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Abstract 
 

The airborne multi-channel radar depth sounder systems (MCRDS) are 

developed at the Center for Remote Sensing of Ice Sheets (CReSIS) to map the ice-

sheet bed, deep internal layers, and fast-flowing outlet glaciers with their high 

sensitivity for weak echoes and the beamforming ability of the receive antenna array 

for clutter reduction. The objective of mapping ice-sheet deep layers is to retrieve ice-

flow history for ice-dynamics modeling and help glaciologists select optimum ice-

core site for studies of the past climate. The objective of mapping fast-flowing outlet 

glaciers is to understand ice-sheet responses to current global warming and estimate 

ice-sheet contribution to sea level rise. The work of this dissertation is part of the 

efforts CReSIS put in to obtain the best results in processing the data MCRDS radars 

have collected in Greenland. This dissertation includes the waveforms design, the 

development and implementation of SAR processing, and clutter reduction algorithms 

for MCRDS radars. 

  

To detect weak echoes of deep layers close to the ice bed, the sidelobes of the 

strong echoes of the ice-bed have to be suppressed to a required low level, as they 

might mask or be misinterpreted as those of the deep layers. Two kinds of low-

sidelobe waveforms are simulated, designed, and tested in the laboratory and applied 

by MCRDS radars in field survey. The first kind is tapered linear-chirp and the 

second one is complementary-coded waveforms. The tapered waveforms are verified 

to have achieved a low sidelobe of -64 dB using real survey data in Greenland that 
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have high-SNR specular echoes from ocean surface, smooth ice surface and bed. On 

the other hand,  the complementary-coded waveforms only suppress  the  sidelobes to 

-48 dB because of their higher sensitivity to system distortions. 

 

Big ice attenuation is the greatest challenge in sounding fast outlet glaciers 

using airborne radars. Besides the elaborate hardware design, MCRDS radars 

maximize the sensitivity to overcome the signal loss by system calibration, channel 

mismatch compensation, RFI suppression and SAR (synthetic aperture radar) 

processing with aircraft motion compensations in data processing. In this dissertation, 

the SNR gains from the calibration of reference functions for pulse compression and 

the compensation of constant channel mismatches are verified with echoes from the 

ice bed. Some deep ice layers of the Greenland ice sheet that are masked by RFI 

(radio frequency interference) in MCRDS data are revealed by applying adaptive 

array processing. A SAR algorithm based on wavefront reconstruction theory is 

developed and implemented in frequency and wave-number domains with narrow 

beamwidth motion compensation. The SNR gains by SAR processing with motion 

compensation are carefully verified by using simulation data and sea-ice data. With 

the verified SAR processing algorithms, very weak echoes from the deepest parts of 

Jakobshavn channel are detected for the first time using large synthetic aperture 

length in radar soundings and the depths match with seismic measurements. 
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While SAR processing effectively reduces along-track clutter, across-track 

clutter is another challenge encountered in sounding fast-flowing outlet glaciers. 

MCRDS radars facilitate rejection of across-track surface clutter with small arrays of 

four, five or six elements. In this dissertation, three clutter-reduction algorithms are 

either developed or implemented: 1) the data-dependent FMV algorithm, 2) the data-

independent null-steering algorithm, and 3) the clutter-power estimation algorithm. 

The first two algorithms reduce clutter signals by 34.30 dB and 28.57 dB respectively 

when applied to sea-ice data. But neither is very effective when applied to ice data 

with distributed clutter. The third algorithm developed is a beam-spaced method. It is 

more robust to channel the mismatches and clutter angle estimate errors that are the 

limiting factors of the first two methods. There are two stages of the beam-spaced 

method. The first stage is to form a main beam and a clutter beam. The main beam is 

formed by choosing weights to enhance the nadir signals and with clutter signals 

partly reduced. The clutter beam is formed by choosing weights to put a null at nadir 

and to have maximum gains in the direction of clutter. The second stage is to subtract 

the weighted clutter beam from the main beam to properly compensate the gain 

difference between the two beams based on power profiles estimation. Two clutter 

scenarios are used to illustrate the effectiveness of the beam-spaced algorithm. In the 

first scenario, the aircraft’s altitude is high and the ice bed masked by clutter is deep, 

while in the second case the aircraft’s altitude is low and the ice bed masked by 

clutter is shallow. In both scenarios the beam-spaced algorithm reduces clutter further 

beyond the reduction by Hanning weighting. The further clutter reduction is around 
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10.3 dB in the first case and 9.6 dB in the second one. This dissertation also presents 

the results of applying the beam-spaced method in two cases over Jakobshavn 

channel. In the first case, the across-track ice clutter is cleared but the channel ice bed 

is still invisible because of the huge ice attenuation in the channel. In the second case 

that needs to be further studied, the method fails to reduce the clutter-like signals near 

the channel’s calving front.  
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Chapter 1:  Introduction 
 
 

1.1 Backgound 

Climate change has a great impact on humans and is currently being addressed 

as a serious issue that humanity must face over this century. Atmosphere, oceans, and 

polar ice sheets and their outlet glaciers are important components that closely 

interact in the complex climate system. In the latest report of IPCC [1], it is stated that 

“Warming of the climate is unequivocal, as is now evident from observations of 

increases in global average air and ocean temperatures, widespread melting of snow 

and ice, and rising global average sea level.”  Recent satellite observations show that 

polar ice sheets are undergoing rapid changes. For example, a total area of about 

3,250 km2 of the Larsen B ice shelf in Antarctica disintegrated in a 35-day period 

beginning on 31 January 2002, as shown in Figure 1.1. The ice discharge from 

Greenland outlet glaciers has doubled in the last decade: 51±28Gt yr-1 in 1996, 

83±27Gt yr-1 in 2000, and150±36Gt yr-1 in 2005 [2].   

 

The mass loss of polar ice sheets contributes to sea level rise. Typically, a 50-

centimeter sea level rise would cause a coastline retreat of 50 meters in flat coastal 

areas. Therefore, a direct and devastating consequence of sea level rise is the flooding 

of the coastal regions, which results in the migration of people from these regions and 

huge  losses  of  land  and  property.  Worldwide about 100 million people live within  
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Figure 1.1:  Collapse of Larsen B Ice Shelf in Antarctica 
http://nsidc.org/iceshelves/larsenb2002/ 

 
 

*Table 1.1:  Observed rate of sea level rise and 
estimated contributions from different sources 

Source of sea level rise Rate of sea level rise(mm per year) 

1961-2003                           1993-2003 

Thermal expansion 0.42 ± 0.12 1.6 ± 0.5 

Glaciers and ice caps 0.50 ± 0.18 0.77 ± 0.22 

Greenland Ice Sheet 0.05 ± 0.12 0.21 ± 0.07 

Antarctic Ice Sheet 0.14 ± 0.41 0.21 ± 0.35 

Sum of individual climate 
contributions to sea level rise 

1.1 ± 0.5 
 

2.8 ± 0.7 

Observed total sea level rise 1.8 ± 0.5 3.1 ± 0.7 

* Alley and Berntsen etc. 2007 
 
 
one meter of sea level. Table 1.1 is a summary of the observed rate of sea level rise 

and estimated contributions from different sources from 1961 to 2003 and 1993 to 

2003. Although the contributions to present sea level rise from ice sheets are smaller 
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compared to thermal expansion, glaciers, and ice caps, their future potential 

contributions are very critical in a warming climate. This is because the Antarctic Ice 

Sheet  holds  a  volume  of  water approximately equivalent to a  global sea level rise 

of 65 meters, and the Greenland Ice Sheet holds a volume of water equivalent to a 

global sea level rise of about 7 meters.  

 
 
 Ice sheet contribution to sea level rise is determined by the ice sheet’s mass 

balance, which is the net gain or loss of ice. There are three main approaches for 

measuring and estimating ice sheet mass balance: 1) the integrated approach, by 

measuring the ice sheet elevation change and equating this change to ice volume 

change; 2) the ice flux approach, by comparing the mass input of snow accumulation 

at the ice sheet top with the mass output from ice flow and melt water runoff at the ice 

sheet margin; and 3) Earth’s gravity field approach, by correlating the satellite 

observation of the field changes to ice volume change [3]. The ice flux approach is 

straightforward and relates the ice thickness history to ice mass balance and flow by 

the continuity equation of mass conservation: 

)( ><⋅∇−−=
∂

∂ uHQQ
t

H
La                                                          (1.1)    

where H  is the ice thickness, aQ  the net accumulation rate, LQ  the net mass loss rate 

and u is the depth-averaged flow velocity. Therefore, in order to accurately estimate 

ice sheet mass balance, geologists need to understand ice flow dynamics from which 

surface elevation and topography, ice thickness, basal conditions, inter-annual layers, 

and ice velocity are important parameters. Ice sheet deep layers reveal accumulation 
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and ice flow history. Basal conditions can be understood or inferred from the 

deformation of ice layers close to the bed. For instance, ice layers tend to conform to 

the bed topography if it is frozen and to dip down if there is melt at the bed.  Present 

understanding and future prediction of ice flow dynamics require knowledge of past 

ice flow dynamics, since the response time of ice sheets is very slow. For example, 

the response time of the Greenland ice sheet is about 3000 years [4]. Ice core 

scientists are also very interested in deep layers, as they need to recover the climate 

history as far back as possible.  Mapping of deep layers also helps glaciologists to 

select ice core sites and date ice layers [3]. Compared to slow-moving ice, the 

recently observed fast discharge from outlet glaciers of ice sheets is not well 

understood or modeled. Mapping of these fast outlet glaciers is required not only to 

estimate the ice sheet mass loss but also to understand and model their dynamics in 

response to climate change. 

 

Radar remote sensing is an important technique in the study of large ice sheets. 

It has advantages in terms of cost and coverage compared to ice core and seismic 

methods. Space-borne radars have been very successful in mapping ice surface 

elevation and velocity with global coverage. On the other hand, airborne and ground-

based radars are capable of measuring ice thickness, internal annual layers, and basal 

conditions over a smaller scale with good resolution. The University of Kansas and 

the Center for Remote Sensing of Ice Sheets have made contributions in polar ice 

measurement through many years of effort in developing ground-based and airborne 
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radar systems and in collecting and providing high quality data [6, 7, 8, 9 and 10].  

