions. By using this 
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approach, a predictable schedule can be developed with minimal degradation of the primary 

performance measure. 

The primary issue with the robust proactive approach to scheduling is that it is assumed 

that all the disturbances to the system that could occur are known a priori. This is the basis for 

the schedule development. The problem with this is that it is not as practical as with completely 

reactive or predictive-reactive approaches. Those approaches are more concerned with adjusting 

to disturbances. However, the robust proactive approach is subject to the accuracy and 

completeness of information regarding the possible disturbances that could occur within a 

manufacturing system. It is for this reason that we do not use robust proactive scheduling in our 

comparison study. 

 

2.2  Scheduling in an Uncertain Manufacturing Environment 

2.2.1 Scheduling Under Uncertain Setup and Processing Times 

In real manufacturing environments, processing and setup times for operations are subject 

to some uncertainty. Operations are typically not completed within a fixed time frame every time 

they are repeated. This could be due to operator fatigue, differences in operator skill, tooling 

issues, etc. The uncertainty in these times can have negative effects on schedule efficiency and 

stability. As such, they should be accounted for in the scheduling process. 

There are many approaches to dealing with stochastic processing times when scheduling. 

These approaches include the use of completely reactive methods, predictive-reactive methods, 

and proactive scheduling. Lawrence & Sewell (1997) compared completely reactive scheduling 

(dispatching rules) to other predictive and proactive scheduling methods (global optimization 

approach). They find that as processing time uncertainty increases, the difference between 
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dispatching rules and global methods becomes less significant. In fact, they suggest that systems 

with high uncertainty in processing time, completely reactive algorithms can be confidently 

employed. They also question the benefits of global optimization approaches for these sorts of 

problems. The literature shows that the predictive approach yields the best solutions. In our 

research, we will be using a predictive-reactive approach as they yield the best solution. 

However, dispatching rules may be the most practical approach to handling uncertain processing 

times. Given that the different approaches to dynamic scheduling have been addressed in 

previous sections in this chapter, they will not be expounded upon further here. This section will 

focus on the approaches used to determine nominal schedules prior to production runs. 

A fair amount of literature on uncertainty in processing time when job shop scheduling 

typically extends deterministic models with stochastic reformulations that solve the stochastic 

model to optimality (Lawler et al., 1999; Shaked & Shantikumar, 1994). With these approaches, 

uncertainty is incorporated into the model as random independent variable expressed in the form 

of some predetermined distribution. The intent behind these approaches is to develop a robust 

schedule by minimizing a given performance measure. For example, the “disjunctive graph” is 

modified and extended by Fortemps (1997) to deal with fuzzy durations whilst job shop 

scheduling with the objective of minimizing the makespan. Another such heuristic is the shifting 

bottleneck heuristic. This was originally developed for the Jm|| Cmax problem by Adams et al. 

(1988). It has since been modified and extended by numerous authors to address dynamic 

scheduling environments (Petrovic & Fraya, 2004; Mönch et al., 2007). 

These stochastic models are technically complicated, relying on semi-Markovian decision 

theory and stochastic dynamic optimization. Also, the nature of this problem is NP-hard as it is 

an extension of the job shop scheduling problem which has been proven to be NP-hard. Given 
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the complexity of these problems, researchers often rely on heuristics to solve them (e.g. genetic 

algorithms, tabu search, simulated annealing, etc) (Fortemps, 1997; Chang & Lo, 2001; Yun, 

2002; Petrovic & Fraya, 2004). Each of these heuristics has its advantages and disadvantages 

depending on the nature of the problem being solved. Ishibuchi et al. (1994) demonstrated this in 

their comparison genetic algorithms, tabu search, simulated annealing, multi-start descent 

algorithm, and a hybrid genetic algorithm. They found that the performance of these techniques 

differs with problem size, with GA displaying more robust performance. Ishibuchi et al. (1994) 

also found that combining these techniques may yield significant improvement over either 

option. Their hybrid genetic algorithm yielded the best solutions in their simulation study. This 

has been corroborated by other researchers in this field (Adenso-Diaz, 1996; Liaw, 1998; Chang 

& Lo, 2001). 

In this research, we will be performing a comparison of our MAS-based approach to a 

predictive-reactive approach to scheduling. As such, it is important to understand the 

determination of the nominal schedule against which our approach will be compared. Based on 

the literature, we have decided to use a normal distribution to represent the uncertainty in the 

processing and setup times. For our determining our nominal schedule, we are focusing on 

minimizing the makespan as this is the most common objective we have found in our review of 

the literature. 

 

2.2.2 Scheduling for New Job Arrival 

In a manufacturing environment, new job arrivals are unpredictable (Muris & Moacir, 

2012), and can have significant impact on schedule stability and efficiency. A new job arrival is 

an order for a part being made during a production run. Prior to this order being made, there 
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would usually be a nominal schedule being followed in the job shop. This schedule would now 

require rescheduling to accommodate the new job arrival. New job arrivals may occur randomly 

(Gao et al., 2015), continuously (Nie et al., 2013) or intermittently (Muhlemann et al., 1982). 

There are very few specific surveys of the dynamic job shop scheduling problem that 

address new job arrivals (Wang et al, 2019). They do show that there are two common categories 

into which approaches to scheduling with new job arrivals fall under. These are completely 

reactive and predictive-reactive approaches (Moratori et al., 2010; Wang et al, 2019). Proactive 

approaches are not typically common in this area of research as it is difficult to account for the 

effect on random new jobs arriving on system schedule stability and performance. 

With completely reactive scheduling, a common approach is to employ dispatching rules 

(Wang et al, 2019). They are the simplest, and the most frequently used approach for schedulers 

to address high uncertainty scheduling environments (Dominic et al., 2004). As there is no 

nominal schedule in place to follow, any new job arriving to the system does not cause a 

disruption to said system. New jobs arriving to the system would simply be scheduled based on 

the dispatching rule being followed in the job shop. The main issues to address with using 

dispatching rules for scheduling under uncertainty is which dispatching rule to follow. There 

currently is no single dispatching rule that minimizes the all the typical performance measures 

used for dynamic environments (Blackstone et al., 1982; Haupt, 1989). These measures are 

makespan, flowtime, tardiness, and tardiness variance (Fattahi and Fallahi, 2010; Moratori et al., 

2010; Adibi et al.,2010; Wang et AL., 2019). Whilst no single rule is optimal, there are rules that 

can be employed that maximize system performance under most metrics. Dominic et al. (2004) 

performed a comparison of various dispatching rules and combinations of these rules as well. 

They found the at the combination of most work remaining + first-in-first-out (MWRK_FIFO) 
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and most work remaining + shortest processing time (MWRK_SPT) were found to have good 

performance in minimizing the most performance measures they evaluated. It is important to 

note that more complicated rules may perform better but are less practical to implement than 

simple rules. This is because they require more comprehensive information about the total 

system in order to implement them. Regardless of which dispatching rule is used in a job shop, 

the problem remains that the approach, whilst practical, is not the optimal solution to the 

scheduling problem. This is the major issue with dispatching rules. 

Under predictive-reactive scheduling, three approaches to dynamic scheduling are 

common in the literature when addressing new job arrivals. These are right-shifting, insertion in 

the end, and match-up algorithms (Moratori et al., 2010). With right-shifting, new operations are 

inserted into the schedule as required and any affected previously scheduled operations are 

moved downstream in the schedule. “Insertion in the end”, as the name implies, involves 

inserting the new job to the end of the nominal schedule. Match-up algorithms focus on trying to 

return to the nominal schedule as quickly as possible. A rescheduling window is created where 

the new job is inserted into the schedule. Before and after this rescheduling window, the 

schedule remains unchanged. Whilst these are three distinct approaches, the common thread 

between them is that they are partial schedule-repair approaches. This means that only the 

operations that are affected by the disruption are rescheduled.  Complete schedule repair in an 

environment where new job arrivals occur would result in high schedule instability and floor 

nervousness (Aytug et al. 2005). The main concern when using predictive-reactive scheduling is 

balancing schedule stability and efficiency. Right shifting and “insertion in the end” are optimal 

with respect to stability but perform poorly with respect to efficiency. However, match-up 

algorithms have been shown to be comparable to right-shifting or “insertion at the end” with 
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respect to stability. However, they have similar performance to complete schedule repair with 

respect to schedule efficiency when handling new job arrivals (Moratori et al., 2010). However, 

it is important to note that match-up algorithms have mostly been used for solving simple 

scheduling problems such as single machine problems (Bean & Birge, 1986; Birge & Dempster, 

1995) and single stage parallel machine problems (Bean et al., 1991). Also, there is the question 

of where to insert these rescheduling windows as well as their duration.  

Our proposed MAS-based scheduling approach falls under the category of completely 

reactive scheduling. Normally, completely reactive approaches are not as good as predictive-

reactive approaches with respect to efficiency but are more robust in the sense that they are 

reactionary and adjust to incorporate disruptions to the system. However, we propose that the 

incorporation of the appropriate agent intelligence and hybrid control architecture can result in 

similar scheduling efficiency to predictive-reactive approaches whilst providing the robustness of 

the purely reactive approaches. This is particularly important and useful in a highly dynamic 

manufacturing environment where new orders are constantly flowing into the system. 

 

2.2.3 Scheduling in Environment with Machine Breakdown 

One common assumption with static job shop scheduling problems is that machines are 

always available throughout the production cycle. However, this assumption is unrealistic 

because machines may become unavailable due to preventative maintenance, breakdown or 

repair (Mehta & Uzsoy, 1999). Addressing machine availability is important as unexpected 

machine unavailability may result in higher costs due to delays in delivery time, machine repair 

and material waste (Fazayeli et al., 2016). As such, mitigating the effects of machine 

unavailability by employing effective scheduling strategies is important, especially in a mass 
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customization environment where customer satisfaction with and, perception of the manufacturer 

can be adversely affected by delays in product delivery. 

As previously mentioned, there are three main causes of machine unavailability. These 

are preventative maintenance, breakdown, and repair. For this study, we will focus solely on 

machine breakdown and repair. This is because preventative maintenance is typically 

deterministic as the event is usually planned based on the facility planner’s knowledge of care 

for each machine. The start and end times for the machine unavailability period are known, and 

these periods occur at fixed intervals. As such, this information can be easily incorporated into 

the schedule by the planner. However, machine breakdowns can occur randomly and at random 

intervals. This makes them difficult to account for whilst scheduling. It can occur due to misuse 

of the machine or as a result of wear and tear even with proper use. Once a machine breaks 

down, it must be repaired before it can be used for further operations. This repair time is 

dependent on the type of damage to the machine as well as the resources available to direct 

towards the issue.  

There is a question of how to incorporate machine availability into the model? Whilst 

machine breakdown is non-deterministic, it is possible to estimate the mean time to failure 

(MTTF) and the mean time to repair (MTTR) for each machine from reliability data from the 

original equipment manufacturer (OEM) and previous experience. In the literature, this data is 

incorporated into the model in the form of a bounded uncertainty, distribution description or 

fuzzy data (Fayazeli et al., 2016). In our research, we will be expressing this data in the form of 

an exponential distribution. We are using the exponential distribution as it is very commonly 

used in reliability engineering as it phenomenologically and empirically represents the time-to-
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failure distribution of components, and equipment that exhibit constant failure rates (Kececioglu, 

2002). 

Literature on scheduling under machine uncertainty commonly focuses on predictive-

reactive or robust proactive scheduling strategies. With respect to proactive scheduling, a 

common approach is to insert idle times into the schedule (Mehta & Uzsoy, 1998; O’Donovan et 

al., 1999). This is inserting buffer space to the schedule for handling stochastic disruptions. The 

main issue with this approach is that you must decide how many idle times to insert and where in 

the schedule to insert them. Typically, surrogate measures of schedule predictability are 

developed to help determine the location and frequency of these idle time insertions. Other 

proactive approaches involve the use of heuristics or metaheuristics to solve multi-objective 

scheduling problems that attempts to maximize schedule stability and efficiency (Fazayeli et al., 

2016; Wang et al., 2015; Aloulou & Portmann, 2005; Goren & Sabuncuoglu, 2009; Buddala & 

Mahapatra, 2019; Nouiri et al., 2017). The issues with these proactive approaches are twofold. 

The first is that they are computationally taxing and as such there are limitations on the problem 

sizes that can be solved feasibly. The other is that proactive schedules are developed assuming 

that all the information is accurate, any disruptions not accounted for in these assumptions may 

have significant negative impact on the schedule stability. 

The other approaches to address machine breakdown when scheduling are predictive-

reactive and completely reactive scheduling strategies. These strategies focus on scheduling 

policy but can also involve rescheduling (Sun & Xue, 2001). With completely reactive 

scheduling, there is no nominal schedule, and jobs are assigned to machines in real time. This 

approach usually involves establishing scheduling policies that govern work assignment using 

dispatching rules or some other artificial intelligence-based approaches (multi-agent systems, 
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neural networks, etc.). With predictive-reactive approaches, a nominal schedule is first created, 

and rescheduling occurs in response to disturbances to the system. Rescheduling can be in the 

form of partial or complete schedule repair. Partial schedule repair involves rescheduling only 

affected tasks in the schedule whilst complete schedule repair involves rescheduling all tasks 

downstream of the disruption. Kutanoglu and Sabuncuoglu (2001) studied reactive scheduling 

policies based on rerouting jobs to their alternative machines when their primary machine fails. 

They find the best policy to employ is dependent on several factors such as machine utilization, 

mean times to failure and, mean repair times. They find that when downtimes are sufficiently 

long it is cost effective to reroute. However, if downtimes are short, it is best to wait at the 

primary machine. Merdan et al. (2011) use multi-agent system (MAS) simulation to assess the 

robustness of four different rescheduling policies. Like Kutanoglu & Sabuncuoglu (2001), they 

found that the best policy to employ is dependent on the MTTF and MTTR. However, they also 

found that when using MAS, the Complete Rerouting rescheduling policy outperformed all other 

rescheduling policies. Moratori et al. (2010), in their investigation into dynamic scheduling 

strategies, show that right-shifting is optimal with respect to schedule stability but comparable to 

total rescheduling with respect to schedule performance.  

From our review of the literature, predictive-reactive scheduling appears to be the best 

approach for dynamic scheduling. This is because these approaches are designed with the 

potential uncertainties in mind but also have policies in place for handling unforeseen 

disruptions. As such, we will be comparing our chosen approach to predictive reactive approach. 

Our application of predictive-reactive scheduling will handle disruptions by right-shifting. We 

chose right shifting as it offers optimal schedule stability with good schedule performance whilst 

being easy and intuitive to implement on a real shop floor.  
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Regardless of the model or approach utilized, there is a need to establish a robustness 

measure as the basis of evaluating the effectiveness of their proposed solutions. Most of the 

literature uses a variety of approaches to scheduling with machine breakdown. However, they all 

seem to focus on similar objectives; minimizing makespan, tardiness, completion times or 

flowtime (Ahmadi et al., 2016; Xiong et al., 2013; Yuan & Hua, 2013; Leon et al., 1994; Wu et 

al., 1999; Liao & Chen, 2003; Safari et al., 2010; Hasan et al., 2011; Dong & Jang, 2012; 

Fayazeli et al., 2016). From our review of the literature, minimizing makespan appears to be the 

common objective used for this problem. However, our research will focus on the minimization 

of both the total flowtime and the variability in the flowtime. This is because the total flowtime 

includes the makespan. 

Our proposed solution can be classified as under a reactive scheduling strategy. It is 

based on using an MAS to schedule jobs in the facility in real-time based on current system state 

and the global objective of minimizing order completion time or total flow time for the order. As 

such, our focus is to determine the objectives of the individual agents within the system that will 

result in the best system performance for any given input scenario. We will compare our 

approach against a predictive-reactive scheduling strategy that uses right shifting. Our 

comparison will be against right shifting the schedule by the machine downtime as it has been 

shown outperform dispatching rules as well as rescheduling by partial or complete schedule 

repair (Yamamoto & Nof, 1985; Abumaizar & Svestka, 1997). 

 

2.3 Layout Design – Machine Selection 

One of the major facilities design activities is deciding the selection and number of 

machines to use in a system from a given set of alternatives. It has been shown that these 
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decisions can have a significant impact on the quality, flexibility, and productivity of 

manufacturing systems (Arslan et al., 2004).  Determining the optimal number of machines to 

use in a manufacturing system has been explored as an aspect of multiple different problems in 

the literature. Early studies referred to this as the "machine requirements problem" (Miller & 

Davis, 1977). It was modeled and solved using mixed integer programming techniques (Miller & 

Davis, 1978; Kusiak, 1987). These models typically accounted for machine setup and processing 

times, costs, and availability. Behnezhad and Khoshnevis (1988) extended this model by 

incorporating a machine's production rate over time, known as the manufacturing progress 

function. However, Miller and Davis (1977) highlighted the limitation of these models, as they 

tend to oversimplify manufacturing systems by disregarding the interrelationships between the 

number of machines, and the system inputs, as well as ignore the interdependence between 

machines. 

Another related problem is the "machine selection problem," which involves evaluating 

and selecting the optimal number of machines using decision-making methods such as fuzzy 

multi-attribute decision-making (Wang et al., 2000). Chtourou et al. (2005) developed an expert 

system to systematically add and remove machines to optimize machine numbers, while Karim 

& Karmaker (2016) used analytic hierarchy process (AHP) to determine weighting factors for 

machine selection criteria and ranked the machine options using TOPSIS. 

In literature, the "machine duplication problem" also commonly arises when considering 

the number of machines in a manufacturing system. This problem involves decision-makers 

purchasing additional units of existing machines in a cell as a decision variable. Agnetis and 

Oriolo (1995) provided an early formulation to analyze optimal solutions for machine 

duplication in a manufacturing system with two jobs, and subsequent research considered 
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multiple considerations such as subcontracting bottleneck parts (Logendran & Puvanunt, 1997), 

group layout with unequal area requirements (Kia et al., 2015), operator assignment and cellular 

layout (Mehdizadeh & Rahimi, 2016), integration of cellular and distributed layouts (Defersha & 

Hodiya, 2017), and alternative process routings (Mohammadi & Forghani, 2017). To account for 

the uncertainty of cost, machine capacities, and part demands when determining machine 

duplication, fuzzy programming has been applied (Arikan & Güngör, 2005; Safaei et al., 2008). 

Additionally, research has considered the integration of duplicate machines with cell formation, 

layout, and scheduling (Feng et al., 2018; Feng et al., 2019; Rahimi et al., 2020). 

The computational complexity of the machine duplication problem was analyzed by 

Agnetis and Oriolo (1995), who demonstrated its NP-hardness when dealing with two jobs. 

Consequently, heuristic/meta-heuristic approaches have been proposed to solve various 

formulations of machine duplication problems, such as Tabu search (Logendran & Puvanunt, 

1997), simulated annealing (Kia et al., 2015; Mehdizadeh & Rahimi, 2016; Defersha & Hodiya, 

2017), genetic algorithms (Feng et al., 2019), and vibration damping optimization (Mehdizadeh 

& Rahimi, 2016; Rahimi et al., 2020). Hybrid procedures that combine heuristic/meta-heuristic 

algorithms with exact methods, such as cluster analysis + integer programming (Bortolini et al., 

2011), genetic algorithm + dynamic programming (Mohammadi & Forghani, 2017), and genetic 

algorithm (or simulated annealing) + linear programming (Feng et al., 2018), have also been 

proposed to improve the efficiency of algorithms. Additionally, the Taguchi method has also 

been used to determine the parametric settings for meta-heuristic algorithms (Mehdizadeh & 

Rahimi 2016; Feng et al. 2018; Rahimi et al. 2020). 

In this work, we will be using a combination of simulation and a metaheuristic (genetic 

algorithm) as the means to solve the machine selection problem. As such we will be presenting 
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the mathematical model for evaluating the results of the simulation. This model will guide the 

decision of the genetic algorithm. In our model, there are three metrics by which we will evaluate 

the performance of the system; the cost of the system, as well as the order completion time and 

its associated standard deviation. The system being considered will be a manufacturing 

environment subject to various sources of uncertainty; machine availability, demand uncertainty, 

variable setup and processing times, etc. Our model is intended to select the machines for a 

robust manufacturing system given a set of possible machine options. 

 

2.4 Layout Design – Facilities Layout Design 

Facilities layout design is a crucial aspect of manufacturing and has been extensively 

studied in literature (Sun et al., 2018). A vast body of literature has been surveyed by 

Balakrishnan & Cheng (1998), Meiler & Gau (1996), and Kusiak & Heragu (1987).  However, 

despite the vast amount of research in this area, it is still considered to be in its early stages 

(Hosseini-Nasab et al., 2018). The emergence of Industry 4.0, which introduces smart 

manufacturing and cyber-physical production systems (CPPS), coupled with the increased 

availability and velocity of data, has led to a more demanding market (Perez-Gosende et al., 

2021). This necessitates a shift towards more flexible manufacturing systems that can 

accommodate greater product variety while utilizing smaller lots. As such, facilities layout 

design remains a critical research area for manufacturers to optimize their operations and meet 

the demands of Industry 4.0. Facility layout can be broken down into three main problems: 

departmental planning, the facility layout problem (FLP), and the machine location problem 

(MLP). 
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Departmental planning is concerned with determining the appropriate layout type for the 

manufacturing facility based on demand volume and product variety. It involves taking into 

consideration the flow, space and activity relationships. (Tompkins et al., 2001). There are four 

conventional layout types; product, fixed location, functional, and cellular (group technology) 

layouts. Each of these types are designed to perform best when subjected to specific levels for 

product demand mix and production volume. The most common of these layout types studied in 

literature are cellular layouts and functional layouts. A functional layout consists of groupings of 

machines that serve similar functions, for example, a grouping of cutting machines into a cutting 

department coupled with grouping of drill presses into a drilling department. These sorts of 

layouts are good for low volume-high variety manufacturing environments. However, a 

functional layout is usually subject to poor material handling efficiency and high scheduling 

complexity which can adversely affect system performance (Sarper & Greene 1993; Montreuil, 

1999). A cellular (group technology) layout is based pairing machines into groups based on part 

families. Part families are a grouping of parts that share a number of similar operations that 

require the same set of machines. With group technology, these machines are grouped into 

departments that are dedicated to a specific set of parts. These layouts tend to become inefficient 

when the demand mix for products changes (Heragu et al., 2000). 

The facility layout problem (FLP) and the machine layout problem (MLP) are both 

critical tasks in manufacturing system design. These problems involve determining the optimal 

physical arrangement of facilities and machines to efficiently and effectively utilize available 

resources, while maximizing productivity and minimizing costs (Ku et al., 2011; Altuntas & 

Selim, 2012). Efficient layout solutions can significantly reduce material handling costs (MHC), 

while an inefficient layout can result in congestion and increased MHC (Saraswat et al. 2015). 
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Therefore, the proper design of manufacturing layouts is crucial for ensuring efficient and cost-

effective production systems.  

There is an extensive body of literature on the FLP dating back to the 1950s. Koopmans 

and Beckman (1957) were the first to model the FLP as a quadratic assignment problem (QAP). 

This QAP model has frequently been used to model the FLP (Kusiak & Heragu, 1987; Perez-

Gosende et al., 2021). Lawler (1963) was the first to formulate the FLP as a linear integer 

programming problem with modifications to the common QAP. The second formulation for the 

general FLP is a quadratic set covering problem (QSP) (Bazaraa, 1975). Kaufman & Broeckx 

(1978) further extended the QAP model for FLP. They developed a linear mixed integer program 

with the smallest number of variables and constraints amongst all the other inter programming 

formulations of the QAP at the time. All these models focus on minimizing the cost of placing a 

facility in a specific location as well as minimizing the flow between facilities. There are other 

models developed focusing on different measures. Some other measures that appear in the 

literature are transportation cost of materials, and closeness rating measure. Rosenblatt (1979) 

and Dutta & Sahu (1982) developed heuristics to solve FLP by optimizing these two measures. 

More recently, the most widely used approaches for modelling the FLP involve mixed integer 

non-linear programming (Gulsen et al., 2019; Vázquez-Román et al., 2019; Yang et al., 2019) 

and mixed integer linear programing (Allahyari & Azab, 2018; Ejeh et al., 2018; Kia et al., 2014; 

Klausnitzer & Lasch, 2019; Xiao et al., 2017). 

The literature on MLPs is not as extensive as that for FLPs (Perez-Gosende et al., 2021). 

However, similar to FLP’s, the earliest works relating to machine layout model the problem as a 

QAP (Hassan, 2007). The QAP is suggested for all machine layout types that are typical in 

MLP’s (Sarker et al., 1991; Kaklu & Rachamadugu, 1992). The MLP shares a number of 
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common objectives with the FLP.  Some objectives are the minimization of backtracking (Sarker 

et al., 1991, Kouvelis et al., 1992), minimization of material handling, operating and fixed costs 

(Kouvelis & Kiran, 1990), minimization of travel time (Sarin & Wilhelm, 1984, Heragu & 

Kusiak, 1988), maximization of throughput (Co et al., 1989). However, there are some objectives 

that are unique to the MLP such as minimization of the maximum number of transfers between 

machines (Leung, 1992), and minimization of the average number of machines that are visited by 

the parts (Kouvelis & Kim, 1992). 

FLPs and MLPs are often modeled as Quadratic Assignment Problems (QAPs), which 

have been shown to be NP-complete (Sahni & Gonzalez, 1976). As a result, various heuristic and 

metaheuristic methods have been proposed to tackle these problems. These methods include 

branch and bound (Gilmore, 1962; Lawler, 1963; Bazaraa, 1975), cutting plane algorithms 

(Bazaraa & Sherali, 1980), genetic algorithms (Kulturel-Konak & Konak, 2013), and simulated 

annealing (Allahyari et al., 2018). Hybrid algorithms have also been developed recently to 

enhance the solution quality for these problems. For example, Kulturel-Konak & Konak (2015) 

proposed a large-scale local search (LSLS) based on simulated annealing (SA) hybridization and 

MILP, which they named LS-HSA. Kulturel-Konak (2017) developed a metaheuristic solution 

approach called VNSAM that combined variable neighborhood search (VNS) and SA with an 

MINLP model. Additionally, Feng et al. (2018) introduced two hybrid approaches, GALP and 

SALP, to solve an MINLP model by combining GA and SA, respectively, with LP. 

New layouts have been proposed to overcome the drawbacks of traditional layout types. 

Overlapping cells were suggested by Irani et al. (1993), while Suresh & Meredith (1994) 

proposed machine sharing between cells, and Montreuil (1999) proposed fractal cells. With the 

advent of Industry 4.0, it is now possible to create novel layouts that are more efficient but less 
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intuitive. These layouts are typically a blend of conventional layouts and are referred to as hybrid 

layouts. 

Choosing the appropriate layout is crucial as the efficiency of the system can decline 

when there are fluctuations in product volumes, mix, or routings (Afentakis et al., 1990; Norman 

& Smith, 2001). To address this issue, it may be desirable to develop robust layouts. Early 

research on the robustness of layouts was carried out by Rosenblatt & Lee (1987), who proposed 

a model for designing layouts that can handle uncertainties. Palekar et al. (1992) continued this 

line of research by incorporating uncertainties into facility layout design. They employed 

dynamic programming to solve the model, which can handle both small and large problems. 

Studying the various layouts configurations and their impact on system performance is 

crucial. This is especially true with the SMS manufacturing environment where new, hybrid 

layouts may be better suited. As manufacturing environments increasingly shift towards high 

product variety with high production volume, the need for new types of facility layouts has been 

highlighted (Benjaafar et al., 2002). Hybrid layouts have been proposed as a solution to this issue 

(Ariafar et al., 2011; Irani & Huang, 1989). However, the suitability of each layout depends on 

the production conditions. After all, Zolfaghari & Roa (2006) demonstrated that the system 

inputs can significantly impact which layout (functional, cellular or hybrid) performs better. 

Therefore, it is imperative to develop a model to determine the optimal layout configuration. 

The present design criteria fail to fully account for how layout impacts crucial 

performance measures, such as cycle time, throughput rate, and congestion (Benjaafar et al., 

2002). Instead, these criteria rely on proxy measures, which may not be effective under a range 

of operating conditions. Therefore, there is a demand for a new category of layouts, and 

corresponding design models and solution methods for determining them.
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Chapter 3  

Smart Manufacturing System Model 

A traditional manufacturing system consists of machines and transporters that exist 

within the spatial constraints of a manufacturing facility. Within that facility, operators are 

tasked with the production of a predetermined set of parts using this system’s resources. They 

make use of the system’s machines to perform value-adding operations on work-in-process 

(WIP), taking them from being raw materials to finished parts. Transporters move the WIP 

between machines for processing. The WIP flows through the system based on a schedule or 

some pre-established scheduling principle. These schedules are determined prior to production 

based on processing plans for each part are developed given the machines available in the 

system. 

The smart manufacturing system (SMS) we propose is an extension of the traditional 

system. The primary difference between the SMS and traditional manufacturing system is that 

scheduling decisions are made in real-time by the systems parts and machines self-organizing 

whereas in the traditional manufacturing system, scheduling decisions are made by the job shop 

manager. This difference is illustrated in Figure 3.1. 



46 

 

 

Figure 3.1     Comparison of SMS to Traditional Manufacturing System 

 

The SMS we propose is provided with the processing plans for the parts required of the 

system. It uses this information to decide the best processing route options for fulfilling the 

current demand to the system for parts in real-time. The system can make these decisions as the 

main components of the system (parts and machines) are given agency. Machines are given 

agency with respect to deciding when to accept parts. Each part ordered has agency in deciding 

which available machine will be performing value-adding operations to produce it. The system’s 

parts and machines negotiate with each other to produce the finished. As such, the SMS we 

propose can be viewed as a distributed problem solver tasked with solving the problem of 

producing parts as efficiently as possible. 
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The ability to schedule (and adjust the schedule) in response to real-time events (dynamic 

scheduling) is the major benefit of our SMS.  Mass manufacturing environments are subject to 

numerous sources of uncertainty and by dynamic scheduling we reduce the impact of these 

uncertainties on the system efficiency is reduced. Our proposed SMS falls under the category of 

completely reactive dynamic scheduling. Specifically, our SMS employs multi-agent system-

based (MAS-based) scheduling. This approach does not require schedule development prior but 

offers more intelligence in its scheduling than scheduling using dispatching rules. 

The SMS can be viewed to consist of two interconnected domains; the physical domain, 

and the agent domain. A breakdown of the model’s domains can be seen in Figure 3.2. The 

physical domain encompasses the machines, transporters, and parts that exist within the system. 

The agent domain encompasses the intelligence of the system’s physical components. The 

upcoming sections of this chapter will describe our SMS model in detail. We will begin with an 

overview of the SMS as a whole. This will be followed by detailed descriptions of the physical 

domain of the model and the agent domain of the model. The chapter will conclude with the 

verification of the model through simple numerical experiments. 

 

 

Figure 3.2      Breakdown of the SMS Model 
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3.1 Smart Manufacturing System Overview 

The SMS we propose is a type of cyber-physical production system (CPPS). Wang et al. 

(2016) describes a CPPS as consisting of four layers: a physical layer, network layer, cloud layer 

and, supervisory and control layer. A layer can be viewed as a category to which a resource or 

entity belongs based on its function or characteristics. Each of these layers communicate and 

coordinate between each other to facilitate the manufacture of a set of products. They allow for 

the CPPS to be self-organizing and autonomous. We have chosen to represent the same concept 

in the form of two domains that communicate with each other; the physical and agent domains.  

The physical domain consists of the physical resources that exist within the system. 

These are the parts, transporters, machines, operators, and the facility floorspace. The facility 

houses the machines, parts, buffer spaces, operators, and transporters. The parts are transported 

by the transporters between machines to have value-adding operations performed on them. These 

physical resources are assumed to be “smart”. For example, machines are equipped with sensors 

with receiving and transmitting capabilities. These sensors allow them to communicate their 

current state to the system as well as other requested information related to projected operation 

completion times for certain tasks. The machines are also equipped with a microprocessor for 

localized computation of projected operation completion times. Similarly, parts in the system 

each have an RFID tag to communicate their current location in the facility as well as their 

current stage in the processing route. This information is communicated to the cloud which uses 

it to make decisions for the part.  The system’s transporters are assumed to be automated guided 

vehicles (AGV’s). These AGV’s have limited autonomy, they simply receive information from 

the system as to where to pick up parts, and where to deliver them to. 
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The agent domain consists of all of the system’s data storage and data processing 

capabilities which can be scaled on demand. These include things such as software-as-a-service 

(SaaS), infrastructure-as-a-service (IaaS), and platform-as-a-service (PaaS). It is necessary to 

handle the vast amount of data produced by a smart manufacturing system. The system is 

assumed to have the capacity to store data on the current status of all components of the system 

in real-time. This provides each agent within the system with an overview of the entire system to 

guide the agent’s decision-making. When a change occurs in the system, the agent responsible 

for that change makes updates to the cloud. The agent domain also includes the rules by which 

the system components negotiate with each other and their environment. This is each machine’s 

and part’s decision-making process. Each part and machine in the system has a representative 

agent that guides its decision-making in real-time. For the purpose of resolving system conflicts 

between agents, the system also includes a supervisory agent. 

