441 research outputs found

    2008 Index IEEE Transactions on Control Systems Technology Vol. 16

    Get PDF
    This index covers all technical items - papers, correspondence, reviews, etc. - that appeared in this periodical during the year, and items from previous years that were commented upon or corrected in this year. Departments and other items may also be covered if they have been judged to have archival value. The Author Index contains the primary entry for each item, listed under the first author\u27s name. The primary entry includes the coauthors\u27 names, the title of the paper or other item, and its location, specified by the publication abbreviation, year, month, and inclusive pagination. The Subject Index contains entries describing the item under all appropriate subject headings, plus the first author\u27s name, the publication abbreviation, month, and year, and inclusive pages. Note that the item title is found only under the primary entry in the Author Index

    2009 Index IEEE Antennas and Wireless Propagation Letters Vol. 8

    Get PDF
    This index covers all technical items - papers, correspondence, reviews, etc. - that appeared in this periodical during the year, and items from previous years that were commented upon or corrected in this year. Departments and other items may also be covered if they have been judged to have archival value. The Author Index contains the primary entry for each item, listed under the first author\u27s name. The primary entry includes the coauthors\u27 names, the title of the paper or other item, and its location, specified by the publication abbreviation, year, month, and inclusive pagination. The Subject Index contains entries describing the item under all appropriate subject headings, plus the first author\u27s name, the publication abbreviation, month, and year, and inclusive pages. Note that the item title is found only under the primary entry in the Author Index

    Interference Mitigation Effects on Synthetic Aperture Radar Coherent Data Products

    Get PDF
    Both radio frequency interference from sources external to the synthetic aperture radar system and techniques to mitigate radio frequency interference can degrade the quality of the image products. Often it is the second order data products derived from the images that are of the most value for a synthetic aperture radar system. Preserving the quality of these data products, in the presence of radio frequency interference, is paramount to maintaining the utility of the sensor.This dissertation examines the effects of interference mitigation upon coherent data products of fine-resolution, high frequency synthetic aperture radars using stretch processing. Novel interference mitigation techniques are introduced that operate on single or multiple apertures of data that increase average coherence compared to existing techniques. A novel contrast metric is combined with existing image quality and average coherence metrics to compare multiple mitigation techniques. The characteristics of interference mitigation techniques that restore coherence are revealed.Electrical Engineerin

    Mapping of Ice Sheet Deep Layers and Fast Outlet Glaciers with Multi-Channel-High-Sensitivity Radar

    Get PDF
    This dissertation discusses the waveform design, the development of SAR and clutter reduction algorithms for MCRDS radars that are developed at CReSIS to map the ice-sheet bed, deep internal layers and fast-flowing outlet glaciers. It is verified with survey data that the sidelobe level of the designed tapered linear chirp waveform is lower than -60dB for reliable detection of deep ice layers close to the bed. The SAR processing is implemented in f-k domain with motion compensation. Very weak echoes from the deepest parts of Jakobshavn channel are detected for the first time using large synthetic aperture length. A beam-spaced clutter-reduction algorithm is developed to reduce the distributed across-track ice clutter encountered in sounding fast outlet glaciers by estimating the clutter power as a function of depth. On average this method is able to reduce ice clutter by 10dB over Hanning weighting with the MCRDS radar's multi-channel data

    EMC, RF, and Antenna Systems in Miniature Electronic Devices

    Get PDF

    FMCW Signals for Radar Imaging and Channel Sounding

    Get PDF
    A linear / stepped frequency modulated continuous wave (FMCW) signal has for a long time been used in radar and channel sounding. A novel FMCW waveform known as “Gated FMCW” signal is proposed in this thesis for the suppression of strong undesired signals in microwave radar applications, such as: through-the-wall, ground penetrating, and medical imaging radar. In these applications the crosstalk signal between antennas and the reflections form the early interface (wall, ground surface, or skin respectively) are much stronger in magnitude compared to the backscattered signal from the target. Consequently, if not suppressed they overshadow the target’s return making detection a difficult task. Moreover, these strong unwanted reflections limit the radar’s dynamic range and might saturate or block the receiver causing the reflection from actual targets (especially targets with low radar cross section) to appear as noise. The effectiveness of the proposed waveform as a suppression technique was investigated in various radar scenarios, through numerical simulations and experiments. Comparisons of the radar images obtained for the radar system operating with the standard linear FMCW signal and with the proposed Gated FMCW waveform are also made. In addition to the radar work the application of FMCW signals to radio propagation measurements and channel characterisation in the 60 GHz and 2-6 GHz frequency bands in indoor and outdoor environments is described. The data are used to predict the bit error rate performance of the in-house built measurement based channel simulator and the results are compared with the theoretical multipath channel simulator available in Matlab