Recent efforts at CReSIS include the development of a surface-based wideband 

bistatic synthetic aperture radar for mapping ice basal conditions [11,12] and multi-

channel and dual band airborne systems with beam steering capability for mapping 

fast outlet glaciers [13,14].  
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Figure 1.2: GRIP Ice Model (left) and Simulated SNR from Ice Layers and the Bed (right) 
 
 

 
 1.2 Objectives 

Mapping the ice sheets’ deep layers close to the bed and fast outlet glaciers 

presents significant challenges in radar remote sensing. The reflected signal from deep 

layers is usually very weak and may be masked by the sidelobes of much stronger ice 

bed echoes. As a result, most ice depth sounding fails to gather information about the 

deep layers close to the bed. In order to map internal ice layers near the ice bed, the 

sidelobes of the bed echoes have to be suppressed below the level of the echoes from 
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ice layers near the ice bed so that the deep ice layers would not be masked. Figure 1.2 

presents the simulated results of signal-to-noise ratio as a function of ice depth using a 

GRIP ice model. According to the left chart, the signal level difference between the 

echoes from the ice bed and ice layers near it is around 50_dB. This means the 

sidelobes of the bed echoes have to be suppressed 60_dB lower, relative to the main 

lobes for reliable deep layer detection.   

 
For fast-flowing outlet glaciers, the ice temperature is higher compared to 

inland ice, and radar signals experience higher loss in propagating through the warm 

ice. The surface of outlet glaciers is usually heavily crevassed, as shown in the picture 

in Figure 1.3. Strong surface clutter from a rough surface will mask weak reflected 

signals from the layers and the ice bed.  Figure 1.4 is a real radar image we obtained 

in 2006 over the Jakobshavn calving front in which the clutter masks the bottom. 

Therefore, clutter is another problem that has to be reduced for an airborne system.  

In order to address the above-mentioned challenges, a specially designed and 

configured radar system with high sensitivity, waveform coding, and shaping and 

beam steering capability has to be used together with corresponding data processing 

algorithms. High sensitivity is required for detecting weak reflected signals, 

waveform coding and shaping techniques are used to reduce sidelobes, and beam 

steering capability is for surface clutter cancellation. The detailed approaches are 

explored and described in this dissertation. 
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Figure 1.3:  Crevassed Surface of Jakobshavn (www.sethwhite.org/.../jakobshavn%20glacier.jpg) 
 
 

 

Figure 1.4:  Radar Image over Jakobshavn Calving Front 
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1.3 Dissertation Organization 

There are seven chapters in this dissertation. Chapter 1 reviews the research 

background and objectives. Chapter 2 describes the airborne radar systems used to collect 

data in 2006 and 2007 over Greenland ice sheet. Chapter 3 discusses the design of 

tapered linear chirp waveform and binary complementary-coded waveform to reduce 

sidelobes of pulse compression and presents data processing results to show the low 

sidelobe levels achieved. Chapter 4 explains the data preconditioning steps including 

reference function calibration, channel equalization, and radio frequency interference 

(RFI) reduction. These steps are essential to obtain the best outcomes from the data 

processing procedures of pulse compression, synthetic aperture radar (SAR) processing, 

and array processing. Chapter 5 describes in detail the wavefront reconstruction theory 

and the implementation and verification of SAR processing algorithm with motion 

compensation. This chapter also presents the data processing results with very weak 

bottom echoes along and across Jakobshavn channel. Chapter 6 briefly reviews linear 

array and beamforming theories, discusses three clutter reduction methods including the 

data-dependent minimum variance distortionless response (MVDR) algorithm, data-

independent null steering algorithm and beam-spaced clutter power estimation algorithm, 

and presents the data processing results. Chapter 7 summarizes the main work of the 

dissertation and recommends further studies. 
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Chapter 2: MCRDS Radar Systems 
 

 
This chapter describes in detail the two radar systems of the multi-channel 

radar depth sounder (MCRDS). Throughout this dissertation, the two radar systems 

will be referenced as MCRDS Twin Otter system and MCRDS P-3 system according 

to their different configurations on the Twin Otter and P-3 aircraft. All the proposed 

algorithms and data processing in this dissertation are directly related to the two radar 

systems with the purpose of improving their performance and obtaining the best 

results from the collected data.  The detail system designs can be found in reference 

[13, 15].  

 

2.1 MCRDS Twin Otter System 

In 2006, CReSIS finished the design of the Multi-Channel Radar Depth 

Sounder (MCRDS), which is an airborne system with high sensitivity. The system’s 

operation band is from 140Hz to 160MHz and the overall loop sensitivity is 217 dB. 

The system has five separate receiving channels with an antenna array of five 

elements to provide beamforming capability in post data processing. This system was 

installed on Twin-Otter aircraft and used to collect data over the Greenland ice sheet 

in May and June 2006. As shown in Figure 2.1, the MCRDS Twin Otter consists of 

an arbitrary waveform generator (AWG), a transmitter, a five-element transmitting 

array, a five-element receiving array, five receivers and five data-acquisition cards 

(DAQ).  
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Figure 2.1: MCRDS Twin Otter System Block Diagram 

 
The AWG is a programmable waveform generator that provides the flexibility 

to generate any desired waveforms and the means to control range sidelobes. The 

sampled and digitized desired waveforms are loaded into the AWG, which 

sequentially reads the waveforms and coverts them into analog signals with a digital-

to-analog (D/A) converter.  The detailed description of the original AWG design is 

given by Tammana [16].  In the operation of the MCRDS Twin Otter, the AWG 

generates linear chirps of 3us and 10us from 20 to 40 MHz with in-phase and 

quadrature components. The short pulses of 3- secµ are used to detect the air-ice 

interface and shallower ice depths, and the long pulses of 10- secµ  are used to detect 

the deeper ice depths.  The power level of AWG output is 4dBm. 

 

The transmitter accepts the in-phase and quadrature signals from the AWG 

and employs an IQ modulator and a 120Hz LO to produce the desired signals in the 

band from 140 to 160 MHz. The up-converted signals are bandpass filtered, amplified 
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to a level of 800 Watts (59dBm) across the five transmit channels, and sent to the 

antenna feed network to be transmitted into the air and ice sheet by the antenna array. 

The short and long pulses are alternatively transmitted by each transmitter channel at 

a total repetition frequency (PRF) of 10 KHz, with an effective PRF of 5 KHz either 

for short or long pulses, as illustrated in the timing diagram of the radar in Figure 2.2. 

 

 
Figure 2.2: Time Diagram of MCRDS Systerms 

 
The function of the antenna feed network is to implement a Hanning window 

across the transmit array using different attenuators to control the transmit power of 

each element so that the sidelobes of the transmit signals can be reduced. 

 

The transmitting array provides the ability to reduce the sidelobes of transmit 

signals, and the receiving array provides the ability to perform digital beam forming 

in post data processing. Each element of the array is a quarter wavelength (0.5m) 

folded dipole with a gain of about 4.8dB. In the 2006 field survey, the transmitting 

array was installed under the left wing of the Twin Otter aircraft and the receiving 

array was installed under the right wing of the Twin Otter aircraft, as illustrated by 
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Figure 2.3. Each element is a quarter wavelength (0.5m) away from the underside of 

the wings. The positions of the transmitter elements and the receiver elements are 

symmetric about the aircraft’s centerline. The lateral distances between the elements 

from inside to outside are 1.25m, 1.25m, 0.98m, and 0.95m. They are not uniformly 

spaced because of the physical limitations of the aircraft wings.  The aircraft wings 

have a tilt of about 3 degrees above the horizontal. The wing angle effect on the 

transmitter was compensated for by properly adjusting the feed cable length for each 

transmitter element. The detail description of the antenna arrays’ calibration is given 

in reference [17].   

 

 
Figure 2.3:  MCRDS Receiver Array on Twin Otter 

 
The receiver bandpass filters and amplifies the echoed signals from ice sheets 

to the level required by the A/D converter of the DAQ. The noise floor of the receiver 

is 97dBm. Each receiver has low gain channels and high gain channels, which deal 

with the short pulse and long pulse respectively.  The gain control is realized with two 
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digital attenuators. A total attenuation of about 43dB is set for the low gain channels 

in order to avoid the receiver saturation from the strong surface returns. A total 

attenuation of about 20dB is set for the high gain channels for the detection of weak 

signals from the deep layers and the ice bed. 

  

The RF signals from the receiver are digitized by the analog-to-digital (A/D) 

converter of the DAQ at a sampling frequency of 120Hz. Every 64 adjacent records 

of the short pulse and long pulse are respectively averaged. This operation is 

referenced as pre-sums. Pre-sums is performed because of the hardware memory and 

speed limitation. The original design of the DAQ is given in [18].  

 
Table 2.1: MCRDS Twin Otter System Parameters 

 
 
 
 

T
a 
 

 
 
 
 

Finally, the decimated data from pre-sums are sent to storage for post 

processing.  The stored records are time stamped by a radar computer. MCRDS 

systems are operated together with differential GPS receivers, which provide the 

Parameter Value Units 
Frequency band 140 to 160 MHz 
Pulse Duration 3 or 10 µs 
Pulse Repetition Frequency 10 kHz 
Output Power 800 W 
Receiver Noise Figure 3.9 dB 
Loop Sensitivity 217 dB 
Minimum Detectable Signal -161 dBm 
Range Resolution 4.2 M01 
Coherent Averages 64  
Antenna Element 2/λ dipole  
Antenna Gain 4.8 dB 
A/D Converter 12 bit 
Sampling Rate 120 MHz 
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geographic information for radar data. Table 2.1 is a summary of the MCRDS Twin 

Otter system’s parameters. 

 
2.2 MCRDS P-3 System 

In 2007, the MCRDS Twin Otter system was modified to add another band 

from 435MHz to 465MHz for the Global Ice Sheet Mapping Orbiter (GISMO) 

project (http://bprc.osu.edu/rsl/gismo/). The modified version of the system radar was 

installed on the P-3 aircraft and used to collect data over the Greenland ice sheet in 

September 2007.  

 

The major modifications of the MCRDS P-3 system include: 

1) An interferometric mode with an operation band from 435MHz to 

465MHz is added in addition to the normal depth sounder mode with 

operation band from 140MHz to 160MHz. 

2) The antenna array element is changed from a quarter wavelength 

folded dipole to a half wavelength dipole. The element number of 

antenna arrays is reduced from five to four. The spacing between 

elements is uniform (0.85m). The detail design is given in [19]. 

3) The transmit power is increased to1600W for interferometric mode. 

4) In depth sounder mode, the left array is transmitting and the right array 

is receiving.  In interferometric mode, the inboard element on either 
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side transmits alternatively in ping-pong mode, and the six outboard 

elements all receive. 

5) The number of onboard coherent integrations is reduced to 32 to 

increase sampling frequency in the Doppler domain. 

6) The transmitted chirp was tapered to reduce sidelobes from Fresnel 

ripples. 
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Chapter 3:  Pulse Compression Waveform Design    

 

First, this chapter introduces the basic concept of pulse compression which is 

an important technique employed in radars to detect distant targets with high 

resolution. Second, it discusses in detail the design of tapered-linear chirp and binary 

complementary-coded waveforms used by MCRDS radars to reduce range sidelobes. 

Finally, it presents the verification and analysis of the sidelobe performance of both 

types of waveforms with simulation, laboratory measurements and field-survey data. 