To facilitate communication between the agent and physical domain we require an 

industrial network. The industrial network consists of the infrastructure that allows all the system 

components to transmit information between each other. This is typically in the form of an 

industrial local area network (LAN) or industrial wireless area network (WAN). This network is 

also the means by which each agent in the system would update its status on the cloud. In our 

model, it is assumed that all parts, machines, operators, and transporters can communicate and 

coordinate with each other in real-time over this network. As such, this aspect of the model is not 

explicitly modelled as is implicitly modelled in MAS agent interaction.  

It is also assumed that there are system terminals in the form of computers, tablets and 

phones through which people can access the performance and diagnostic data from the system 

and make adjustments to the system as necessary. In the upcoming subsections, we will discuss 
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the components of the smart manufacturing system as well as provide an overview of how the 

system works. 

In the SMS, decisions are primarily made in the cloud and then executed by the physical 

resources. Communication between the cloud and physical resources occurs over an industrial 

network. The cloud is provided with information relating to the parts in the systems (current 

stage in production and process plan network) as well as machine status (busy or idle as well as 

capacity and location). It uses this information to determine the schedule for jobs in real-time. 

This dictates what machines have been assigned to work on each part that requires service. This 

information is then relayed back to the physical system, which then executes the schedule 

(transports parts to the queue of respective assigned machines).  Upon any change to the physical 

system (i.e. machine completes/starts a job, part exits system, etc.), the physical system relays 

this information back to the cloud. The supervisory and control layer primarily observes the 

system performance and adjusts the objectives that govern the system performance.  An 

overview of the interaction between these layers can be seen in Figure 3.3.  
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Figure 3.3     Interaction Between Cloud and Physical Layer of Resources 

 

3.2 Physical Domain of the Smart Manufacturing System 

In this research, we model the machines and parts as well as the spatial specifications of 

the facility. We consider these three elements (parts, machines and facility grid) to be the “core” 

elements of physical domain of the SMS, and as such provide more detail on their representation 

is provided. In this section, we will provide a description of how we modelled these elements in 

this research.  

 

3.2.1 Machines 

Machines are resources that perform value-adding operations to WIP. In our model, we 

use M = {m1, m2, …, mnm} to represent the set of nm distinct types of machines in the system. 

Similarly, we use O = {o1, o2, …, ono} to represent the set of all no value adding operations that 

can be performed within a manufacturing system. The distinction between machines and 
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operations is important as the number of operations that a system can perform does not need to 

match the different types of machines in the system. 

Our model allows for duplicate machines and similar machines to exist within the system. 

Duplicate machines are machines that can perform the same operations for the same set of parts 

and have the same set up and processing times for each operation they can perform. Similar 

machines may vary in the set of common operations they can perform or have varying set up and 

processing times or both. It is important to note that in our model, the notation for operation 

refers specifically to the operation being performed and makes no inference to the machine being 

used to execute the operation. For example, if o1 refers to the operation drilling, and {m1, o1} is 

the notation for perform drilling at machine m1. Then, similarly, {m2, o1} would be the notation 

for perform drilling at machine m2. 

 An operation is an action that transforms the WIP and adds value to it. These are actions 

such as cutting, drilling, milling, planing, etc. The number of operations that can be requested of 

the system does not have to equal the number of distinct machines in the system (no ≠ nm). 

Whilst each machine in the system is capable of at least one operation, they may be capable of 

multiple different operations. The machine, however, can only perform one operation on one part 

at a time.  

A machine’s ability to execute an operation is part specific. A machine being capable of 

performing an operation does not mean it should be able to service all parts that require that 

operation. They can be capable of performing an operation for one part but not the other. For 

example, one drill press may only be able to fit a fixed set of bit sizes. Therefore, any part 

requiring a hole larger or smaller than the bits this drill press can hold cannot be processed on 

this machine. 
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In our proposed system, there is no queueing in front of machines for work. Machines 

can only accept parts’ requests when they are free to do so. Rather, any parts that have not been 

assigned to a machine for its next operation once it has been processed by the current machine 

simply waits in a buffer space adjacent to the current machine for its machine assignment. By 

doing this, the current machine is freed up to receive new part requests and is not forced to be 

idle by being occupied by completed work with nowhere to go. However, this requires that 

adequate buffer space be provided to hold parts between operations. 

The overall system dynamics for a machine are shown in Figure 3.4. A part waits to be 

assigned to a machine for work. Once this part is assigned to a machine in assigned a part, the 

part is transported to the machine. It waits in for the machine to be set up to service it. After 

which, the part is serviced by the machine. Once the part is serviced by the machine, it is 

released from the machine to transported to its next machine in its processing path or held in a 

buffer space. This process continues until the production cycle ends. 
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Figure 3.4    System Dynamics for Machines 

 

Machine Model Representation 

The key attributes that determine how well a machine performs an operation are the set 

up and processing times, and these are part specific for each machine. Machine reliability 

information is also very important. This is information relating to mean time to failure (MTTF) 

as well as mean time to repair (MTTR) for each machine. In our representation of machines, we 

focus on the collection of these pieces of information when describing machines. Setup time is 

the time spent preparing a machine to perform an operation on a part. Once, set up is completed, 

the operation can be executed on the part. The time required to complete the operation on a part 

using a given machine is the processing time on that machine. Both set up and processing times 

are specific to the machine the operation is being performed on, and the type of part being 

operated on. Whilst set up and processing times are machine and part specific, it is important to 
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note that two machines may be capable of performing the same operation for the same part but 

not have the same set up and processing times. This is because different machines may have 

different physical specifications. For example, two different drill presses may have different 

securing mechanisms and as a result require different setup times to perform the same operation 

on the same part type. 

In real life manufacturing environments, the set up and processing times can be uncertain. 

This could be due to the differences in operator capabilities or other stochastic factors that 

influence operator performance (fatigue, errors, skill difference, experience, shift changes, etc.). 

Also, machine breakdown occurs unexpectedly, and the time required for repair depends on the 

damage done to the machine. Given the uncertainty, these times are best represented in the form 

of a distribution. In this research, we have decided to represent the setup times them in the form 

of a normal distribution. Similarly, the MTTF and MTTR are represented in the form of an 

exponential distribution. This is based on the convention observed in the literature.  

In our model, machines are classified according to the operations they can perform and 

the parts they can service and their reliability information. We represent this using two different 

matrices. One of these is a machine-operation-part (MOP) relationship matrix (seen in Figure 

3.5a), and the other is the machine reliability information (seen in Figure 3.5b). Each machine 

has a corresponding MOP that defines its specific capability. The MOP lists the operations the 

entire system can perform as well as the different parts that the system can produce. A sample 

MOP matrix can seen in Figure 3.5a. This figure shows the mean (µ) and standard deviation (σ) 

for the setup and processing times for a three-part system. The MOP depicts the operations the a 

given machine can perform and which part it can perform it for. If an operation is possible for a 

given part on a given machine, it has numerical values assigned to its distribution, else, it is 
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assigned an entry of ‘inf’.  In Figure 3.5a we see that the given machine is capable of performing 

operation o1 for part p1, operation o2 for part p2, and operation o3 for part p3. The “inf” indicates 

that the machine is not capable of performing the operation for the given part. In this example, 

setup time for operation o1 would take an average of 2 time units. Processing time for the same 

operation would take an average of 5 time units. 

 

Figure 3.5     Machine Information Representation 

 

3.2.2 Parts 

Parts are the end product of performing a series of value adding operations on WIP to 

transform it from an incomplete part to a finished part. We represent the set of distinct parts (or 

different part types) that can be produced by a system using P = {p1, p2, …, pnp}. By distinct 

parts, we mean that the parts are not perfect duplicates of each other. In our model, we have 
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chosen to treat variants of parts as different part types that the system can produce. For example, 

parts p1 and p2 can both be tabletops. However, p1 could have a different surface finish than p2 

but otherwise be exactly the same. In our model, they would be treated as two different types of 

part. 

Producing a part requires the execution of a subset of the operations that the system’s 

machine can perform. This subset of operations must be executed in a specific sequence and each 

operation in this subset must be completed. This specific order in which a series of different 

operations must be performed in to produce a specific part is the operation sequence. For 

example, creating a wooden tabletop may require cutting a piece of wood into the appropriate 

size, planing the surface and treating the surface. In this example, the WIP is the wood we begin 

with, and the part is the tabletop. The part requires three operations; cutting, planing and surface 

treatment. Each of the operations performed on the WIP transforms it into a form closer to that of 

the desired part. Figure 3.6 shows the possibilities for WIP flowing through a six-machine 

system. WIP enters the system and is assigned a route to follow, at each machine an operation is 

performed that alters the WIP (depicted in Figure 3.6 by a change in color). 

The operations that make up the operation sequence required to produce a part are not 

defined by the specific machine performing the operation. By this we mean, if a part requires 

drilling to be performed, the requirement does not specify which machine must be used to 

perform this operation. As such, any machine in the system that can perform drilling can be used 

to perform the operation. Knowing the operation sequence required to process a part does not 

convey the information on how long each operation would take. This information can only be 

obtained by knowing the machine used as well as the part and operation required. We will also 

need to know the machine route being used. In this research, we distinguish between the 
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operation sequence a part follows and the machine route path through which it flows through the 

system. For each operation sequence, there may be multiple machine route options within a 

given system. This is the case with the example depicted in Figure 3.6 which depicts a system 

that produces one part. There are three possible machine route paths and two possible operation 

sequences. Two machine routes use operations o1 and o5, and the other uses operations o3 and o4. 

The machine routes using operations o1 and o5 use entirely different machines to perform the 

same operations. These machines may be duplicates (same processing and setup times) or similar 

(different processing or setup times). 

Each part may have multiple operation sequences that can be used in their production. 

These operation sequences may consist of permutations of the same operations. For example, if 

there are n operations required to produce a part, and the order in which they are executed is 

unimportant, then there are n! potential operation sequences for that part. Alternatively, each 

operation sequence may consist of sets of operations that are distinct from each other. The set of 

all possible operation sequences that can be used for manufacturing of a specific part using a 

given set of machines is represented in the process plan network for that part. The total set of 

operation sequences for each part represents the system’s overall flexibility with respect to the 

production of the given part. Each part has its own distinct process plan network. A sample 

process plan network for the system depicted in Figure 3.6 can be seen in Figure 3.7. In Figure 

3.7, we see that the part can be produced using two routes. One route o2 and o4, and the other 

using o3 and then o5. 

In our model, we assume that all operation sequence options in a given part’s process 

plan network are available to be used interchangeably during the production period. This means 

that the specific operation sequence chosen to make a specific type of part may be different at 
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different times during the production cycle depending on the system status (machine availability, 

part arrival times, etc.). It is assumed that during the production period, we can use alternate 

sequences if the system machines’ statuses make it viable. 

 

Figure 3.6     Machine Route Options for Sample Part In 6 Machine System 

 

Part Model Representation 

In our model, we represent the information from the process plan network in the form of 

an adjacency matrix. A sample of this matrix can be shown in Figure 3.7. The matrix depicts 

every operation sequence that can be used to produce a part. It begins from a start node and ends 

with an end node. Between the two, each column shows the next operation that can be executed 

given the preceding operations. For example, for the part depicted in Figure 3.7, we have a 

system capable of 5 operations. For this specific part, we can start its production using operation 

o1 or o3. Assume operation o5 is selected. From o1 the only available next processing step is o5. 
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This is the final operation along the sequence and as such, it leads to the end node. For this part, 

there are two possible operation sequences (o1, o5) or (o3, o4). Either option is allowed in our 

model. 

 

Figure 3.7     Sample Process Plan Network (left) and Operation Sequence Adjacency 

Matrix (Right) 

 

3.2.3 Facility Floorspace - Facility Grid 

The facility floorspace refers to the spatial dimensions of the facility from the top view. 

All resources (machines, work-in-process, raw materials and transporters) required to produce all 

parts must be able exist within the facility floor space. We assume that the facility has enough 

space to accommodate these resources. The positioning of these resources has a direct influence 

on the flow distance and flow path for each part and thus, the material handling costs. As such, 

the facility must be organized such that the flow distance can be effectively minimized whilst 

having feasible flow paths for all parts. All machines are assigned fixed positions within the 
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facility. Parts (in the form of work-in-process) are transported through the machine stations by 

the use of transporters. 

For a flow path to be feasible, the path along which a part is processed must be 

unobstructed by other machines. By this, we mean that there must be a route to get to each 

machine required that does not run through another machine. Flow path feasibility also requires 

that each machine on the route be accessible. For example, if all the machines in a facility are all 

tightly packed into a corner of the facility, all machines closest to the corner would effectively be 

inaccessible. This would be a situation where the distance would be minimal, however, flow 

paths effectively do not exist. To have feasible flow paths, there must be space around each 

machine to allow access to it. There must also be space (paths through the facility) allowed for 

transporting work-in-process (WIP). The optimal location assignments are highly dependent on 

the machine positions and the routing options for each part as they dictate the possible flow paths 

and distances through the facility. 

 

Facility Grid Model Representation 

In our model, we have chosen to represent the facility floorspace in the form of an a by b 

rectangular grid of spaces we are calling a facility grid. The facility grid is a grid representation 

of possible locations where machine workstations can be set up. Each space in the grid is 

assumed to be sufficiently large enough to contain only one machine. Once a machine is 

assigned to a location on the grid, that position is its fixed position for the production period (no 

reconfiguration). To allow for access to a machine occupying a given space, we do not allow for 

any two machines to be in direct contact (all adjacent spaces to an occupied space must be 



62 

 

empty). This allows for multiple flow paths to coexist as well as for freedom to approach each 

machine from any direction. 

We represent the facility grid in matrix form. Let G = [Gij] be an a by b matrix that 

represents a grid of possible positions within the facility that a machine can be located (See 

Figure 3.8). Each location is assigned a number that identifies that location in the grid. This 

number is used in the encoding of the problem to indicate where the machine is assigned. For 

example, in Figure 3.8, G33 = 9. Meaning that location (3,3) on the grid is labeled location 

number 9. The labeling structure is used in place of cartesian coordinates to simplify the 

encoding of the problem by reducing the number of variables that need to be considered and with 

that, shortening the chromosome length. 

G is used to establish a labeling structure for solving the problem. However, we need to 

establish a machine location assignment matrix, L. This allows us to see exactly where each 

machine is in the facility. Let L = [Lij] be an a by b matrix that contains information on where 

each specific machine is located in a grid of possible locations within the (See Figure 3.8).  Such 

that L11 = 2 indicates that machine m2 has been assigned to position (1,1) on the layout grid. 

Note, L11 corresponds with G11. 

One of the constraints is that each machine does not have any other machine adjacent to 

it. For the sake of simplicity, we created a matrix of occupied locations within the grid. Let Y = 

[Yij] be an a by b matrix that indicates if a machine is located in a space of a grid of possible 

machine locations within the facility (See Figure 3.8). Yij = 1 indicates that a machine has been 

assigned to position (i,j) and Yij = 0 indicates the space is unoccupied.  

Having established the locations of each machine, we can construct a distance matrix 

given that each spatial unit on the grid is a 1m2 square. The distance is the number of squares it 
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would take to move from one node to the next. Diagonal movements are not permitted. An 

example distance matrix for the grid shown in Figure 3.8 can be seen in Figure 3.9. Let D = [Dij] 

be an nm by nm matrix that depicts the distance between machines, where nm is the number of 

machines in the system. Dij = 1 indicates that machine mi is 1m away from machine mj. 

 

 

Figure 3.8     Matrix Representations of Layout 

 

 

Figure 3.9     Distance Matrix Example 

 

3.2.4 Operators 

Operators perform operations on the WIP using the machine. In our model, we do not 

explicitly model operators. However, we allow for operators to exist if needed as well as for the 

system to be fully autonomous. When operators are present, it is assumed that when a machine is 

in use (during set up and operation), that an operator is present. Also, in that scenario it is 

assumed that there are sufficient operators in the system such that there are no delays in work. 

0 1 1

 D = 1 0 3

1 3 0
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The operator notifies the system when they are free or busy and the system tells the operator 

what to do. 

3.2.5 Transporters  

Transporters are physical resources that move WIP from one location to another as 

required by the system. The transporter capabilities determine the transfer time. This is the time 

required to transport parts from one location to another within the facility. It is assumed that 

there are sufficient transporters to move all parts that require it between machine locations. 

These transporters are assumed to never encounter obstructions or delays in their path and will 

always take the optimal path between locations (transfer time is always the shortest time). 

Transporters, in this model, are assumed to have a fixed, constant, preassigned speed. 

 

3.2.6 Buffer Space 

Buffers are spaces where WIP are held when they have finished being served by a 

machine but not yet in assigned to a new machine. This happens when every machine that could 

be used to execute the next operation in a part’s processing route is busy serving another part. 

They allow for the current machine to be freed to accept new work even when WIP cannot be 

moved to its next processing step. It is assumed that there is always sufficient buffer space to 

hold parts in the event that they must wait for the next available machine that can perform the 

next operation in their operation sequence.  
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3.2.7 Overview of Physical Domain of SMS Operation 

In our model, a part order enters the system and immediately initiates a job that needs to 

be scheduled. The system determines which machine is assigned the first operation in this job 

based on the current system state. The system transports the raw materials or WIP to its assigned 

machine for the operation to be executed. Once the operation is completed on the machine, a new 

operation is requested of the system and the process repeats again. This continues until the job is 

complete. At this point, the completed part is transported out of the system. Figure 3.10 depicts 

an overview of the operation of the physical aspect of the SMS. 
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Figure 3.10     Operation of the Physical Aspect of the SMS 

3.3 Agent Domain of the Smart Manufacturing System Model – Multi-Agent System 

Determining how to schedule work in a mass customization manufacturing environment 

is difficult. This environment is subject to high levels of uncertainty which makes scheduling 

difficult. Cyber-physical production systems (CPPS’s) provide a solution for scheduling in such 
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an environment. With the SMS, there is a large volume of data being generated in real-time. The 

system has the infrastructure for collecting information (sensors) and communicating (an 

industrial network, transmitters, receivers, etc.) the real time status of the system is available. 

This status information includes the real-time status of the system’s machines (idle or busy), the 

current location of all WIP and the current processing stage each WIP is at. The CPPS has the 

capacity to store and process this information is available (SaaS, IaaS, PaaS). This begs the 

question of how to effectively use this data and processing capability? We propose using a multi-

agent system-based approach. The approach allows us to break the complex problem of 

scheduling in real-time into a series of smaller, less complex problems. The result is a less 

computationally taxing and more scalable solution.  

The SMS we propose is a multi-agent system (MAS). This means that it consists of 

multiple autonomous agents which interact with each other whilst acting towards their individual 

goals. With MAS, there are three important things to establish. One is the rules that govern the 

interaction of the agents (part agents and machine agents). Particularly, what information is 

exchanged between the agents of the system. The second is the objective that guides the 

behaviour and decision-making of each agent within the system. Lastly, the control architecture 

for the system (the hierarchy of the agents within the system with respect to decision-making) 

must also be established. 

In our SMS model, we have two major components; (1) parts and (2) machines.  We have 

chosen to give both these components autonomy in the scheduling process. Due to literature 

suggesting the benefits of a hybrid control structure, we also incorporate a supervisory agent 

(Barbosa et al, 2015). As such, there are three types of agents that exist in our model: (1) part 

agents, (2) machine agents, and (3) the supervisory agent. 
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In this section, we will describe each agent type within the system, the control 

architecture of the system, and how the parts and machines interact with each other within the 

system. More specifically, we will discuss how decisions are made within the system. 

 

3.3.1 Agent Descriptions 

In our model, we have three (3) types of agents within the system. These are part agents 

(PAs), machine agents (MAs), and one supervisory agent (SA). This subsection will provide a 

description of these agents. More specifically, we will describe their function and objective 

within the system. 

 

Parts Agent 

The part agent (PA) is a representative for a specific part that was ordered from the 

system. Each part requested from the system is assigned its own respective part agent. This PA 

solely focuses on scheduling the production of the part it represents, and that part alone. It 

competes with the other part agents in the system for time at the system’s machines.  

Each part agent is like an auctioneer. It auctions operations required to produce the part 

that it represents to the systems machines. When the part it represents is not being processed at a 

machine, the PA has work that it needs done and so sets up an auction for this work for the 

machine agents to bid. The bids provided by the machine agents are the time required to 

complete the request the part agent made. This is the summation of the transfer time (TT) to 

machine from the part’s current location, the setup times (ST) and processing times (PT) at a 

given machine. The PA selects the best available bid. 
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The part agent’s objective is to minimize the flow time (FT) for the specific part, p, it 

represents. More simply put, its objective is to produce the part it represents as quickly as 

possible. This is done by selecting the best machine and operation combination at each 

processing step that advances the part to the next processing step the fastest. The objective 

function is as follows: 

min 𝐹𝑇𝑃 (𝑀, 𝐿) (3.1) 

𝐹𝑇𝑃(𝑀, 𝐿) = 𝑇𝑇𝑃(𝑀, 𝐿) + ∑(𝑆𝑇𝑖𝑝 + 𝑃𝑇𝑖𝑝)

𝑚

𝑖=1

(3.2) 

Once a part agent is generated, it operates as follows: 

1. If part is not being serviced by machine 

i. Request operation(s) from system 

2. Receive information 

i. Transport time from each viable machine agent 

ii. Setup time from each viable machine agent 

iii. Processing time from each viable machine agent 

3. Determine the combination of machine and operation that yields shortest time to 

next the operation 

4. Create and Send ranked list of machine and operation combinations for use in 

event of conflict with other part agent 

5. Assign work to the machine 

6. Wait for confirmation of lack of conflict from supervisory agent 

i. if there is a conflict receive new machine and operation assignment from 

supervisory agent based on ranked list sent 
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7. Wait for work to be completed 

8. Repeat process until there are no more operations 

9. Delete part agent 

Machine Agent 

A machine agent (MA) is a virtual representation of a machine in the system. Each 

machine in the system has its own respective MA. This agent has the ability to make decisions 

on behalf of the machine it represents. The specific decision it makes is whether or not to look 

for new jobs for the machine it represents. It competes for these jobs with other MAs for similar 

machines.  

The MA is aware of the capabilities of the machine it represents. This means the MA has 

the information on which operations its machine can perform. It also has information on the parts 

this machine can service as well as the processing and setup times associated with servicing 

those parts. It is also aware of the real-time status of the machine (whether the machine is idle or 

busy). The machine agents use this information to make decisions on which PA requests to bid 

on as well as to prepare estimates to submit as their bid. 

The objective of the machine agent is to maximize the utilization of a specific machine 

(as shown in Equation 3.3). To do so, the machine agent sends bids on all available work if, and 

only if, the machine it represents is currently idle. The machine agent is like a contractor. It 

decides on whether or not to bid on work and then proceeds to prepare a bid for the auctioneer 

(the PA). This bid is an estimate of the amount of time required to complete the process 

requested by the PA. All MA’s that are able to bid on a job do so. The MA that sends the best bid 
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is awarded with that work. If two or more bids are equivalent, the work is randomly assigned to 

any of the winning MAs. 

max 𝑀𝑈𝑚  (3.3) 

The machine agent functions as follows; 

1. Receive request to execute operation 

2. Assess if machine is free or busy (if busy ignore request from part agent) 

3. Estimate processing and setup time for requested operation 

i. Given distribution for the operation 

4. Estimate transfer time  

5. Send transfer, set up and processing time to part agent 

6. Wait for operation to be assigned 

7. Complete assigned operation  

8. Repeat 

Supervisory Agent 

There are bound to be job assignment conflicts with our MAS scheduling approach. 

Perhaps there is a bottleneck machine that all parts need processing on. In such situations, there 

needs to be a means to resolve these conflicts. The PAs cannot do this as they are not concerned 

with the global objective. They represent their part’s best interest and that alone. There is no 

incentive for any agent to defer to another. That is why a supervisory agent (SA) is necessary. 

The SA acts as a referee in the auctioning process. It observes the interactions between machine 

and part agents and only ever intervenes when a machine wins multiple bids simultaneously. The 

supervisory agent intervenes by reassigning work in such a way as to best align with what is best 
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for the system as a whole. In doing so, the SA ensures that the MAS scheduling solution tends 

towards the global objective of the system. 

The SA’s objective is to minimize the largest observed flow time (FT) for all parts 

involved in the scheduling conflict. The SA is responsible for determining the machine 

assignments for parts whose PA’s assigned them to the same machine. This decision should 

result in shorter flow times overall for completely processing the total order of parts. This could 

involve determining which parts should be scheduled on an alternate machine. It could also 

involve determining which part should be given priority, and which should wait in buffer space. 

The objective function is as follows: 

min (max (𝐹𝑇1(𝑀, 𝐿), 𝐹𝑇2(𝑀, 𝐿), … 𝐹𝑇𝑝(𝑀, 𝐿))) (3.4) 

The supervisory agent functions as follows; 

1. Receive machine assignments 

2. Receive ranked list of alternate assignments 

3. Assess if intervention is needed. Check if there are conflicts in machine 

assignments (if none exist do nothing) 

4. Reassign machine jobs based on ranked list such that global objective is fulfilled 

5. Send new machine assignment information to machines and parts agents 

6. Repeat 

3.3.2 Multi-Agent System Control Architecture 

The MAS approach we present employs a hybrid control architecture (combining 

elements of heterarchical and hierarchical control) and is developed based on contract net 
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protocol (Smith 1980) and the extension to contract net protocol presented by Wei et al. (2007). 

This approach has been shown to provide the best compromise between system performance of 

hierarchical control and the reduced sensitivity to stochastic disturbances exhibited by 

heterarchical control structures (Barbosa et al. 2015). In our model, PAs and MAs exist on the 

scheduling layer, and the SA exists on the supervisory layer. The hierarchical representation of 

the system can be seen in Figure 3.11. 

 

Figure 3.11     Hierarchical Representation of System's Agents 

 

3.3.3 Overview of Agent Relationships Within the System 

In our model, we assume that the infrastructure for collecting information (sensors) and 

communicating (an industrial network, transmitters, receivers, etc.) the real time status of the 

system is available. This status information includes the current status of the system’s machines 

(idle or busy), the current location of all WIP and the current processing stage each WIP is at. 

We also assume that the capacity to store and process this information is available (Software-as-

a-Service, Infrastructure-as-a-Service, Platform-as-a-Service). The question is, how should we 

Scheduling 
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use this information to schedule work? We are using a MAS for this scheduling. In the previous 

subsection, we have presented the three types of agents that exist in our model: (1) part agents, 

(2) machine agents, and (3) the supervisory agent. This subsection will focus on how these 

agents communicate with each other during their interaction. To that effect, an overview of each 

agent’s functions, inputs and outputs can be seen in Figure 3.12. Figure 3.12 also shows the 

information flow between each agent.  

 With each part ordered from the system, a PA is generated. Before each processing step, 

each PA announces to all machines the work available to be done for their respective part it 

represents. They request bids from machines in the form of estimates of time required to get each 

respective part to the next processing step. The MAs review all requests for work from the PAs 

in the system. If any MA in the system can execute the operation, and is available to do so, it 

returns a bid. This bid consists of three pieces of information, the estimated transfer time, setup 

time and processing time for the specific part and operation combination. The PAs review their 

bids then select winners to assign work to. After which, each PA ranks the remaining machines 

based on their bids as potential alternates. All of this information is then communicated to the 

SA.  If there is a conflict (i.e. two PAs awarding work to the same machine), the SA intervenes. 

It reviews the ranked list(s) of alternate machines provided by the PAs and then assigns work 

based on minimizing the maximum flowtime (FT) for all parts (p) currently in the system.  If no 

MA bids on a PAs work request, then the PA must wait and re-announce the work. In the 

meantime, the part is held in storage until it can be processed. It is assumed that there will always 

be sufficient storage capacity for work-in-process (WIP) in the system. Similarly, if no work is 

available to bid on, the MAs simple wait idly for work to be requested. A comprehensive 

illustration of the behavior of and the interaction between the agents in the system is represented 
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in the UML-Sequence diagram shown in Figure 3.13. These series of interactions continue until 

all parts requested of the system are produced and the production cycle ends. 

 

Figure 3.12     Information Flow Between Multi-Agent System Agents 
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Figure 3.13     UML-Sequence Diagram for Multi-Agent System Model 
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3.3.4 Illustrative Example of MAS Agent Decision-Making Process 

In this section, we present an illustrative example to demonstrate the agent decision-

making process in our MAS model. For this example, we have a system consisting of eight (8) 

machines which can be used to produce two (2) different parts. Figure 3.14 depicts the layout of 

the system for this example. Each part has 2 possible machine routes that they can follow. The 

routing information for each part can be seen in Figure 3.15.  For this example, we will 

demonstrate the decisions made when trying to produce part 2. We will assume that it is the only 

part in the system. 

 

Figure 3.14    Example Layout Design 

 



78 

 

 

Figure 3.15     Part Routing Information (bottom) and Processing and Setup times (top) 

 

MAS Agent Decision-Making for Production of Part 2: 

The following steps represent the MAS decision-making process for the production of part p2: 

Step 1: Request bid from m1 or m5 

Step 2: Wait for bids on work 

- m1 returns bid (job takes: 5 hrs; remaining flowtime: 13 hrs) 

- m5 returns bid (job takes: 9 hrs; remaining flowtime: 15 hrs) 

Step 3: choose m1 (see Figure 3.16) 
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Figure 3.16     First Routing Decision 

 

Step 4: Wait for work to complete on m1 

Step 5: Request work for m2  

- m2 returns bid (job takes: 3hrs; remaining flowtime: 10 hrs) 

Step 6: choose m2 (see Figure 3.17) 

Step 7: Wait for work to complete m2 

 

Figure 3.17     Second Routing Decision 

 

Step 8: Request work from m3 and m6 

- m3 returns bid (job takes: 5hrs; remaining flowtime: 5 hrs) 
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- m8 returns bid (job takes: 12hrs; remaining flowtime: 0 hrs) 

Step 9: choose m3 (see Figure 3.18) 

Step 10: Wait for work to complete in m3 

Step 11: Request work for m6  

- m6 returns bid (job takes: 5hrs; remaining flowtime: 0 hrs) 

Step 12: Choose m6 (see Figure 3.18) 

Step 13: Wait for work to complete in m6 

Step 14: Done. End simulation 

 

Figure 3.18     Final Routing Decision 

 

3.4 System Properties and Performance Measures 

There are a number of properties that can be used to evaluate the performance of different 

manufacturing systems. Some of these include the throughput, completion time, machine 

utilization, flowtimes, and wait times. In our model, we primarily focus on three measures; (1) 

completion time, (2) wait times, and (3) transfer times. In this section, we will describe these 

properties. 
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3.4.1 Order Completion Time 

The order completion time is the time required to completely process all orders for parts 

placed to the system. Processing orders completely for a part requires converting the raw 

material to the finished good through a series of operations.  

The order completion time is the key metric by which the performance of the SMS will 

be evaluated against the MS.  This is because shorter order completion times indicates that the 

system is deploying its resources effectively to minimize instances of machines being 

underutilized, parts waiting unnecessarily in the system, or longer than required time in transit 

for the parts. 

 

3.4.2 Wait Time 

The wait time is the time WIP spends in the system waiting to be served by a machine. 

This does not include the time the WIP spends in transit. Higher part wait times indicate that the 

volume of parts entering into the system exceed the capacity for the system’s machines to serve 

them or that the system’s resources were being poorly utilized. Conversely, low wait times 

suggest that system’s resources were sufficient to service parts in the system, or that the system’s 

resources were being effectively utilized. 

 

3.4.3 Transfer Time 

Transfer time refers to the total time that a part spends being transported from one 

location in the facility to the other. Transfer times are dependent on two factors; (1) the machine 

route through which the part flows, and (2) the relative distance of machines in the system. 
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Transfer times provide an indication of how efficiently the machine locations within the 

facility are assigned whilst considering the processing network plans for the various parts that the 

system must produce. A shorter transfer time is better; however, it is not a direct indicator of the 

effectiveness of a system.  

3.5 Model Verification 

To verify that the presented model works as expected we have executed a number of 

verification experiments. In this section, we will describe the numerical experiments that were 

used for model verification, the intent of these experiments, and the results of these experiments. 

 

3.5.1 Verification Scenario 

As verification, we present a scenario in which we have twelve machines used in the 

production of one part (p1). Part p1 requires three operations to produce it, operations C, D and E. 