    Development of a parallel SAR processor on a Beowulf cluster

    Get PDF
    Includes bibliographical references.The purpose of this dissertation is to present the development and testing of the parallelisation of a Range-Doppler SAR processor. The inherent data parallelism found in SAR data lead to the choice of using master slave parallel processor, where copies of a slave task perform the same tasks on different sets of data. However, the SAR processor that was parallelised needed to implement a corner turn without saving data to disk keeping the data set being processed distributed in memory over the nodes in the cluster. This was successfully achieved using a in-place method, thus saving valuable memory resources. Once the parallel processor was implemented some timing tests were performed, yielding a maximum speedup factor of 6.2 for an 8 slave processor system

    Designing a Cavity Backed Microstrip Antenna with Enhanced Isolation for the Development of a Continuous Wave Ground Penetrating Radar

    Get PDF
    This paper presents an improved design of a rectangular microstrip antenna at 920 MHz by backing it with an appropriate cavity wall to enhance the isolation between the transmitter and receiver antenna for use in applications, where the weak received power gets masked by the direct coupled power between two antennas. Antennas having 0.12 λ cavity wall with separation gap of 0.36 λ resulted in an isolation of 52.6 dB at a resonance frequency of 920 MHz with maximum and minimum isolation of 71.4 dB and 49.1 dB, respectively for 5% BW of the antenna designed. These antennas were fabricated and tested, which are used in the development of Continuous Wave Ground Penetrating Radar with an online graphical user interface; leading to the validation of the usefulness of proposed antennas. The isolation achieved at an optimised separation of the antennas enabled detection of metal targets as small as a bunch of wire buried 20 cm in the soil and non-metal, like wood and plastic buried in soil. It enabled the detection of a circular steel target of radius 12.5 cm buried at a depth of 65 cm in loose semi-dry pebbled soil

    High-Isolation Antenna Technique for CubeSat-Borne, Continuous-Waveform Radar

    Get PDF
    Radar is important in target tracking, imaging, and weather prediction applications. As technology is increasingly miniaturized, there is a push for smaller radar. Research and exploration in outer space also benefit from small, low-power technologies. The NASA Jet Propulsion Laboratory’s RainCube was the first successful CubeSat-borne radar. A CubeSat is a type of small satellite that conforms to specific size and weight standards. Radar technology benefits from additional research on how to further miniaturize radar payloads. Integrating the transmit and receive antennas on the solar panels removes the need for antenna-deployment mechanisms, preserving space on the CubeSat. This thesis also demonstrates that implementing a radar that transmits and receives continuously and simultaneously (continuous-waveform) on the CubeSat improves the sensitivity, size, weight, and power consumption of the radar. Continuous-waveform radar suffers from self-interference because the transmitter and receiver are on at the same time. To overcome the self-interference, the transmitter and receiver must be isolated. Physically separating the antennas helps provide the isolation required for continuous-waveform radar, but is limited by the small size of the CubeSat. Isolation can be further increased by designing the antennas with opposite circular polarizations. The interfering signal traveling directly between the antennas has a different polarization than the receive antenna is designed for, so the interference is suppressed. The signal that hits a target reflects with the opposite circular polarization, so when it arrives at the receiver it has the proper polarization, so it is not suppressed. Combining physical-separation and different-polarization isolation enables a novel solution to implement a continuous-waveform radar on a small platform like a CubeSat

    Recent Advances in Antenna Design for 5G Heterogeneous Networks

    Get PDF
    The aim of this book is to highlight up to date exploited technologies and approaches in terms of antenna designs and requirements. In this regard, this book targets a broad range of subjects, including the microstrip antenna and the dipole and printed monopole antenna. The varieties of antenna designs, along with several different approaches to improve their overall performance, have given this book a great value, in which makes this book is deemed as a good reference for practicing engineers and under/postgraduate students working in this field. The key technology trends in antenna design as part of the mobile communication evolution have mainly focused on multiband, wideband, and MIMO antennas, and all have been clearly presented, studied and implemented within this book. The forthcoming 5G systems consider a truly mobile multimedia platform that constitutes a converged networking arena that not only includes legacy heterogeneous mobile networks but advanced radio interfaces and the possibility to operate at mm wave frequencies to capitalize on the large swathes of available bandwidth. This provides the impetus for a new breed of antenna design that, in principle, should be multimode in nature, energy efficient, and, above all, able to operate at the mm wave band, placing new design drivers on the antenna design. Thus, this book proposes to investigate advanced 5G antennas for heterogeneous applications that can operate in the range of 5G spectrums and to meet the essential requirements of 5G systems such as low latency, large bandwidth, and high gains and efficiencies
    • …
    corecore