 

3.1 Pulse Compression Technique 

A brute-force method to obtain higher radar sensitivity is to increase the 

transmit power, transmit- and receive-antenna gain and reduce receiver noise. 

However this method is limited by hardware design and considerations of cost, safety 

and radar size and weight. An efficient way is to increase the signal-to-noise ratio 

using pulse compression and other signal processing techniques. By pulse 

compression, frequency- or phase-coded long pulses are transmitted and received 

pulses are decoded to obtain short and high-peak pulses. A short-pulse gives high 

range resolution required by many applications and the high peak power gives the 

energy required for detection of distant targets. There are limitations to directly 

transmitting a very short pulse with a high-peak power. The generation of high-peak 

power pulses requires very high voltages that may result in breakdown of transmission 

lines used to connect the transmitter to the antenna. On the other hand, pulse-
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compression allows a system to simultaneously achieve the energy of a long pulse and 

the resolution of a short pulse without high peak power. Therefore pulse compression 

is a common and important technique that has been utilized not only in radar 

applications, but also in a wide range of other applications like sonar and ultrasonic 

imaging [20-25].  
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Figure 3.1: Illustration of Pulse Compression 

 

Pulse compression is usually implemented by a matched filter that correlates 

the received signal with the transmit signal, which is equivalent to convolving the 

received signal with the reversed transmit signal. Matched filtering is linear and 

optimal as it maximizes the signal-to-noise ratio for additive white noise. As 

illustrated in Figure 3.1, a pulse with magnitude of 1 is phase-coded with an 8-bit 

binary code (0 0 0 1 0 0 1 0), and at the output of the matched filter, the waveform is 

compressed into a main lobe with symmetric sidelobes extending on both sides. The 

magnitude of the main lobe is increased from 1 to 8, and its width is 1/8 of the original 

pulse length.  Pulse-compression ratio and sidelobe are two parameters used to 

 
Matched 

Filter 
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describe the performance of pulse-compression radar. Pulse-compression ratio is 

defined as the ratio of the original long pulse width to the short duration of the main 

lobe of the compressed pulse. This parameter defines the gain obtained in resolution 

and signal-to-noise ratio because of pulse compression. Sidelobes are undesired 

artifacts from pulse compression as they may mask adjacent weak signals.  The 

following parameters are defined to describe the sidelobe properties of pulse 

compression [26]: 

]/)(log[10 2
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i xxISL                                                                     (3.2) 

where ix  represents the magnitude of all sidelobes and 0x  is the magnitude of the 

main lobe. PSL , the peak sidelobe level, is a measure of the largest sidelobe as 

compared with the main lobe. ISL , the integrated sidelobe level, is a measure of the 

total power in the sidelobes as compared with the main lobe power.  

 

A number of frequency-modulated and phase-modulated waveforms have 

been widely studied to get the best pulse-compression performance in terms of 

compression gain and sidelobe level. Linear chirp, nonlinear chirp and Costas codes 

are examples of frequency-modulated waveforms [21, 26, 27]. Barker codes, binary 

complementary codes and polyphase codes are examples of phase-modulated 

waveforms [28-30]. 
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3.2 Tapered Linear Chirp Design 

3.2.1 Theoretical Analysis 

The general linear chirp signal in complex notation is 

)]
2

(2exp([)()( 2
0 t

T
BtfjtAts ±= π  ,   

22
TtT ≤≤−                           (3.3) 

where t  is the time, )(tA  is the amplitude, 0f  is the center frequency, B is the 

bandwidth over which the chirp is swept in the duration of T .  The phase of the chirp 

is a quadratic function according to equation (3.3): 
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The instantaneous frequency is given by 
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where f(t) is a linear function of time. So the linear chirp is often called linear-

frequency modulation (LFM) signal. The parameter TB /  is the frequency change 

rate and referred to as the chirp rate. The signal is called up-chirp when the frequency 

is swept from 2/0 Bf −  to 2/0 Bf +  corresponding to the plus sign in equations (3.3) 

~ (3.5). The signal is called down-chirp when the frequency is swept from 2/0 Bf +  

to 2/0 Bf −  corresponding to the negative sign in equations (3.3) ~ (3.5). Only the 

up-chirp will be used in the following discussion without losing the generality. 

 

For a linear-chirp with a rectangular real envelope ( 1)( =tA ), the signal 

described by equation (3.3) can be written as  
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)2exp()()( 0tfjtuts π=                                                                       (3.6) 

where )(tu  is the signal’s complex envelope and can be written as 
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The matched filter output of this signal is its autocorrelation 
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Substituting equation (3.7) into (3.8), the matched filter response for the linear-chirp 

signal can be derived as 
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where )(τssR  is the well-known sinc function. For a chirp with large time-bandwidth 

product 4>>TB  , the first null of )(τssR  occurs at 
Bnullst
1

'1 ≈τ   [31]. Therefore 

the pulse compression ratio is approximately TBT
nullst

=
'1τ

. However, as shown in 

Figure 3.2, the sidelobes level from pulse compression for the linear-chirp is 

relatively high.  The first sidelobe is only 13.2 dB below the main lobe. The far 

sidelobes fall off at approximately 6 dB per octave and the first sidelobe nulls are 

spaced approximately 2/B apart.  
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 Figure 3.2: Matched Filter Output of Linear Chirp 

 

The high-level sidelobes in time domain are caused by the approximate 

rectangular shape of the linear-chirp’s spectrum. This is similar to the spectrum of a 

rectangular function in time domain. With this in mind, it is intuitive to understand 

the high-level sidelobes can be reduced by shaping the spectrum. Many window 

functions such as Hamming, Blackman and Dolph-Chebyshev are available for this 

purpose. The cost of applying windows is a broadening of the compressed pulse 

width and a small loss in signal-to-noise ratio. As the frequency is linearly changing 

with time, if the amplitude of the transmit signal is higher at any given time, the 

power spectral density at the corresponding frequency is also higher. Therefore the 

spectrum shaping can also be achieved by weighting the signal amplitude in time 

domain with suitable weighting functions. Theoretically, the spectrum should be 

shaped with the square root of the desired window weights both at the transmitter and 

receiver to maintain matched filtering. Applying window at the transmitter will 

-13.2dB 
-17.2dB 

1/B 
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complicate the transmitter design and reduce transmit power as well. The alternative 

is to implement the entire weighting at the receiver. This is called mismatched 

filtering, which is used by our systems as well as by most other radar systems.  

 

The solid-blue plot in Figure 3.3 shows the compressed pulse after a 

Chebyshev window is applied to the matched filter. It is observed that the near 

sidelobes are reduced below -80 dB but the sidelobe level at 2/T±  rises to -40dB. 

According to the analysis performed by Misaridis and Jensen[32] and Cook and 

Bernfel[33], the distant sidelobes are caused by the Fresnel ripples in the transmit 

signal spectrum, as shown in the solid-blue plot in Figure 3.4 that corresponds to the 

linear chirp waveform at the top in Figure 3.5.  

     

 

          Figure 3.3: Mismatched Filter Outputs                              Figure 3.4:  Spectra of Linear Chirps 
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Figure 3.5: Waveforms of Chirp 

 

The spectrum of the linear chirp is 
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Substituting equations (3.6) and (3.7) into (3.10), the spectrum turns out to be 
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where )(yFr  and )(yFi  are the real  and imaginary components of the following 

complex Fresnel integral 
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The detailed derivation from (3.10) to (3.11) can be found in [32]. 

 

Figure 3.6 shows the Fresnel integrals )(yFr  and )(yFi  for y  from 0 to 10. 

Misaridis and Jensen [32] studied several techniques to suppress the Fresnel ripples 

and concluded that amplitude tapering is the most efficient method. This technique is 

based on the observation that the Fresnel ripples are attributed to the sharp rise and 

fall of the waveform envelope at the start and the end as shown in the top plot of 

Figure 3.5. Therefore, if the abrupt rising and falling waveform edges are modified 

with smooth transitions as shown in the bottom plot in Figure 3.5, the Fresnel ripples 

in the spectrum will be reduced as shown by the dashed-red plot in Figure 3.4 and all 

the sidelobes would be reduced below -70dB as shown by the dashed-red plot in 

Figure 3.3. 

 

 

Figure 3.6:  Fresnel Integrations 
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3.2.2 Simulation and Laboratory Measurements  

With the above-described amplitude tapering technique, the sidelobe level is a 

function of the time-bandwidth product, weighting of the mismatched filter and the 

taper ratio.  The bandwidth and waveform duration have been determined in system 

design and the time-bandwidth product is 60 and 200 for low-gain and high-gain 

mode, respectively. Chebyshev window is chosen for mismatched filter as it has the 

minimum mainlobe width for a specified constant sidelobe level. Thus the taper ratio 

is the only parameter that needs to be determined. The taper ratio is defined as the 

ratio of the tapered duration to the un-tapered one of the waveform, which is 0.1 in 

Figure 3.5.  The signal energy loss is minimal for a small taper ratio of 0.1. The 

sidelobe parameters PSL and ISL defined by equations (3.1) and (3.2) are determined 

with simulations for different taper ratios from 0.05 to 0.3.  The amplitude tapering is 

implemented with Tukey windows, which are cosine-tapers. A Tukey-window 

becomes a rectangular-window with zero taper ratios and a Hanning window with a 

taper ratio of 1. The simulation results are plotted in Figure 3.7 and Figure 3.8 for the 

3us and 10us chirps respectively. According to Figure 3.7, the minimum PSL is about 

-50 dB at the taper ratio of 0.2. The ISL approaches -34.5dB at the taper ratio of 0.25 

and does not reduce much beyond that.  According to Figure 3.8, the minimum PSL is 

about -70 dB at the taper ratio of 0.1. The minimum ISL is about -50 dB at the taper 

ratio of 0.15 and increase slightly beyond that. It is found the compressed pulse width 

at -3dB does not change much over the swept taper ratio range.    
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    Figure 3.7:  PSL and ISL for 3us Chirp                Figure 3.8:  PSL and ISL for 10us Chirp 

 

The actual taper ratios used by MCRDS P-3 radar were determined from 

laboratory measurements. The transmitter outputs were recorded first with an 

oscilloscope to make sure the sidelobe level is low for transmit signals. And then data 

were recorded using the radar DAQ with the radar configured in a loop-back delay-

line mode to include the overall system effects [34]. The actual taper-ratio was 

determined to be 0.25 for 3 us chirp and 0.2 for 10 us chirp based on the actual 

system measurements. The top plot in Figure 3.9 shows the tapered-linear transmit 

chirp of 10-us with a taper ratio of 0.2. The bottom plot shows the compressed pulse 

with the PSL close to -70 dB. The top plot in Figure 3.10 shows the recorded tapered-

linear chirp of 3-us with a taper-ratio of 0.25. The bottom plot shows the compressed 

pulse with the left PSL is -60 dB, the right PSL is -50 dB and the distant sidelobes are 

at -70 dB. The asymmetry is the result of the waveform distortions by system effects. 