There are 4 sets of machines (m5, m6, m7, m8) that can perform operation C. There are 4 sets of 

machines (m1, m2, m3, m4) that can perform operation D. There are 4 sets of machines (m9, m10, 

m11, m12) that can perform operation E. Each machine that can perform the same operation is a 

duplicate of the other. The processing and setup times for each operation at their respective 

machine type can be seen in Table 3.1. At time t = 0, 20 units of part p1 are requested from the 

system. 
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Table 3.1     Setup and Processing times For Part p1 (in Time Units) 

 Operation C Operation D Operation 

E 

Minimum Time 

Required 

Setup 0.009 0.009 0.009 

Processing 0.090 0.090 0.090 

Average Time Required Setup 0.010 0.010 0.010 

Processing 0.100 0.100 0.100 

Maximum Time 

Required 

Setup 0.011 0.011 0.011 

Processing 0.110 0.110 0.110 

 

In this scenario we will examine the performance of two different layouts. These layouts 

are shown in Figures 3.19 and 3.20. The purpose of this scenario is to illustrate that distance has 

a significant effect on the completion time of an order. The primary difference between both 

layouts is the positions of machines m1, m2, m3, and m4. The difference in these machines’ 

positions should result in an increase in the transfer times and order completion time. This is due 

to the increase in the distance that must be travelled with the repositioning of these machines. 

There should also be an increase in wait times seen in layout 2 as there will be longer queues due 

to part agents favoring specific machine routes due the shorter transfer times estimations. 

Transfer time is one of three deciding factors being used by the part agents in their decision-

making (the others are set up and processing times). 
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Figure 3.19    Layout Type 1 

 

 

 

Figure 3.20     Layout Type 2 

 

This scenario should demonstrate that the agent intelligence works as expected and also 

demonstrates that the output of the simulation is reflective of the logic used in its development 

(longer travel distances for the same machine route should result in having the same processing 

and setup times but different completion times). In our numerical experiment, we performed 10 
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simulation runs each using layouts 1 and 2. The results of the simulation run are shown in Table 

3.2. 

 

Table 3.2     Mean Results for Scenario Facility Performance Metrics in Time Units 

 Completion 

Time 

 Max. Observed Part 

Wait time 

Part Wait 

time 

Total Transfer 

Time 

Layout 1 5.70 3.60 1.61 1.65 

Layout 2 10.71 6.95 3.15 2.94 

 

The result of the numerical experiment serves as verification of the simulation model. As 

expected, when relative distances between machines in a machine route are longer, the 

completion time is increased due to the increased travel time. The wait times indicate the agent 

intelligence is functioning as expected. When the transfer time increases, there should be greater 

inclination for certain machines to work together. This means that when a part starts on a 

machine, it is more restricted in the machine options that it has for processing.  

3.6 Model Comparison 

In Table 3.3 we present our review of literature related to multi-agent systems for dynamic 

scheduling. From our review, most literature focuses on scheduling new arrivals and order 

cancellations.  Works seldom examined alternate routing or operation sequences. The most 

common objective for the MAS was related to the makespan for the order.  The MAS used in 

literature typically either utilized a hierarchical or heterarchical control architecture. Our model 

provides a unique contribution in that it uses  hybrid control architecture as well as addresses not 

only multiple sources of uncertainty but also alternative routing and operation sequence options. 
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Table 3.3    Classification of Previous Works Related to MAS for Job Shop Scheduling 
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Chapter 4  

Investigation of the Multi-Agent System Based Manufacturing System Subject to Uncertainty 

In any manufacturing environment, there are several uncertainties that can make 

scheduling difficult. For example, completing operations may take longer or shorter durations 

than estimated depending on the skill and fatigue level of the operator. The actual demand for 

parts may be different than the forecasted demand. Machines may break down during the 

production cycle and need to be repaired. Some combination of all these sources of uncertainty 

typically exist simultaneously in most manufacturing systems. As such, the choice of which 

dynamic scheduling strategy to employ is crucial. It is important to understand how different 

scheduling strategies perform when faced with different types of uncertainties.  

In the previous chapter, we introduced a model for scheduling in a dynamic 

manufacturing environment. We proposed a using multi-agent system (MAS) to schedule jobs in 

real-time. It is a form of completely reactive dynamic scheduling. However, there are multiple 

approaches for dynamic scheduling that could have been explored as well. There is a need to 

investigate how the system we propose will perform when subject to different conditions as well 

as compare that performance to alternative solutions. There are two key objectives in this 

chapter. The first is to investigate the performance of our proposed MAS-based manufacturing 

system when subjected to different sources of uncertainty.  We will investigate the performance 

of our system when used in a manufacturing environment that is subject to different, singular 

sources of uncertainty. We will then proceed to study the MAS system’s performance when used 

in an environment subject to multiple sources of uncertainty simultaneously. Our intent is to 

study how the proposed MAS responds to varying levels of only one source of uncertainty before 

studying the performance when subject to multiple sources of uncertainty simultaneously. The 
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other objective of this chapter is to compare the performance of our MAS against other dynamic 

scheduling approaches. Specifically, another completely reactive approach (using dispatching 

rules) and a predictive-reactive approach (right-shifting). We will be evaluating performance of 

these approaches based on the mean time for completing an order as well as the standard 

deviation in that completion time. 

 

 

Figure 4.1     Overview of System Inputs and Outputs for Each Set of Numerical 

Experiments 

 

This chapter will begin by introducing the case study problem that will be the basis of the 

simulation experiments conducted during this investigation. This case study provides the 

manufacturing system we will be simulating. The inputs used in the simulation model are 

separated into deterministic inputs (demand mix, layout configuration) and stochastic inputs 

(setup and processing times, demand volume, and machine reliability). Decision-making in the 

simulated manufacturing system is done using three different scheduling approaches for 

comparison purposes. From the simulation we get the completion time for the order. The 

manufacturing system’s performance is evaluated based on the mean completion times and their 
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associated standard deviation. This information is obtained from multiple simulation runs. An 

overview of the system as well as its inputs and outputs can be seen in Figure 4.1.  

In our simulation experiments, we will explore multiple scenarios under which the 

manufacturing system will be operated. There will be five distinct input conditions we will be 

considering for the manufacturing environment. For the first set of experiments, we assume that 

the manufacturing environment is subject to no uncertainty. In the second set of experiments, we 

assume that the manufacturing environment is subject to uncertain processing and setup times. In 

the third set of experiments, we assume that the manufacturing environment is subject to 

uncertainty in demand volume. In the fourth set of experiments, we assume that the 

manufacturing environment is subject to random machine breakdown and repair. Finally, in the 

fifth set of experiments, we assume that the manufacturing environment is subject to all the 

afore-mentioned sources of uncertainty simultaneously. This chapter concludes with a summary 

of our findings from our investigation. This summary will provide details on the conditions in 

which the MAS we propose will perform best as well as our findings on how the system 

responds to the different input conditions studied. 

   

4.1 Introduction to the Problem - Furniture Manufacturing Problem 

In this study, the manufacturing system used in our problem is a modified version of a 

furniture manufacturing facility presented by Suzic et al. (2012). The facility we are examining 

consists of eleven (11) machines that are used in the production of sixteen (16) different parts. 

These 16 parts are used in the manufacture of five (5) products. These products are shelves, 

wardrobes, horizontal dressers, vertical dressers, and computer tables. The products are denoted 

as PD = {pd1, pd2, pd3, pd4, pd5} respectively. Similarly, P = {p1, p2, …, p16} represents the 16 
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parts that the system can produce. Each product in PD is composed of a subset of parts from P. 

The total number of each part required to produce each product can be seen in Table 4.1. 

Table 4.1     Composition of Furniture Parts 

 Product pd1 Product pd2 Product pd3 Product pd4 Product pd5 

Part p1 0 0 2 2 0 

Part p2 2 0 3 0 1 

Part p3 0 0 0 2 4 

Part p4 0 3 0 3 3 

Part p5 0 2 0 1 3 

Part p6 0 4 0 0 0 

Part p7 0 0 1 2 0 

Part p8 0 2 0 0 0 

Part p9 0 0 3 0 0 

Part p10 0 2 0 0 0 

Part p11 0 0 0 0 2 

Part p12 0 1 0 1 0 

Part p13 2 0 1 1 2 

Part p14 2 0 0 0 1 

Part p15 0 0 0 2 2 

Part p16 0 0 0 0 4 

 

There are four different types of machines in this system; (1) cutting, (2) edging, (3) 

drilling, and (4) computer numerical control (CNC) machines. The system contains some 

duplicate machines (machines that have the same capabilities with the same processing and setup 

times) as well as machines that are capable of multiple operations (the CNC mills). In our study, 

we assume that each of the CNC machines is capable of performing drilling, cutting, edging and 

CNC-specific operations. The CNC can perform these operations with the same proficiency as 

the other machines that uniquely perform each function. The breakdown of each machine’s 

operation capabilities can be seen in Table 4.2. 
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Table 4.2     Machine Types Within the System 

Machine Type Machines Machine Operation(s) 

Cutting Machine m1, m2 Cutting 

One-sided Edging Machine m3 One-sided edging 

Two-sided Edging Machine m4, m5, m6 Two-sided edging 

Drill Press m7, m8, m9 Drilling 

CNC Multi-Purpose 

Machining Center  

m10, m11 CNC milling, Drilling, Cutting, One-sided 

Edging, 2-sided Edging 

 

We assume that the facility has been designed in a functional layout with the machines 

being separated into cutting, drilling, edging and CNC departments. Figure 4.2 depicts the 

allocation of the machines within the facility and Figure 4.3 depicts the relative machine distance 

matrix. Each machine is at least 1m away from the next machine. This allows transporters to 

move freely between all machines. It is assumed that the system always has transporters 

available and that the transporters within the system have fixed and constant speeds. 

 

Figure 4.2     Furniture Manufacturing System Layout 

 

m1 m3 m4 m7

m2 m5 m8

m10 m11 m6 m9
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Figure 4.3     Furniture Manufacturing Facility Relative Distance Matrix 

 

This problem consists of eleven total machines but five distinct machine types. This 

means that certain machines have duplicates. In our study, we assume that all duplicate machines 

can perform equally. This means that all machine alternatives are equally capable of performing 

the same operation for the same set of parts. Processing and setup times for operations are part 

specific. The part-specific processing and setup times for each operation are assumed to be the 

same across all alternative machines for this problem. The part-specific set-up and processing 

times are provided in Table 4.3. For these experiments, the times are provided in time-units. 

 

 

m1 m2 m3 m4 m5 m6 m7 m8 m9 m10 m11

m1 0 2 2 6 6 8 8 8 10 6 6

m2 2 0 4 6 4 6 8 8 8 2 4

m3 2 4 0 2 4 6 6 6 8 6 4

m4 6 6 2 0 2 6 2 4 6 8 6

m5 6 4 4 2 0 2 4 2 4 6 4

m6 8 6 6 6 2 0 6 4 2 6 2

m7 8 8 6 2 4 6 0 2 6 10 8

m8 8 8 6 4 2 4 2 0 2 8 6

m9 10 8 8 6 4 2 6 2 0 8 6

m10 6 2 6 8 6 6 10 8 8 0 2

m11 6 4 4 6 4 2 8 6 6 2 0
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Table 4.3     Part Specific Set-up (ST) and Processing (PT) Times with Standard 

Deviations in Brackets (in time units) 

 Cutting 1-sided 

Edging 

2-sided 

Edging 

Drilling CNC 

Part 

p1 

ST:    0.5 

PT:    5  

ST:   0.3 

PT:   3 

   

Part 

p2 

ST:    0.4 

PT:    4 

 ST:    0.4 

PT:    4 

  

Part 

p3 

 ST:   0.5 

PT:   5 

ST:    0.4 

PT:   4 

ST:   0.1 

PT:   1 

 

Part 

p4 

ST:    0.4 

PT:   4 

 ST:    0.3 

PT:   3 

ST:   0.1 

PT:   1 

 

Part 

p5 

  ST:   0.5 

PT:   5 

ST:   0.1 

PT:   1 

 

Part 

p6 

ST:    0.4 

PT:   4 

 ST:    0.3 

PT:   3 

ST:   0.1 

PT:   1 

 

Part 

p7 

ST:   0.5 

PT:   5 

ST:   0.2 

PT:   2 

ST:    0.4 

PT:   4 

ST:   0.1 

PT:   1 

 

Part 

p8 

ST:    0.4 

PT:   4 

 ST:   0.5 

PT:   5 

ST:   0.1 

PT:   1 

 

Part 

p9 

  ST:    0.4 

PT:   4 

 ST:   0.5 

PT:   5 

Part 

p10 

ST:    0.4 

PT:   4 

 ST:    0.3 

PT:   3 

 ST:   0.5 

PT:   5 

Part 

p11 

 ST:   0.6 

PT:   6 

ST:   0.6 

PT:   6 

ST:   0.1 

PT:   1 

 

Part 

p12 

  ST:    0.4 

PT:   4 

 ST:   0.5 

PT:   5 

Part 

p13 

  ST:    0.4 

PT:   4 

ST:   0.1 

PT:   1 

ST:   0.5 

PT:   5 

Part 

p14 

ST:    0.4 

PT:   4 

 ST:   0.5 

PT:   5 

ST:   0.1 

PT:   1 

ST:   0.5 

PT:   5 

Part 

p15 

  ST:    0.3 

PT:   3 

ST:   0.1 

PT:   1 

ST:   0.5 

PT:   5 

Part 

p16 

ST:    0.3 

PT:   3 

 ST:    0.3 

PT:   3 

 ST:   0.5 

PT:   5 
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Table 4.4     Part Operation Sequences and Machine Route Options 

 Operation sequence Machine Routing Options 

Part p1 cutting → 1-side edging (m1, m2, m10, m11) → (m3, m10, m11) 

Part p2 cutting → 2-side edging (m1, m2, m10, m11) → (m4, m5, m6, m10, m11) 

Part p3 1-side edging → drilling → 

2-side edging 

(m3, m10, m11)→ (m7, m8, m9, m10, m11) → (m4, m5, m6, 

m10, m11) 

Part p4 cutting → 2-side edging → 

drilling 

(m1, m2, m10, m11) → (m4, m5, m6, m10, m11)→ (m7, m8, m9, 

m10, m11) 

Part p5 2-side edging → drilling (m4, m5, m6, m10, m11)→ (m7, m8, m9, m10, m11) 

Part p6 cutting → 2-side edging → 

drilling 

(m1, m2, m10, m11) → (m4, m5, m6, m10, m11)→ (m7, m8, m9, 

m10, m11) 

Part p7 cutting → 1-side edging → 

drilling → 2-side edging 

(m1, m2, m10, m11) → (m3, m10, m11) → (m7, m8, m9, m10, 

m11) → (m4, m5, m6, m10, m11) 

Part p8 cutting → 2-side edging → 

drilling 

(m1, m2, m10, m11) → (m4, m5, m6, m10, m11)→ (m7, m8, m9, 

m10, m11) 

Part p9 CNC → 2-side edging (m10, m11) → (m4, m5, m6, m10, m11) 

Part p10 cutting → 2-side edging → 

CNC 

(m1, m2, m10, m11) → (m4, m5, m6, m10, m11)→ (m10, m11) 

Part p11 1-side edging → drilling → 

2-side edging 

(m3, m10, m11) → (m7, m8, m9, m10, m11) → (m4, m5, m6, 

m10, m11) 

Part p12 CNC → 2-side edging (m10, m11)  → (m4, m5, m6, m10, m11) 

Part p13 drilling → 2-side edging → 

CNC 

(m7, m8, m9, m10, m11) → (m4, m5, m6, m10, m11)→ (m10, 

m11) 

Part p14 cutting → drilling → 2-side 

edging → CNC 

(m1, m2, m10, m11) → (m7, m8, m9, m10, m11) → (m4, m5, 

m6, m10, m11) → (m10, m11) 

Part p15 drilling → 2-side edging → 

CNC 

(m7, m8, m9, m10, m11) → (m4, m5, m6, m10, m11) → (m10, 

m11) 

Part p16 cutting → 2-side edging → 

CNC 

(m1, m2, m10, m11) → (m4, m5, m6, m10, m11) → (m10, m11) 

 

Each part required of the system has a distinct set of operations (in specific operation 

sequences) that must be performed to produce it. Each operation in the sequence can be 

performed by at least one machine in the system. This means that for a part to be produced, it 

must follow a route of machines through the facility. However, as there are duplicate and similar 

machines in the system, there are also multiple machine routings that can be used in their 

production. Any of these routing options can be used in the production of parts they can service 
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(unless the scheduling approach used imposes restrictions). Table 4.4 depicts the operations 

sequences for each part as well as the possible machine routings that a possible within the 

facility.  

 

4.1.1 Simulation Experiment Demand Scenarios 

In our study, we will primarily be examining four (4) scenarios. Each of these scenarios 

involve orders with their own distinct demand mixes for parts in the system. The demand mix for 

orders requested from the system for each scenario is shown in Table 4.5 below: 

 

Table 4.5     Demand for Each Part for Each Scenario 

Scenario Demand Mix 

1 {p1, p2, p3, p4, p5, p6} 

2 {p1, p3, p5, p12, p13, p14, p15, p16} 

3 {p1, p2, p5, p7, p10, p11, p12, p13, p14, p15} 

4 {p1, p2, p3, p4, p5, p6, p7, p8, p9, p10, p10, p11, p12, p13, p14, p15, p16} 

 

Table 4.6     Machine Utilization for each Machine in the System for each Scenario 

Scenario m1 m2 m3 m4 m5 m6 m7 m8 m9 m10 m12 Mean 

1 0.40 0.40 0.80 0.80 0.30 0.50 0.20 0.10 0.10 0.80 0.50 0.44 

2 0.33 0.20 0.53 0.53 0.60 0.53 0.27 0.07 0.00 0.93 1.00 0.45 

3 0.47 0.26 0.58 0.74 0.42 0.84 0.16 0.11 0.05 1.00 0.74 0.50 

4 0.54 0.50 0.67 0.92 0.88 0.71 0.21 0.17 0.04 1.00 1.00 0.60 

 

As previously mentioned, we will be focusing on four distinct scenarios. The scenarios 

represent different levels of complexity in the problem. Each scenario has its own mean machine 

utilization (see Table 4.6). With each subsequent scenario, the mean utilization of the system 

increases with the changing demand mix. The different demand mixes result in the different 

operation assignments for each machine “optimal” schedule. As such, each subsequent scenario 
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represents a more complex problem than the previous. This is because there is more competition 

for the system’s resources between the requested parts. In exploring these scenarios, we intend 

gather more insight on the performance of the dynamic scheduling strategies as the 

interrelationships between the parts and machines change, and more of the system’s capacity is 

utilized.  

 

4.2 Dynamic Scheduling Approach Benchmarks 

In the upcoming sections of this chapter, we will present five distinct sets of experiments 

relating to scheduling under varying levels of uncertainty from different sources. Each 

experiment will involve a comparison of the MAS model that we proposed in chapter 3 against a 

predictive-reactive scheduling approach (right-shifting), and a completely reactive scheduling 

approach using dispatching rules (longest remaining processing time).  This subsection will 

provide information on how these alternative dynamic scheduling approaches are implemented. 

 

4.2.1 Dynamics Scheduling Using Right Shifting Rescheduling 

Right-shifting begins with determining a nominal schedule which would be optimal 

assuming there are no disturbances to the system. This is the schedule which will be followed 

until a disturbance forces a deviation from it. In the event of a disturbance to the system, all jobs 

that are directly affected by the disturbance are moved downstream in the schedule to a point 

when the disturbance has been resolved. For example, if a machine breaks down during a 

production cycle and part pa requires work that needs to be scheduled on that machine, that work 

is postponed until the machine is repaired and operational again. Also, any subsequent work for 

part pa is delayed as well. All other unaffected jobs follow the nominal schedule. 
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Right-shifting requires that we determine a nominal schedule to follow. To determine the 

nominal schedule, we use a genetic algorithm (GA) based on the model developed by Zhang et 

al. (2011) for solving the flexible job-shop scheduling problem. This model is used as it allows 

for alternate machines and processing routes. Primarily, we will be using the structure for 

encoding the chromosome presented by Zhang et al. (2011). Figure 4.4 depicts a sample of how 

the chromosome is encoded. The chromosome is separated into two halves, machine selection 

and operation sequence. Each gene in the machine selection half of the chromosome corresponds 

to a gene on the operation sequence half. For example, Figure 4.4 indicates that the first 

operation for part p2 is performed on machine m4. Similarly, the second operation of part p2 is 

performed on machine m1, and so on. The order of the operation sequence half of the 

chromosome represents the precedence or priority of the operations. This comes into 

consideration determining the schedule for all parts scheduled for processing on the same 

machine. For example, parts p1 and p3 are both processed first at machine m2. However, since 

part p1 is first in the operation sequence, it would be scheduled first for the machine. The GA 

parameters used for solving our JSP are presented in Table 4.7. 

 

Figure 4.4     Chromosome Encoding for Flexible JSP 

 

 

 

 

4 1 2 2 3 2 2 1 3 2Chromosome

Machine Selection Operation Sequence
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Table 4.7     GA Parametric Settings 

Operator Setting 

Crossover Probability 0.55 

Crossover Operator (Machine Selection) Uniform Crossover 

Crossover Operator (Operation Sequence) Preserving Order-based Crossover 

Mutation Probability 0.20 

Mutation Operator (Machine Selection) Random Resetting 

Mutation Operator (Operation Sequence) Random Resetting 

Population Size 10 × n 

Maximum Number of Iterations 100 

Termination Condition ∆Fitness < 0.01 

Selection Process Tournament Selection 

 

The objective function used to evaluate the schedule solutions was the minimization of 

the completion time (CT) for a given order of parts, s. The problem formulation is as follows: 

min
𝑋

𝐶𝑇𝑠(𝑋) (4.1) 

where  

𝑋 = [

𝑥11 ⋯ 𝑥1𝑗

⋮ ⋱ ⋮
𝑥𝑖1 ⋯ 𝑥𝑖𝑗

] (4.2) 

s.t. 

∑ 𝑦𝑖𝑗

𝑛𝑝

𝑗=1

= 𝑛𝑜𝑖                             ∀𝑖 = 1,2, … , 𝑛𝑝  (4.3) 

Let X = [xij] represent the order in sequence operation required for part pj falls in the 

schedule for machine mi.  For example, in Equation 4.4, x11 = 2, this indicates that part p1 is 

processed second on machine m1. Similarly, x12 = 0 indicates that part p2 is not processed on 

machine m1. As such, X represents the overall schedule for the job-shop. 

𝑋 = [
2 0 1
1 2 0
3 2 1

] (4.4) 
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The only constraint this optimization problem is subject to is that all of the operations 

required to produce the demanded parts must be scheduled on a machine. We use Y = [yij] as a 

binary representation of parts that a machine is scheduled to process. It indicates that a part is 

processed at a machine without any indication of its order in the sequence. As such, the sum of 

the elements in the column represents the total number of operations required to produce the 

specific part (noi). For example, Equation 4.5 indicates the total number of operations required 

for part p1 (represented by no1) is 3. 

𝑌 = [
1 0 1
1 1 0
1 1 1

] (4.5) 

Nominal Schedules Determined Using GA 

For each demand scenario presented in section 4.2.1, a nominal schedule was determined. 

These nominal schedules are to be used when employing right-shifting as the scheduling 

approach. The schedules for scenarios 1-4 can be seen in Figures 4.5 to 4.8. With each schedule 

depicted in Figures 4.5 to 4.8 we see the parts that have been assigned to each machine, as well 

as the time in which each part is scheduled to arrive and exit each respective machine. For 

example, in Figure 4.4, we can see that part p2 is assigned to machine m1 that at time T = 0. It is 

processed at this machine and exits at time T = 5.5. Part p2 then is scheduled to be processed on 

machine m4. Overall, the schedule presented in Figure 4.5 should be completed in 11 time units.   
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Figure 4.5     GA Nominal Schedule for Scenario 1 

  

 

 

Figure 4.6    GA Nominal Schedule for Scenario 2 

 

 

Figure 4.7     GA Nominal Schedule for Scenario 3 
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Figure 4.8     GA Nominal Schedule for Scenario 4 

 

4.2.2 Dynamic Scheduling Using Dispatching Rules (Largest Remaining Processing Time) 

Our proposed MAS model for dynamic scheduling will also be compared against a 

completely reactive dynamic scheduling approach using dispatching priority rules. The rule we 

have chosen is largest remaining processing time + shortest processing time (LRPT). This rule 

prioritizes jobs with the longest remaining time left along their given processing route. We have 

chosen LRPT as the benchmark, as it has been shown to have good performance in minimizing 

the most performance measures typically evaluated in job shop scheduling (Dominic et al., 

2004). The algorithm used in the implementation of this dispatching rule is as follows: 

1) For machine m1 

a. if machine m1 is available to service new part (currently not busy or in need of 

repair) 

i. determine parts that currently need to be serviced by this machine (Pm1 ∈ 

P) 

ii. If no parts currently need to be serviced by this machine 

1. Continue to next machine 

iii. Else if there are parts that need service on this machine 

1. for each of part that is an element Pm1  
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a. determine remaining processing time for the part 

iv. schedule part with longest remaining processing time on machine m1 

1. select the operation with the shortest processing time, if two or 

more tasks have the same remaining processing time 

b. if machine m1 is unavailable, continue to next machine 

2) Repeat step 1 for machines m2 to mnm 

3) Repeat steps 1 and 2 until no parts need to be serviced on any machine 

4) End 

 

4.3 Scheduling Under Fixed Product Demand with Fixed Processing and Set-up Times 

In this section we will present a comparison of MAS-based scheduling approach to both 

dispatching rules and using near-optimal schedule determined a priori. For this set of 

experiments, it is assumed that there is no uncertainty, and all system inputs are purely 

deterministic. 

 

4.3.1 Numerical Experiments 

We compared the optimality of our MAS scheduling approach to the nominal schedule 

designed to have the minimum total completion time as well as against scheduling using LRPT 

as its dispatching priority rule. For these experiments, RS is not used as there would be no need 

to right-shift the schedule if there is no uncertainty.  

Our objective was to determine if the proposed approach yielded a schedule that is 

comparable in terms of completion times when alternate scheduling approaches are employed. In 
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this comparison, the optimality of two schedules is considered to be the same if there is no 

statistically significant difference between their means at the 95% confidence interval. To that 

effect, we conducted an analysis of variance (ANOVA) for the simulation experiments. 

 

Experiment Conditions 

The numerical experiments were only run for the MAS-based and LRPT rule-based 

approach to real-time scheduling. The simulations are run using a script developed in MATLAB 

r2021a. The conditions for the experiments are as follows: 

1) A set of experiments is run for each of the four distinct demand mix scenarios (outlined 

in Table 4.5) 

2) All variables in the experiment are fixed. Completion times for each operation are 

assumed to the mean time provided (i.e. σ = 0) 

3) For each experiment run, the order for each demanded part enters the system at time zero 

(T = 0) 

4) There were 20 replications for each simulation experiment conducted 

 

4.3.2 Results 

Table 4.8 below contains the results of the numerical experiments conducted for the four 

different scenarios presented in section 4.1.1.  This table contains the mean completion time for 

processing a given order of parts as well as the associated standard deviation using three distinct 

scheduling approaches. We also present the P-values for hypothesis testing we conducted on the 

results of the experiments. 
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Table 4.8     Simulation Results for Performance Comparison between Nominal Schedule 

and MAS 

Scenario Nominal 

Schedule 

LRPT 

Scheduling 

Approach 

MAS Scheduling 

Approach 

P-Value 

 
GA vs MAS 

 

(H0: µ1 = µ3) 

P-Value 

 
LRPT vs MAS 

 

(H0: µ2 = µ3) Mean  

(µ1) 

STD 

(σ1) 

Mean 

(µ2) 

STD  

(σ2) 

Mean 

(µ3) 

STD  

(σ3) 

1 11.00 n/a 11.01 0.02 11.03 0.02 <0.001 <0.001 

2 16.50 n/a 17.61 0.01 18.62 1.34 <0.001 <0.001 

3 20.90 n/a 25.31 0.01 23.25 1.75 <0.001 <0.001 

4 26.40 n/a 34.14 1.41 28.58 1.24 <0.001 <0.001 

 

4.3.3  Discussion 

The results of the experiments show that in very simple problems (such as in scenario 1) 

where there are sufficient machine resources to process all the parts simultaneously, there is little 

difference in the performance of the three scheduling approaches. In scenario 1, we see that all 

three approaches yield solutions that are equivalent (11.00, 11.01, and 11.03 time units when 

using the nominal schedule, LRPT and MAS respectively). With the MAS approach, we see that 

there is little variation in the results. This is to be expected as this scenario allows for each part to 

be processed in parallel given the machines in the system (As we can see in Figure 4.5). The 

processing routes of each part requested of the system do not overlap. As such, there is no need 

for a part to wait before moving to its next processing step as the machine it requires will be 

available. The results suggest that the MAS solution quality will be comparable to that of the 

near-optimal in situations where there is excess machine capacity to allow for parallel part 

processing. 

As the problem complexity increases and parts can no longer be processed in parallel, we 

see the MAS approach does not yield the optimal result. It yields solutions that result in mean 
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completion times within 8-12% of the optimal completion time. In scenarios 2, 3, and 4, we see 

more demand for the CNC and 2-sided edging machines than in scenario 1. This results in a 

situation where there is a need for some parts to wait before their next processing step. As such, 

the sequence of parts scheduled for a machine becomes more critical. For these set of 

experiments, we see that the MAS approach yields completion times approximately 8%-13% 

greater than the times expected using the nominal schedule. The variation in the results from the 

MAS approach is greater than that from the previous scenario. 

Interestingly, when comparing the MAS approach to the LRPT-based, we see that the 

LRPT approach outperforms the MAS approach when there is lower demand for parts required 

of the system. However, as the demand for parts increases, we see the MAS approach begins to 

outperform the LRPT-based approach. In scenario 2, we see that using LRPT results in a 5% 

reduction in completion time when compared to the MAS approach. However, as we continue to 

scenarios 3 and 4 the MAS approach outperforms the LRPT approach by approximately 8%-

10%. This observation is to be expected as there are fewer parts with longer processing times in 

the earlier scenarios. As such, by starting with them, we can better nest the processing times for 

the quicker to process parts in the time required to process the longer to process parts. This is 

because the system has enough capacity to allow for parts with longer processing times to be 

processed in parallel with parts with shorter processing times. However, as the number of parts 

demanded increases without an increase in the machine resources, we see the flaw in the LRPT 

approach. With the increase in the demand, there are more parts with long processing times. This 

takes up the machine resources that were free with the smaller, less complex problems. As such, 

parts with longer processing times can no longer be processed in parallel with parts with shorter 
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processing times.  Now, we have the longer processing time parts all being processed first before 

beginning the shorter processing time parts when using LRPT-based approach. 

Overall, we can conclude that without any source of uncertainty, the MAS based 

approach will perform less optimally than the nominal schedule. However, MAS can outperform 

scheduling using a rule of thumb approach as with dispatching rules (LRPT). MAS outperforms 

dispatching rules as the volume of different parts demanded increases. It is also important to note 

that whilst the MAS approach is outperformed by the GA-derived, nominal schedule, it manages 

to remain within 8-13% of the lowest estimated completion times that we were able to solve for. 

It was expected that the MAS approach would underperform in comparison to the optimal in this 

set experiments. This is because the MAS is designed to act in real-time without considering 

downstream implications of each scheduling decision. It is analogous to a greedy algorithm. 

Without any source of uncertainty, there is no drawback to solving for the near optimal schedule, 

as there would be no need to reschedule or deviate from it. 

 

4.4 Scheduling Under Fixed Product Demand with Uncertain Operation Execution 

Durations 

In the typical job shop scheduling problem, we are presented with a set of n jobs to be 

completed on a set of m machines. It is assumed that there is a fixed demand for each part being 

requested from the system and this demand is known a priori. The setup and processing times 

are fixed and deterministic. However, this is not representative of real-life setup and processing 

times. Setup and processing times are uncertain, they can vary every time a task is repeated even 

when completed by the same operator. As such, it is important to understand how introducing a 
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degree of uncertainty to these times would impact the system performance when using different 

scheduling strategies. In this section of our study, we compare the performance of our proposed 

MAS system to two other dynamic scheduling strategies using four scenarios involving different 

demand volumes for each part the system can produce. We will be referring to this source of 

uncertainty (variable setup and processing times) as operation execution duration (OED) 

uncertainty.  

In this section, we will present a description of the numerical experiments performed as 

well as the results of the experiments and the associated analysis. 

4.4.1 Numerical Experiments 

With these experiments, we will use the four (4) scenarios outlined in subsection 4.2. The 

experiment inputs are listed in the next section. 