The delay-line measurements used to generate Figure 3.10 were recorded on 

September 12, 2007, right prior to the real survey data collection. 
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Figure 3.9: 10us-Tapered Chirp Used by MCRDS P-3 

 

 

Figure 3.10: 3us-Tapered Chirp used by MCRDS P-3 

 

For some applications where further sidelobe suppression is required, it can be 

achieved by applying two-way windowing (the same window function applies to both 

the reference function and the received data) in frequency domain with a loss in SNR 
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and resolution. By simulation, Figure 3.11 illustrates the sidelobes from pulse 

compressions with two-way windowing compared with that of mismatched 

compression in Figure 3.3. It is observed that without amplitude tapering the distant 

sidelobes at 2/T±  are still around -40dB although the close sidelobes are suppressed 

from -83dB to -123dB, and with amplitude tapering, the distant sidelobes at 2/T±  

are suppressed to near -80dB and the close sidelobes are suppressed from -70dB to -

90dB. Because the sidelobes fall rapidly beyond 2/T± , the compressed pulses are 

plotted only within the duration of 2/T±  instead of T±  in Figure 3.11, the 

following Figure 3.13(b) and Figure 3.14(a) so that more sidelobe details can be seen. 

 

       

  Figure 3.11: Pulse Compression (Two-way Windowing)          Figure 3.12:  S11 of Antenna  

 

However, it should be pointed out such low sidelobe levels are obtained by 

simulation with ideal waveforms. In the real world, waveform distortions in terms of 

amplitude modulation and phase noise are unavoidable because of the system 

imperfections and the changes in operation environment. Therefore, the effects of 
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waveform amplitude modulation and phase noise are simulated to assess their 

limitation on sidelobe suppression. The following amplitude modulation model is 

used in the simulation: 

 )2sin1)(()( tfAtsts amam π+=                                                        (3.15) 

where )(tsam  is the waveform with amplitude modulation, A  is the modulation 

index and amf is the modulation frequency. In Figure 3.13(a), the blue plot is the real 

part of the baseband ideal tapered-chirp of 10 us, and the red-dashed plot is the real 

part of the waveform with amplitude modulation. The amplitude modulation index is 

0.1 and the modulation frequency is 4 cycles in 10 us based on actual measurements 

of the antenna element’s scattering parameter S11(see Figure 3.12) using network 

analyzer. Figure 3.13(b) is the corresponding compressed pulses. According to Figure 

3.13(b), the main effect from amplitude modulation is the broadening of the 

compressed pulse with two secondary peaks on both sides. The modulation frequency 

determines how much the main pulse will widen and the modulation index determines 

the level of the secondary peaks. The phase noise in the simulation is assumed to be 

normal random. Figure 3.14(a) shows the compressed pulse with phase noises with a 

standard deviation �2.0=nσ  compared to that from the ideal waveform. It is 

observed that the phase noise effect is to increase sidelobe levels. Figure 3.14(b) plots  

PSL and ISL versus phase noise level nσ  from �0  to �5  at a step of �1.0 . According 

to Figure 14(b), the phase noise cannot exceed �2  and �5.0  respectively for -60 dB 

and -70 dB sidelobe levels even with two-way windowing. 
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                                 (a)                                                               (b) 

Figure 3.13: Amplitude Modulation Effects (a) Waveforms (b) Compressed Pulses 

 

 

      

                                  (a)                                                               (b) 

Figure 3.14: Phase Noise Effects (a) Compressed Pulses (b) PSL, ISL ~ nσ  
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3.2.3 Sidelobe Level Validation with Field Survey Data 

The actual effectiveness of the amplitude-tapering technique for sidelobe 

suppression has to be verified with radar data collected during a survey flight so that 

we have confidence that the sidelobe will not be an issue in data interpretation. Very 

clean and strong echoes have to be used for this purpose. For example, in order to 

verify the sidelobe is -50 dB lower for 3-us linear-chirp signal, the SINR (signal-to-

interference-plus-noise ratio) has to be higher than 50 dB.  Usually only the echoes 

from ocean surface, smooth ice surface, flat ice bed with melting at shallow depth can 

have such high SINRs.   

 

As the first evidence, we compare the sidelobes of compressed ocean-surface 

echoes from data collected by MCRDS in 2006 and in 2007. In field surveys of 2006, 

we did not taper the transmit linear chirp. In field surveys of 2007, we tapered the 

transmit linear-chirp with the taper ratios determined from the laboratory 

measurements. Figure 3.15(a) shows a radar echogram from the data collected by 

MCRDS with 3-us chirp over the ocean on May 20, 2006 when the Twin-Otter was 

flying from Axel Heiberg Island to Meighan Island in Northeast Canada. The 

echogram is normalized to its maximum value and the color bar on the right gives the 

power levels relative to the maximum. The straight line around range bin index of 

500 in the echogram is the ocean surface response. It is observed that sidelobes on 

both sides of the ocean surface are obvious in yellow color corresponding to a 

sidelobe range from -30 dB to -35 dB. The light blue straight line around range bin 
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index of 1100 is the multiple of the ocean-surface response. Figure 3.15(b) shows a 

radar echogram from the data collected with the 3-us tapered- chirp on September 13, 

2007 when the P-3 aircraft was flying over the ocean along the Greenland coast. The 

first straight line is the transmitter feedthrough and the second straight line is the 

ocean surface response.  It is observed that the sidelobes on the upper side of the 

ocean surface are around -60 dB. The third straight line in light blue is the multiple of 

the surface response. Figure 3.16(a) is a SAR image from the data collected with the 

3-us tapered-chirp on September 13, 2007 over smooth-ice surface in Greenland. The 

red straight line around range bin index of 140 is the ocean surface response. It is 

observed from the upper side of the surface that most sidelobes are as low as -70 dB 

and the PSL is close to -60 dB as shown by the A-scope in Figure 3.16(b). Since the 

sidelobes have been suppressed to a very low level, they are usually below 

backscatterings on the trailing side of the ice surface. It is also observed from the A-

scope that the SNR of the ice-surface is as high as 80 dB after SAR processing. 

Figure 3.17 (a) is a SAR image from the data collected with the 3-us tapered-chirp on 

September 17, 2007 in Greenland. A few strong ice-bed echoes of 50-dB SNR are 

observed in this image. No sidelobes are observed above the noise floor on the 

leading side of the bed echo from the A-scope shown in Figure 3.17 (b). 
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   (a)   (b) 

Figure 3.15: 3-us Chirp Ocean Surface Responses: (a) MCRDS Twin Otter; (b) MCRDS P-3 

 

                                (a)                                                                                      (b)

Figure 3.16: 3-us chirp  (a) Ice Surface Response   (b) A-scope 
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                               (a)                                    (b) 

Figure 3.17: 3-us Chirp (a) Ice Bed Response   (b)  A-scope  

 

Since the sidelobe level has been suppressed to a very low level for the linear-

chirp of 10 us (below -60 dB), a very high SNR is required for the verification. In 

most cases the SNR of bed echoes cannot achieve as high as 60 dB even after SAR 

and incoherent integration in post processing. This is due to large ice attenuation.  

And in the operation the radar usually does not record strong echoes from ocean or 

ice surface when the aircraft height is low to avoid the receiver being saturated. The 

radio frequency interference (RFI) is also a factor limiting the radar’s sensitivity of its 

high-gain mode. Therefore there are only a few files in the 2007-data that have SNR 

higher than 60 dB and can be used to verify the sidelobe performance for the longer 

waveform. Figure 3.18 shows A-scopes of the ocean surface with the 10-us tapered-

chirp. The data file is the same as that of Figure 3.15(b); the radar echogram is also 

similar and therefore not presented here. The blue plot is the A-scope from the single 

pulse at along-track index of 1050. The sidelobes on the leading side of the ocean  
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Figure 3.18: 10-us Chirp A-scope of Ocean Surface 

 

                                (a)                                    (b)

Figure 3.19: 10-us Chirp  (a) Ice Bed Response  (b) A-scope  

 

surface are observed at least -60 dB. By averaging the 100 pulses between the along-

track indexes 1001 and 1100, the noise level is suppressed below -80 dB as shown in 

the red-dashed plot. And it is clear the PSL is around -64 dB which matches the 

simulation in Figure 3.8 at the taper ratio of 0.2.    Figure 3.19 (a) is a SAR image 
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from the data collected with the 10-us tapered-chirp on September 17, 2007 in 

Greenland. The straight line around range bin index of 140 is the ice bed. The depth is 

about 1200m.  A few strong ice bed echoes with SINR of 60dB are observed in this 

image. No sidelobes are observed above the noise floor on the leading side of the bed 

echo from the A-scope shown in Figure 3.19 (b). This at least proves that the sidelobe 

level of -60 dB has been achieved at the ice bed, which is the science requirement for 

mapping deep layers near to the ice bed. 

 

3.3 Complementary-coded Waveforms Design 

3.3.1 Binary Complementary Codes 

Golay first comprehensively studied the properties and synthesis methods of 

binary complementary codes in 1960[35]. Therefore, binary complementary codes are 

also referred as Golay codes. Golay defined a pair of complementary codes as two 

equally long finite sequences of two kinds of elements. Within these sequences, the 

number of pairs of like elements with any given separation in one sequence is equal 

to the number of pairs of unlike elements with the same separation in the other 

sequence.  Figure 3.20 shows a pair of complementary codes A (00010010) and code 

B (00011101) to help understand the definition. Each code has a length of 8 bits, and 

the two kinds of elements are 1 and 0.  In the figure, L is used to denote a pair of like 

elements and U for a pair of unlike elements in code I or code II. For the given 

separation of 2, it is shown that code I has one pair of unlike elements and four pairs 
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of like elements, and code II has four pairs of unlike elements and one pair of like 

elements. The property holds for any other separations like 0, 1, 3 etc.  

 

 

Figure 3.20:  A pair of Complementary Codes 

 

The autocorrelation functions of a pair of complementary codes 

AR and BR have a unique property described by the following equation (3.16) if the 

code elements a  and b  are either 1 or -1: 
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N  is the code length in bits and )1()1( −≤≤−− NjN .  This property is illustrated in 

Figure 3.21 with the autocorrelation functions of code A and code B used in Figure 

Code A:  0          0          0          1          0          0         1          0 
 
Code B:   0          0          0          1          1          1          0          1   

          U         L          L          L          L 

           U          U         U         U          L 
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3.20.  All the 0’s in code A and code B are replaced with -1’s to calculate the 

autocorrelation functions. In Figure 3.21, the red chart is the autocorrelation function 

of code A, the blue chart is the autocorrelation function of code B and the black chart 

is the sum of the two autocorrelation functions. The autocorrelation function of each 

code has a main lobe located at the center with a magnitude of 8 which is the code 

length, and the sidelobes of the two autocorrelation functions are opposed each other. 