 

Experiment Conditions 

The numerical experiments were run using our own in-house simulation code written on 

MATLAB r2021b. The same set of experiments were conducted using each dynamic scheduling 

approach. We ran experiments for all four (4) distinct demand mix scenarios presented in section 

4.1. In our design for our experiments, we assume that each of the setup and processing times for 

operations executed on any machine in the system follow a normal distribution. The times 

provided in Table 4.3 are used as mean values. For the standard deviation, we consider three 

level settings. These are (1) 10% of the mean time, (2) 20% of the mean time, and (3) 30% of the 

mean time. We ran a full factorial (31) experiment with 20 repetitions for each of the four 

scenarios. A total of 240 experiments were run.  
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4.4.2 Results 

Table 4.9 below contains the results of the numerical experiments conducted for the four 

different scenarios presented in section 4.2.  The table contains the mean completion times for 

processing a given order of parts as well as their associated standard deviations using three 

distinct scheduling approaches right-shifting (RS), dispatching rules (LRPT), and our MAS 

approach. We also present the P-values for hypothesis testing we conducted on the results of the 

experiments as well as the main effects of the uncertainty in OED. Tables 4.10 and 4.11 contain 

the main effects for the varying OED on the mean completion time and standard deviation 

respectively. This information is also depicted in Figure 4.9. 

Table 4.9     Performance of MAS Scheduling in Comparison to Conventional Dynamic 

Scheduling Approaches (for 20 Repetitions) 

Scenario Uncertaint

y Level 

RS Schedule LRPT-based 

Scheduling 

MAS 

Scheduling 

Approach 

P-Value 

 

 
(H0: µ1 = µ3) 

P-Value 

 

 
(H0: µ2 = µ3) Mean 

(µ1) 

STD 

(σ1) 

Mean 

(µ2) 

STD 

(σ2) 

Mean 

(µ3) 

STD 

(σ3) 

1 10% 11.84 0.76 10.89 0.56 10.95 0.47 <0.001 0.71 

20% 12.02 0.96 11.35 0.99 11.22 0.95 0.03 0.67 

30% 12.43 1.38 12.30 1.66 12.30 1.17 0.75 1.00 

2 10% 16.66 0.70 18.72 1.37 19.80 1.53 <0.001 0.02 

20% 17.76 1.19 19.37 1.56 20.47 1.81 <0.001 0.04 

30% 18.79 1.92 19.09 2.28 20.48 1.87 0.62 0.04 

3 10% 22.05 1.09 23.80 0.93 23.40 2.01 <0.001 0.42 

20% 21.85 1.28 23.91 2.02 23.04 1.68 <0.001 0.14 

30% 23.32 2.29 24.62 2.77 23.41 1.88 0.05 0.11 

4 10% 28.29 1.15 34.61 1.73 29.37 1.57 <0.001 <0.001 

20% 28.77 1.73 34.61 2.11 30.61 2.99 <0.001 <0.001 

30% 30.86 2.76 34.48 2.33 30.72 2.21 <0.001 <0.001 
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Table 4.10      Main Effects of Uncertainty in Operation Execution Duration on Mean 

Completion Time Using Each Solution Approach 

 10% 20% 30% EFFECT 

RS 19.71 20.10 21.35 1.64 

LRPT 22.01 22.31 22.62 0.61 

MAS 20.88 21.34 21.73 0.85 

    
 

 

Table 4.11          Main Effects of Uncertainty in Operation Execution Duration on Standard 

Deviation of the Mean Completion Time Using Each Solution Approach 

 10% 20% 30% EFFECT 

RS 0.93 1.29 2.09 1.16 

LRPT 1.15 1.67 2.26 1.11 

MAS 1.40 1.86 1.78 0.38 

 

 

Figure 4.9     Main Effect Plots 

 

4.4.3 Discussion 

There are two key observations from our experiments. The first is that the completely 

reactive approaches were less sensitive to changes in the level of uncertainty in OED than the RS 

approach. This is important as it could reduce the impact differing operator proficiency could 

have on the system performance. The second is that the completely reactive scheduling 
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approaches had lower standard deviations in their completion times. This means that there was 

more consistency and reliability in their performance.  

The general trend observed in the results from Table 4.9 is that the mean completion time 

increases with increasing levels of uncertainty in the processing and set up times regardless of 

the dynamic scheduling approach used and the scenario being investigated. This is also 

confirmed by looking at the main effects plots in Figure 4.9. The figure shows all of the main 

effects plots have positive slopes. 

The MAS and LRPT based approaches are less sensitive to OED uncertainty levels than 

the right-shifting approach. This is shown by the main effects for both mean completion time and 

the associated standard deviation as seen in Table 4.10 and Table 4.11. The main effects show 

that the MAS approach is more insensitive to changes in the level of uncertainty than the RS 

approach but more sensitive than the LRPT approach. The main effect of MAS on the 

completion time is 0.84 in comparison to 1.64 for the RS, and 0.61 for the LRPT. The difference 

between the mean completion times at low and high settings is ~4% for the MAS approach, and 

~8.3% for the nominal schedule. We also see that there is a near linear relationship between the 

level of OED and the standard deviation in the mean completion time for the RS results. 

However, the MAS appears to plateau at 20% OED.  

The RS approach, on average, has the lowest mean completion times regardless of the 

uncertainty levels. This can be seen by the main effects as seen in Table 4.10 and Table 4.11. 

These tables show that the mean completion times fall between 19.71 to 21.35 time units for RS, 

22.01 to 22.62 for the LRPT, and 20.88 to 21.73 for the MAS approach. Similarly, for the 

standard deviation in the completion times, values fall between 0.93 to 2.09 for RS, 1.15 to 2.26 

for the LRPT, and 1.40 to 1.86 for the MAS approach. However, at the highest uncertainty level, 
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we see that there is no statistically significant difference between the performances of the MAS-

based and the RS-based approaches. This can be seen for scenarios 1, 2 and 3 in Table 4.9, where 

the results of the ANOVA show p-values greater than 0.05. This suggests that the two sets of 

times do not have statistically significant difference. This is also corroborated by the main 

effects. The main effects show that the right-shifting approach and LRPT schedule marginally 

outperform the MAS approach at the low settings but are not distinguishable from the MAS 

approach when the uncertainty in the processing and setup times are at 30% of the mean. This 

observation makes sense, as when the demand volume is low relative to available machine 

resources there is greater benefit in waiting for the disruption to resolve than to reschedule 

(deviate from the near-optimal schedule). However, as the demand volume increases, it begins to 

become more advantageous to use an alternative route as opposed to waiting for the uncertainty 

to resolve. 

Looking at the difference in the performance of the three approaches examined, we see 

that for scenario 1, the MAS approach yields the lowest completion times. The MAS approach 

yields times 1%-8% lower than the approaches using right-shifting the GA schedule. This is true 

regardless of the level of uncertainty in the OED. However, we see that the dispatching rule 

approach and our MAS approach perform comparably. This suggests that there are scenarios in 

which completely reactive scheduling is the best approach when faced with uncertainty in 

processing and setup times. In this scenario, the CNC machines which serve as multi-purpose 

machines are more available as we progress more downstream in the schedule. As such, they are 

more able to absorb uncertainty resulting from the deviations from the expected operation 

completion times. This gives the MAS an advantage as it can explore alternate, potentially more 
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advantageous scheduling options whereas with right-shifting using a nominal schedule we do not 

explore these options.  

Overall, the results suggest that MAS approach outperforms right-shifting approaches 

when there is excess machine capacity (lower utilization of duplicate machines) as is the case 

with scenario 1 or in instances with high uncertainty. However, when there is low uncertainty in 

the times, then right-shifting from a nominal schedule is the best approach. This observation 

makes sense, with little uncertainty, the scenarios examined are similar to the problems from 

section 4.3 and as such their results are inline. 

 

4.5 Scheduling Under Uncertain Demand and Fixed Part Set-up and Processing Times 

Scheduling under uncertain demand is a problem that has not been extensively examined 

in literature. To the best of our ability, we could not find much literature that focuses on 

scheduling in such scenarios. Literature involving scheduling under demand uncertainty 

commonly focuses on effective lot-sizing and/or batching (Petrovic et al., 2008) not specifically 

on scheduling. However, it is important to examine scheduling under uncertain demand as job 

shop scheduling typically utilizes a forecasted demand (Tompkins et al., 2004). This forecast is a 

prediction of the volume of each part that would be requested from the system. This implies that 

there is already a degree of uncertainty relating to the exact demand when scheduling decisions 

are being made. It is unclear what effect any deviation from the projected demand would have on 

schedule efficiency and stability. This uncertainty is exacerbated by the mass customization 

environment which has volatile demand due to the high number of product variants available to 

demand. Aside from the issue of having scheduling using forecast demand data, there is also the 
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possibility of extenuating circumstances that can affect ability to fulfill demand. For example, 

there could be delayed delivery of raw materials. This can result in the actual volume of parts 

that can be produced varying from the projected demand. This would significantly impact the 

schedule efficiency and require changes to the schedule to address. 

In this research, we will be employing our MAS-based approach for completely reactive 

scheduling to address this issue. To demonstrate its efficacy, we will be comparing this approach 

to two alternative approaches for scheduling under uncertain demand. The first approach used in 

our comparison is batching parts together. For this approach, the schedule is created assuming 

that orders for each part would be batched into lots of fixed sizes and pass through the job floor 

as one unit. By batching, we allow for a nominal schedule to be created despite uncertainty in 

demand information as the batch-sizing process should result in fixed number of batches for each 

part which can then be used to plan the schedule. For example, suppose the demand for part pB is 

projected to fall between 8 and 10 units. We can plan for this by assuming that the part will be 

batched into groups of 5. A schedule would then be created for 2 batches of 5 for the part. In the 

worst-case scenario, the second batch would take less time to complete than expected. However, 

schedule stability is maintained. Batching effectively turns the uncertain demand problem into an 

uncertain processing time problem. The second approach we will be using is scheduling only 

after demand is confirmed for the production cycle. With this approach, there is no ambiguity in 

the demand, we are simply comparing how the near optimal schedule given the actual demand 

would compare to the performance of the MAS-based manufacturing system proposed. 

In this subsection, we will present two different sets of comparison experiments 

involving our MAS-based smart manufacturing system. The first is a comparison between our 

proposed and scheduling using batch-sizes. The second is a comparison of how the MAS-based 
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system working with real-time information on demand would perform against the near optimal 

schedule if the demand was known. For this set of experiments the MAS is compared to the near 

optimal schedule for each possible demand mix. 

 

4.5.1 Numerical Experiments 

In this research, we conducted two sets of experiments. Both experiments stem from the 

same problem. In this problem, we have the same furniture manufacturing system outlined 

previously. This system consists of 11 machines capable of producing 16 distinct parts. The 

problem is scheduling the for production of order of product, PDP, where the makeup of PDP =  

{p1, p2, p3, p4, p5, p6}. The demand for the product is uncertain with possible ranges for the 

product being specified.   

 

Experiment Conditions 

The numerical experiments are run using our own in-house simulation code written on 

MATLAB R2021b. The experiment conditions are as follows; 

1) Number of repetitions for each experiment is 20 

2) For experiment (1), demand for each part is randomly sampled at the beginning of each 

replication 

3) For experiment (2) demand is fixed and deterministic for all experiment repetitions 

4) The order (irrespective of experiment number) arrives to the system at time T = 0 

5) Simulation terminates when the total order is completed 
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Experiment 1 Input Settings (Using Batches) 

The system input settings for experiment 1 are as follows:   

1) The four demand scenarios outlined in section 4.1 are investigated  

2) Demand for each part follows the same uniform distribution of integers. There are two 

sets of demand distribution scenario inputs are to be examined 

a. Set 1: Minimum Demand 1, Maximum Demand 3 

b. Set 2: Minimum Demand 5, Maximum Demand 10 

3) The manufacturing system is the same system outlined in section 4.2 

4) The processing and setup times for each part on the given machines are fixed and 

deterministic (outlined in section 4.2) 

 

Experiment 2 Input Settings (MAS Performance compared to Near-Optimal Schedule) 

The input settings for experiment 2 are as follows; 

1) The demand consisted of orders of six (6) distinct parts (p1, p2, p3, p4, p5 and p6). 

a. This order is scenario 1 as outlined in section 4.2  

2) Five (5) demand scenarios are examined: 

a. 1 × (p1, p2, p3, p4, p5 and p6)  

b. 2 × (p1, p2, p3, p4, p5 and p6) 

c. 3 × (p1, p2, p3, p4, p5 and p6) 

d. 4 × (p1, p2, p3, p4, p5 and p6) 

e. 5 × (p1, p2, p3, p4, p5 and p6) 

3) The near-optimal schedules for each scenario can be seen in Figures 4.10 to 4.14 

4) The manufacturing system is the same system outlined in section 4.1.1 
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5) The processing and setup times for each part on the given machines are fixed and 

deterministic (outlined in section 4.1) 

 

 

Figure 4.10     Schedule for Producing One Unit of the Product 

  

 

Figure 4.11     Schedule for Producing Two Units of the Product 
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Figure 4.12     Schedule for Producing Three Units of the Product 

 

 

Figure 4.13     Schedule for Producing Four Units of the Product 

 

 

Figure 4.14     Schedule for Producing Five Units of the Product 
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4.5.2 Results 

Table 4.12 and Table 4.13 below contain the results of the numerical experiments 

conducted for the demand orders presented in 4.5.1. These tables each contain the mean 

completion time and standard deviation of those completion times for processing a given order of 

parts using three distinct scheduling approaches for the varying levels of demand. We also 

present the P-values for hypothesis testing we conducted on the results of the experiments as 

well as the main effects for the different demand volumes. 

 

Table 4.12     Completion Times Using Right-Shifting, Dispatching Rules. And MAS 

Approaches for Experiment 1(20 Repetitions) 

Scena

rio 
Level 

RS Schedule LRPT 

Scheduling 

MAS 

Scheduling 

Approach 

P-Value 

 

(H0: µ1 = µ3) 

P-Value 

 

(H0: µ2 = µ3) 

Mean 

(µ1) 

STD 

(σ1) 

Mean 

(µ2) 

STD 

(σ2) 

Mean 

(µ3) 

STD 

(σ3) 

1 Low 27.46 3.58 18.35 2.49 16.24 2.58 <0.001 <0.001 

High 89.98 9.38 54.63 3.39 48.38 4.41 <0.001 <0.001 

2 Low 38.16 5.49 20.97 0.18 17.70 1.78 <0.001 <0.001 

High 124.41 10.95 86.34 0.97 50.49 3.91 <0.001 <0.001 

3 Low 43.76 5.27 38.27 0.99 25.04 4.39 <0.001 <0.001 

High 150.37 14.54 111.50 1.33 66.02 3.11 <0.001 <0.001 

4 Low 59.34 4.65 70.19 0.92 49.20 12.09 <0.001 <0.001 

High 200.82 14.33 238.64 2.64 151.36 12.67 <0.001 <0.001 
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Table 4.13     Completion Times Using Right-Shifting, Dispatching Rules. MAS Approaches 

for Experiment 2 (20 Repetitions) 

Demand 

Volume 

RS Schedule LRPT-based  

Scheduling 

MAS Scheduling 

Approach 

P-Value 

 

(H0: µ1 = 

µ3) 

P-Value 

 

(H0: µ2 = 

µ3) 
Mean 

(µ1) 

STD (σ1) Mean 

(µ2) 

STD (σ2) Mean 

(µ3) 

STD (σ3) 

1 11.00 n/a 11.01 0.01 11.45 0.75 0.01 0.01 

2 17.60 n/a 18.72 0.01 18.96 1.11 <0.001 0.33 

3 22.00 n/a 24.24 0.01 22.12 0.50 0.28 <0.001 

4 27.60 n/a 31.02 0.88 28.67 0.93 <0.001 <0.001 

5 34.00 n/a 36.54 0.39 35.31 1.20 <0.001 <0.001 

 

4.5.3 Discussion 

The results of the experiments show that the completely reactive scheduling approaches 

outperform RS when demand is uncertain. Of the two completely reactive approaches examined, 

the results indicate that the MAS approach performs the best of the scheduling approaches 

examined. 

In the first set of experiments, we see that our proposed MAS approach significantly 

reduces the time required to complete the order in comparison to using a fixed nominal schedule 

and batching parts. MAS has a mean completion time that is consistently lower than the 

alternative approaches explored regardless of the level of uncertainty in the demand. This 

observation is corroborated by the results of the ANOVA we performed. We tested the null 

hypothesis that the means were equal, and in both cases, we found that P < 0.05. These results 

suggest that in situations where demand is difficult to accurately predict, it is better to use our 

proposed MAS or even dispatching rules. 

From the first set of experiments, we see that any deviation in the demand from the 

planned volume results in a significant impact on the schedule efficiency. We draw this 
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conclusion based on the results from this section as well as the observations from section 4.3.3. 

From section 4.3.3, we saw that the MAS approach we propose yields a close to optimal, but 

suboptimal solution in comparison to the RS solution when there is no uncertainty in the system 

inputs or conditions. As such, we can infer that since the MAS-based approach is significantly 

outperforming the RS solution, it is the result of the source of uncertainty in the demand and the 

approach to handling this uncertainty a priori.  

The reduction in completion time when switching from using the RS approach to our 

proposed MAS shows that there is a benefit to treating parts as individual entities over batching 

them into groups of the same part. We see a 17.1% to 53.6% reduction in the completion time 

when demand falls between 1-3 units. This value increases to 24.6% to 59.4% reduction in the 

completion time when demand falls between 5-10. As such, we see the benefit of not grouping 

parts into batches may increase as the amount of demand uncertainty increases. Normally, 

treating parts as individual entities in a mass customization manufacturing environment would 

increase the difficulty of scheduling to the point of infeasibility. However, the MAS-based 

manufacturing system we propose is completely reactive, and there is no need to schedule ahead 

of time. This makes treating each part as an individual entity in the system practical. 

The results of the second set of experiments suggest that our MAS approach is 

comparable to solutions derived by RS or built using LRPT as demand increases. Note, with 

these experiments, MAS performance is compared against the RS and LRPT based schedules 

whilst assuming that it was demand was known a priori. As such, we have insight into how the 

MAS results from the first set of experiments would compare to their optimal counterpart. The 

results show that the MAS performance was slightly worse for all demand volumes than the 

optimal schedule. Its completion times are 0.5% to 7.7% times higher. This is also supported by 
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the results of the hypothesis testing conducted suggest that performance of all three approaches 

cannot be distinguished from each other (P < 0.05). However, this is to be expected as this set of 

experiments simply compares the performance of the MAS approach to alternate scheduling 

approaches without any uncertainty (only increasing demand). 

Overall, we propose that our MAS approach is more practical than predictive-reactive 

dynamic scheduling in situations where there is any level of uncertainty in demand. It yields 

similar solutions with performance close to the near-optimal in situations without needing to 

know demand a priori. 

 

4.6 Scheduling in Environment Subject to Machine Breakdown 

Machine breakdown is the one of the two main causes of machine unavailability (the 

other is maintenance) (Ouelhadj & Petrovic,2009). However, of the two main causes of machine 

unavailability, machine breakdown is the one that occurs randomly. Machine breakdown is 

disruptive to system performance for two reasons. It results in uncertain downtime time for a 

given machine when breakdown occurs. This is because the time required to repair the machine 

is dependent on the type of damage and availability of tools, parts, and expertise required to 

repair said machine. This adds two additional sources of uncertainty to problems involving 

machine breakdown. The first is the mean time to failure (MTTF). This is a measure of how long 

it takes for a machine to fail again once brought online. The second is the mean time to repair 

(MTTR). This is a measure of how long it takes to repair the machine once it fails. 

It is important to understand how the MAS model we propose performs in an 

environment that is subject to machine breakdown. It is also important to understand how that 
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performance compares to that of other dynamic scheduling approaches when faced with the same 

conditions. In this subsection, we will present numerical experiments we have conducted to 

compare the performance of our MAS model against predictive-reactive approach (right-shifting 

with nominal GA derived schedule) and against dispatching rules-based approach (using LRPT). 

We will also present the results of the experiments as well as our analysis of the results. 

4.6.1 Numerical Experiment 

For the numerical experiments, we have modified the previously presented furniture 

problem to include mean time to failure (MTTF) and mean time to repair (MTTR) for each 

machine. The MTTF and MTTR for each machine are represented by an exponential distribution 

with a given mean. Both MTTF and MTTR have been assigned low, medium, and high settings. 

These settings are provided in Table 4.14. For the experiments we conduct, we assume that each 

machine has the same breakdown characteristics.  

Table 4.14     High, Medium and Low Settings for Mean Time to Failure (MTTF) and 

Mean Time to Repair (MTTR) 

LEVEL MTTF MTTR 

Low 9 1 

Medium 6 7 

High 3 14 

 

For each of the four (4) scenarios outlined in section 4.2, we conducted a full factorial 

experiment (32) with 100 replications each. The distinct sets of experiments conducted for each 

scenario can be seen in Table 4.15. 
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Table 4.15     Simulation Experiments Executed During Study 

MTBF LO MED HI LO MED HI LO MED HI 

MTTR LO LO LO MED MED MED HI HI HI 

 

Experiment Conditions 

The numerical experiments were run for the right-shifting, LRPT rule-based, and the MAS-

based approaches for dynamic scheduling. The simulations are run using a script developed in 

MATLAB R2021b. The conditions for the experiments are as follows; 

1) Each experiment is run for four distinct demand mix scenarios (outlined in Table 4.5) 

a. For each scenario all 9 combinations for levels of MTTF and MTTR are run 

2) The order for all parts is assumed to arrive at the system at time zero, T = 0. 

3) Each simulation experiment for each setting for each scenario is repeated 20 times 

4) The mean completion times and the associated standard deviations are compared 

4.6.2 Results 

Table 4.16 below contains the results of the numerical experiments conducted for the four 

different scenarios presented in section 4.2.  The table contains the mean completion time and 

standard deviation of those completion times for processing a given order of parts using three 

distinct scheduling approaches. We also present the P-values for hypothesis testing we conducted 

on the results of the experiments as well as the main effects of the machine breakdown variables. 

Tables 4.17 to 4.20 present the numerical values for the main effects for varying MTTF and 

MTTR levels. The main effects are visually represented in Figure 4.15. 
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Table 4.16     Simulation Experiment Results for Machine Breakdown 

Scenario 
MTTF 

Level 

MTTR 

Level 

RS LRPT MAS  P-Value 

(H0: µ1 = 

µ3) 

P-Value 

(H0: µ2 = 

µ3) 
 (µ1)  (σ1)  (µ2)  (σ2) (µ3)  (σ3) 

1 

LO LO 13.26 1.80 12.80 1.69 12.79 2.23 0.46 0.45 

MED LO 14.47 2.23 13.80 2.02 13.65 2.70 0.30 0.28 

HI LO 16.53 2.59 16.15 2.28 16.27 3.17 0.78 0.77 

LO MED 36.88 17.27 25.54 9.42 31.21 11.81 0.23 0.09 

MED MED 46.48 17.11 33.58 14.29 33.86 11.52 0.01 <0.001 

HI MED 60.78 13.57 50.41 18.11 51.24 16.53 0.05 0.08 

LO HI 63.11 33.07 48.53 22.04 49.26 24.53 0.13 0.06 

MED HI 74.72 29.36 75.81 31.29 64.01 30.82 0.26 0.28 

HI HI 118.58 34.42 119.93 44.43 97.60 37.13 0.06 0.11 

2 

LO LO 17.67 2.17 21.90 1.74 21.86 3.13 <0.001 <0.001 

MED LO 19.25 2.73 21.96 2.40 22.83 3.15 <0.001 <0.001 

HI LO 21.77 2.67 27.53 3.26 27.00 3.79 <0.001 <0.001 

LO MED 43.92 13.53 43.72 12.83 39.78 12.04 0.31 0.29 

MED MED 54.26 20.77 51.69 13.57 49.58 14.56 0.41 0.29 

HI MED 73.78 17.73 80.42 13.51 75.79 20.81 0.74 0.72 

LO HI 85.89 35.21 67.98 21.32 69.98 31.89 0.13 0.06 

MED HI 94.15 26.69 90.01 28.76 89.85 29.50 0.63 0.64 

HI HI 142.60 40.03 135.11 40.40 137.65 34.47 0.68 0.68 

3 

LO LO 22.78 2.40 27.04 1.87 26.17 3.35 <0.001 <0.001 

MED LO 24.08 2.56 28.29 2.52 27.02 3.67 <0.001 <0.001 

HI LO 27.85 3.42 32.04 2.28 31.72 4.97 <0.001 <0.001 

LO MED 52.50 17.30 56.73 21.08 50.91 16.87 0.77 0.79 

MED MED 58.95 14.17 63.02 14.85 60.28 15.82 0.78 0.78 

HI MED 87.83 20.23 89.95 18.26 93.47 24.07 0.42 0.40 

LO HI 88.62 31.13 77.97 27.29 81.33 35.32 0.49 0.47 

MED HI 105.09 37.72 106.51 25.31 103.94 28.38 0.91 0.89 

HI HI 166.71 44.15 181.36 38.83 164.63 46.26 0.88 0.88 

4 

LO LO 32.01 2.52 37.72 2.26 36.29 5.07 <0.001 <0.001 

MED LO 33.60 2.75 39.38 3.13 37.68 5.22 <0.001 <0.001 

HI LO 39.78 5.96 47.55 3.41 43.43 5.16 0.04 0.01 

LO MED 64.52 15.35 66.52 12.80 66.79 16.91 0.66 0.63 

MED MED 80.81 18.87 79.57 15.40 79.83 18.18 0.87 0.85 

HI MED 119.41 24.62 120.06 18.73 128.06 25.41 0.27 0.22 

LO HI 119.00 20.42 111.44 21.46 116.62 21.21 0.72 0.72 

MED HI 149.57 43.88 143.55 33.11 135.24 39.87 0.28 0.22 

HI HI 212.07 43.65 231.29 41.48 213.64 41.92 0.91 0.91 
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Table 4.17     Main Effects of Varying MTTF Levels on the Mean Completion Times Using 

Each Solution Approach 

 LO MED HIGH EFFECT 

RS 53.35 62.95 90.64 37.29 

LRPT 50.82 62.26 94.32 43.50 

MAS 50.25 59.81 90.04 39.79 

 

Table 4.18     Main Effects of Varying MTTF Levels on the Standard Deviation of Mean 

Completion Times Using Each Solution Approach 

 LO MED HIGH EFFECT 

RS 16.01 18.24 21.09 5.08 

LRPT 12.98 15.55 20.42 7.44 

MAS 15.36 16.95 21.97 6.61 

 

Table 4.19     Main Effects of Varying MTTR Levels on the Mean Completion Times Using 

Each Solution Approach 

 LO MED HIGH EFFECT 

RS 23.59 65.01 118.34 94.75 

LRPT 27.18 63.43 115.79 88.61 

MAS 26.39 63.40 110.31 83.92 

 

Table 4.20     Main Effects of Varying MTTR Levels on the Standard Deviation of Mean 

Completion Times Using Each Solution Approach 

 LO MED HIGH EFFECT 

RS 2.82 17.54 34.98 32.16 

LRPT 2.41 15.24 31.31 28.90 

MAS 3.80 17.04 33.44 29.64 
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Figure 4.15     Main Effect Plots 

 

4.6.3 Discussion 

The results show that the MAS has the best response to uncertainty resulting from 

machine breakdowns of the three scheduling approaches studied. This solution approach yields 

the lowest completion times for processing demand orders with comparable standard deviations 

to the other approaches studied. This can be seen in the main effects for the mean completion 

times for the uncertainty in MTTF and MTTR (Table 4.17 and Table 4.19) and their associated 

standard deviations (Table 4.18 and Table 4.20). Table 4.17 shows the main effect on mean 

completion time when varying MTTF falls between 50.25 and 90.04 time units when using MAS 

in comparison to 53.35 to 90.64 time units using RS, and between 50.82 to 94.32 time units 

using LRPT. Looking at the main effects, we can see that the MAS yields the lowest mean 
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completion times of the approaches whilst having comparable standard deviations to the RS and 

LRPT schedules. Table 4.18 shows that the main effects on the standard deviation in the 

completion time generally falls between 12.98 to 21.97 times units regardless of the approach 

used. The results suggest that the MAS approach slightly outperforms the alternative approaches. 

The main effects for MTTF indicate that the MAS yields the shortest completion times 

regardless of the setting. For the low and medium settings, we see a more pronounced difference 

between the performances MAS and the RS-schedule and LPRPT schedule respectively. 

Looking at the main effects (Table 4.18) for the MTTF that examines the standard deviation for 

the completion times, we see that the standard deviations are similar for all three approaches with 

respect to MTTF. However, we see that the MAS is more sensitive to the uncertainty in the 

MTTF than the alternative approaches than using RS. With a main effect of 6.61 to 5.08. MAS is 

less sensitive than LRPT with respect to standard deviation (6.61 to 7.44).  

 The main effects for the MTTR imply that the MAS approach slightly outperforms the 

RS and LRPT schedules with respect to mean completion times. Looking at Table 4.19, we see 

that the main effect of MTTR on completion time falls between 26.39 to 110.31 time units using 

MAS. This is in comparison to 23.59 to 118.34 time units when using RS, and 27.18 to 115.79 

time units when using LRPT. The MAS approach also results in less sensitivity to the level of 

MTTR. With the MAS approach having a mean main effect of 83.92 time units, RS schedule 

having a mean main effect of 94.75 time units, and the LRPT schedule having 88.61 time units. 

For the low MTTR setting the MAS has the second lowest mean completion time with the RS 

having the lowest. However, for each subsequent level of MTTR (medium, and high) the MAS 

has the lowest mean completion time of all the approaches examined. Looking at the main 

effects of the MTTR levels on the standard deviation of the completion times, we see that all 
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three approaches are comparable. At the lowest MTTR level, the MAS approach has the highest 

standard deviation. However, as the level of MTTR increases, the MAS has the lowest standard 

deviation of the approaches examined. 

 Overall, the results of these experiments suggest that in situations with low uncertainty in 

machine availability, the MAS approach is not as effective as using a predictive-reactive 

scheduling strategy but yields very comparable results. However, as the level of uncertainty in 

machine availability increases, the MAS approach outperforms the dynamic scheduling 

approaches explored. This observation makes sense given that greater levels of uncertainty 

should mean that the ideal schedule should significantly differ from the nominal schedule 

(greater schedule instability). Given that the MAS approach is completely reactive, it can adjust 

to accommodate the disturbances to the system better. As we have seen from previous 

experiments (see 4.3 and 4.5) the MAS approach performs comparably to the near-optimal 

schedule derived using RS. It also outperforms the simplicity of the dispatching rule. So, the 

MAS approach would yield results close to the optimal schedule if all disturbances could be 

accounted for a priori. However, it offers the same flexibility and robustness as the dispatching 

rule. Given the results of these experiments, we would recommend the MAS approach for 

manufacturing systems subject to uncertainty from machine availability over predictive-reactive 

scheduling using right shifting and a nominal schedule or using dispatching rules. 
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4.7 Scheduling in Environment Subject to Job-Related and Resource Related Sources of 

Uncertainty 

The typical dynamic job shop scheduling problem seen in literature typically focuses on 

either job-related sources of uncertainty (processing times, new arrivals, demand) or resource-

related uncertainty (machine availability, raw material availability, etc.) (Ouelhadj & Petrovic, 

2009). These problems typically focus on one or two sources of uncertainty. However, this is not 

representative of a real-world manufacturing environment which is subject to multiple sources of 

uncertainty. It is important that any scheduling strategy or approach employed be effective when 

used in the real manufacturing system.  

In this section, we will conduct a series of experiments under both job-related and 

resource-related sources of uncertainty. This is important as there may be interactions between 

the different sources of uncertainty that are being ignored. These interactions or compounding 

effects may result in different efficacy for the different dynamic scheduling approaches being 

employed for thr given problem.  It is for this reason that we will specifically be comparing the 

performance of our MAS-based approach to that of dynamic scheduling using dispatching rules 

(LPRT), and right-shifting in a manufacturing environment subject to uncertainty in processing 

times, demand volume, and machine availability due to breakdown.  

In the upcoming subsections, we will present a description of the numerical experiment 

conducted as well as the results of these experiments, and an analysis of our findings. 

 

4.7.1 Numerical Experiments 

For our numerical experiment, the problem we are examining is based on scenario 1. The 

manufacturing system is a furniture manufacturing consisting of 11 machines (as described in 
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section 4.2). This system can be run using three dynamic scheduling approaches (right-shifting, 

dispatching rules or our MAS approach). The manufacturing system is tasked with producing six 

(6) distinct parts (p1, p2, p3, p4, p5 and p6) in an environment subject to four sources of 

uncertainty. The sources of uncertainty are as follows: 

1) Demand volume uncertainty 

2) Operation execution duration uncertainty 

3) Machine mean time to failure uncertainty 

4) Machine mean time to repair uncertainty 

We have chosen to use this scenario (demand for uncertain volume of six distinct parts) 

because the previous experiments conducted in this chapter (sections 4.3, 4.4, 4.5, and 4.6) show 

that this mix of parts can be produced in times that are indistinguishable from each other using 

any of the three dynamic scheduling approaches being examined. Given that each solution 

approach is comparable in experiments where only one source of uncertainty was considered, it 

serves as good candidate to examine if there are compounding effects with multiple sources of 

uncertainty. It also allows us to investigate the performance of each scheduling approach under 

these conditions.  