The summed autocorrelation function cancels the sidelobes and only has a main lobe 

with a magnitude of 16 which is twice the code length. Because of this property, for 

two waveforms coded with a pair of complementary codes, the sidelobes of one 

compressed waveform would be opposite to the ones of the other at the output of the 

matched filter. Thus the sidelobes would totally be cancelled and the magnitude of the 

main lobe would double when the two compressed pulses are added together.   
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Figure 3.21:  Autocorrelation Functions AR (red), BR (blue) and BA RR +  (black) 

 

Golay presented synthesis methods to generate new complementary codes 

using known complementary codes as the seeds. These methods manipulate the seeds 
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by operations such as order reverse of elements, interchange of element kinds, 

appending and interleaving to obtain different complementary codes of the same or 

longer length. There is a recursive way to generate a specific kind of complementary 

codes called orthogonal Golay codes without the need for seeds [36]. The orthogonal 

Golay codes are used in wireless communication. The recursive generation scheme is 

illustrated in Figure 3.22 and described by equations (3.19) below: 

 

 

 

 

 

 

 

Figure 3.22:  Recursive Complementary Codes Generator 
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where )(kδ is the Kronecker delta function, 12,...,2,1,0 −= Nk  representing the time 

scale, Nn ,...,2,1=  is the iteration number, nP
nD 2=  is a delay, nP is any permutation 

of numbers{0,1,2,…,N-1}, nW  is an arbitrary complex number of unit magnitude for 

polyphase complementary sequences (if 11 −= orWn , the binary Golay codes are 
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obtained), )(kaN  and )(kbN  are the final two complementary codes of length 

NL 2= . Another advantage of orthogonal Golay codes is that pulse compression can 

be performed with the corresponding Efficient Golay Correlator (EGC) which is 

much faster than general autocorrelation calculation and even faster than the match 

filtering with FFT and IFFT [37].   

 

Complementary-coded-waveform design is straightforward once comple-

mentary codes are generated. Two parameters need to be first determined: 1) N , the 

number of bits or the length of the complementary codes; and 2)T , the pulse duration. 

For a pulse of fixed duration, the longer the codes, the bigger the pulse compression 

gain. But the bit number will be limited by the available bandwidth of the system and 

the sampling frequency.  With N and T  determined, the bit duration is determined 

according to NT /=τ , and the binary phase shift keying (BPSK) modulation scheme 

can be applied to the carrier wave to generate the transmit complementary waveforms 

As  and Bs : 

])(2cos[ ππ tAtfs cA +=                                                                (3.20) 

])(2cos[ ππ tBtfs cB +=                                                                   (3.21) 

where cf  is the carrier frequency, )(tA  and )(tB equal 1 or 0, and Tt ≤≤0 .  

 

A pair of complementary BPSK waveforms of 3.2 us is designed for low-gain 

mode and a pair of complementary BPSK waveforms of 8us is designed for high-gain 
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mode operation of MCRDS P-3. The two plots at the top in Figure 3.23 are the 

complementary codes of 32 bits generated with the recursive method. The two plots 

at the bottom are the corresponding BPSK waveforms of 3.2us coded with the 

complementary codes at the carrier frequency of 30 MHz. The two plots at the top in 

Figure 3.24 are the complementary codes of 80 bits generated with a pair of known 

complementary seeds of 10 bits. The two seeds are 10A = [1 0 0 1 0 1 0 0 0 1] and 

10B = [1 0 0 0 0 0 0 1 1 0].  The complementary codes of 80 bits are obtained by 

recursively appending the seeds according to the following scheme: 

],[ 101020 BAA = , ],[ 101020 BAB −=                                             (3.22) 

],[ 202040 BAA = , ],[ 202040 BAB −=                                            (3.23) 

],[ 404080 BAA = , ],[ 404080 BAB −=                                            (3.24) 

where the minus in the above equations means bitwise operation NOT. For example, 

10B− = [0 1 1 1 1 1 1 0 0 1].  The two plots at the bottom in Figure 3.24 are the 

corresponding BPSK waveforms of 8us coded with the complementary codes at the 

carrier frequency of 30MHz. We can also use the recursive scheme describe by 

equations (3.19) to generate seeds 64A , 64B  and 16A , 16B  and then append them to get 

a pair of complementary codes of 80 bits. 
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 Figure 3.23: 32-bit Complementary Codes and 3.2us BPSK Waveforms 

 

 

Figure 3.24: 80-bit Complementary Codes and 8us BPSK Waveforms 
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3.3.2 Effects of Amplitude Mismatch and Phase Shift 

In implementation, the two complementary BPSK waveforms generated by 

AWG are up converted to the carrier frequency of 150 MHz by oversampling. The 

transmitter alternatively transmits the up-converted BPSK waveforms. On the other 

hand, the received signals are down converted to 30 MHz by under sampling. The 

down-converted signals from the two complementary waveforms are compressed and 

summed together in post data processing to cancel the sidelobes. For ideal case 

without waveform amplitude mismatch and phase shift, complete sidelobe 

cancellation is expected as illustrated in Figure 3.25. The two plots at the top are the 

compressed pulses for code A and B respectively with sidelobes. The two plots at the 

bottom are the sum of the two compressed pulses in linear and dB scales which show 

the sidelobe cancelation. 

 

 

 

 

 

 

 

Figure 3.25:  Sidelobe Cancellation in Ideal Case 
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However any signal distortions caused by hardware either in terms of 

amplitude and/or phase mismatches between the two complementary waveforms will 

result in sidelobes. The movement between the radar and targets will also result in 

phase shifts, which is a serious problem for some applications.  Fortunately this is not 

a serious concern in ice mapping with a VHF-band airborne system at a PRF of 10 

kHz as the Doppler shift caused by the aircraft motion between two complementary 

pulses is insignificant. The effects of magnitude mismatch and phase shifts on 

sidelobe level were studied in detail by simulation in [38].  The results are 

summarized in Figure 3.26 and 3.27.  Figure 3.26 shows the PSL values for different 

amplitude mismatches (0.1%, 0.5%, 1%, 2%, 3%, 4%, 5%, 10%, and 20%). The 

percentage of the amplitude mismatch is defined as the amplitude difference between 

the two complementary waveforms over the amplitude of one of the two waveforms 

that is used as the reference. According to Figure 3.26, the amplitude mismatch would 

not exceed 1% in order to suppress PSL below -60dB, which is required to map the 

deep ice layers near the bed.  Figure 3.27 shows the PSL values for different phase 

shifts ( �5.0 , �1 , �5 , �10 , �15 , �20 and �25 ). The phase shift would not exceed �5.0  for 

a PSL level of -60dB according to Figure 3.27. It is observed that sidelobes are 

becoming more sensitive to amplitude mismatch and phase shifts at low levels. 
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Figure 3.26:  Sidelobe Level ~ Amplitude Mismatch            

 

 

Figure 3.27:  Sidelobe Level ~ Phase Shift 
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3.3.3 Laboratory Measurements and Field Survey Results 

At the output of the AWG of MCRDS P-3 radar, the PSL of the generated 

complementary waveforms is -59.71dB according to the measurements with an 

oscilloscope. In [38], it is reported the PSL is -72.56dB for the complementary 

waveforms generated with the Model 2045 Arbitrary Waveform Synthesizer from 

Analogic Data Precision and -64.89dB with the DBS 2050 VXI Waveform Generator 

from Analogic Corporation [39, 40]. These measurements from different arbitrary-

waveform generators further prove the hardware distortion sensitivity of 

complementary waveforms at low sidelobe levels.  The overall system effects on the 

sidelobe performance of the designed complementary BPSK waveforms are evaluated 

by the loop-back delay line measurements in laboratory. The top two plots in Figure 

3.28 are the actual two complementary BPSK waveforms of 3.2us recorded by the 

DAQ. The bottom plot is the compressed pulse and shows the sidelobes level is at 

-53.36dB. The sidelobe performance is the same for the complementary BPSK 

waveforms of 8us. 

 

In order to test the sidelobe performance of complementary waveforms that 

had never been used by any radar systems for ice mapping, MCRDS P-3 used the 

designed complementary BPSK waveforms in 2008 Greenland field survey and 

collected few data samples both over ocean and ice.  The ocean data were collected 

on July 25, 2008, and the saved files are archived in the file group 20080725B and 
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numbered from 0-8. The ice data were collected on August 1, 2008 and the saved files 

are numbered from 277-301.  

 

Figure 3.28:  3.2-us Complementary BPSK Waveforms Used by MCRDS P-3 

 

 

                                (a)                                                                        (b)        

Figure 3.29:   (a) Ocean Surface Response, (b) A-scope   
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                                (a)                                                                                  (b)

(c)

Figure 3.30:   Ice Surface Responses of 3.2-us BPSK Waveforms  

(a) Echogram   (b) SAR image   (c) A-scope 

 

Figure 3.29(a) is a sample image from an ocean data file after pulse 

compression and SAR processing. The horizontal, straight and red line around range 

bin index of 60 is the ocean surface response to the BPSK waveforms. Figure 3.29(b) 

is the A-scope at the along-track index of 350 in the left image. The A-scope shows 

the SNR of the ocean surface is about 60 dB and the sidelobes prior to the ocean-

surface peak response is about -48 dB. Figure 3.30(a) is an image over the Greenland 
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ice sheet after pulse compression. The surface is labeled zero depth and the bed at 

depth around 1.25km is detected.  Figure 3.30(b) is the image after SAR processing 

which shows the ice bed is focused and the SNR is improved. Figure 3.30(c) is the A-

scope at the along-track index of 350 in the SAR image. The A-scope shows the noise 

floor is at about -95 dB and the sidelobes prior to the ice surface peak response are 

about -49 dB. 
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Chapter 4: Data Preconditioning 
 
 

This chapter discusses three data preconditioning steps for reducing system 

and radio frequency interference (RFI) effects to maximize gains from pulse 

compression, SAR, array processing and clutter rejection. These steps include 

reference function calibration, channel equalization and RFI reduction. Because the 

data collected by MCRDS P-3 from 2007 campaign in Greenland were degraded by 

RFI, the focus of this chapter is to describe the RFI suppression algorithm with array 

processing that was used and proved to be successful in resolving the problem. 

 
 
4.1 Reference Function Calibration 

The linear chirp waveforms designed in Chapter 3 are used as the reference 

function of the match filter in pulse compression. It has been theoretically proven and 

is well known that match filter maximizes the output peak SNR if the noise is white 

noise [41]. However the magnitude and phase of the designed waveforms may 

experience distortions at every stage of a radar system from waveform generation to  

data acquisition. The distortions may be caused by the instability of the local 

oscillator, the nonlinearities of the mixers and the bandpass filter and the impedance 

mismatch of the antenna. The distortions can be reduced to minimum by elaborate 

system design, but they are not avoidable. As a result of the system effect the peak 

SNR cannot be maximized because the ideal reference function is “mismatched” with 

the received signals. Therefore, there is a need to use modified reference functions 
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that include the system effects so that a “matched” filtering is enforced in pulse 

compression to maximize the SNR.  This is called the reference function calibration.  

 

The system loopback measurements are used to derive the calibrated reference 

functions. The so-called loopback setup of a radar system connects the transmitter 

and receiver with a delay line. Attenuators are used in the setup to reduce the high 

transmit power and protect the very sensitive receiver. Therefore the recorded 

waveform includes not only the system effects, but also the effects of delay line, 

attenuators and any other components used in the setup. The effects of the 

components used in the loopback setup but not in the real radar operation have to be 

removed from the measurements to get the system effects. This is done in frequency 

domain. The transfer function of each component is measured with network analyzer. 

Since the transfer function of the total loop measurements is the product of the system 

transfer function and the transfer function of each extra component, the system 

transfer function is derived by dividing the loop measurements by each component’s 

measurement. The described calibration is required for each channel. The calibration 

setup for MCRDS Twin Otter is given in [17]. A detail description of the similar 

calibration procedures for another ground-based radar is given in [12]. The calibration 

of MCRDS P-3 is documented in [34]. 

 

The SNR gain from the above reference function calibration is quantified by 

calculating the SNR difference  at  ice bed between two radar echograms. The first 
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radar echogram is from compressing the radar data with ideal reference function and 

the other uses the calibrated reference function. 

 

      

                                 (a)                                                                     (b) 
 

Figure 4.1:  (a) Spectrum of Ideal and Calibrated Reference Functions of MCRDS Twin Otter 
       3-us Waveform; (b) Radar Echogram from Calibrated Reference Function 

 
 

Figure 4.1(a) shows the spectrum difference between the ideal 3us waveform 

and the calibrated waveform of channel 1 of MCRDS Twin Otter. The red-dash line 

is the spectrum of the ideal waveform and the blue-solid one is the spectrum of the 

real waveform with the system effects.  It is observed that the real signal magnitude is 

not constant because of the system effects. The spectrum of the 10us waveform has 

similar distortion. Figure 4.1(b) is the radar echogram from compressing the low-gain 

data of file 20060527b_80 with the calibrated reference function. For this case, the 

depth of ice bed is around 1.5km. With five channels uniformly combined, the 

average SNR at ice bed is 24.55dB and 25.10dB from ideal and the calibrated 

reference functions. Therefore the reference function calibration gain is 0.55dB.  For 

the high gain data of the same file, with five channels uniformly combined, the 
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average SNR at ice bed is 34.08dB and 35.18dB from ideal and the calibrated 

reference functions. The SNR gain from reference calibration is 1.10dB. Although the 

gain seems small big, every half dB is important in detecting very weak signals like 

the ones from the deepest ice bed of Jakobshavn glacier. 

 
  
4.2 Channel Equalization 
 

For a radar system with antenna array of separated channels, each channel 

cannot be made exactly the same in reality. The channel mismatches in amplitude and 

phase have to be compensated to achieve the best possible gain from array 

processing. The compensation for channel mismatches before array processing is 

called channel equalization. Array processing has two major applications in ice depth 

sounding: (1) to combine the data from each channel in a way that the weakest nadir 

echoes from deep ice bed are maximized; (2) to form a receiving beam pattern that 

has the main beam in the direction of nadir and nulls in the directions of undesired 

signals like RFI and surface clutter. In the first application, the level of sidelobes is 

not a major concern and uniform weights can be used to obtain the maximal nadir 

response because the data from all channels are coherently added if all channels are 

matched and the plane of the array is horizontal. Therefore to maximize the nadir 

signal, not only do the channels have to be equalized but the aircraft wing angle and 

roll also have to be compensated. In the second application, channel mismatches will 

alter the array response, null location and depth and thus degrade the beamforming 

performance. Channel mismatches can be the angle of arrival (AOA) independent and 
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AOA dependent [42]. The former is usually stationary and due to the differences 

between transfer functions of each receiver channel.   The later is random and may be 

due to mutual coupling, near-field scattering and multipath effects, element position 

errors (wing flexure for airborne radar), or bandwidth dispersion, etc.  

 

              
                                 (a)                                                                    (b) 
 

         
                                 (c)                                                                    (d) 
 

Figure 4.2:  Ice Bed SNR Improvement from Channel Equalization 

 

Figure 4.2 presents an example that illustrates how constant amplitude and 

phase mismatches are estimated and compensated to improve the SNR of ice bed. The 
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low gain data of the 8th file on September 17, 2007 are used in the calculation.  The 

amplitude and phase mismatch between the four channels are estimated by comparing 

the amplitudes and phases of the ice surface echoes which are determined by looking 

for the peaks of every A-scope. The first element is used as the reference for 

computing the mismatches between channels. A moving average window of 100 

records is applied to smooth out the high frequency random variations, so what 

remains in the estimates are the stationary channel mismatches. Amplitude 

mismatches are obtained by directly computing the peak magnitude ratios between 

channels and the phase mismatches are obtained by computing the phase differences 

between channels taking out the effects of aircraft roll and wing angle. Figure 4.2(a) 

and (b) display the estimated amplitude and phase mismatches over a distance of 

about 2.8 km. The mismatches are basically constant although there are some slow 

variations. On average, the amplitude mismatches are 0.9887, 0.9342 and 0.9734 in 

terms of magnitude ratio between channel two and one, three and one, and four and 

one. The corresponding phase mismatches are ,96.35 �  �96.43  and �21.56− . This 

amount of amplitude and phase mismatches would result in a loss of 2.37dB in ice 

bed SNR when the conventional beamforming is performed with the looking 

direction be the nadir. Figure 4.2(c) is the radar echogram after beamforming with 

channel equalization. The ice bed is close to 1.5 km in this case. The ice bed SNR is 

computed and compared with the one without channel equalization. The difference is 

the SNR improvement from channel equalization which is shown in Figure 4.2(d). It 

turns out the improvement is 1.09dB on average. 
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(b) 

 
Figure 4.3:  (a) Random Phase Mismatches and  (b) the PSD  
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Random mismatches between channels have been observed in MCRDS P-3 

data with strong echoes either from ocean surface, smooth ice surface, or the bed. 

Figure 4.3 shows an example of analysis using echoes from the smooth ice surface of  

data file 550 on September 17, 2007. Figure 4.3(a) is the random phase differences 

between all other channels and channel one. The average phase mismatches have 

been removed from the plot. The variations are between -10 degrees and 10 degrees. 

Figure 4.3(b) is the corresponding power spectral density of the phase differences, 

which indicates significant variations occur at 3.2 Hz, 5.6Hz, 8.1Hz and 67.9Hz. 

 

The random amplitude and phase mismatch effects on null location and depth 

are critical and can be studied by Monte Carlo simulation. Figure 4.4 shows the 

simulation results for MCRDS P3 from 1000 runs. Figure 4.4(a) and (b) display 

respectively the null location and depth variations (1σ ) from1% (1σ ) amplitude 

mismatch. The horizontal axis of the plots is the null location in terms of the angle 

away from nadir. The simulation covers �� 85~50  at step of �1 . According to Figure 

4.4(a), for example, if a null is intended to be placed at �70 , the actual null locations 

will be around �70  with a standard deviation of �3  because of the1% amplitude 

mismatch. Also the depth of the null is not infinite and has a variation of about 9.5dB 

around its mean as shown in Figure 4.4(b).  Similarly Figure 4.4(c) and (d) display 

respectively the null location and depth variations (1σ ) from �1 (1σ ) phase 

mismatch. According to Figure 4.4(c) and (d), the standard deviation of the null 

location at �70  is about �2.6  and the null depth variation is 9.5dB.   
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                                 (a)                                                                 (b) 

 

    

 
(c) (d)        
   

Figure 4.4:  Monte Carlo Simulation of Amplitude and Phase Mismatches 
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4.3 RFI Suppression 

4.3.1 Introduction 

Radio frequency interferences are always a possible problem for radar systems 

operating in VHF/UHF bands because these frequencies are also widely used by 

television, radio and wireless communications for many civilian and military 

applications. Signals from these emitter sources are referenced as RFI because they 

contaminate the spectrum of desired signals. In order to understand the RFI 

environment encountered by VHF/UFH radar systems, surveys were performed by 

Grumman E-2C throughout the world to characterize RF interferers in terms of the 

density of the interference emitters, the type of emitters, their effective radiated 

power, their modulation bandwidth, duty factor and their temporal dependence. It is 

found that even in remote locations the average interference power often exceeds 

receiver noise by many dB [43]. RFI may also come from other electronic systems 

that work together with the radar system, like the laser altimeter working together 

with the CReSIS radar systems. Furthermore, any hardware design flaws or improper 

operation of the radar will introduce RFI internally.  

 

In order to identify the RFI problem the MCRDS P-3 encountered in 2007 

field campaign, measurements were taken with the system in different listening 

modes (the radar does not transmit signals and only receives signals from the 
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Figure 4.5: Contaminated Spectrum by RFI  

 

 

Figure 4.6: Degraded Radar Echogram by RFI 

 

environment) in a SPRINT anechoic chamber in October 2007. Figure 4.5 is the 

measured signal power spectrums. The bottom plot in red line is the flat spectrum of 

system noise, measured with no antenna connected. The middle one in blue line was 

measured with antenna connected. In the operating frequency band, the spectrum is 

Noise floor

Ethernet switch on
Radar on
Noise floor

Ethernet switch on
Radar on

Operating Range 

Vertical streaks are 
laser interferences 
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not as ideal as flat and has many spikes. The spectrum distortion was cause by the 

system’s own radiation. Because of the space limit of the anechoic chamber, the 

antenna distance was less than 1.5 meters apart from the antenna. In real operation, 

the system is farther away from the antenna, this system’s own radiation effect would 

be less severe. The top spectrum was measured with emulating the improper use of an 

Ethernet cable to download data from the radar computer to an external computer in 

the field campaign. The contaminated spectrum shows the Ethernet interference 

degrade the radar performance by 15dB. Figure 4.6 is a radar echogram from the data 

collected by MCRDS P-3 radar in the campaign. It is observed that the radar 

sensitivity and image quality are severely degraded by the laser and Ethernet 

interferences. The vertical short streaks in the figure are the interference signals from 

the laser altimeter in operation. There are similar laser interferences in MCRDS Twin 

Otter data 2006.  