For the experiment we treat each source of uncertainty as a factor with three level 

settings. This specific information for each factor’s levels can be seen in Table 4.21. Each factor 

has similar values as were used in the experiments conducted in sections 4.4, 4.5 and 4.6. We 

conducted a full factorial experiment with 20 repetitions of each simulation experiment. This is 

done using each dynamic scheduling approach (RS, LRPT, and MAS). This results in a total of 

81 distinct experiments and 1620 experiments total using each scheduling approach. 
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Table 4.21     Level Settings for each Source of Uncertainty Our Manufacturing System is 

Subject To 

LEVEL Demand Operation Duration 

Uncertainty  

MTTF MTTR 

Low 1 10 % of µ 9 1 

Medium 1 to 3 20 % of µ 6 7 

High 5 to 10 30 % of µ 3 14 

 

Experiment Conditions 

The numerical experiments were run for the right-shifting, LRPT rule-based, and the 

MAS-based approaches (real-time scheduling). The simulations are run using a script developed 

in MATLAB R2021b. The conditions for the experiments are as follows; 

1) Each experiment is run for four distinct demand mix scenarios (outlined in Table 4.5) 

a. For each scenario all 9 combinations for levels of MTTF and MTTR are run 

b. For each scenario all combination of uncertainty in OED are run 

c. For each scenario all combinations of demand uncertainty presented are run 

2) The order for parts arrives to the system at time zero, T = 0. 

3) Each simulation experiment for each setting for each scenario is repeated 20 times 

 

4.7.2 Results  

Tables 4.22 to 4.24 contain the mean completion for each simulation experiment run as 

well as the associated standard deviation for those times. These tables also present the 

experiment settings that yielded these results. We performed hypothesis testing on this data to 

determine if their means are equal, and the P-values calculated are shown in the tables. This 

section also presents the main effects of each factor on the mean completion times and their 

standard deviations. These can be seen in Tables 24-31 and are depicted in Figure 4.16.   
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Table 4.22     Mean Completion Times and Associated Standard Deviations for Simulation 

Experiments with Fixed Demand 

DEMAND TIME MTTF MTTR 

RS LRPT MAS P-

Value 

(H0: µ1 

= µ3) 

P-

Value 

(H0: µ2 

= µ3) 

µ1 σ1 µ2 σ2 µ3 σ3 

1 10 9 1 13.56 0.94 12.58 1.55 12.01 1.16 <0.001 <0.001 

1 10 9 7 32.83 12.33 33.05 16.33 28.80 11.04 0.28 0.36 

1 10 9 14 72.75 48.83 70.82 31.86 37.77 13.54 <0.001 <0.001 

1 10 6 1 14.47 1.99 14.43 2.42 12.55 1.08 <0.001 <0.001 

1 10 6 7 47.91 17.18 42.08 17.27 41.78 16.89 0.26 0.26 

1 10 6 14 76.23 25.35 60.36 29.28 56.18 18.05 <0.001 <0.001 

1 10 3 1 17.99 1.88 15.35 2.47 14.71 1.94 <0.001 <0.001 

1 10 3 7 71.60 20.56 50.52 12.89 47.51 10.83 <0.001 <0.001 

1 10 3 14 141.07 38.95 102.33 35.96 93.52 32.19 <0.001 <0.001 

1 20 9 1 14.30 1.98 13.82 1.99 11.19 1.14 <0.001 <0.001 

1 20 9 7 38.03 18.16 31.37 12.97 25.22 6.84 <0.001 <0.001 

1 20 9 14 63.13 26.52 56.00 27.49 48.22 23.60 0.06 0.07 

1 20 6 1 14.95 1.84 13.95 1.78 13.06 1.90 0.00 0.00 

1 20 6 7 55.05 13.36 40.02 14.59 31.39 8.79 0.00 0.00 

1 20 6 14 86.19 30.02 59.33 23.64 70.01 28.53 0.08 0.05 

1 20 3 1 17.10 2.73 16.96 2.87 15.72 2.55 0.10 0.11 

1 20 3 7 63.42 14.67 58.16 19.96 50.02 11.62 <0.001 <0.001 

1 20 3 14 119.07 35.48 99.87 40.46 84.88 26.67 <0.001 <0.001 

1 30 9 1 13.92 1.64 13.47 2.10 13.01 1.74 0.09 0.13 

1 30 9 7 42.73 9.84 30.21 11.79 26.66 7.46 0.00 0.00 

1 30 9 14 58.52 28.78 49.02 26.60 49.13 20.63 0.24 0.21 

1 30 6 1 14.81 1.96 14.48 2.55 13.47 1.39 <0.001 <0.001 

1 30 6 7 44.74 9.02 38.39 9.12 36.81 12.75 <0.001 <0.001 

1 30 6 14 81.89 30.86 56.79 19.92 61.47 23.80 <0.001 <0.001 

1 30 3 1 17.57 2.85 17.11 3.03 15.13 2.01 <0.001 <0.001 

1 30 3 7 61.87 14.15 53.29 13.10 47.74 16.71 <0.001 <0.001 

1 30 3 14 127.48 44.88 94.97 33.29 81.80 27.30 <0.001 <0.001 
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Table 4.23     Mean Completion Times and Associated Standard Deviations for Simulation 

Experiments with Uncertain Demand Between 1 and 3 Units 

DEMAND TIME MTTF MTTR 

RS LRPT MAS P-Value 

(H0: µ1 = 

µ3) 

P-Value 

(H0: µ2 = 

µ3) 
µ1 σ1 µ2 σ2 µ3 σ3 

1 to 3 10 9 1 36.46 2.05 21.10 1.26 18.68 1.41 <0.001 <0.001 

1 to 3 10 9 7 70.12 14.62 44.34 12.55 40.29 10.05 <0.001 <0.001 

1 to 3 10 9 14 116.70 36.19 65.63 18.93 62.96 25.19 <0.001 <0.001 

1 to 3 10 6 1 30.70 3.06 21.68 2.32 22.73 1.47 <0.001 <0.001 

1 to 3 10 6 7 83.81 20.81 41.74 12.94 49.36 10.71 <0.001 <0.001 

1 to 3 10 6 14 85.86 25.89 87.97 24.20 85.89 24.07  1.00 1.00  

1 to 3 10 3 1 44.10 4.94 29.89 3.04 22.05 2.79 <0.001 <0.001 

1 to 3 10 3 7 144.78 16.27 89.00 22.43 91.27 15.34 <0.001 <0.001 

1 to 3 10 3 14 225.65 57.74 172.89 45.50 124.84 28.46 <0.001 <0.001 

1 to 3 20 9 1 36.87 3.12 26.02 2.36 18.16 2.10 <0.001 <0.001 

1 to 3 20 9 7 61.88 14.44 48.88 16.10 48.42 15.03 <0.001 <0.001 

1 to 3 20 9 14 107.85 35.85 79.09 18.90 69.13 18.19 <0.001 <0.001 

1 to 3 20 6 1 34.21 2.71 20.94 2.32 18.61 2.98 <0.001 <0.001 

1 to 3 20 6 7 87.82 25.88 57.89 12.80 47.14 10.32 <0.001 <0.001 

1 to 3 20 6 14 119.36 45.86 88.64 20.04 79.65 18.92 <0.001 <0.001 

1 to 3 20 3 1 32.33 3.34 25.43 2.15 28.09 3.13 <0.001 <0.001 

1 to 3 20 3 7 145.63 38.83 75.79 15.92 83.81 18.45 <0.001 <0.001 

1 to 3 20 3 14 241.64 48.57 124.39 46.54 125.52 38.69 <0.001 <0.001 

1 to 3 30 9 1 37.79 2.32 22.75 2.39 21.96 2.06 <0.001 <0.001 

1 to 3 30 9 7 71.82 14.75 36.33 11.68 41.23 10.15 <0.001 <0.001 

1 to 3 30 9 14 122.79 43.25 61.19 26.73 66.03 24.15 <0.001 <0.001 

1 to 3 30 6 1 39.03 5.35 20.03 2.52 19.19 1.66 <0.001 <0.001 

1 to 3 30 6 7 67.57 21.16 62.49 10.02 46.46 13.22 <0.001 <0.001 

1 to 3 30 6 14 138.08 38.31 94.91 28.06 78.22 23.76 <0.001 <0.001 

1 to 3 30 3 1 36.96 3.37 24.31 2.74 25.74 3.37 <0.001 <0.001 

1 to 3 30 3 7 139.12 27.23 82.33 11.62 62.60 12.71 <0.001 <0.001 

1 to 3 30 3 14 201.77 58.10 156.96 25.75 114.48 29.87 <0.001 <0.001 
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Table 4.24     Mean Completion Times and Associated Standard Deviations for Simulation 

Experiments with Uncertain Demand Between 5 and 10 Units 

DEMAND TIME MTTF MTTR 

RS LRPT MAS P-Value 

(H0: µ1 

= µ3) 

P-

Value 

(H0: µ2 

= µ3) 

µ1 σ1 µ2 σ2 µ3 σ3 

5 to 10 10 9 1 99.15 3.78 58.56 2.41 49.08 2.28 <0.001 <0.001 

5 to 10 10 9 7 229.89 34.98 117.73 13.98 99.89 12.67 <0.001 <0.001 

5 to 10 10 9 14 331.05 76.10 181.08 31.73 149.15 20.70 <0.001 <0.001 

5 to 10 10 6 1 117.86 5.06 56.86 2.86 49.41 1.86 <0.001 <0.001 

5 to 10 10 6 7 208.14 22.24 151.98 15.36 106.04 12.02 <0.001 <0.001 

5 to 10 10 6 14 390.51 59.58 214.03 27.60 208.13 33.64 <0.001 <0.001 

5 to 10 10 3 1 135.07 7.06 74.68 2.63 70.01 2.62 <0.001 <0.001 

5 to 10 10 3 7 319.26 34.37 186.81 23.02 152.81 19.46 <0.001 <0.001 

5 to 10 10 3 14 594.41 81.25 344.02 49.48 258.65 27.93 <0.001 <0.001 

5 to 10 20 9 1 109.57 3.89 64.78 2.51 56.99 2.32 <0.001 <0.001 

5 to 10 20 9 7 181.41 25.74 119.59 17.71 87.69 12.60 <0.001 <0.001 

5 to 10 20 9 14 259.54 70.12 180.79 35.95 137.43 24.82 <0.001 <0.001 

5 to 10 20 6 1 115.43 5.49 59.93 3.12 59.69 3.60 0.00 0.00 

5 to 10 20 6 7 263.64 48.77 139.84 16.32 110.03 8.47 0.00 0.00 

5 to 10 20 6 14 397.67 51.65 263.19 41.41 161.79 32.48 0.00 0.00 

5 to 10 20 3 1 150.07 7.10 84.82 4.02 62.71 3.94 0.00 0.00 

5 to 10 20 3 7 391.88 59.83 196.23 28.08 173.90 23.18 0.00 0.00 

5 to 10 20 3 14 613.45 87.00 321.42 37.16 319.95 30.58 0.00 0.00 

5 to 10 30 9 1 110.23 6.27 66.70 2.96 54.89 2.52 0.00 0.00 

5 to 10 30 9 7 205.05 33.86 102.20 12.64 90.94 16.46 0.00 0.00 

5 to 10 30 9 14 298.58 53.68 167.74 25.76 134.71 23.67 0.00 0.00 

5 to 10 30 6 1 129.82 7.12 62.31 3.82 55.94 4.41 0.00 0.00 

5 to 10 30 6 7 207.66 32.32 132.14 21.04 121.01 18.23 0.00 0.00 

5 to 10 30 6 14 369.10 66.46 228.97 34.00 193.89 36.38 0.00 0.00 

5 to 10 30 3 1 133.85 8.30 83.77 7.10 65.39 4.10 0.00 0.00 

5 to 10 30 3 7 325.13 43.00 218.52 21.68 174.20 22.58 0.00 0.00 

5 to 10 30 3 14 643.68 105.22 281.06 49.50 325.78 35.49 0.00 0.00 
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Table 4.25     Main Effects of Demand Uncertainty on Mean Completion Time 

 1 1 TO 3 5 TO 10 EFFECT 

LRPT 42.92 62.32 154.07 111.15 

MAS 38.51 56.02 130.74 92.23 

RS 52.71 94.84 271.52 218.81 

     
 

Table 4.26     Main Effects of Demand Uncertainty on Standard Deviation of the Mean 

Completion Time 

 1 1 TO 3 5 TO 10 EFFECT 

LRPT 15.46 14.88 19.77 4.31 

MAS 12.30 13.64 16.26 3.96 

RS 16.92 22.74 38.53 21.61 

     
 

Table 4.27     Main Effects of Operation Execution Duration Uncertainty on Mean 

Completion Time 

 10% 20% 30% EFFECT 

LRPT 87.46 87.67 84.16 86.43 

MAS 74.30 75.50 75.48 75.09 

RS 138.96 141.54 138.58 139.69 

 

Table 4.28     Main Effects of Operation Execution Duration Uncertainty on Standard 

Deviation of the Mean Completion Time 

 10% 20% 30% EFFECT 

LRPT 17.12 17.38 15.61 -1.51 

MAS 13.31 14.13 14.76 1.45 

RS 24.96 26.78 26.45 1.49 

 

Table 4.29      Main Effects of MTTF Level  on Mean Completion Time 

 LOW MED HIGH EFFECT 

LRPT 65.74 79.46 114.11 48.37 

MAS 55.54 68.52 101.22 45.68 

RS 105.06 123.06 190.96 85.90 
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Table 4.30     Main Effects of MTTF Level on Standard Deviation of the Mean Completion 

Time 

 LOW MED HIGH EFFECT 

LRPT 14.42 14.86 20.83 6.41 

MAS 11.61 13.75 16.83 5.22 

RS 23.11 22.94 32.14 9.03 

 

Table 4.31     Main Effects of MTTR Level on Mean Completion Time 

 LOW MED HIGH EFFECT 

LRPT 35.43 84.48 139.39 103.96 

MAS 31.12 72.71 121.45 90.33 

RS 58.08 135.66 225.33 167.25 

 

Table 4.32     Main Effects of MTTR Level on Standard Deviation of the Mean Completion 

Time 

 LOW MED HIGH EFFECT 

LRPT 2.71 15.70 31.69 28.98 

MAS 2.35 13.50 26.34 23.99 

RS 3.78 24.39 50.02 46.24 
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Figure 4.16     Main Effects Plots 
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4.7.3 Discussion 

One of the major observations from these experiments is that the MAS and LRPT 

approaches (both completely reactive scheduling approaches) outperform the RS approach (a 

predictive-reactive approach). This is important as the results suggest that looking at the 

performances of dynamic scheduling methods whilst investigating single sources of uncertainty 

might not be truly indicative of how these scheduling methods would perform in real-life 

manufacturing environments. With one source of uncertainty, it stands to reason that a 

predictive-reactive approach would outperform completely reactive approaches. This is because 

we begin with the optimal schedule and then adjust to a new optimal for each disruption. 

However, if there is significant volatility in the system (frequent disruptions), there will be high 

levels of schedule instability and low schedule efficiency. If these disruptions are frequent 

enough, there would either need to be constant change to the schedule, or significant delays due 

to adhering to the original schedule. This is reflected in the results. The results imply that the 

compounding effects of having multiple uncertainty sources are significant. In Tables 4.22 to 

4.24, we observe consistent, poor performance of the RS relative to the LRPT and MAS 

approaches when in the previous sections, they were equivalent or worse when compared to the 

RS. This information is also corroborated in the main effects as shown in Tables 4.25 to 4.32. 

The main effects show that the RS approach was consistently the most sensitive to the level of 

each factor investigated (with the exception of the OED uncertainty). This was true for both the 

main effects of the mean completion time and the standard deviation in the completion times. 

 The experiment results also indicate that there is a benefit to the additional intelligence 

offered by the MAS over the simple intelligence offered by the LRPT dispatching rules. Looking 

at the experimental run results shown in Tables 4.22 to 4.24, we see that the MAS outperforms 
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the LRPT in most of the experimental runs executed. This result is to be expected as it is 

reasonable to assume that using more complex decision-making would yield better results for 

real-time scheduling.  

To discern the effect of each variable for this set of numerical experiments, we compiled 

the main effects. Looking at the results from Table 4.25, we see that MAS yields the lowest 

times regardless of the demand uncertainty setting when looking at main effects. The MAS 

approach also has the lowest standard deviations. This suggests that the MAS is the most reliable 

approach with respect to its ability to handle uncertain demand. However, it is interesting to note 

that whilst MAS yields the best times most consistently, LRPT is the least sensitive to increasing 

uncertainty in demand. As uncertainty in demand increases from 1 to between 1-3 units, we see 

an increase in mean completion time of 1.45 times when LRPT and MAS are used, and 1.8 when 

RS is used. When goes from 1 to between 5-10 units, LRPT times increase by 3.6 times, MAS 

times increase by 4.5 times and RS times increase by 5.1 times. This appears to be a linear 

relationship. 

Looking at Table 4.27, we see that the main effects for operation execution duration is 

marginal. For LRPT, the difference between the largest and smallest values for the effects is 

~4%. For the MAS, the difference between the largest and smallest values for the effects is ~2%. 

For the RS, the difference between the largest and smallest values for the effects is ~2%.  The 

standard deviations also follow a similar pattern. This is to be expected as the mean completion 

time required to execute the operations has not changed, only the size of the standard deviation. 

Looking at the main effect of OED uncertainty on the standard deviation, we see that it rises with 

the level of uncertainty and then plateaus at 20% when using LRPT and RS, but no plateau when 

using MAS. This result suggests that MAS approach may be more sensitive to changes in OED 
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with respect to consistency in outcomes than the alternate scheduling approaches studied. 

Despite having standard deviations being more sensitive to OED uncertainty, the MAS still had 

the lowest standard deviations, indicating that it had the most reliable performance.  

Looking at the main effect of MTTF, we see that MAS yields the lowest times with the 

lowest standard deviations in the times. The mean main effect of MTTF on completion times is 

75.09 time units for MAS, 86.43 time units using LRPT, and 139.69 time units using RS. With 

changing levels from low to medium, to high, each approach has the same increase in the time 

yielded; ~1.2 times increase and ~1.8 times increase in completion times respectively.  With 

standard deviation main effects for MTTF, we see that for both LRPT and RS, there is little 

difference between the low and medium settings. However, there is a significant jump between 

medium and high settings. This suggests that the standard deviation may exponentially increase 

with increasing uncertainty in the MTTF when LRPT or RS is the scheduling method employed. 

With respect to the RS, we see that the standard deviation appears to linearly increase with the 

level of MTTF uncertainty.  Overall, these results suggest that the RS performance is more stable 

than the alternatives studied and yields the shortest completion times. 

Looking at the main effects of MTTR level on the completion times, we see that MAS 

yielded the lowest completion times with RS yielding the highest times. Each different 

scheduling approach is equally sensitive to changes in level of MTTR with the transition from 

low to medium resulting in a ~2.3 times increase in time, and the increase from low to high 

resulting in a ~3.9 times increase in time. This suggests that they all increase linearly with 

respect to the MTTR level. With respect to the standard deviations, the same pattern is observed. 

MAS yields the lowest standard deviations. The relation between the MTTR level and standard 

deviation appears to be linear. 



141 

 

For this example, we can see that the most significant effects are from the demand 

uncertainty and MTTR level uncertainty. They cause the most significant changes in the system 

performance, with the highest settings for both causing an increase of 5 times, and 3.8 times in 

completion times respectively. The least significant effect appears to be from OED uncertainty, 

which appears to mostly affect the consistency of the performance of the scheduling approach. 

Overall, our results suggest that in an environment with multiple sources of uncertainty, 

the completely reactive scheduling approaches are best. With MAS being the best approach, at 

least for this given problem.  This is true even at low levels of uncertainty but becomes more 

pronounced with larger uncertainty. 

 

4.8 Summary of Experiments on Multi-Agent System Approach Performance 

To investigate the performance of the MAS approach to dynamic scheduling that we 

propose, we conducted four separate sets of experiments whilst considering four different 

demand mixes. Whilst each set of experiments has its own unique results and findings, there are 

some common observations that appear consistent throughout each. In this subsection, we will 

highlight the general observations. 

Looking at the manufacturing system we present, we see that the processing route options 

for each part utilize the same operations and follow similar sequences. Also, the machines within 

the system that perform the same operation are similar in their ability to process the operation 

(same setup and processing times). This allows for a system where the greedy option of choosing 

the shortest path to the next operation to yield the best result. It is important to understand this, as 

it highlights why the MAS approach proposed is capable of consistently solving for the optimal 
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solution despite not considering future states of the system and possible downstream implications 

of agent decisions. We feel that the manufacturing system we present is representative of real-

world manufacturing systems. 

For each experiment, we see that our MAS approach outperforms the alternate dynamic 

scheduling approaches for the first demand mix scenario. The only exception to this finding was 

for the experiments where there is no uncertainty or disruptive events to the system. For this set 

of experiments, the results indicate that the MAS performs as well as the alternative dynamic 

scheduling options (it yields the shortest time possible). The question is why is this scenario 

unique? With scenario 1, as we examine the processing routes for each part requested in the 

demand order for the near-optimal schedule (as provided by the GA in Figure 4.4) we see that 

one multi-purpose CNC machine would be free after the first operation it completes. This adds 

flexibility to the system in the form of an alternate routing operation for each downstream 

operation. This implies that the MAS can now use the additional flexibility this machine 

provides to minimize the impact of the any disruption to the system. With the subsequent 

scenarios, we see the CNC machines have significantly heavier workload relative to the first. For 

these scenarios, the MAS performs comparably to the alternate dynamic scheduling options.  

In a more realistic set of experiments, where multiple sources of uncertainty are 

considered simultaneously, we see that the compounding effect of the sources of uncertainty are 

more significantly deleterious to the performance of the right-shifting approaches than to our 

MAS approach. This suggests that the MAS approach we propose may be the best approach to 

employ in a real-world manufacturing system. 

In summary, our findings imply that our MAS approach is particularly effective when 

duplicate machines are available for operations that commonly occur downstream. However, if 
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there are no duplicate machines for these downstream operations, the results of our experiments 

indicate that our MAS approach will either outperform or perform comparably to right shifting a 

nominal schedule so long as some job-related or resource related uncertainties in the system are 

considered. 
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Chapter 5  

Machine Resource Deployment for Multi-Agent System Based Manufacturing System 

In the previous chapter, the results of our simulation experiments suggested that the 

manufacturing system performance is affected by three factors: (1) the machine time to failure 

(MTTF) for each machine, (2) mean time to repair (MTTR) for each machine, and (3) the level 

of uncertainty with setup and processing times. The results of the numerical experiments in the 

previous chapter suggest that these three factors can be influenced by the flexibility of the 

system. The flexibility, as we defined it here, has to do with the number of machines available to 

perform a given operation at any given time. This is a variable that can be easily adjusted or 

controlled by facility planners by adding more machines so long as the budget for designing the 

facility allows. There are several questions to answer. The facility planner must determine the 

selection of machines to be used in the system. They must also determine the number of 

duplicates of these machines to deploy in the system. This requires an understanding of the point 

at which an additional duplicate machine of a given type will have no improvement to system 

performance. As such, the facility planner must understand the significance of the trade-off 

between robustness offered by having duplicates, and the cost (capital and operation costs) of 

having these duplicates.  

This chapter will focus on strategies for deciding how many distinct machines to have 

within a system as well as how many duplicates of each distinct machine are needed for effective 

implementation of a MAS-based smart manufacturing system. This problem is a machine 

selection problem combined with the machine duplication problem. We will refer to this problem 

as a machine deployment problem (MDP). 
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With the MDP, we are tasked with determining which types of machines will be used in 

the system as well as the number of each of these types of machines that will be used. This 

selection must be made from a given catalogue of machines. This selection of machines must 

also result in a manufacturing system designed to process all the part types requested of it. As 

with most design problems, the design must not violate a set of constraints. With the MDP, these 

constraints are usually budget and/or space related (maximum number of machines that the space 

can hold). 

 There are two possible applications of the MDP. The first is in the design of completely 

new systems. This would be the case when a new facility is to be constructed and the facility 

planner needs to decide what machines to use in the manufacturing process. The other 

application is when upgrading an existing system by deciding which machines are bottlenecks in 

the system and require duplication in order to improve overall system performance.  

In the upcoming sections, we will present two approaches to solving the MDP in a MAS-

based smart manufacturing system. The first involves the use of conventional robust design 

methodology with simulation as the basis for a framework for our decision-making. This 

approach is particularly useful when assessing the value of adding more resources to an existing 

system. The second is a simulation-based optimization model for solving the machine 

deployment problem. This approach is useful when designing a system in its entirety.  

This chapter is organized into four (4) sections. In the first section, we will provide an overview 

of the MDP. In the second section, we will present our robust design methodology-based 

framework for solving MDP. This section will not only include an overview of the procedure, 

but also numerical experiments to demonstrate its application. The third section will focus on the 

formulation of a simulation-based optimization model for determining the number of each 
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distinct machine type to deploy when designing a robust smart manufacturing system (SMS). 

Finally, in the fourth section, we will conduct a comparison study for the MDP solution methods 

that were presented in this chapter (robust design, meta-heuristic, and exhaustive search 

approaches). The objective behind this comparison study is to identify the benefits and 

drawbacks of using each approach when solving the MDP. 

5.1 The Machine Deployment Problem 

The machine deployment problem (MDP) is not an entirely new problem. It is similar to 

the machine selection problem (Wang et al., 2000), machine requirements problem (Miller & 

Davis, 1977), and the equipment requirements problem (Kusiak, 1987). All of which are 

problems concerned with determining the appropriate selection of machines. There are also 

aspects of the MDP covered with the machine duplication problem.  

With the MDP, a subset of machines must be selected from a catalogue of machines for 

use in a manufacturing system. Determining the machines that comprise this subset of machines 

is the main decision with the MDP. This subset of machines must allow the manufacturing 

facility to be able to fulfill the processing requirements for producing a set of parts. The decision 

on this selection of machines is typically limited by the available budget, the catalogue of 

machines to select from, and the space within the facility. The intention behind this MDP is to 

design a manufacturing system with good performance with respect to the common 

manufacturing metrics. These metrics are typically related to order completion time, flowtime, 

makespan, tardiness and lateness. In this section, we will present our model for the MDP. 
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5.1.1 Proposed Machine Deployment Problem Model 

In this research, the MDP is focused on determining the selection of machines that 

minimizes the mean order completion time required to fulfill the demand as well as the standard 

deviation in that completion time. We are tasked with determining MCH = [mch1, mch2, …, 

mchnm]. Where MCH represents the number of machines of each type in the design.  For 

example, mch1 = 2, implies that there are 2 units of machine type m1 in the system. It is assumed 

that we are given O = {o1, o2, …, ono} which represents the operations that a manufacturing 

system must be able to perform. We are given a catalogue containing nm different types of 

machines to select from, the cost of each machine type (ci), and a budget (B). Each of these 

machines has the capacity to perform a set of operations, OM(mi). Where OM(m1) = {o1, o3} 

would indicate that machine m1 is capable of operations o1 and o9. It is also assumed that we 

have the forecast part demand volumes for the system. This information is all fed into a 

simulation which provides the mean completion time and standard deviation data used to 

evaluate our solutions.  

 

Decision Variables 

We consider one decision variable in the MDP, MCH = [mch1, mch2, …, mchnm]. This is 

the combination of machines being used in the system. This variable consists of the number of 

each machine type that will be used in the system. It can be represented by a string of integers 

with values greater than or equal to zero. The length of this string is the number of machines 

available to purchase, nm. The assignment of values to the elements of this string is limited by 

the available budget for procuring machines as well as the number of each machine type 
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available to procure, and the operations required of the manufacturing system. The product of all 

possible elements of this string would represent the solution space of the MDP. 

For example, a facility planner can purchase four types of machines; mch1, mch2, mch3, 

and mch4. The facility requires operations o1, o2 and o3. Operation o1 can be performed by 

machine mch1 and mch2. Operation o2 can be performed by machine mch3. Operation o3 can be 

performed by machine mch4. The facility planner has a budget of $1000, and each machine of 

any of the four available types of machine costs $300. The supplier has adequate units of each 

type of machine, such that the availability is not a constraint. For this example, the facility 

planner decides on one of each of the following machines; mch1, mch3, and mch4. This is because 

the facility planner can only purchase three machines due to budget constraints. As such, due to 

the operation requirements, they selected machines mch1, mch3, and mch4 because it did not 

exceed the budget, but allowed the system to be capable of all operations. A string that could be 

used to represent this solution is MCH = [1 0 1 1]. 

 

Modelling Assumptions 

In our development of the MDP we make the following assumptions regarding the problem: 

1) The part demand is known 

2) There is sufficient space within facility to contain any feasible design solution 

3) Machines are organized into equidistant functional layout departments 

a. Distance between machines in a department are negligible 

4) The manufacturing system is subject to multiple sources of uncertainty simultaneously 

5) All sources of uncertainty or disruption to the system are known and can be represented 

in the form of a known distribution 
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Mathematical Model Formulation – Performance Metrics 

With our MDP, the most important metrics by which the quality of the solution will be 

evaluated are the total cost of the machines to be utilized in the system and the mean time 

required to complete the order for parts received by the system. With respect to the mean 

completion time, we focused on the opportunity cost related to missing due dates (DD). To 

assign monetary value to the opportunity cost we must specify a conversion factor (β). It is 

important to try to keep both the cost of the design and the potential opportunity costs as low as 

possible. However, it is also important that the solution be robust. As such, the quality of the 

solution will also be dependent on the standard deviation (σs) in the performance of the system. 

These three metrics are represented as follows: 

Metric 1:  The total design cost (TDC) for implementing the design (smaller being better)  

𝑇𝐷𝐶(𝑀𝐶𝐻) (5.1) 

where 

𝑀𝐶𝐻 = [𝑚𝑐ℎ1, 𝑚𝑐ℎ2, … , 𝑚𝑐ℎ𝑛𝑚] (5.2) 

𝑇𝐷𝐶(𝑀𝐶𝐻) = ∑ 𝑚𝑐ℎ𝑖𝑐𝑖

𝑛𝑚

𝑖=1

 (5.3) 

 

Metric 2: The costs (or penalties) associated with instances of tardiness of the jobs (smaller 

being better) 

𝛽(𝑦̅𝑠(𝑀𝐶𝐻) − 𝐷𝐷) (5.4) 

where, 

𝑠 = (𝑝1, 𝑝2, … , 𝑝𝑛𝑝) (5.5) 
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𝛽 =  {
0, 𝑖𝑓 𝑦̅𝑠(𝑀𝐶𝐻) − 𝐷𝐷 < 0 

𝛽, 𝑖𝑓 𝑦̅𝑠(𝑀𝐶𝐻) − 𝐷𝐷 ≥ 0
(5.6) 

 

Metric 3:  The standard deviation with respect to mean order completion time 

𝜎𝑠  ≤ 𝜎𝑚𝑎𝑥 = 10−
𝛿

20(𝐷𝐷 − 𝛼 ) (5.7) 

Equation 5.7 shows the desired relationship between the desired completion time (DD) 

and the standard deviation (σs). Equation 5.7 also allows the incorporation of the amount of slack 

time (α) desired. The equation allows for a selection preference for combinations that are close to 

target with decreased noise. If there is no due date for the order, the target can simply be set to 

the mean completion time. 

 

Mathematical Model Formulation - Model Constraints 

Our MDP is subject to two main constraints. These constraints are as follows: 

1) The selection of machines must result in a system capable of all operations required to 

fulfill the demand. Let sm represent the indices for selected machines, such that sm  = { i | 

mchi > 0}. Given sm, the constraint associated with the system capacity is shown in 

Equation 5.8.  

 

𝑂 ⊆ ⋃ 𝑂𝑀(𝑚𝑖)

𝑖∈𝑠𝑚

 (5.8) 

2) The cost associated with implementing the system must not exceed the budget (B) 

allotted. The total cost of implementing the system is dependent on the cost of each 
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machine (ci) and the number of each machine type selected (mchi). Equation 5.9 shows 

this constraint. 

 

∑ 𝑐𝑖𝑚𝑐ℎ𝑖

𝑛𝑚

𝑖=1

≤ 𝐵 (5.9) 

5.2 Robust Design-Based Framework for Solving Machine Deployment Problem 

The robust design method is a very commonly used approach in manufacturing for 

improving the function of products, systems, or processes. In our application, we will be using it 

to solve the MDP. Our objective in solving the MDP using robust design methodology is to 

design a system that is relatively insensitive to stochastic disturbances. The system disturbances 

we focus on are variations in operation execution duration, machine breakdown and repair, and 

demand volume fluctuation. It is important that the machine resources present in the system be 

sufficient to minimize the effect of these disturbances without the cost of acquiring these 

machine resources exceeding the allotted budget. In this section, we will present an outline of 

how to solve the MDP using a robust design approach.  