 

As shown by the above example, the RFI can severely reduce the system 

sensitivity and degrade the quality of radar images. Therefore, a lot of effort has been 

made to investigate effective means of suppressing RFI to alleviate its impacts on 

radar imagery. The RFI suppression technique developed by Grumman is based on 

least-mean-square (LMS) estimation theory. It utilizes a single transversal filter with 

multiple taps to achieve both interference suppression and equalization needed to 

overcome the distortions caused by notching function [44]. The advantages of 

stepped-frequency waveforms are exploited to avoid spectral regions that are heavily 
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contaminated with RFI [45]. A least-mean-square filter is applied to suppress narrow-

band RFI in wideband radar signals and is tested with data collected in the JPL P-

band TopSAR (Synthetic Aperture Radar) program in different noisy environments 

[46]. A frequency-domain version of LMS filter is implemented to remove slowly-

varying narrowband RFI in the experimental data collected by CARABAS, a Swedish 

airborne UWB SAR system operating in the 20-90MHz band [47]. Compared to LMS 

filters in time domain, LMS filters in frequency domain are more computationally 

efficient. Reference [44] proposes an RFI algorithm that makes use of prior 

information of interferences. The interferences with fixed frequencies and changing 

frequencies are addressed accordingly. The performance of the algorithm is 

demonstrated with the data collected by the Army Research Laboratory’s UWB Rail 

SAR. While most RFI suppression methods mainly deal with amplitude images, 

phase information has to be preserved for interferometric applications. Reference [48] 

proposes a phase preserving RFI suppression algorithm assuming interferences are a 

sum of many sinusoidal tones. For SAR systems with array, in addition to time 

domain and frequency domain information, spatial information provides additional 

means for RFI suppression as long as the directions of interferences are not the same 

as the desired signals. Reference [49] presents an adaptive beamforming algorithm of 

RFI suppression with an experimental eight-elemental array. A brief review of the 

approaches to RFI suppression for VHF/UHF SAR systems is presented in [50].  
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4.3.2 Algorithms of RFI Suppression 

According to review of the literature, the existing algorithms to suppress RFI 

may be classified into three categories: (1) model-based; (2) filters; and (3) array 

processing.  

(1)  Model-based Approaches 

Figure 4.7 shows the basic principle of model-based methods. A model is used 

to describe the characteristics of RFI based on prior knowledge of RFI. The model 

estimates the RFI based on the input signal plus RFI and the estimate of RFI is 

subtracted from the data. 

 

 

Figure 4.7: Diagram of Model-Based Methods 

 

A commonly used RFI model assumes interference signals are a sum of 

sinusoids. The received signal is written as  

)2sin()()()(
1

i

N

i
ii tfAtntstx φπ +++= ∑

=

                                           (4.1) 

Signal with RFI suppressed 

- 
RFI 

estimate 

      + 

RFI model  

Signal   with RFI 
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where )(ts  is the target return, )(tn is the receiver noise, N  is  the number of 

interferers, and iii fA φ,,  are the amplitude, frequency, and phase of each sinusoid. In 

order to estimate the model parameters, the target signal needs to be subtracted from 

the received signal; otherwise biases in the estimate caused by target signal will 

degrade the RFI suppression performance. One method to avoid this problem is to use 

listening mode to collect data for RFI estimation. Another method is to increase the 

recording length of each pulse so that a portion at the end of each record without 

target signals can be used for RFI estimation. The standard linear least-mean-square 

estimation method or maximum-likelihood estimation method can be used to estimate 

the RFI parameters [44,51]. An iterative procedure can also be implemented to 

remove interferers one by one in order of their power level. For a small number of 

static interferers at fixed frequencies, this approach is very effective and the 

performance is excellent in terms of good interference suppression and little signal 

distortion.  

 

The target signal, receiver noise and RFI can also be modeled with an 

autoregressive process: 

∑
=

+−−=
N

k

jnkjxkajx
1

)()()()(                                                        (4.2) 

where )( jx is the received sample at time j, )(ka are a set of coefficients of the AP 

process need to be estimated, and )( jn  is white noise. According to [15], the 
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performance of this approach is comparable to the approach based on the model by 

equation (4.1). 

 

(2) Filter Approaches 

Notch filters and adaptive filters are two kinds of filters that have been used to 

suppress RFI [45, 46 and 52]. The concept of notch filter method is very 

straightforward. The spectrum of contaminated signals is examined to identify the 

interference spikes as those illustrated in Figure 4.6. Then notch filters are designed 

and applied to remove these spikes in frequency domain. Notch filters work well for 

fixed narrow band RFI and a small number of interferers. In order to identify the 

interference spikes, an average spectrum of a number of records needs to be 

estimated. Lord [45] used median filters to smooth the averaged spectrum to obtain an 

estimate of target signal envelope and subtract the estimated signal from the average 

spectrum. The RFI spikes above a certain level of the target signal envelope are 

identified. One major artifact of notch filters is the loss of signal integrity, which can 

be recovered in some cases through interpolation. 

 

Adaptive filters have been more widely used compared to notch filters 

because little prior knowledge about RFI is required, and variations of RFI can be 

adaptively tracked by automatically adjusting their own parameters [43, 45-47 and 

53-55]. LMS adaptive filters are the most common because of their good performance 

and convenient implementation. Figure 4.8 shows the block diagram of a LMS 
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adaptive filter implemented in time domain, which is described by recursive 

equations (4.3) ~ (4.8).   

 

Figure 4.8: Diagram of a LMS Adaptive Filter in Time Domain 

 

For a filter length of n , the input signal vector D  and the weight vector W at 

time j  are defined by equations (4.3) and (4.4): 

)}1(),...,2(),1(),({ +−−−= njdjdjdjdD j                                  (4.3) 

)}(),...,(),(),({ 210 jwjwjwjwW nj =                                             (4.4) 

The input jX  to the adaptive filter is a delayed version of the input signal: 

∆−= jj DX                                                                                       (4.5) 

The output of the adaptive filter )( jy  is an estimate of RFI and is equal to the inner 

product of the weight and input vectors: 

T
jj XWjy ⋅=)(                                                                                 (4.6) 

The error signal )( je  is the desired signal with RFI cleaned: 

e 

x 

- 
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T
jj XWjdjyjdje ⋅−=−= )()()()(                                                (4.7) 

And the weights are updated by minimizing the mean square of )( je : 

*
1 )(2 jjj XjeWW µ+=+                                                                 (4.8) 

where µ  is the step size and *jX   is the conjugate of jX . 

 

In the above implementation, three filter parameters, the delay∆ , the step 

sizeµ , and the number of weights have to be optimized to get the best performance. 

Sidelobes are an undesired outcome of filters used for RFI suppression. The filter 

performance can be evaluated by range compressing the output and measuring the 

target mainlobe width, the peak sidelobe ratio (PSLR), and the integrated sidelobe 

ratio (ISLR). Lord [45] discussed the methods to determine the optimal parameters 

and procedures to improve the filter’s performance. In order to reduce the sidelobes 

caused by the filter, the filter was swept from both ends of the input data and the two 

filter outputs were averaged. The input data were zero padded to minimize the filter 

edge effects.   

       

The time domain version of the LMS adaptive filer has been implemented and 

simulated. Figure 4.9 and Figure 4.10 show a sample result. In the simulation, a chirp 

of 20 MHz bandwidth was mixed with 6 sinusoid interferences. The interference-to-

signal ratios were 30~40 dB as shown by Figure 4.9. Figure 4.10 shows the 

interferences were notched out by the filter.  
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Figure 4.9: Spectrum of Signal with Interferences  
 
 

 

Figure 4.10: Spectrum of Signal with Interference Suppressed 

 

(3) Array Processing Approaches 

Array processing has found widespread application in radar, sonar, 

communications, seismology, diagnostic ultrasound, and multi-channel audio systems 
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[56]. For SAR systems with an array, in addition to time domain and frequency 

domain information, spatial information provides additional means for RFI 

suppression as long as the directions of interferences are not the same as the desired 

signals. By combining signals received by each element of array, signals from a 

certain direction can be enhanced and signals from RFI directions can be rejected. 

This is actually a spatial filtering process, which is usually known as beamforming.  

 

Figure 4.11: Diagram of an MVDR Adaptive Beamformer 

 

Figure 4.11 shows an LMS adaptive filter implemented in spatial domain, 

usually called MVDR adaptive beamformer, described by equations (4.9)~(4.14). For 

an array of M  elements, the input signal vector X  at time j  is defined by equations 

(4.9):  

)}(),...,(),(),({ 321 jxjxjxjxX Mj =                                              (4.9) 

xM 
x2 x1 

Interference signals 

1 

 
 

Adaptive 
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Σ  
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And the weight vector W  is  

},...,,,{ 321 MwwwwW =                                                               (4.10) 

The output of the adaptive beamformer is 

∑
=

=
M

i
ii wjxjy

1

)()(                                                                           (4.11) 

By minimizing the mean square of the output with the linear constraint 

gSW H =)( 0θ                                                                                (4.12) 

the optimal weights are obtained: 

)()(

)(

0
1

0

0
1*

θθ

θ

SRS

SRg
W

H −

−

=                                                                   (4.13) 

where 0θ is the direction of arrival, )( 0θS is the beam steering vector  

],...,,1[)( 00 )1(
0

θθθ −= Mjj eeS                                                           (4.14) 

g  is a complex gain and R  is the MM × correlation matrix. For MVDR adaptive 

beamformer g  is equal to 1.  

 

MVDR algorithm is known as FMV algorithm when it is applied to data in 

frequency domain. Figure 4.12 is the implementation of FMV algorithm based on 

reference [57].  This implementation first estimates the steering vector in frequency 

domain by eigenvalues decomposition of the averaged correlation matrix from 

multiple snapshots of ice surface or bottom. This part is similar to MUSIC algorithm. 

Each array snapshot is divided into blocks of some finite length of blkL , and FFT is 
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carried out over a bigger length of fftL .  Correlation matrix is computed in frequency 

domain over a length ofcorrL . Hamming window of lengthhamL  is applied in time 

domain to reduce the circular convolution effects of FFT. The FFT and correlation 

matrix are computed with a moving window of the block length. The MVDR optimal 

weights are then calculated for each frequency bin of each block with the steering 

vector and the corresponding correlation matrix. The output is obtained by 

multiplying the optimal weights with the array data in frequency domain. Finally the 

output in time domain is obtained by taking the inverse FFT of the output in 

frequency domain.  The variables and some implementation details in the flow 

diagram are explained as follows: 

 

1) ),,( MNLX , the recorded array data matrix.  

L is the length of each snapshot, N is the number of snapshots and M is the 

number of array element. 

2) Steering window 

)]1/(sin[ += svsw Lnw π , svLn ,...,2,1=                                         (4.15) 

where 112 +−= LLLsv  is the steering window length. If the index of the surface or 

bottom is max−locali , then  

2/)1(max1 −−= − svlocal LiL                                                         (4.16) 

2/)1(max2 −+= − svlocal LiL                                                        (4.17) 
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3) ),,(, fftisv LMMR
rec

, the correlation matrix of surface or bottom echo of 

each snapshot. 