 

5.2.1 Robust Design Procedure 

In this section we will provide a procedure for using robust design methodology to solve 

the MDP for a smart manufacturing system. The procedure is outlined below: 

1) Define System Input Information: The system inputs can be separated into two categories; 

(1) deterministic factors, and (2) stochastic factors. Deterministic input factors consist of 

the factors that we consider to be known and fixed throughout the production cycle. In 

this model, this includes the demand volume and mix, the order arrival time, and the 

budget.  Stochastic input factors represent the sources of uncertainty within the system. In 
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our model, these factors are the mean time to failure (MTTF) and mean time to repair 

(MTTR), as well as the variability in setup time and processing time for each operation. 

These factors are represented using distributions. We use exponential distributions for 

each of these factors based on the conventions shown in literature relating to machine 

reliability (Kececioglu, 2002). 

 

2) Design and Execution of Experiments: Each distinct simulation experiment begins with a 

solution (a set of machines that make up the manufacturing system). This solution (set of 

machines) is represented by MCH = [mch1, mch2, …, mchnm]. There is usually a 

constraint on the values that can be assigned to elements of MCH. These dictate the size 

of the solution search space.  

To avoid searching the entire solution search space we limit the experiment to 

searching combinations of machines that only consist of high, medium, and low levels of 

each machine type. This is a three-level experiment design. We chose this as it allows us 

to model possible curvature in the system response between two extreme points. The 

decision on the values level settings for high, medium and low for each element of MCH 

are based on the lowest and highest permissible values for each element. Our simulation 

experiments are now reduced to running all combinations of the elements of MCH for 

these three levels. This is a full factorial, three-level experiment design.  

From our experiments we record three pieces of information, (1) the mean 

completion time, (2) the standard deviation in the completion time, and (3) the cost of 

implementing the solution. This information is used to determine the main effects of the 
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level each element of MCH on the system cost, mean completion time and standard 

deviation. 

 

3) Determining Solution (Analysis of Results): The decision on the final solution is made by 

following these steps: 

a. Rank the machines (using the main effects) according to those that have the most 

significant effect on the mean order completion time to least. This would be 

reflected in the slope of the effect for each machine as their level changes. The 

steeper the slope, the more significant the effect.  

b. Repeat the previous step for the standard deviation.  

c. Examine the results to find the solutions that yielded mean completion times, 

standard deviation, and implementation costs within the acceptable thresholds. 

d. If there is a single result that has both the lowest mean completion time and 

standard deviation: 

i. Using the rankings for main effects, determine if an additional machine 

can be added to improve system performance without violating budgetary 

constraint. Add a machine to the system with the most significant effect 

system performance. With machines that have most significant effect on 

completion time given more priority. Note, that the center point in the 

effects plot should be used to gauge if there is utility in adding more of a 

machine type 

ii. If two or machines are similar machines (they serve as alternative 

options), use rankings of the main effects to determine if one or more of 
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the similar machines can be replaced with the better alternative or 

removed without significant impact to system performance 

iii. Repeat previous step until there are no options to add or subtract 

machines. The result is the final solution 

e. If there is no clear best solution from the feasible solutions. The solution can be 

built using the main effects for each machine. To design this solution, we execute 

the following steps: 

i. Using the main effects, assign the minimum number of machines required 

to provide the capacity to perform all needed operations. The machines 

should be selected over alternatives based on the ones that yield the lowest 

mean times. 

ii. Add an additional unit of a machine with the most significant impact on 

completion time which can be added given the remaining budget. 

1. If there are two machines with similar completion times, make a 

decision based on the standard deviation  

iii. Repeat previous step until there are no options to add machines. The result 

is the final solution. 

5.2.2 Demonstrative Example 

In this subsection, we are continuing with the furniture manufacturing system presented in 

chapter 4. The simulation experiments conducted as part of this demonstration were run using in-

house script developed in MATLAB R2021a. We will be examining two design problems and 

using the robust design procedure outlined in the previous section to solve these problems. These 

problems will focus on the use of the robust design procedure to determine how to upgrade a 
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facility by the addition of new machines. However, note that the same procedure can be used for 

designing a completely new facility.  In this problem, the system consists of five distinct types of 

machines: 

1. One-sided edging machine (number of machines: 1) 

2. Two-sided edging machine (number of machines: 3) 

3. Cutting Machine machines (number of machines: 2) 

4. Drilling machines (number of machines: 3) 

5. Multi-purpose CNC machines (number of machines: 2) 

We are exploring two (2) distinct MDP’s that stem from two different demand forecasts. 

Our objective is to determine the appropriate combination of machines to deploy for each 

different demand forecast if the total available budget is $13,000. The facility planner has 

decided that additional 2-sided edging and/or CNC machines may be needed to improve system 

performance as both machines appear to be needed in most of the processing routes for each part 

the system can produce. We must now determine how many duplicates of either machine we 

should add to the system in both scenarios. 

For the experiments, we assume that operator availability limits the facility to a 

maximum of five CNC machines and a maximum of six 2-sided edging machines. These values 

will serve as the high settings. The low setting is based on the original problem design showing a 

system with two CNC machines and three 2-sided edging machines. The medium level setting is 

simply the halfway point between these two settings. Table 5.1 shows the level settings for each 

variable. The experiment design is a full factorial (32) with 100 repetitions of each experiment. 
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Table 5.1     Level Settings for Control Factors 

LEVEL NO. OF CNC 

MACHINE 

DUPLICATES 

NO. OF 2-SIDED 

EDGING MACHINE 

DUPLICATES 

LOW 2 3 

MEDIUM 3 4 

HIGH 5 6 

 

With this problem, the facility planner is concerned with accounting for varying setup 

and processing times, and machine reliability in the design. The variation in setup and processing 

times are determined based on the planner’s knowledge of the operators’ skills as well as from 

experience with similar systems. For these experiments we use the setup and processing times 

for operations outlined in chapter 4. The machine reliability information is provided by the 

manufacturers of each machine. We assume that all machines in the system have the same 

machine reliability. Table 5.2 shows the settings for the stochastic factors. 

 

Table 5.2     Stochastic Factors for Numerical Experiments 

VARIABLE SETUP & 

PROCESSING TIMES 

MTTF MTTR 

Distribution: Exponential 

 

Mean: provided in chapter 4 

Distribution: Exponential 

 

Mean:            6 

Distribution: Exponential 

 

Mean:               5 

 

The facility planner is tasked with presenting design solutions for two different scenarios. 

There are three deterministic variables for these scenarios. These are the demand mix of parts, 

the arrival times of these parts, and the cost of each unit of the two machine types. These are 

shown in Table 5.3 and Table 5.4 respectively. 
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Table 5.3  Demand Mix for the Machine Deployment Problems Being Solved 

Scenario Part Time Arrival Times 

1 {p1, p3, p5, p12, p13, p14, p15} T = {0, 0, 0, 0, 0, 0, 0} 

2 {p1, p3, p5, p7, p12, p12, p13, p13} T = {0, 0, 0, 0, 0, 0, 0, 0} 
 

Table 5.4      Costs Associated with Deploying Duplicates 

COST OF EACH 

CNC MACHINE ($) 

COST OF EACH 2-SIDED 

EDGING MACHINE ($) 

2000 1000 

 

5.2.3 Results for Scenario One 

The following subsection contains the results of the simulation experiments outlined in 

section 5.2.2 for scenario 1. In Table 5.5, we present the total cost for each solution option as 

well as the mean completion times to expect if the solution is implemented and the associated 

standard deviation. In Figure 5.1, we present the plots for the main effects on the cost, mean 

completion time and standard deviation when levels of CNC machines vary. In Figure 5.2, we 

present the plots for the main effects on the cost, mean completion time and standard deviation 

when levels of 2-sided edging machines vary. This information is also presented in Tables 5.6 

and 5.7 respectively.  

Table 5.5     Simulation Experiment Results for Scenario 1 Demand Mix 

No. of 

CNC 

Machines 

No. of 2-Sided 

Edging 

Machine 

Mean 

Completion 

Time 

Standard 

Deviation 

Total Cost 

2 3 75.27 76.80 $7,000.00 

3 3 73.07 78.90 $9,000.00 

5 3 60.59 64.84 $13,000.00 

2 4 65.88 54.34 $8,000.00 

3 4 65.12 73.73 $10,000.00 

5 4 60.79 54.00 $14,000.00 

2 6 68.66 74.53 $10,000.00 

3 6 69.29 60.11 $12,000.00 

5 6 60.80 54.06 $16,000.00 
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Table 5.5     Main Effect of Number of CNC Machines on Completion Time 

CNC 2 3 5 EFFECT 

TIME 69.94 69.16 60.73 -9.21 

STD 68.56 70.92 57.64 -10.92 

COST $8,333.33 $10,333.33 $14,333.33 6000.00 

 

Table 5.6     Main Effect of Number of 2-sided Edging Machines on Completion Time 

2 SIDE 

EDGING 3 4 6 EFFECT 

TIME 69.64 63.93 66.25 -3.39 

STD 73.52 60.69 62.90 -10.62 

COST $9,666.67 $10,666.67 $12,666.67 3000.00 

 

 

Figure 5.1      Main Effects Plots for CNC Machines for Scenario 1 Demand Mix 
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Figure 5.2    Main Effects Plots for 2-Sided Edging Machines for Scenario 1 Demand Mix 

  

Discussion 

The results of the experiments for scenario 1 show that there is more value to the CNC 

machines than 2-sided edging machines. Table 5.5 shows the results of each experimental run for 

scenario 1. It shows that the lowest completion times (between 60.5 to 61 time units) occur when 

there are 5 CNC machines. The main effects plots shown in Figure 5.1 for the CNC and Figure 

5.2 for the 2-sided edging machines show that the number of CNC machines has the more 

significant impact on system performance. The specific numerical values for the main effects can 

be seen in Tables 5.6 and Table 5.7. They show that the effect of the CNC is higher than that for 

the level of the 2-sided edging machine (-9.21 time units to -3.61 time units). From these results, 
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we can see that the best system performance occurs with five CNC machines and four 2-sided 

edging machines. This results in both the lowest mean completion time and the standard 

deviation. However, this solution is not viable as implementing it would exceed the budget of 

$13,000 (total of $14,000). Given the current information available from the experimental results 

seen in Table 5.5 and our interpretation of the main effects, we can conclude that the best, 

feasible solution is to have five CNC machines in the system alongside three 2-sided edging 

machines (total cost of $13,000). Looking at Table 5.5, we see that the best feasible result occurs 

with this setting. It has comparable mean completion times (60.59 to 60.79 time units 

respectively), and but worse standard deviation (64.84 to 54.00 respectively). Looking at the 

main effects for the number of CNC machines, we see that each additional CNC machine results 

in significant improvement in the system performance. However, Figure 5.2 shows that the 

beyond four 2-sided edging machines we see no benefit to additional 2-sided edging machines. 

In fact, the mean completion times suggest that there might be a detriment to having more of 

them. However, when the standard deviation at the largest setting for the 2-sided edging 

machines is considered alongside the mean, we see that there is no statistically significant 

difference between the two results. From the main effects, we can conclude that the best mean 

completion time that can result from focusing on maximizing number of 2-sided machines is 

about ~64 time units. However, the best mean completion time when focusing on maximizing 

the number of CNC machines is ~61 time units. Both these options have similar standard 

deviations. As such, we would prioritize the CNC, and select five CNC machines and then use 

the remaining budget on 2-sided edging machines. 
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5.2.4 Results for Scenario Two 

The following subsection contains the results of the simulation experiments outlined in 

section 5.2.2 for scenario 2. In Table 5.8, we present the total cost for each solution option as 

well as the mean completion times to expect if the solution is implemented and the associated 

standard deviation. In Figure 5.3, we present the main effects plots for the cost, mean completion 

time and standard deviation when levels of CNC machines vary. In Figure 5.4, we present the 

main effects plots for the cost, mean completion time and standard deviation when levels of 2-

sided edging machines vary. This information is also presented in Tables 5.9 and 5.10 

respectively.  

 

Table 5.7     Simulation Experiment Results for Scenario 2 Demand Mix 

No. of 

CNC 

Machines 

No. of 2-Sided 

Edging 

Machine 

Mean 

Completion 

Time 

Standard 

Deviation 

Total Cost 

2 3 63.03 61.31 $7,000.00 

3 3 65.80 58.76 $9,000.00 

5 3 56.95 50.18 $13,000.00 

2 4 57.83 53.67 $8,000.00 

3 4 62.92 54.28 $10,000.00 

5 4 67.00 64.86 $14,000.00 

2 6 67.66 64.09 $10,000.00 

3 6 51.75 58.89 $12,000.00 

5 6 53.75 53.99 $16,000.00 
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Figure 5.3     Main Effects Plots for CNC Machines for Scenario 2 Demand Mix 

  

Table 5.8     Main Effect of Number of CNC Machines on Completion Time 

CNC 2 3 5 EFFECT 

TIME 62.84 60.16 59.23 -3.61 

STD 59.69 57.31 56.35 -3.34 

COST $8,333.33 $10,333.33 $14,333.33 6000 
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Figure 5.4     Main Effects Plots for 2-Sided Edging Machines for Scenario 2 Demand Mix 

 

Table 5.9     Main Effect of Number of 2-sided Edging Machines on Completion Time 

2 SIDE 

EDGING 3 4 6 EFFECT 

TIME 61.93 62.58 57.72 -4.21 

STD 56.75 57.60 58.99 2.24 

COST $9,666.67 $10,666.67 $12,666.67 3000 

 

Discussion 

From the experiments for Scenario 2, we see that there is more value to the 2-sided 

edging machines than the CNC machines.  The results of each experimental run can be seen in 

Table 5.8. The main effects plots seen in Figure 5.3 seem to indicate that the effect on system 

performance appears to plateau at 3 CNC machines. However, from Figure 5.4, we see that we 
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continue to see significant system improvement up to 6 2-sided edging machines. The specific 

numerical values for the main effects can be seen in Table 5.9 and Table 5.10. We can see that 

the main effect for the additional 2-sided edging machines is greater than that for the CNC. The 

number of 2-sided edging machines have an effect of -4.21 time units to -3.61 time units for the 

number of CNC machines. So, we favour having the most 2-sided edging machines as feasibly 

possible. From the experimental results seen in Table 5.8, the best, feasible option would be to 

select three CNC machines and six 2-sided edging machines. This results in the best performance 

of the system without violating the budget constraint of $13,000 (total cost $12,000). As we can 

see, a change in the demand mix (1 additional unit of parts p12 and p13 and no parts p14 and p15) 

results in a drastic change in the near-optimal system design from scenario 1. This change is 

reasonable. By increasing the number of units of p12 and p13 we increase the need for 2-sided 

edging machine specifically. By removing parts p14 and p15 we reduce the need for the CNC 

specific operation, and as such reduce the need for the CNC machine specifically. In this 

scenario, the CNC machine would serve more as a duplicate machine to the other machines in 

the system. It would fill the need when there was one (from any machine in the system). This 

would result in system performance improving with more CNC’s. However, since the CNC can 

fulfill the need for any operation requested, it can be occupied with other operations than 2-sided 

edging. Whereas any additional 2-sided edging machines would not. Given that the system has 

greater need for 2-sided edging specifically, there is more significant effect to having more 2-

sided edging machines than the multipurpose CNC machines. 
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5.3 Genetic Algorithm Implementation for Solving Machine Deployment Problem 

In this subsection, we present the mathematical formulation for the MDP objective used 

when using a genetic algorithm to solve the problem. The MDP model will focus on selecting a 

combination of machines from a group of possible machines to be used in a system. The selected 

combination of machines should be the lowest cost option that reliably yields the shortest 

completion times. This section will contain the optimization model representation for the MDP 

that the GA will be solving. This section will also contain a description of the GA 

implementation of the model. 

 

5.3.1 Model Development 

In this section, we will describe the decision variables, modelling assumptions, as well as 

present the formulation of our objective function and our modelling constraints. This section will 

also provide a description of the solution method we will be employing for solving the 

optimization problem developed. 

Machine Deployment Problem Optimization Model 

Our model for the MDP focuses on minimizing the cost of implementing the system as 

well as the opportunity cost of missing due dates. The metrics for evaluating MDP as presented 

in section 5.1 have been utilized in the formulation of the optimization problem shown between 

Equation 5.10 and Equation 5.15. The model is as follows: 

min
𝑀𝐶𝐻

𝑇𝐷𝐶(𝑀𝐶𝐻) + 𝛽(𝑦̅𝑠(𝑀𝐶𝐻) − 𝐷𝐷) (5.10) 

s.t. 

𝜎𝑠(𝑀𝐶𝐻) ≤ 𝜎𝑚𝑎𝑥 = 10−
𝛿

20(𝐷𝐷 − 𝛼 ) (5.11) 
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𝑇𝐷𝐶(𝑀𝐶𝐻) ≤ 𝐵 (5.12) 

 {𝑚𝑐ℎ𝑖   ∈ 𝐼 | 𝑚𝑐ℎ𝑖 ≥ 0}                     ∀ 𝑖 = 1, 2, … , 𝑛𝑚    (5.13) 

𝑂 ⊆ ⋃ 𝑂𝑀(𝑚𝑖)

𝑖∈𝑠𝑚

 (5.14) 

where 

 𝑠𝑚 = { 𝑖 |𝑚𝑐ℎ𝑖 > 0}   (5.15) 

5.3.2 Genetic Algorithm Implementation 

The GA is used to determine the near optimal combination of machines and their 

respective duplicates for each machine type within the facility. This section will discuss our GA 

implementation. The GA consists of 5 stages: initial population generation, selection, crossover 

operation, mutation operation and generation of new population. This sequence of operations is 

repeated until the solution converges or some alternate stopping criterion is met. Table 5.11 

provides an overview of the parametric settings of the GA used in this research. Whilst there are 

multiple stages to GA implementation, this subsection will only expand upon encoding the 

chromosome, population initialization, and the fitness function. This is because the other stages 

of GA are not unique to this problem and have their parameters set based on the suggestions 

made in Mitchell (1998).  

Table 5.10  GA Parametric Settings 

Operator Setting 

Crossover Operator Uniform Crossover 

Crossover Probability 0.55 

Mutation Operator Random Setting 

Mutation Probability 0.20 

Population Size 10 × n 

Maximum Number of Iterations 100 

Number of Simulation Runs 10 

Termination Condition ∆Fitness < 0.01 

Selection Process Tournament Selection 
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Encoding the Chromosome 

The problem is encoded such that each gene represents a machine type available to be 

placed in the facility. A sample chromosome can be seen in Figure 5.5. The value assigned to the 

allele is the number of duplications for the respective machine. In this example, there are five 

machine options of which four have been selected for this solution. There are two units of 

machine mch1, one unit of mch2, four units of mch4, and one unit of mch5. 

 

Figure 5.5     MDP Sample GA Chromosome 

Population Initialization 

At the initial stage of the problem, we need to generate a set of random, solutions to 

populate the initial generation. In our application, we ensure that the initial population is only 

filled with feasible solutions. Initially, for each solution we assign each gene a value of zero 

before proceeding to assign an actual value. We allow for the possibility of not having any of a 

given machine type. From this point we proceed to build the solution. To ensure that the 

solutions are feasible and random, we randomly select a locus on the chromosome (a machine 

type) and randomly assign it to a value that falls between the minimum and maximum values for 

that machine given its cost and the overall design budget. After this, we deduct this value from 

the budget and repeat the process for the other loci until all machines have been assigned a value 

or the budget is completed expended. This is repeated for each solution that makes up the 

population. A population size of ten times the number of variables is based on a rule of thumb 

for evolutionary algorithms presented by Storn (1996).  The algorithm for generating the initial 

GA population can be seen in Table 5.12. 

M1 M2 M3 M4 M5

2 1 0 4 1
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Table 5.11     MDP GA Population Initialization Algorithm 

Algorithm 1 MDP GA Population Initialization 

Input:  

 

Output: 

budget, cost, nm, no, machine_data 

 

population 

1. Begin 

2. Initialize:  budget, cost, nm, no, machine_data, population = [] 

3. for i = 1 to (10×nm) do 

4. while (1) do 

5. Initialize: s = (s1, s2, …, snm), sj = 0 Ɐ j = 1,2,…, nm 

6. Initialize: M = (1,2,…,nm) 

7. while (|M|> 0) do  

8.      r = random integer (between 1 and |M|) 

9.      m = Mr  

10.      upper_limit_machine = (Budget/costm) rounded to nearest integer 

11.      set_machine = random integer (between 0 and upper_limit_machine)  

12.      temp_budget = budget – (costm × set_machine) 

13.       If (temp_budget > 0) 

14.     budget = temp_budget 

15.    sm = set_machine 

16.    delete (Mr element from M)  

17.       Elseif (temp_budget = 0) 

18.     budget = temp_budget 

19.    sm = set_machine 

20.    delete (Mr element from M)  

21.    Break 

22.       End 

23.          End 

24.          for k = 1 to no do 

25.        Initialize: operations = [], total_operations = 0 

26.        for l = 1 to nm do 

27.         If (sl > 0) 

28.            If (k ϵ machine_datal) 

29.          options = [options, k] 

30.            End 

31.          End 

32.        End  

33.        If (|options| > 0) 

34.    total_operations = total_operations + 1 

35.        End 
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36.          End 

37.          If (total_operations = no) 

38.   Break 

39.          End 

40.  End 

41.  populationi = s 

42. End  

43. Return population 

44. End 

 

Fitness Function 

The fitness of a solution to our MDP is based on the cost of the design and the 

completion time. The lower the cost and the completion time, the higher the fitness. However, 

the solution is considered unfit if it violates the constraint that the total cost of the machines 

selected should not exceed the budget. This should be reflected in the fitness function. The 

fitness function (f) used in our implementation of the GA is shown in Equation 5.16. The value 

for the mean completion time, 𝑦̅𝑠, is determined via simulation. All other terms in the fitness 

function are deterministic and can be derived based on the proposed solution. 

 

𝑓𝑖𝑡(𝑀𝐶𝐻) = {

1

𝑇𝐷𝐶(𝑀𝐶𝐻) + 𝛽(𝑦̅𝑠(𝑀𝐶𝐻) − 𝐷𝐷)
, 𝑇𝐷𝐶(𝑀𝐶𝐻) ≤ 𝐵

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (5.16) 

 

5.3.3 Demonstrative Example 

In this section we present a demonstrative example of the implementation of the model 

presented in section 5.3.1. We solve an MDP using our GA model and compare the results to that 

of an exhaustive search. In the subsequent subsections we will discuss the details of the problem 

and present the results of the experiments as well as a discussion of the results. 



170 

 

 

Problem Description 

For our demonstrative example, we will be examining two scenarios for an MDP 

involving the design of manufacturing system tasked with producing three different types of 

parts. This manufacturing system is tasked with manufacturing these three distinct parts which 

arrive at the system at time T = 0.  

For each scenario, the facility planner is tasked with determining the number of each 

type of machine to have in the manufacturing system from a group of four different types of 

machines. There are three distinct types of parts, each with their own operations sequences for 

their production, and machine specific setup and processing times. The manufacturing system 

must be capable of performing four distinct operation types each of which can only be performed 

by one of the four distinct types of machines respectively. Operation o1 can only be performed by 

machine mch1. Similarly, operation o2 can only be performed by machine mch2, and so on.  

The part operation sequence information for both scenarios is the same. This 

information is provided in Table 5.13. The machine information for each scenario is given in 

Table 5.14 for scenario 1 and Table 5.15 for scenario 2. For each machine, the processing and 

setup times follow an exponential distribution. Tables 5.14 and 5.15 show the means for these 

distributions. The primary difference between two scenarios is in the processing (PT) and setup 

(ST) times for machines when processing part p3. We make the following assumptions whilst 

solving the problems: 

1. The budget provided is $4500, and must not be exceeded 

2. Machine MTTF and MTTR follow an exponential distribution 

3. Part processing and setup times follow an exponential distribution 
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4. There is sufficient space to fit any number of machines in the facility (space is not a 

restriction) 

5. Transfer times between machines are considered negligible 

6. 1 unit of each part is demanded at time zero (T = 0) 

7. The due date is considered to be 18 time units (T = 18) 

8. The penalty for being late is $100 per time unit (β = 100) 

9. α is set to 0 

10. δ is set to 10 

Solutions for each MDP scenario were determined using an exhaustive search. These 

solutions are provided in Table 5.16. These solutions will serve as the basis of the comparison to 

our model for model verification. 

 

Table 5.12     Part Operation Sequence 

Part Operation Sequence 

P1 O1➔O2 

P2 O3➔O4 

P3 O1➔O4 
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Table 5.13     Scenario 1 Machine Information 

 MCH1 MCH2 MCH3 MCH4 

Operation O1 O2 O3 O4 

Processing (PT) & Setup (ST) Times 

P1 

PT: 5 

 

ST: 0.5 

PT: 10 

 

ST: 1.0 

    

P2     

PT: 4 

 

ST: 0.4 

PT: 3 

 

ST: 0.3 

P3 

PT: 6 

 

ST: 0.6 

    

PT: 2 

 

ST: 0.2 

Reliability Information (µ) 

MTTF 3 5 5 4 

MTTR 2 1 1.5 2 

Unit Price 

Cost $1,000.00 $400.00 $600.00 $500.00 

 

Table 5.14     Scenario 2 Machine Information 

 MCH1 MCH2 MCH3 MCH4 

Operation O1 O2 O3 O4 

Processing (PT) & Setup (ST) Times 

P1 

PT: 5 

 

ST: 0.5 

PT: 10 

 

ST: 1.0 

    

P2     

PT: 4 

 

ST: 0.4 

PT: 3 

 

ST: 0.3 

P3 

PT: 2 

 

ST: 0.2 

    

PT: 6 

 

ST: 0.6 

Reliability Information (µ) 

MTTF 3 5 5 4 

MTTR 2 1 1.5 2 

Unit Price 

Cost $1,000.00 $400.00 $600.00 $500.00 
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5.3.4 Results 

Table 5.16 presents the solution obtained for the MDP using both an exhaustive search 

and our proposed optimization model via a GA. 

 

Table 5.15     Solutions for MDP for Scenarios 1 and 2 

Scenario Solution 

Approach 

MCH1 MCH2 MCH3 MCH4 

1 
Exhaustive 2 1 1 2 

GA 2 1 1 2 

2 
Exhaustive 1 1 1 1 

GA 1 1 1 1 

  

5.3.5 Discussion 

For this demonstration, we compare our proposed optimization model against the 

solutions determined using the exhaustive search approach. We examine two similar scenarios 

involving four distinct machine types to design a system with, and four operations which the 

system must perform. Both scenarios are similar except for their different processing and setup 

times for certain operations. This allows for slight changes to the optimal system design, and if 

our proposed model yields matching solutions, it would imply that the model we proposed tends 

towards the optimal solution for small, simple problems. 

The results of the exhaustive search show that for scenario 1, the best system design is to 

have two of machine mch1, one of machine mch2, one of machine mch3, and two of machine 

mch4. For scenario 2, the exhaustive search shows that the ideal system should have one of each 

machine type. Using our proposed optimization model alongside GA, we were able to solve both 

scenarios yielding the same solution as the from the exhaustive search. From these results, the 
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optimization model proposed has adequately demonstrated that it can be used to find the near-

optimal solution to the MDP for small problems with good quality solutions. 

5.4 Comparison Study 

In this section, we will be comparing the results of using the optimization model we 

proposed in section 5.3 against the results when using robust design methodology, and the results 

from using an exhaustive search approach. The purpose of this study is to identify the benefits 

and drawbacks to using either the robust design methodology or the metaheuristic approaches 

presented earlier in this chapter. The exhaustive search approach will serve as a benchmark for 

comparing the quality of the solutions yielded using these approaches. The performance of these 

approaches will be evaluated based on the quality of the solution yielded and the total number of 

experiments required to arrive at the solution. By solution quality, we mean the option that yields 

lowest completion times and standard deviations in these completion times without exceeding 

the budgetary constraints. 

 In this subsection, we will present a definition of the exhaustive search approach which 

will be used as the benchmark. After which, we will present an overview of the example MDP to 

be solved. This section ends with a presentation of the solutions determined using the three 

approaches being compared, and a discussion of those solutions. 

5.4.1 Exhaustive Search-Based Approach to Solving Machine Deployment Problem 

The exhaustive search we apply in this section approach simply involves running 

simulations for each possible solution in the solution search space of the given MDP. From the 

results of these experiments, we determine the solution that yields the lowest mean completion 

time with the lowest variation in the results. 
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5.4.2 Example Problem 

The problem to be solved is the design of a manufacturing system that produces four (4) 

distinct types of parts using three (3) distinct operations. These operations can be performed 

using a variety of different machines which are provided in Table 5.17. The facility planner is 

limited to only being able to purchase a maximum of four (4) of each machine type but must 

remain within the budget of $2400. 

Table 5.16     Machine Selection Options for Numerical Experiments 

 O1 O2 O3  
Options MCH1 MCH2 MCH3 MCH4 MCH5 Budget 

Unit Cost 

($) 
250 405 425 405 450 2400 

Max Units 4 4 4 4 4  

 

Each machine option available to be used has its own unique specific capability and 

machine reliability information. The part specific processing and setup times for each of these 

machine options can be seen in Table 5.18. Table 5.18 also shows the demand for each part type 

the system produces. The operation sequences required to produce the part are seen in Table 

5.19. Similarly, the machine reliability information for each machine can be seen in Table 5.20. 
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Table 5.17     Part-Specific Processing (P) and Setup (S) Times for each Machine Option 

 O1 O2 O3  
Options MCH1 MCH2 MCH3 MCH4 MCH5  

Part Mean Processing (PT) and Setup (ST) Times Demand 

P1 
PT: 5.0 

ST: 0.5     

PT: 4.0 

ST: 0.4 

PT: 4.0 

ST: 0.4 
10 

P2 
PT: 3.0 

ST: 0.5 

PT: 3.5 

ST: 0.3 

PT: 2.5 

ST: 0.3 

PT: 5.0 

ST: 0.5 

PT: 5.0 

ST: 0.5 
7 

P3 
  

PT: 3.0 

ST: 0.5 

PT: 3.0 

ST: 0.5 

PT: 2.0 

ST: 0.5 

PT: 2.0 

ST: 0.5 
5 

P4 
PT: 2.0 

ST: 0.2 

PT: 2.5 

ST: 0.2 

PT: 2.0 

ST: 0.2 

PT: 4.0 

ST: 0.4 

PT: 4.0 

ST: 0.4 
15 

 

Table 5.18     Operations Sequences for each Part 

Part Operation Sequences 

P1 O1➔O3 

P2 O1➔O3➔O2 

P3 O3➔O2 

P4 O1➔O2➔O3 

 

Table 5.19     Machine Option Reliability Information 

 O1 O2 O3 

Options MCH1 MCH2 MCH3 MCH4 MCH5 

MTTF 15 15 20 12 20 

MTTR 3 2 2 3 5 

 

The following additional assumptions are made for the problem in order to account for 

the additional required information: 

1. The desired completion time (DD) is in 70 time units 

2. The penalty for being late is $30 per time unit (β = 30) 

3. α is set to 0.05DD  

4. δ is set to 10 

5. Order is placed to the system at time, T = 0 
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In our evaluation, we will compare the performance of the solutions from the robust 

design approach and the optimization model presented in this section in order to determine which 

approach to solving the MDP yields the most robust solution. We define robustness as a system’s 

insensitivity to stochastic disturbances. To that effect, we will be evaluating each solutions’ 

performance based on their mean completion times and standard deviations to determine if the 

two solutions are equivalent or if one is superior to the other. 

With our robust design methodology, we have assigned the number of each machine 

three levels; a low, mid and high level. The values assigned to these levels can be seen in Table 

5.21. Based on these level assignments, we ran a full factorial experiment to determine the effect 

number of each machine type in the system. After which, we determined the solution based on 

the constraints imposed upon the system. 

Table 5.20     Factor Level Settings Used in Robust Methodology 

  O1 O2 O3 

Options MCH1 MCH2 MCH3 MCH4 MCH5 

LO 1 1 1 1 1 

MED 2 2 2 2 2 

HIGH 4 4 4 4 4 

 

We will also compare the solutions determined using our MDP model and robust design 

methodology to the optimal solution to the presented problem as determined using an exhaustive 

approach. With this exhaustive approach, we will test all possible solutions to the problem and 

determine the minimum point. 

Experimental Conditions 

The numerical experiments are run using our own in-house simulation code written on 

MATLAB R2021b. The optimization problem is solved using a GA that is also implemented 
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using our own in-house code on MATLAB R2021b. Each individual simulation experiment is 

repeated 20 times. 

5.4.3 Results 

This section contains the results for the experiments described in section 5.4.2. In this 

section, we present the solutions obtained using an exhaustive approach, the robust design 

methodology, and metaheuristic-based approaches for solving the MDP in Table 5.24. These 

results are first presented and discussed individually. After which they are discussed collectively. 

Table 5.25 presents the number of experiments required to solve the problem outlined using the 

three approaches (exhaustive search, robust design, and GA). Lastly, we will present the main 

effect plots used in the robust design methodology-based approach. 

Robust Design Results 

 

Figure 5.6     Main Effects of the Number of Each Machine Type on the Mean Order 

Completion Time 
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Table 5.21      Main Effects of the Number of Each Machine Type on the Mean Order 

Completion Time 

 LO MID HIGH EFFECT 

MCH1 134.25 79.02 60.45 -73.80 

MCH2 90.61 91.39 91.51 0.90 

MCH3 91.74 91.39 90.75 -0.99 

MCH4 96.65 93.22 85.66 -10.99 

MCH5 96.28 93.12 86.01 -10.27 
     

 

 

Figure 5.7      Main Effects of the Number of Each Machine Type on the Standard 

Deviation of the Completion Time 

 

Table 5.22     Main Effects of the Number of Each Machine Type on the Standard 

Deviation of the Completion Time 

 LO MID HIGH EFFECT 

MCH1 21.91 12.25 10.24 -11.67 

MCH2 14.09 14.59 15.49 1.40 

MCH3 15.50 14.02 15.12 -0.38 

MCH4 15.40 14.65 14.55 -0.85 

MCH5 15.03 15.23 14.22 -0.81 
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The results using the robust methodology suggest that the “optimal” design for our given 

MDP is to have 4 units of mch1, 1 unit of mch2, and 2 units of mch4. Using this method, we were 

able to arrive at this solution using only by examining 243 possible solutions out of 2500 

possible solutions. The total cost to implement the system is $2235. As such, the solution does 

not violate the budgetary constraint and is a viable solution. This proposed solution should be 

able to complete the order within ~86 time units with a standard deviation of 11.16 time units. 

This should result in a completion time that is less than 70 time units 7% of the time (z-score ≈ -

1.46). As such, there are more instances of incurring the penalty for missed due dates than not. 

This is not ideal. However, based on the experiments conducted using this method, it is the best 

solution that does not violate the budgetary constraint.  

One of the insights we gain from the robust methodology is that machine mch1 numbers 

have the most significant effect on system performance for the given demand. This can be seen 

in Figure 5.6 and Table 5.22. At the low setting, the average system completion time is 134.25 

time units. At the high setting for mch1, the average system order completion time is 60.45 time 

units. This has the most significant main effect on the system compared to all other machines 

whose different settings result in completion times between 96.65 to 85.66 time units.  With 

machine mch1, we see significant improvement in system performance with increase in numbers 

of this machine type from low to medium numbers, but there are diminishing returns between 

medium and high numbers of this machine type. This suggests that machine mch1 is the major 

bottleneck in system performance. This is to be expected as operations o1 and o3 are the most 

requested from the system given the high demand for parts p1 and p3 relative to p2. The 
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significance of the main effects of number of machine type mch1 is the reason for selecting 4 

units of this machine type using the robust methodology. 

Interestingly, neither machine mch4 nor mch5 have as significant an effect on system 

performance as mch1. The settings do have an impact on system performance as it improves from 

~96 time units to ~86 time units as we move from low to high numbers for either of these 

machine types. The results show that machines mch4 and mch5 are essentially interchangeable. 

As a result, the smart option is to select the cheaper option which is machine mch4.  

The main effects results show that the performance of the system is relatively unaffected 

by the number of machine type mch2 or mch3. However, we can see that there is slightly more 

benefit to having mch3 than mch2. The results here a interesting given that system performance is 

shown to get worse as the number of machine mch2 increases. It is important to understand that 

mch2 and mch3 are similar machines. So, they can be used interchangeably during the production 

cycle. As such, from the results, we can infer that as there are more machine mch2, there is more 

of a chance that mch2 is used to fulfill operation o2. Therefore, the results showing the poorer 

system performance would suggest that mch2 is a worse option than mch3 as increasing the 

likelihood that mch3 is selected when a part needs operation o2 results in improved system 

performance where the alternative leads to worse.  That being said, given the low effect on the 

system performance, the best option when using the robust design approach is to have 1 unit to 

serve parts requiring o2. This results in the selection of one unit of machine type mch3. However, 

this observation presents a possible area for improvement in the MAS design for part agent (PA) 

decision-making. The decision process can be improved by incorporating the machine reliability 

information into PA intelligence. 
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Genetic Algorithm Results 

The results using the GA show that the “optimal” design for our given MDP is to have 3 

units of mch1, 1 unit of mch2, and three units of mch4. The total cost to implement the system is 

$2370. As such, the solution does not violate the budgetary constraint and is a viable solution. 

This proposed solution should be able to complete the order within ~67 time units with a 

standard deviation of 10.29 time units. This should result in a completion time that is less than 70 

time units 60% of the time (z-score ≈ 0.26). As such, there are less instances of incurring the 

penalty for missed due dates. 

 The GA was able to arrive at this solution within 250 unique experiments (20 repetitions 

of each experiment). This drastically reduced the solution search space from 2500 possible 

solutions. 

 

Exhaustive Search Results 

The total number of experiments required to search the entire solution search space is 

2500 unique experiments. As a result, it required 50,000 simulation experiments to arrive at the 

solutions presented in Table 5.25. Whilst this might be more computationally taxing than the 

other approaches explored, it does allow for us to have higher certainty in the optimality of the 

solution that is arrived at. 

The results using an exhaustive search yield two possible solutions for the “optimal” 

design for our given MDP. The decision on which is best depends on the manufacturer’s 

sensitivity to the trade-off between implementation cost, and the order completion time (and 

possible penalties for missing due dates). One is to have 3 units of mch1, 1 unit of mch2, and 

three units of mch4. The total cost to implement the system is $2370. This proposed solution 
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should be able to complete the order within ~67 time units with a standard deviation of 10.20 

time units. This should result in a completion time that is less than 70 time units 60% of the time 

(z-score ≈ 0.26).  This means that the manufacturer would miss the due date ~40% of the time. 

The other possible solution is to have 3 units of mch1, 1 unit of mch3, and three units of 

mch4. The total cost to implement this system is $2390. This proposed solution should be able to 

complete the order within ~62 time units with a standard deviation of 10.12 time units. This 

should result in a completion time that is less than 70 time units 77% of the time (z-score ≈ 

0.74).  This means that the manufacturer would miss the due date ~23% of the time.  

 Neither of the solutions violates the budgetary constraint and as such, both are viable 

solutions. The manufacturer is faced with deciding if the additional cost $20 of solution 2 is 

superseded by the benefit of being 43% less likely to miss the due date. Using Equation 5.17, we 

can see that in both instances the standard deviation does not violate the threshold constraint 

(δ(σs) > 10).  This would lead the manufacturer to lean more towards solution 1 given that it is 

lower in cost, and the threshold of its performance does not exceed their tolerance for risk. 

 

Comparative Summary of Results 

Table 5.23     MDP Solutions Using All Three Investigated Approaches 

Strategy  MCH1  MCH2  MCH3  MCH4  MCH5  
Total 

Cost  

Mean 

Completion 

Time  

STD  

Exhaustive 

Approach  
3  1  0  3  0  2370  67.32  10.20  

Exhaustive 

Approach (Alt)  
3  0  1  3  0  2390  62.43   10.12  

Robust Design 

Methodology  
4  0  1  2  0  2235  86.31  11.16  

Genetic 

Algorithm   
3  1  0  3  0  2370  67.35  10.29  
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Table 5.24     Number of Simulation Experiments Required to Solve MDP 

   # of Unique 

Experiments  

# of Repetitions Total 

Experiments  

Exhaustive Approach   2500  20  50000  

Robust Methodology   243  20  4860  

GA   250 20  5000  

 

5.4.4 Discussion 

The results of the experiment show that the results yielded from the GA can be the same 

as the optimal solution as determined through exhaustive search. This can be seen in Table 5.24 

which shows that both the GA and exhaustive search to have the same solution. This finding is 

also consistent with the results for the problem done as a demonstration of the GA model and for 

the numerical experiment conducted in section 5.3.  

The total cost of the “optimal” system is $2370 which is within the budget of $2400. The 

system should complete the order within approximately 67 time units and does not violate the 

threshold for δ(σa) that is greater than 10. This time is within the 70 time units being targeted for 

the due date (there is no advantage to being much earlier than the due date). Also, it does not 

exceed the tolerance for missed deadlines. However, it is important to note that this solution does 

not yield the shortest completion time. As can be seen in Table 5.24, there is an alternative 

solution that yields a shorter completion time (~62 time units). This solution is when you have 3 

units of machine mch1, 1 unit of machine mch3, and 3 units of machine mch4. However, this 

option is more expensive in terms of cost. The problem presents us with a trade-off situation, and 

as such cost must be considered as well as order completion time. With the MDP, each additional 

machine can improve system performance, but it also increases the cost of implementing the 
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system. It is up to the facility stakeholders to decide the weight assigned to each factor. In this 

case, their tolerance for variation in the performance means that the lower cost option is the best 

option. 

From our experiments, we see that the exhaustive approach would yield the best results, 

whilst also offering more options for possible solutions. This would allow the planner to better 

assess the trade-off between cost and completion time. However, this approach requires a lot 

computational power and will scale poorly as the number of possible machines to select from 

increases. Both the GA-based and robust design approaches yield good quality results and are 

more scalable to problem size. They both required fewer experiments to be conducted in order to 

solve the problem. For this problem, the GA yielded the same solution as the exhaustive search 

approach suggesting that metaheuristics may be the best tool to employ for these problems. 

However, the metaheuristic-based approach does not give much insight into the system or 

provide alternate options for the planner to consider. As such, the metaheuristic-based approach 

may be a good option to use to solve large MDP problems effectively, but it is a black box. It 

would require re-solving the MDP and running experiments again with any changes to problem 

constraints. For example, if the budget increased, the problem would need to be solved again. 

However, this would not be the case with the robust design methodology or exhaustive search. 

With those options, the facility planner would only need to reanalyze existing data.  

From the comparison of the results, we also see that the GA can potentially outperform 

using the robust design methodology approach when solving MDP’s. For the problem presented 

in section 5.4.2, the robust design methodology suggests that the system performs best when you 

have 4 units of machine mch1, 1 unit of machine mch3, and 2 units of machine mch4. The total 

cost of this system is $2235 which is within the budget of $2400. The system should complete 
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the order within approximately 86 time units. This solution, whilst cheaper, is not optimal with 

respect to mean completion time and standard deviation. It would result in missing due dates 

more frequently than with the results from the GA or exhaustive search. This disparity in the 

result stems from the design of the experiments used in the robust design. Specifically, the 

current settings for the levels for each machine type did not allow us to search near the best 

solution in the solution search space. This is partially due to the nature of the solution search 

space. Solutions surrounding the near-optimal solution would violate the budgetary constraint (≤ 

$2400). The decision on the level settings has a direct impact on the observed effects. All in all, 

this leads to the quality of the solution being poorer when using the robust methodology than the 

alternative options. 

Whilst the robust design methodology may not necessarily always yield the best solution, 

it has a few advantages over the GA and exhaustive approaches that make it worthwhile to 

consider as well. This method may require fewer experiments to be conducted in order to arrive 

at a good quality solution. In this problem, robust design required the fewest experiments to be 

run. Robust design also allows us to know the main effects of having different numbers of each 

individual machine type and how the effect that can have on the system performance. This gives 

the floor manager a clearer idea of which machine types are bottlenecks, and which machine 

types have sufficient numbers such that additional units would have no value. With this 

information, alternative options can more easily be explored. This is not the case with the GA 

approach. Also, the information can be used to upgrade the system in the future without needing 

to run more experiments. This assumes that the demand placed on the system does not change. 

However, with the GA and exhaustive approaches, there is insight on how the variables affect 

the system performance. The problem would have to be rerun to make any changes for the 
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existing system. It is important to note, however, that if the demand changes, the robust design 

approach would have to be redone as well. 

Overall, despite the insights provided, the robust design approach yielded a lower quality 

solution than the GA. This suggests that the main effects may not always fully represent the 

system’s response to factor settings. It is possible that interaction effects are significant. It is also 

possible given that the robust methodology we employ solely explores the extremes and 

midpoints, that system response is not linear between these points. All of which would make it 

inaccurate to predict system performance using the main effects alone. One of these must be the 

case with this problem, where the main effects suggest that it is better to have the maximum 

amount of machine type mch1 to the detriment of the number of machine type mch4 that can be 

purchased. The GA and exhaustive approaches bypass this problem and can yield better results 

than the robust approach. However, they do not provide any insight to the system, but each 

comes with it’s own benefit. The exhaustive approach yields the best solution. However, this 

approach scales poorly with the increasing number of possible machine types, making it less 

feasible. The robust design and GA approaches scale better than the exhaustive approach. That 

being said, the GA yields solutions closer to the optimal results as per the exhaustive approach. 

However, it is a black-box and offers no insights. Nevertheless, the GA provides an excellent for 

solving large MDP problems with good solution quality. 
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Chapter 6  

Machine Location Assignment for Multi-Agent System Based Manufacturing Systems 

In chapter 3, we presented a model for an MAS-based smart manufacturing system 

(SMS). In chapter 5, we presented a model for determining the machines that would make up an 

SMS. Both of these chapters address how the SMS would operate and how to determine the 

resources that would be needed respectively. However, the process of designing an SMS requires 

an additional step. The last step in designing an SMS is determining the layout configuration for 

the facility. This chapter will focus on determining how the machines within the facility should 

be organized relative to each other within the available space so as to maximize the 

manufacturing system’s performance. Determining this layout configuration usually requires 

knowledge of department planning as well as the application of this knowledge to solving the 

facility layout problem (FLP) and subsequently, the machine location problem (MLP). 

Departmental planning is concerned with determining the appropriate layout type for the 

manufacturing facility based on demand volume and product variety by taking into consideration 

the flow, space, and activity relationships. (Tompkins et al., 2001). There are four conventional 

layout types; product, fixed location, functional and group technology layouts. Hybrid layouts 

are also possible layout type solutions (Ariafar et al., 2011). These layouts are typically some 

combination of the four conventional layouts. Each layout type has its benefits and drawbacks. 

However, the layout type determines the machines that constitute each department. Once the 

layout type is selected, the facility layout problem needs to be solved. This involves determining 

the relative locations of departments by assigning to each department to spaces within the 

facility. Lastly, once the department locations have been decided, it becomes necessary to 



189 

 

determine the relative locations of machines within the departments. This is the machine location 

problem.  

In literature, these three problems are typically treated as distinct problems. To the best of 

our ability, we were unable to find literature that addresses them together. However, they use the 

same input information (product demand volume and mix, available space and available 

machines) and they are directly related to each other. They all also influence the material 

handling costs and the efficiency of the manufacturing system (with respect to cycle time, flow 

time and transfer times). Solving each problem independently may result in the need to 

iteratively solve each problem based on the results of the others. This can be problematic 

especially as the complexity of the problem grows. However, we propose treating the entire 

problem as one large MLP. It reduces the assumptions made in the layout design.  For instance, 

we do not assume that one predefined layout type is optimal based on given the volume and 

frequency of part orders. It also allows for unique, and hybrid, layouts which can better allow the 

system to serve the demand put on it. This is particularly important for mass customization and 

personalization manufacturing environments where there is no clear best layout to use given the 

high product variety and high demand as well as the high level of uncertainty from the inputs.  

In this chapter, our primary focus is on the development of an optimization model for 

determining the near-optimal facility layout given a set of machines (including similar and 

duplicate machines), a set of possible locations to assign them, and known manufacturing 

environment conditions (part demand, part processing routes, machine information, etc.). Our 

definition of the optimal layout is one that minimizes the completion time for a given demand 

order of parts with consistency. In our model, we will allow flexible routing options for each part 
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(sequence, machine, and process flexibility) which can be used interchangeably during the 

processing run.  

This chapter is organized into three (3) upcoming sections. In the first section, we provide 

a more detailed description of the MLP. This section will present the formulation of our 

optimization model for solving the layout design problem. The second section will provide an 

outline of how a genetic algorithm can be used, in combination with simulation, to solve the 

MLP. Finally, the chapter will conclude with numerical experiments where the performance of 

the layout derived using our optimization model is compared to conventional layout types under 

series of different manufacturing environments.  

6.1 Layout Design – The Machine Location Problem 

The machine location problem (MLP) is intrinsically related to the facility layout 

problem (FLP). The FLP involves determining the department assignments for machines as well 

as location assignment for each department within the available space in the facility. The typical 

objective of the FLP is to minimize the material handling cost (MHC). This is typically done by 

minimizing the flow, fij, (load volume per unit of time) and the distance between departments, dij 

(Tompkins et al., 2001) given a cost for moving each load from one department to another, cij, 

and a predetermined number of departments, nd. The typical formulation of the objective is 

shown in Equation 6.1. 

𝑚𝑖𝑛 ∑ ∑ 𝑓𝑖𝑗𝑐𝑖𝑗𝑑𝑖𝑗

𝑛𝑑

𝑗=1

𝑛𝑑

𝑖=1

(6.1) 

The MLP shares a similar formulation to the FLP. As such, like the FLP, the MLP is an 

NP-hard problem (Garey & Johnson, 1979) and has a problem solution space in the order of n!. 
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With this problem, we must both determine the spaces to which machines will be assigned in the 

facility, and the arrangement in which those machines will occupy those spaces.  It can be seen 

as a follow-up to department planning and FLP. Once a department type (or layout type) is 

chosen and departments are decided, it is important to determine where each machine should be 

located within the department such that flow through the department is minimized (Chaeib et al, 

2001). The machine location problem (MLP) specifically focuses on relative distances between 

the machines that constitute each department. It can be looked at as an extension of the FLP, in 

that it focuses on intra-department design whereas the FLP focuses on inter-department design. 

As such the formulations of the objectives for FLP and MLP are quite similar. The typical 

objective function is shown in Equation 6.2. Note that in this formulation the flow and distances 

are now determined based on the two machines in question as opposed to the departments. 

𝑚𝑖𝑛 ∑ ∑ 𝑓𝑖𝑗𝑑𝑖𝑗

𝑛𝑚

𝑗=1

𝑛𝑚

𝑖=1

(6.2) 

The conventional MLP is focused on minimizing the total distance that parts flow 

through within the system, and in so doing, minimize the time spent being transported for parts 

in the system. In minimizing transfer times, the total completion time should also be minimized. 

The conventional MLP uses the distance between departments as a proxy measure for time. 

However, our MLP model focuses on minimizing the completion time for the order. Using 

analytical methods, this would not be feasible due to the stochastic nature of the system inputs 

and its impact on the system’s operation. However, we can do this as we use simulation in 

solving the problem. The key benefit of using this measure is that by focusing on minimizing the 

time required to fulfill the order, we can find the assignments that are the most robust as opposed 

to the assignment that only results in the shortest transfer distances. In the rest of this section, we 
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will present our decision variables, modelling assumptions, performance metrics, and MLP 

model. 

Decision Variables 

The main decision being made in the MLP is the location assignment for each machine in 

the system. We assume that the facility floor has been divided up into an r by k grid of possible 

machine locations. A sample facility grid can be seen in Figure 6.1. This figure shows a facility 

with nine available locations for machines to be assigned to. Each space on the grid is assigned a 

number to represent the location. The decision variable with our MLP is the arrangement of the 

machines on the facility floor. We choose to represent this variable in the form of vector L = [l1, 

l2, l3,…,lnm]. Where L is a string of integers representing the location assignments for each 

machine in the system. The length of the string is determined by the number of machines, nm, 

that exist in the manufacturing system. For example, if l2 = 3, it would indicate that machine m2 

has been assigned to location 3 on the facility grid. There is one major constraint on location 

assignments, and that is, adjacent spaces to a machine location assignment must be empty. 

 

Figure 6.6.1     Sample Facility Grid 

Modelling Assumptions 

In our development of our MLP we make the following assumptions regarding the problem: 

1) All machines that comprise the system are given 

2) The demand to the system is known 

1 2 3

4 5 6

7 8 9
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a. If demand is uncertain, a representative distribution is provided 

3) Shipping and receiving spaces are outside of the available space for machine location 

assignment 

4) There is sufficient space within the facility to assign all machines a location whilst 

allowing access to all machines 

5) All sources of uncertainty of disruption to the system are known and can be represented 

in the form of a known distribution 

6) There are sufficient transporters in the system such that there is no wait for a transporter 

to become free 

7) Transportation is immediate. Once a part is done being processed on a machine it 

immediately begins being transported to the next location 

8) There is sufficient buffer space for parts waiting for service 

Performance Metrics 

The metric we consider to be most important when evaluating the solution of our MLP is 

the mean order completion time to fulfill a given order mix (represented by s) when using a 

specific layout configuration (as represented by vector L). The metric is represented by 𝑦̅𝑠(𝐿). 

This metric needs to be as low as possible without violating any of the problem’s constraints. 

Alongside the mean order completion time, we are also concerned with the system 

robustness. As such, we will also be evaluating the quality of the solution based on one 

additional performance metric, the standard deviation in the order completion time for each 

solution, 𝜎𝑠(𝐿).  
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Machine Location Problem Optimization Model 

Our model for the MLP optimization problem focuses on minimizing the completion time 

for processing parts demanded of the system. This completion time must fall within an 

acceptable threshold, 𝑦𝑚𝑎𝑥. As robustness is also important, the standard deviation in the 

completion time must also fall within an acceptable threshold, 𝜎𝑚𝑎𝑥. The layout configuration 

must not violate the spatial requirements. As such, the distance between any two machines, Dij, 

must be greater than zero. The equations that constitute the model are shown from Equation 6.3 

to 6.12. 

min
𝐿

 𝑦̅𝑠(𝐿) (6.3) 

s.t. 

 

𝑦̅𝑠(𝐿) ≤ 𝑦𝑚𝑎𝑥  (6.4) 

𝜎𝑠(𝐿) ≤ 𝜎𝑚𝑎𝑥 (6.5) 

 {𝑙𝑖   ∈ 𝐼 |𝑙𝑖 > 0}                     ∀ 𝑖 = 1, 2, … , 𝑛𝑚    (6.6) 

 

 {𝑙𝑖   ∈ 𝐼 |𝑙𝑖 ≤ (𝑟 × 𝑘)}                     ∀ 𝑖 = 1, 2, … , 𝑛𝑚    (6.7) 

 

𝑑𝑚𝑖𝑗 > 0                      ∀ 𝑖 = 1, 2, … , 𝑛𝑚    (6.8)

                                   ∀ 𝑗 = 1, 2, … , 𝑛𝑚
             𝑖 ≠ 𝑗 

 

 

where 

𝐿 = [𝑙1, 𝑙2, … , 𝑙𝑛𝑚] (6.9) 

 

𝑠 =  [𝑝1, 𝑝2, … , 𝑝𝑛𝑝] (6.10) 
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𝑑𝑚𝑖𝑗 = 𝜔[(𝑟𝑖 − 𝑟𝑗) +  (𝑘𝑖 − 𝑘𝑗)] (6.11) 

 

𝜔 = {
0, (𝑟𝑖 − 𝑟𝑗) ×  (𝑘𝑖 − 𝑘𝑗) ≤ 1

1, (𝑟𝑖 − 𝑟𝑗) ×  (𝑘𝑖 − 𝑘𝑗) > 1
  (6.12) 

 

6.2 Solving the Machine Location Problem Using Genetic Algorithm 

To solve the MLP, we will use an algorithm that combines hierarchical clustering and 

GA to solve the problem. Hierarchical clustering (HC) will be incorporated into the population 

initialization phase of the GA and will also affect the mutation operation. The primary purpose of 

using HC is to group together similar machines and separate dissimilar machines. It will be used 

to divide the facility grid into smaller sections of similar machines (if possible). We will then 

proceed to restrict the possible location assignments for these machines to their respective 

section of the grid. This would effectively reduce the problem’s solution space and improve the 

convergence of the GA. This is the key benefit in using the hybrid of HC and GA. 

The GA part of the algorithm is used to determine the near optimal layout of the 

machines within the departments determined using HC. This section will discuss our GA 

implementation. The GA consists of 5 stages: initial population generation, selection, crossover 

operation, mutation operation and generation of new population. This sequence of operations is 

repeated until the solution converges or the alternate stopping criterion is met. Table 6.1 provides 

an overview of the parametric settings of the GA used in this research. Whilst there are multiple 

stages to GA implementation, this section will only expand upon encoding the chromosome, 

population initialization, fitness evaluation and the mutation operation. This is because the other 

stages of GA are not unique to this problem and have their parameters set based on the 

suggestions made in Mitchell (1998).  
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Table 6.1:  GA Parametric Settings 

Operator Setting 

Crossover Operator Uniform Crossover 

Crossover Probability 0.55 

Mutation Operator Random Setting 

Mutation Probability 0.20 

Population Size 10 × n 

Maximum Number of Iterations 100 

Number of Simulation Runs 10 

Termination Condition ∆Fitness < 0.01 

Selection Process Tournament Selection 

 

Encoding the Chromosome 

The problem is encoded such that each gene represents a machine that needs to be 

assigned to a location in the facility. The encoded chromosome looks like a vector containing a 

set of integers. The value assigned to the allele (locus in the chromosome) is the location to 

which the respective machine has been assigned as per the facility grid. In this example, there are 

six machines that must be assigned to the locations on the 5×3 facility grid shown in Figure 6.2. 

The machines have been assigned to the locations shown in Figure 6.3. Figure 6.4 depicts how 

the assignments shown in Figure 6.3 would be encoded in the chromosome. 

 
Figure 6.2     Sample Facility Grid 

 

1 2 3 4 5

6 7 8 9 10

11 12 13 14 15
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Figure 6.3    Example Machine Location Assignments 

 

 

Figure 6.4     Chromosome Encoded Based on Example Machine Location Assignment 

 

Population Initialization 

At the initial stage of the problem, we need to generate a set of random, feasible solutions 

to populate the initial generation. Each solution is in the form of a chromosome with a length that 

corresponds to the number of machines that need to be assigned a location.  

In our application, we ensure that the initial population is only filled with feasible 

solutions. Initially, we begin by identifying which machines should be grouped together. We do 

this using hierarchical clustering (HC). The similarity coefficient used to determine the machine 

grouping is based on reachability for machines based on their machine-part incidence matrix 

(MP). This requires determining a reachability matrix (RM) based on the machine-part incidence 

matrix. If a machine can be reached from another machine, according to the machine-part 

incidence matrix, then it is considered to be similar by the HC. The similarity coefficient (SC) 

used is as follows: 

𝑆𝐶𝑖𝑗 = {
1,                            𝑖𝑓 𝑅𝑀𝑖𝑗 > 0

0,                           𝑖𝑓 𝑅𝑀𝑖𝑗 = 0 
(6.18) 

M1 2 M3 4 M6

6 7 8 9 10

M5 12 M2 14 M4

M1 M2 M3 M4 M5 M6

1 13 3 15 11 5
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Once the machine groupings have been determined using HC, we now need to split the 

facility grid up into sections. After this, we assign these sections of the grid to each machine 

group. To do this, we divide the available spaces into smaller sections based on the number of 

machines in each group, and the number of machine groups. For example, if there are two 

machine groups; one group with 4 machines, and the other with 8 machines. The available 

spaces on the grid would be divided into two sections with one section being twice as large as the 

other. 

Once the space has been divided up, machines from each group can only be assigned to 

spaces from their respective sections of the grid. This provides us with the values that can be 

assigned to each locus on the chromosome. 

When generating a potential solution, we begin by randomly selecting a locus on the 

chromosome to assign to a location. This locus represents a machine that needs to be assigned a 

location. The machine is then assigned to a location randomly based on the spaces available to 

the machine group to which it belongs. Once this assignment is decided, the space, and spaces 

adjacent to that space are removed from the available spaces for machines to be assigned. This 

process then continues until all machines have assigned a location. After which, this entire 

process is repeated for each solution that makes up the population. A population size of ten times 

the number of variables is based on a rule of thumb for evolutionary algorithms presented by 

Storn (1996).  The algorithm for generating the initial GA population can be seen in Table 6.2. 
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Table 6.2     MLP GA Population Initialization Algorithm 

Algorithm 1 MLP GA Population Initialization 

Input:  

 

Output: 

rows, cols, nm 

 

population 

1. Begin 

2. Initialize:  rows, cols, nm, population = [], no_of_spaces = rows × cols 

3. Use clustering to determine machine groups 

4. Divide facility grid into spaces to match number of machine groups 

5. Initialize: available_spacesj ⊆ no_of_spaces;  Ɐ j = 1,2, …, nm 

3. for i = 1 to (10×nm) do 

4.  Initialize: sp = (sp1, sp2, …, spnm), sj = 0 Ɐ j = 1,2, …, nm 

5.  Initialize: free_space = (1,2,…,no_of_spaces), count = 0, 

6.   while count ≤ nm do  

                                            Randomly select element of s that has not been assigned 

location, spk 

7.   r = random integer (between 1 and |free_space|) 

8.       spk = free_spacer  

9.   Delete space assigned to sk and all adjacent spaces from 

free_space 

                      count = count +1 

10.  End  

11.  populationi = sp  

12. End  

13. Return population 

14. End  

  

 

Fitness Function 

The fitness of a solution to our MLP is based on the mean completion time, 𝑦̅𝑠(𝐿). The 

lower the completion time the higher the fitness. However, the solution is considered unfit if it 

violates the constraints shown in Equations 6.4 and 6.5. This should be reflected in the fitness 

function. The fitness function (fit) used in our implementation of the GA is shown in Equation 

6.13. 
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𝑓𝑖𝑡(𝐿) = {

1

𝑦̅𝑠(𝐿)
, 𝑦̅𝑠(𝐿) ≤ 𝑦max 𝑎𝑛𝑑 𝜎𝑠(𝐿) ≤ 𝜎𝑚𝑎𝑥

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (6.13) 

 

Mutation Operator 

The mutation operator we are using in our GA is random setting. Normally, this would 

involve randomly setting the value of the selected locus on the chromosome to an acceptable 

value. In our application, it is similar, however, each machine has been restricted to a set number 

of spaces that it can be assigned to during the population initialization phase. The randomly set 

value must fall within this set of spaces excluding spaces that are already occupied by other 

machines. Also, the new assignment must not violate the spacing requirements (one space 

between machines). This further reduces the possible random values that can be used. All these 

restrictions in the set of values used in the random setting mutation ensures that the chromosome 

that results is a feasible solution. 

 

6.3 Numerical Experiments – Comparison Study 

In this section, we will present experiments that compare the performance between a 

layout derived using our MLP model and two different conventional layout types; functional and 

cellular. In the upcoming subsections, we will discuss the benchmarks which we will be 

comparing the designs derived using our model against. We will then proceed to present the 

details of the different problems that will be the focus of our experiments as well as present the 

results of the experiments and discussions of the results. 
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6.3.1 Layout Design Approach Benchmarks 

In this research, we will primarily be using two benchmarks; functional layouts and 

cellular layouts. These are the most commonly studied in literature. The layouts that are 

generated using our model will be compared against these two approaches to evaluate its solution 

quality. The metrics for evaluating solution quality are the mean completion times and associated 

standard deviation for completing the order. 

Functional Layout 

Functional layouts are best suited for high product variety manufacturing environments 

with low demand volumes (Tompkins et al, 2001). With high product variety manufacturing 

environments, there are many different types of parts being requested, each with different 

operations requirements. As such, it is impractical to use group technology-based layouts. This 

type of layout design simply requires grouping machines by function. Machines that perform 

similar operations are grouped together into functional departments. For example, all drills are 

placed together in a manufacturing system. As such, the number of departments in a functional 

layout will be dependent on the number of different operations that the facility needs to be able 

to perform.  

With a functional layout, the design primarily involves determining the relative distance 

of these departments to each other. This can be done using a metaheuristic to solve for the design 

that minimizes the objective function presented in Equation 6.1. The intention behind the 

location assignment for each department is the minimization of the transfer time of parts in the 

system. Each part in the system will flow from department to department based on the operation 

sequence required to produce it. As such, the location of the departments will directly impact the 
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time required to complete the part. Minimizing the transfer time between departments for parts in 

the system reduces the completion time for the part. 

Cellular Layout – Cell Formation Problem  

A group technology-based layout (or cellular layout) is based pairing machines into 

groups based on part families. Part families are a grouping of parts that share a number of similar 

operations that require the same set of machines. With group technology, these machines are 

grouped into departments that are dedicated to that part family. There are many ways to 

determine machine-part pairings, the most commonly used is direct cluster analysis (DCA) on 

the machine-part incidence matrix (Tompkins et al., 2001). 

DCA requires the use of a similarity coefficient to determine cell formations. The use of 

similarity coefficients allows for the presence of exceptional parts in the machine grouping 

process. They also allow for the incorporation of production volumes, operation sequences and 

operation execution times (Seifoddini & Djassemi, 1995). One of the most commonly used 

similarity coefficients is the Jaccard similarity which can be seen in equation 6.14. This 

similarity coefficient assigns similarities to the machines based on how many parts are processed 

by two machines relative to the parts processed between the two parts. This coefficient is used as 

the basis for grouping machines using the clustering algorithm with similar machines being more 

likely to be grouped together and vice versa. 

𝑆𝐶𝑖𝑗 =
𝑎

𝑎 + 𝑏 + 𝑐
 (6.14) 

Where  

SCij similarity of machine mi to machine mj 

a number of parts that both mi and mj service 
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b number of parts that only mi services but not mj  

c number of parts that only mj services but not mi   

 

6.3.2 Model Performance Evaluation – Example Problem 

 We will be determining the near-optimal layout for the furniture problem presented in 

chapter 4. The system consists of 11 machines that can produce 16 distinct part types. For this 

investigation, we will be exploring a facility grid that has been separated into a 7 by 7 grid of 

possible location assignments. This facility grid can be seen in Figure 6.5. All machines must be 

placed into a location on the grid and must be spaced from each other. Transporting WIP 

between each adjacent point on the grid takes 1 time unit. 

 

 

Figure 6.5     Facility Grid for Furniture Problem Example 

 All solutions (our solution, the functional layout, and the cellular layout) will use the 

same part demand, machine capability, transporting times, and facility grid. The cellular layout 

and functional layouts used in this comparison are modified versions of the layouts presented by 

Eshragh (2015). With our modifications, we introduce our own facility grid and transportation 

speeds. The functional layout configuration can be seen in Figure 6.6.  

1 2 3 4 5 6 7

8 9 10 11 12 13 14

15 16 17 18 19 20 21

22 23 24 25 26 27 28

29 30 31 32 33 34 35

36 37 38 39 40 41 42

43 44 45 46 47 48 49
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Figure 6.6     Functional Layout for Facility Grid Option 

 

 The cellular layout can be seen in Figure 6.7. With the cellular layout, we have 

chosen to explore two different operating conditions for our numerical experiments. For one set 

of experiments, we will assume that parts can receive service at any cell given that the machine 

they need is within the cell. In the second set of experiments, we do not allow for intercellular 

transfer. For this set of experiments, parts can only receive service at the cell assigned to the part 

families to which they belong. The specific details for the part families and their cell assignments 

can be seen in Table 6.3.   

  

 

Figure 6.7     Cellular Layout for Facility Grid Option 

   

D 2 D 4 5 C 7

8 9 10 11 12 13 14

15 D 17 18 19 C 21

22 23 24 25 26 27 28

2E 30 1E 32 33 NC 35

36 37 38 39 40 41 42

2E 44 2E 46 47 NC 49
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Table 6.3     Part Part-Family and Cell Assignments 

Part 

Family 

Parts Assigned Cell Assignment 

1 {p2, p5, p6, p9, p12} 1 

2 {p1, p3, p4, p7, p8, p11} 2 

3 {p10, p13, p14, p15, p16} 3 

 

 We will examine three scenarios. The difference between each of these scenarios is 

the part demand mix. The demand mixes can be seen in Table 6.4. 

Table 6.4     Demand Information for each Scenario Investigated 

Scenario Parts Demand Mix No. of Units of Each 

Part 

1 {p1, p3, p5, p12, p14, p16} 5 

2 {p1, p3, p5, p12, p14, p16} 13 

3 {p1, p 2, p 3, p 4, p5, p 6, p 7, p 8, p 9, p 10, p 11, p 12, p 13, p 14, p 15, p16} 5 

4 {p1, p 2, p 3, p 4, p5, p 6, p 7, p 8, p 9, p 10, p 11, p 12, p 13, p 14, p 15, p16} 2 

 

For each demand scenario, we calculated the Jaccard similarity for the machines in 

the system. The Jaccard similarity coefficient is a measure of how similar two machines in a 

system are given the parts that each machine services. In calculating the Jaccard similarity, we 

have chosen to ignore the similarity coefficients for duplicate machines. The similarity 

coefficients for the system’s machines can be seen in Figure 6.8 and Figure 6.9.  

 

m1 m2 m3 m4 m5 m6 m7 m8 m9 m10 m11

m1 0 0 0.3 0.3 0.3 0.3 0.2 0.2 0.2 0.5 0.5

m2 0 0 0.3 0.3 0.3 0.3 0.2 0.2 0.2 0.5 0.5

m3 0.3 0.3 0 0.2 0.2 0.2 0.3 0.3 0.3 0.3 0.3

m4 0.3 0.3 0.2 0 0 0 0.6 0.6 0.6 0.8 0.8

m5 0.3 0.3 0.2 0 0 0 0.6 0.6 0.6 0.8 0.8

m6 0.3 0.3 0.2 0 0 0 0.6 0.6 0.6 0.8 0.8

m7 0.2 0.2 0.3 0.6 0.6 0.6 0 0 0 0.5 0.5

m8 0.2 0.2 0.3 0.6 0.6 0.6 0 0 0 0.5 0.5

m9 0.2 0.2 0.3 0.6 0.6 0.6 0 0 0 0.5 0.5

m10 0.5 0.5 0.3 0.8 0.8 0.8 0.5 0.5 0.5 0 0

m11 0.5 0.5 0.3 0.8 0.8 0.8 0.5 0.5 0.5 0 0
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Figure 6.8     Jaccard Similarity Matrix for Demand Scenarios 1&2 

 

 

Figure 6.9      Jaccard Similarity Matrix for Demand Scenarios 3&4 

 We will use our optimization model to determine the near-optimal layout. We will 

then compare the quality of the solution against the cellular and functional layouts previously 

presented. This will be done by running simulations for each scenario using the three different 

layouts. As a result of this set of experiments, we will be able to determine the efficacy of the 

proposed model as well as determine the potential impact of demand on optimal layout. 

Experimental Conditions 

The numerical experiments are run using our own in-house simulation code written on 

MATLAB R2021b. The optimization problem is solved using a GA that is also implemented 

using our own in-house code on MATLAB R2021b. 

6.3.3 Results 

This section contains the results of the simulation experiments for the different layouts 

(cellular, functional and hybrid) for each demand scenario mentioned in section 6.3.2. This can 

m1 m2 m3 m4 m5 m6 m7 m8 m9 m10 m11

m1 0 0 0.2 0.5 0.5 0.5 0.4 0.4 0.4 0.6 0.6

m2 0 0 0.2 0.5 0.5 0.5 0.4 0.4 0.4 0.6 0.6

m3 0.2 0.2 0 0.2 0.2 0.2 0.3 0.3 0.3 0.3 0.3

m4 0.5 0.5 0.2 0 0 0 0.7 0.7 0.7 0.9 0.9

m5 0.5 0.5 0.2 0 0 0 0.7 0.7 0.7 0.9 0.9

m6 0.5 0.5 0.2 0 0 0 0.7 0.7 0.7 0.9 0.9

m7 0.4 0.4 0.3 0.7 0.7 0.7 0 0 0 0.6 0.6

m8 0.4 0.4 0.3 0.7 0.7 0.7 0 0 0 0.6 0.6

m9 0.4 0.4 0.3 0.7 0.7 0.7 0 0 0 0.6 0.6

m10 0.6 0.6 0.3 0.9 0.9 0.9 0.6 0.6 0.6 0 0

m11 0.6 0.6 0.3 0.9 0.9 0.9 0.6 0.6 0.6 0 0
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be seen in Table 6.5. In this table we present the mean completion times and standard deviation 

(both in time units) for each layout under the four different experiment scenarios. 

We will also present three sets of figures for each solution determined using the GA and 

our optimization model presented in section 6.2. Firstly, we present the solution layout. With 

these figures, duplicate machines have been highlighted with the same color. We also present the 

relative distances between each distinct machine in the system. Lastly, we present the average 

shortest relative distance between machine types. 

Table 6.5     Order Completion Times and Standard Deviations for Different Layout 

Options  

 Cellular Layout  

(No Intercellular 

Transfer) 

Cellular Layout 

(Intercellular 

Transfer) 

Functional 

Layout 

GA Layout 

 Mean STD Mean STD Mean STD Mean STD 

Scenario 1 187.99 8.64 129.77 9.49 137.25 25.29 111.87 10.13 

Scenario 2 599.48 21.74 353.80 50.46 341.06 28.42 274.62 15.67 

Scenario 3 447.47 57.31 302.86 51.03 334.41 21.37 260.71 9.35 

Scenario 4 184.60 31.13 123.46 13.72 143.20 38.08 113.23 13.07 

 

Scenario 1 GA Results 

 

 

Figure 6.10    GA Obtained Layout for Demand Scenario 1 

 

8 0 4 0 10 0 0

0 0 0 0 0 0 0

6 0 1 0 5 0 0

0 0 0 0 0 0 0

11 0 9 0 3 0 0

0 0 0 0 0 0 0

0 0 2 0 7 0 0
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Figure 6.11     Distance Matrix for GA Layout for Demand Scenario 1 

 

 

Figure 6.12     Matrix of Mean Shortest Relative Distances Between Machine Types 

Scenario 1 

 

Using the model presented in section 6.2, we obtain a layout seen in in Figure 6.10. There 

is no apparent pattern in this layout which could distinguish it as functional or cellular. As such, 

we consider this layout to be a hybrid layout.  Looking at Table 6.5, we see that the hybrid layout 

results in the lowest mean completion time with 111.87 time-units. The worst time with the 

cellular layout when no intercellular transfers are permitted (187.99 time-units). The 

performance of the cellular layout is significantly improved by allowing for intercellular transfer 

(from 187.99 to 129.77 time-units). The functional layout appears to underperform both in terms 

of optimality and consistency in performance. It has a completion time of 137.25 time-units, 

m1 m2 m3 m4 m5 m6 m7 m8 m9 m10 m11

m1 0 0 2 3 2 5 3 5 3 5 4

m2 0 0 6 5 3 4 8 11 2 8 7

m3 2 6 0 3 6 7 3 3 5 3 6

m4 3 5 3 0 0 0 4 7 2 2 8

m5 2 3 6 0 0 0 5 7 3 7 4

m6 5 4 7 0 0 0 4 8 6 3 10

m7 3 8 3 4 5 4 0 0 0 7 3

m8 5 11 3 7 7 8 0 0 0 4 7

m9 3 2 5 2 3 6 0 0 0 6 5

m10 5 8 3 2 7 3 7 4 6 0 0

m11 4 7 6 8 4 10 3 7 5 0 0

C 1E 2E D CNC

C 0 4 2.5 2.5 5.5

1E 4 0 3 3 3

2E 3.7 5.3 0 3 3

D 3.3 3.7 4.3 0 4

CNC 4.5 4.5 3 4 0
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which is the third worst of the layouts examined. It also had the worst standard deviation in 

completion times, with 25.29 time-units. The most consistency in performance is achieved with 

cellular layouts. They have standard deviations of 8.64 time-units when no intercellular transfer 

is allowed, and 9.49 when they are. 

 

Scenario 2 GA Results 

 

Figure 6.13     GA Obtained Layout for Demand Scenario 2 

 

 

Figure 6.14     Distance Matrix for GA Layout for Demand Scenario 2 

  

0 0 8 0 5 0 9

0 0 0 0 0 0 0

0 6 0 0 0 11 0

0 0 0 10 0 0 0

0 1 0 0 0 4 0

0 0 0 0 0 0 0

0 7 0 3 0 2 0

m1 m2 m3 m4 m5 m6 m7 m8 m9 m10 m11

m1 0 0 4 6 7 2 2 5 9 3 6

m2 0 0 2 2 8 4 6 9 7 5 6

m3 4 2 0 4 7 6 2 7 9 3 6

m4 6 2 4 0 0 0 6 7 5 3 2

m5 7 8 7 0 0 0 9 2 2 4 3

m6 2 4 6 0 0 0 6 3 7 3 4

m7 2 6 2 6 9 6 0 0 0 5 8

m8 5 9 7 7 2 3 0 0 0 4 5

m9 9 7 9 5 2 7 0 0 0 3 6

m10 3 5 3 3 4 3 5 4 3 0 0

m11 6 6 6 2 3 4 8 5 6 0 0
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Figure 6.15     Matrix of Average Shortest Relative Distances Between Machine Types 

Scenario 2 

 

Table 6.5 shows that for scenario 2 the shortest mean completion times and standard 

deviations are obtained when using the layout derived using our model (274.62 and 15.67 time-

units respectively). As expected, the mean completion times and standard deviations are 

significantly higher for this scenario than with scenario 1. This is because it is the demand mix 

but with higher demand volumes. With this scenario, we see that the functional layout now 

yields the second-best performance. It yields a mean completion time of 341.06 time-units with a 

standard deviation of 28.42 time-units. Interestingly, the worst performances with respect to the 

mean and standard deviations are seen when using cellular layouts. The longest completion times 

are observed when a cellular layout is used with no intercellular transfer allowed (599.48 time-

units). The largest standard deviations are observed with cellular layouts when intercellular 

transfer is allowed (50.46 time-units). 

C 1E 2E D CNC

C 0 3 3 4 4

1E 2 0 4 2 3

2E 3.7 5.7 0 3.3 2.7

D 4.7 6 3.3 0 4

CNC 4.5 4.5 2.5 4 0
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Scenario 3 GA Results 

 

Figure 6.16     GA Obtained Layout for Demand Scenario 3 

 

 

Figure 6.17     Distance Matrix for GA Layout for Demand Scenario 3 

 

 

Figure 6.18     Matrix of Average Shortest Relative Distances Between Machine Types 

Scenario 3 

 

For scenario 3, we have a similar total number of parts being ordered as with scenario 2.  

As such, we expect similar completion times to those from scenario 2. The results in Table 6.5 

0 6 0 0 0 0 0

0 0 0 1 0 10 0

4 0 0 0 0 0 0

0 0 0 11 0 5 0

0 2 0 0 0 0 0

0 0 0 0 9 0 7

3 0 8 0 0 0 0

m1 m2 m3 m4 m5 m6 m7 m8 m9 m10 m11

m1 0 0 8 4 4 3 8 6 5 2 2

m2 0 0 3 2 5 4 6 3 4 7 3

m3 8 3 0 4 8 7 9 2 5 10 6

m4 4 2 4 0 0 0 6 6 7 4 6

m5 4 5 8 0 0 0 3 6 2 2 2

m6 3 4 7 0 0 0 10 7 8 5 5

m7 8 6 9 6 3 10 0 0 0 5 5

m8 6 3 2 6 6 7 0 0 0 8 4

m9 5 4 5 7 2 8 0 0 0 3 5

m10 2 7 10 4 2 5 5 8 3 0 0

m11 2 3 6 6 2 5 5 4 5 0 0

C 1E 2E D CNC

C 0 5.5 2.5 4 2.5

1E 5.5 0 6.3 5.3 8

2E 3 6.3 0 5.3 4.3

D 4.3 5.3 3.7 0 4

CNC 2 8 2 3.5 0
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substantiate this expectation. Once again, the mean completion times and standard deviation are 

lowest when using the hybrid layout derived using our model. This layout yielded a mean 

completion time of 260.71 time-units with a standard deviation of 9.35 time-units. The cellular 

layout with intercellular transfer allowed yields the second-best performance with respect mean 

completion times (302.86 time-units). However, it has the second highest standard deviation in 

its performance. The functional layout is comparable to the cellular layout with intercellular 

transfer allowed. It has a longer completion time (334.41 time-units) but significantly lower 

standard deviation (21.37 time-units). The worst performance observed was with the cellular 

layout when no intercellular transfers are permitted. 

Scenario 4 GA Results 

 

 

Figure 6.19     GA Obtained Layout for Demand Scenario 4 

 

0 0 0 0 0 0 0

0 0 0 0 11 0 0

8 0 7 0 0 0 6

0 0 0 0 0 0 0

0 3 0 1 0 5 0

0 0 0 0 0 0 0

10 0 4 0 9 0 2
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Figure 6.20     Distance Matrix for GA Layout for Demand Scenario 4 

 

 

Figure 6.21     Matrix of Average Shortest Relative Distances Between Machine Types 

Scenario 4 

 

Scenario 4 has a similar number of parts ordered as scenario 1. As such, it was expected 

that the completion times would be similar. We observe the same pattern in mean completion 

times as with scenario 1. The hybrid layout yields the lowest mean completion time (113.23 

time-units). This is followed by the cellular layout when intercellular transfer is allowed (123.46 

time-units).  The third-best option is the functional layout with a mean completion time of 

143.20 time-units. Similar to the other scenarios, the longest completion times are observed with 

using cellular layouts with no intercellular transfers permitted.  With respect to standard 

deviations in the completion time, we see that the hybrid layout yields the lowest one.  Similar to 

m1 m2 m3 m4 m5 m6 m7 m8 m9 m10 m11

m1 0 0 4 2 2 2 6 4 2 4 4

m2 0 0 4 8 6 6 3 8 2 8 4

m3 4 4 0 6 2 6 2 8 2 6 6

m4 2 8 6 0 0 0 8 2 6 2 6

m5 2 6 2 0 0 0 6 6 4 2 6

m6 2 6 6 0 0 0 8 2 4 6 2

m7 6 3 2 8 6 8 0 0 0 7 6

m8 4 8 8 2 6 2 0 0 0 6 6

m9 2 2 2 6 4 4 0 0 0 2 6

m10 4 8 6 2 2 6 7 6 2 0 0

m11 4 4 6 6 6 2 6 6 6 0 0

C 1E 2E D CNC

C 0 4 4 2 4

1E 4 0 2 2 6

2E 2 4.7 0 2.7 2

D 3 4 4 0 4.7

CNC 4 6 2 4 0
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scenario 1, the highest standard deviation occurs when using a functional layout (38.08 time-

units).  However, unlike scenario 1, we see that standard deviations in completion time are 

higher when using cellular layouts if intercellular transfers are not permitted than when they are. 

6.3.4 Discussion 

Our numerical experiments show that in a MAS-based manufacturing environment with 

alternate routing options and overlap in part processing routes, a hybrid style layout would be the 

best layout type to employ. This is based on the results of the experiments showing that the 

layout determined using the GA resulted in better system performance than the cellular and 

functional layouts for the manufacturing environment studied. Looking at Table 6.5, we can see 

that the mean completion times are consistently lower when the GA layout is used in comparison 

to the alternative layout types. The completion times when using the GA layouts are ~8% to 

19.5% lower than the next best conventional layout type employed. With respect to the reliability 

of the performance, the results indicate that the GA layout tends to result in more consistent 

system performance than with the alternative layout options.  Excluding the first scenario, the 

GA layout consistently had the lowest standard deviations. 

The results of the experiments suggest that the performance of the system is significantly 

impacted by the layout selection decision. We can also see that having a more hybrid layout may, 

in some circumstances, be preferable to using the conventional layout types. However, there is a 

lot of information to consider when making this decision, and this makes the MLP difficult to 

solve. Determining the ideal layout, especially with all the uncertainties in the system inputs, is 

made easier by using our proposed optimization model. 
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Upon initial inspection of the layout designs obtained using the GA, the results may 

appear random. However, once we look at the machine similarities and compare that to the 

relative distance of the machines in solution layouts, we begin to see a potential pattern in the 

solution. For each scenario for which numerical experiments were run, we see that when the 

average shortest distances between machine types are calculated, the distances inversely 

correlate with the degree of similarity of the machine types. For example, looking at Figure 6.12, 

we can see that when we look at the 2-sided edging machine row that the 2-sided edging 

machines are closest to the CNC machines and the furthest from the 1-sided edging machine. 

Looking at Figure 6.8, we see that the similarity between CNC and 2-sided machines are the 

highest and conversely, the lowest similarity for the 2-sided edging machines occurs with the 1-

sided edging machines. This pattern repeats itself for all machines and this is true for all demand 

scenarios tested.  

Generally, what we see from the solutions is that each machine in the system is close to at 

least one machine of a type to which it is highly similar. This results in the average distance from 

each machine type to another similar machine of a different type being lower. This pattern 

appears to be consistent regardless of the volume of parts demanded, however appears to change 

with the demand mix. As we can see from Figure 6.12 and Figure 6.15, the relative distances 

may be different, but they are in the same order when ranked from closest to farthest for each 

machine type. However, this is not the case when they are compared with Figure 6.18 and Figure 

6.21 where the demand mix is different. This is particularly evident when looking at the 

similarity between the 2-sided edging machines and the drills. In scenarios 1 and 2 the drills are 

the highest similarity for the 2-sided machine outside of the CNC machines. However, in 

scenarios 3 and 4, they are the penultimate similarity. This results in the average 2-sided edging 
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machine being further from drills in the latter scenarios but closer in the prior. This is to be 

expected as the demand mix has a direct impact on the Jaccard similarity coefficient whereas the 

demand volume does not. 

The demand volume does appear to have an impact on “optimal” location of the 

machines within the facility grid. We see that as the demand volume for each part type increases 

without any change in the demand mix (between Figure 6.10 and Figure 6.13, and between 

Figure 6.16 and Figure 6.19 respectively), there appears to be a distinct change in the pattern of 

where machines are optimally located. In the scenarios where demand volume is lower, Figure 

6.10 and Figure 6.16, we see that cutting and 2-sided edging machines are at the center of the 

layout and CNC are relegated to the outskirts. However, as the demand volume increases, Figure 

6.13 and Figure 6.19, the CNC are moved to a more central location in the layout. This 

observation can be seen in the corresponding matrix of average shortest relative distances 

between machine types for each figure. The distance between the average CNC machine and all 

other machine types decreases with increasing demand. This is to be expected as the CNC is a 

duplicate for all machines in our experimental setup. So, as the demand increases the CNC 

machine being used as a duplicate machine is more useful with demand volume increasing for 

this specific problem, whereas, whilst overall demand is lower, the CNC only performs its own 

unique operation.  

The results of the experiment also suggest that art routing may potentially play a role in 

the location assignment for the machines in the system. For all demand scenarios studied, we see 

that the cutting operation is the most common first operation for most of the distinct part types (9 

of the 16 distinct part types begin with cutting). As such, it follows that cutting machines should 

be central in the layout and all other machines that perform downstream operations surround it.  
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As the total part demand volume increases, the CNC machine becomes more central as more 

parts require cutting than there are cutting machines to cut as it provides an alternate cutting 

machine. This is a potential area for further study. 

Overall, our experiments suggest that the proposed optimization model and the use of a 

GA to solve the MLP yields better results than using conventional layout types. The results also 

suggest that hybrid layouts can in fact outperform conventional layouts. The ideal layout design 

appears to be strongly correlated to the machine similarities and the potentially the part routing. 

However, more study is required before making more definitive statements on these 

observations. 
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Chapter 7  

Conclusion 

7.1 Summary 

In this research we present a framework for designing a smart manufacturing system. We 

define a smart manufacturing system to be an extension of the traditional manufacturing system 

that incorporates more autonomy into the system. The system’s components are given decision-

making capabilities in scheduling decisions. The system is essentially a cyber-physical 

production system and there are various ways of designing such a system. To that effect, this 

dissertation focuses on answering four questions: (1) “What constitutes our smart manufacturing 

system?” (2) “How does the smart manufacturing system function?” (3) “Under what condition 

should this system be employed?”, and (4) “How should such a system be designed?”.  

 In chapter 2, we examined the literature the encompasses the four questions that are key 

to this work. The primary difference between the traditional and smart manufacturing system is 

in the added autonomy of the system’s components in making scheduling decisions. As such, 

chapter 2 begins by examining the scheduling strategies that could be employed. These strategies 

typically fall into three categories; predictive-reactive, completely reactive, and proactive 

scheduling strategies. Each strategy has its own benefits and drawbacks, and, as such, has been 

applied to different manufacturing environments conditions. The subsequent section proceeds to 

explore which strategies and approaches have been applied when scheduling in various 

manufacturing environments. The chapter concludes with literature on the design of 

manufacturing systems from machine selection to layout design. 

The focus of chapter 3 was addressing our definition of the smart manufacturing system 

as well as how our proposed system would function. In this chapter, we present the model we 
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developed for the operation of a smart manufacturing system (SMS). The model outlines what an 

SMS would consist of, as well as how the system functions. This chapter heavily focuses on how 

jobs are scheduled within the smart manufacturing system (SMS). The model developed is a 

multi-agent system model for real-time scheduling in manufacturing environments subject to 

multiple sources of uncertainty. The model consists of two domains; a physical domain and an 

agent domain. The physical domain consists of the same components as a traditional 

manufacturing system. These are parts, machines, transporters, etc. The agent domain consists of 

the decision-making elements within the system. These are agents for the machines and parts as 

well as an agent for supervising the interactions between the agents. In our model, we assume 

that there are alternative routing and operation sequence options, and all these options can be 

utilized by the system based on the real-time conditions. The model also allows for duplicate and 

similar machines as well as multi-functional machines. All in all, our model for a smart 

manufacturing system is designed to be robust so it minimizes the effect of stochastic 

disturbances to the system on the time required to fulfill orders placed. 

The third question this work intended to address was regarding the utility and application 

of the smart manufacturing system. This was addressed in chapter 4, where we investigated the 

conditions under which the use of a multi-agent system for scheduling in a manufacturing 

environment would be beneficial. More precisely, we investigated the performance of different 

dynamic scheduling strategies when subjected to a single source of uncertainty (at multiple 

levels) as well as when subjected to multiple sources of uncertainty simultaneously. The 

examination of the performance of dynamic scheduling strategies subject to multiple different 

sources of uncertainty simultaneously is relatively novel. Despite there being a large body of 

research that investigates dynamic scheduling with uncertainty, they mostly focus on singular 
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sources of uncertainty. This study highlights the significance of looking at all sources of 

uncertainty when deciding the dynamic scheduling approach to employ. The key finding in this 

chapter is that our proposed model significantly outperforms the alternate scheduling approaches 

explored in manufacturing environments subject to high levels of uncertainty. This suggests that 

this type of system would perform well in a mass customization manufacturing environment. 

The fourth question this thesis sought to answer is “how should the smart manufacturing 

system be designed?”. This question was addressed in chapters 5 and 6 of the dissertation. In 

these chapters, we present the models we developed for designing an MAS-based manufacturing 

system in a manufacturing environment subject to uncertainty. The first model (presented in 

chapter 5) provided a framework for machine resource deployment decision-making where the 

types of machines in the system would be decided as well as the number of each distinct type of 

machine. The second model (presented in chapter 6) provided a framework for deciding machine 

location assignments within the facility. With the combination of the two models, we are able to 

design a smart manufacturing system in order to maximize the system performance and 

robustness. With both models we employ a simulation-based optimization strategy which allows 

for estimated order completion time to be used in the decision-making process as opposed to the 

approximations. With our model for solving machine deployment, we found that it performed 

comparably to an exhaustive approach without the need to search the entire solution search 

space. With our model for solving the machine location problem, we found the approach to yield 

better results than with functional or cellular layouts for the problem examined. 

Overall, this work successfully outlines a framework for the design of a smart 

manufacturing system. It also presents the conditions under which such a system would be 

employed and the benefits of using this system. 
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7.2 Research Contributions 

There are three main areas where this thesis has made contribution to research. The first 

is in the findings from our investigation into the performance of three (3) dynamic scheduling 

strategies (right-shifting, dispatching rules, multi-agent systems) when they are employed in 

manufacturing systems subject to varying levels of uncertainty from multiple sources of 

uncertainty. The sources of uncertainty examined were variable setup and processing times, 

uncertain demand, and machine availability (MTTF and MTTR). In our investigation of these 

factors both separately and together, we provide further insights into the conditions under which 

each approach would be the best option to employ. 

1. It is widely accepted in the literature that predictive-reactive scheduling approaches 

generally outperform completely reactive approaches. However, our results show that this 

is dependent on the type of uncertainty and the number of sources of uncertainty the is 

subject to. When faced with demand uncertainty or multiple sources of uncertainty 

simultaneously, it is generally better to employ completely reactive scheduling.  

2. There are conditions under which these strategies are statistically similar to each other 

when considering only singular sources of uncertainty. 

a. When the level of the uncertainty is high, there is little difference in the system 

performance regardless of approach employed 

b. When there is excess capacity in the system (i.e., no bottlenecks and underutilized 

duplicate or similar machines), there is no difference in system performance 
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Overall, this collection of data, and the analysis that follows provides information that 

provides more context to the literature consensus whilst providing insights that are useful in the 

decision-making for manufacturing systems. 

The second contribution is the development of a model for solving the machine 

deployment problem using simulation-based optimization. By using simulation-based 

optimization, we eliminate the need for using proxy measures and approximations for the system 

inputs in our analytical model. Also, the use of simulation allows for accounting for two factors 

that are too complex to easily capture with analytical models: 

1) The interrelationship between the number of machines and the system inputs 

2) The interdependence and competition between machines 

The problem of determining which selection of machines, and the number of each of the 

selected machines should be used in a manufacturing system is quite complex. The model we 

present in this work is a tool for making the design decisions that result in a robust 

manufacturing system. 

The third major contribution is the development of a model for machine location 

assignment within a smart manufacturing factory. The contribution here is twofold (1) the 

simulation-based optimization model for designing the facility, and (2) the insights obtained 

from the investigation into hybrid layouts performance against cellular and functional layouts. 

By using a simulation-based optimization model, we avoid the use of proxy measures for system 

inputs in our analytical model. This allows for the final design to yield results that should be 

more relevant to real world applications. Also, in our numerical experiments comparing the 

layouts that resulted from our model against functional and cellular layouts we gained insight 

into the potential for unconventional or hybrid layouts. These layouts may be beneficial to 
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employ for system productivity in certain scenarios. Hybrid layouts are not extensively studied in 

literature, this work provides data to suggest the potential in further investigation of hybrid 

layouts. 

7.3 Implementation Considerations for Multi-Agent System Based Manufacturing 

While implementing a multi-agent system (MAS) in manufacturing can offer numerous benefits, 

including increased flexibility and efficiency, there are a number of limitations and challenges 

that must be considered when implementing them in the real world. These can vary based on the 

unique characteristics of their manufacturing processes and systems. Thorough planning, 

resource allocation, and expert guidance are essential to navigate these challenges effectively. 

These considerations are as follows: 

1. Complexity of Implementation: Developing a MAS for manufacturing entails creating 

custom software for agents, designing communication protocols, and integrating the 

system into existing manufacturing processes. This complexity can result in longer 

development timelines and higher upfront costs than alternative manufacturing systems. 

2. High Development and Maintenance Costs: Building a MAS requires specialized 

expertise in a variety of disciplines, which can be costly prohibitive. Ongoing 

maintenance, updates, and debugging can also strain budgets over time. 

3. Integration Challenges: Manufacturing facilities often rely on legacy systems that are 

not necessarily compatible with MAS-based manufacturing. Achieving seamless 

integration might involve retrofitting or overhauling existing infrastructure, leading to 

additional implementation expenses. 
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4. Data Security and Sharing: Agents in a MAS need to share data for effective 

coordination. Ensuring the security of, and consistency in data transmission and storage, 

especially when dealing with sensitive manufacturing data, demands robust security 

measures. 

5. Training and Expertise Requirements: Personnel responsible for operating and 

maintaining a MAS-based manufacturing system need specialized training in agent-based 

systems, which might not be readily available. 

6. Robustness and Fault Tolerance: It is important to ensure that the MAS can continue 

functioning in the presence of agent failures or disruptions. This requires complex fault 

tolerance mechanisms and thorough testing, adding to development and maintenance 

complexity. 

7. Regulatory and Compliance Challenges: Manufacturing often operates in highly 

regulated environments. Ensuring that the MAS complies with industry standards and 

regulations involves careful documentation, validation, and adherence to legal 

requirements, potentially adding administrative overhead. 

7.4 Recommendations for Future Work 

The following is a list of recommendations for further study: 

1. Advance the agent intelligences used in the MAS model used for decision-making. 

Currently, the part agents and machine agents use and react to the current system status. 

However, it might be worthwhile to allow these agents to extrapolate the current system 

data and make decisions based on possible future states. For example, part agents could 

decide machines for two consecutive operations at a time. Similarly, machine agents 
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could be designed to assess the current operations available in order to assess which 

operation would better meet its objective. It could also predict the operations that the part 

agents would soon be requesting.  The machine agent could then assess the current and 

future state of the system. It could then use that information to determine two things: (1) 

whether or not to being on an existing operation or wait, and (2) which operation to bid 

on. 

2. Incorporate transporters into the MAS model. Currently, it is assumed that there are 

infinite transporters that move at constant speed without ever interfering with or 

obstructing each other. As such, once a scheduling decision is made, the part is 

immediately enroute to its destination machine. However, this is not representative of a 

real-world system. The current MAS model can be modified to incorporate a transporter 

agent. This agent would provide the part agents with estimated transfer times to each 

machine for the agents to use in their decision of which machine to assign work.  It would 

also determine the routes for all transporters once scheduling decisions have been made. 

3. The machine deployment problem and the machine location problem can be 

combined into one comprehensive problem. The machine deployment problem is 

influenced by spatial constraints. The ideal combination of machines for the “optimal” 

manufacturing system that satisfies the budget constraint may not be practical for the 

space available to house the system. Also, as demonstrated in chapter 6, the location 

assignment for machines can have a significant effect on the system performance. As 

such, there may be benefit in considering the interdependence between number of 

machines and the layout design in the system design process. 
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