)]1,),,,:(([)]1,),,,:(([

),,(

2121

,

fftrec
H

fftrec

fftisv

LMiLLXfftLMiLLXfft

LMMR
rec

=
  

                                                                                                        (4.18) 

4) svR , the average correlation matrix from N snapshots. 

NRR
N

i
isvsv

rec

rec
/

1
,∑

=

=                                                                      (4.19) 

where reci  is the index of snapshots. 

5) Eigenvalues decomposition for each frequency bin 

H
M

m

H
mmmsv QQR Λ== ∑

=1

qqλ                                                       (4.20) 

where mλ  is the eigenvalue of svR in descending order, that is, Mλλλ ≥≥≥ ...21 ; mq is 

the corresponding eigenvector; Λ is a diagonal matrix with the eigenvalues in 

descending order on the diagonal, and 

 ]...[ 21 MQ qqq=                                                                          (4.21) 

6) Normalized steering vector 

refs qv −= 11 /)( qφ
ρ

                                                                         (4.22) 

where refq −1  is the component of the reference element in1q  and sφ  is the direction 

of arrival angle. 
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7) ),,( MNLX AA , the aero-appended array data matrix. LA is the length of 

extended snapshot. 

)],,2/)((

);,,();,,([

),,(

MNLLLzeros

MNLXMNLLLzeros

MNLX

fftblkcorr

fftblkcorr

A

++

++=  

          (4.23) 

where 2/)()( fftblkcorrfftblkcorrA LLLLLLLL ++++++= ; corrL , the length of 

buffer for running average correlation matrix computation; blkL , the Length of  

blocks in a snapshot ;fftL , the length of FFT 

8) Hamming window 

hamw =[zeros(
2

hamfft LL −
,1);hamming( hamL )                               (4.24) 

zeros(
2

hamfft LL −
,1)]/max(hamming( hamL ))                                 (4.25) 

where 2/fftham LL =  

9) Recursively update running correlation matrix for each frequency bin 

)(),,(),,( ,, out
H
outin

H
infftiifftii BBBBLMMRLMMR

recblkrecblk
−+=  

                                                                                                        (4.26) 

where :)),1:(*.( ,recfftblkcorrblkblkcorrblkAhamin iLLLiLLiXwfftB −+++++=  is the 

data goes into the FFT buffer; and  

:)),1:(*.( ,recfftblkblkAhamout iLiiXwfftB −+=                            (4.27) 
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is the data exit the FFT buffer; and ),,(, fftreciblki LMMR is initially set to zero. 

10) Diagonal loading 

IfLMMRLMMRLMMR dlfftreciblkifftreciblkifftreciblki ])),,([max(),,(),,( ,,, ε++=  

(4.28) 

where dlf  is the diagonal loading factor, ε  is the damping factor for recursive 

computation and I  is a diagonal unit matrix.  

11) Optimal weights for each frequency bin 

)()(

)(
,

1
,

1
,

siis
H

sii
recblk

vRv

vR
iWi

recblk

recblk

φφ

φ

ρρ

ρ

−

−

=                                               (4.29) 

12) 
blkifY , , the output in frequency domain 

*
, , reciblkblk imif WBY =                                                                       (4.30) 

where  

:)),12/:2/(*.( ,recfftblkcorrblkblkcorrblkAhamm iLLLiLLiXwfftB −+++++=

                                                                                                                                (4.31) 

13) 
blkitY , ,  the output in time domain 

)1
2

:
2

(, −+
++

+
++

+ blk
blkfftcorr

blk
blkfftcorr

blkblkit L
LLL

i
LLL

iY   

= ifft(
blkitY , )(

2
:1

2
blkfftblkfft LLLL +

+
−

)/ (hamw
2

:1
2

blkfftblkfft LLLL +
+

−
)  

   (4.32) 

14) blkN , the length of data block 
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2/)( blkfftcorrblk LLLLN +++=                                                   (4.33) 

15) ),( NLY , the combined output in time domain with the same length of the 

original snapshots. 

),:1(),( NLLLLLLLYNLY fftblkcorrfftblkcorrt ++++++=       (4.31) 

 

4.3.3 Results 

The above implemented FMV algorithm is applied to ice data collected in 

2007 by MCRDS P-3 that are contaminated by laser-altimeter signals and the 

Ethernet cable used to transfer data from the radar to an external computer. The 

parameter values are: 

512=fftL , 4/fftblk LL = , 2/fftham LL = , fftcorr LL 4= , 1.0=dlf , 

:)),(:,max(max(10 8
reciX−=ε  

 

Figure 4.13 (a) shows a radar SAR image with RFI; the data from the four 

channels are uniformly combined. Figure 4.13(b) shows the SAR after RFI 

suppression by the FMV algorithm. It is observed that the ice layers deeper than 2km 

are obviously enhanced because of the RFI suppression. Figure 4.14(a) is the A-scope 

comparison between uniform weighting and the adaptive beamforming by the FMV 

algorithm, which shows the RFI is suppressed by about 12 dB and the bottom signal 

peak value is not changed before and after RFI suppression. Figure 4.15 is the SAR 

image of about 92 km from the flight between NEEM and NGRIP on September 17, 
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2007. The image is degraded by RFI and some weak and deep layers are not visible 

because of the reduced sensitivity. Figure 4.16 is the improved SAR image after RFI 

suppression by the FMV algorithm. It is observed that the weak layer at depth of 

1950m, which is masked by RFI in Figure 4.15, becomes visible all the way along the 

flight path. It is also observed that the deep layers around 2.6km, which are barely 

visible, are brought up clearly between 0 km and 65km. 

 

It should be noted that there are some vertical streaks in the SAR images of 

Figure 4.13, 4.15 and 4.16. Along these streaks, signals of the internal layers are 

weaker. It is concluded after analysis that these streaks result from the ignorance of 

compensating the aircraft roll effects in both the uniform weighting and the FMV 

processing.  Figure 4.14(b) plots the history of the aircraft roll that corresponds to the 

SAR images in Figure 4.13 to illustrate the correlation between the vertical steaks and 

the aircraft roll. According to Figure 4.14(b), there are roll peaks of 4.86, -4.87, 4.92,-

4.92 and 5.4 degrees at along-track distances of 0.843 km, 4.4km, 6 km, 8 km and 

9.85km. The streaks occur exactly at the same distances in Figure 4.13(b). The 

receive beam is assumed to point to nadir in both the uniform weighting and the FMV 

processing. However, the beam direction deviates from nadir because of the roll error 

and thus results in weaker backscattering. The streaks become more apparent after 

RFI reduction. This is because the FMV algorithm is adaptive to the random 

component of channel mismatch and the roll error is the dominant pointing error. So 

the beam points closer to nadir at small roll angles deviates more from nadir at larger 
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roll angles which results in more apparent streak intensity contrast. On the other hand, 

for the uniform weighting, the beam does not point closer to nadir at small roll angles 

for most time because of the random channel mismatches. Therefore the streak 

intensity contrast is not as obvious as the case of FMV processing. 

 

    
                                (a)                                                                (b)          

 
Figure 4.13:  (a) SAR Image with RFI; (b) SAR Image after RFI Supression 
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Figure 4.14:  (a) A-scope Comparison; (b) Aircraft Roll Angle  
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Chapter 5:  SAR Processing for Airborne Ice-depth Sounding 

 

5.1 Introduction 

The invention of synthetic aperture radar (SAR) is credited to Carl Wiley of 

Goodyear Aircraft Company, who postulated the concept of Doppler beam 

sharpening in 1951 [58] . Since then SAR has evolved and has been used in a wide 

range of civilian and military applications. SAR has revolutionized our ability for ice 

sheet mapping. Spaceborne SAR provides powerful means to map ice sheet zones, 

boundaries, surface flow and elevation on a large scale [59, 60].  Airborne and 

ground-based SAR is able to map basal conditions in detail [61-64].  And the 

combined analysis of spaceborne and airborne or ground- based SAR helps to 

understand the ice sheet dynamics better [65].  

 

The advantage of SAR processing for airborne ice-depth sounding is three 

fold. Firstly, it improves the SNR of ice layers and bed because SAR processing is 

actually a coherent integration of the multiple observations over the synthesized 

aperture after the phase differences between the multiple observations are correctly 

compensated. Secondly, SAR processing refines the azimuth resolution because of 

the longer synthesized aperture or Doppler beam sharpening. Thirdly, SAR 

processing rejects the along-track ice surface clutter due to the Doppler phase shift 

difference between clutter echoes and nadir echoes. The Doppler shift is positive for 

clutters ahead, negative for clutters behind and zero for nadir signals. On the other 
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hand, aircraft motion and the refraction at the air-ice interface are two specific issues 

that have to be dealt with for airborne ice-depth sounding in SAR processing. 

 

Early SAR processing was implemented either with an optical correlator or 

analog electronic correlator. Digital SAR processor is now popular with the 

advancement of digital technology and electronics. Different algorithms have been 

developed for SAR processing either in time domain or frequency domain [66, 67]. 

This dissertation adopts f-k migration method that originated from wavefront 

reconstruction theory for seismic signal processing. Compared to time-domain 

algorithms, f-k method takes advantage of fast Fourier transform in both fast and slow 

time dimensions. It is much more computationally efficient. It is also convenient to 

take into the account of the refraction at the air-ice interface and the vertical aircraft 

motion that is the dominant component for ice-depth sounding. This chapter first 

introduces the wavefront reconstruction theory, then describes the implementation 

details of the f-k migration algorithm and the verification of the implemented 

algorithm by simulation and real sea ice data, and concludes with images of the first 

ever detected deepest beds of Jakobshavn channel from SAR processing. 

 

5.2 Wavefront Reconstruction Theories 

This section provides brief summary of the wavefront reconstruction (WR) 

theory with particular emphasis on ice-depth sounding and a complete of description 

of WR theory is given by Yilmaz [68]. As illustrated in Figure 5.1, let us assume that 
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the aircraft is flying horizontally at constant height 0h  and velocity 0v , and the radar 

is transmitting signal downward with fixed PRF. The fields of radar EM signal 

),,( tzxS  in air or ice can be described by the following 2-D wave equation: 
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Figure 5.1:  Airborne Ice-Depth Sounding Geometry 

 

where x is the coordinate along the horizontal axis pointing to the flying direction, 

z is the coordinate along vertical axis pointing to nadir, t  is the time variable and c  

is the wave propagation velocity either in the air or ice. The coordinatez is zero along 

the nominal flight path. Sometimes thex  dimension is also referred to as along-track 

or slow-time and thez dimension as fast-time because the aircraft velocity is much 

slower compared to the wave propagation. The wave-propagation velocity c  can be a 
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function of x and z  in the ice medium. The factor of 4 over 2c  in equation (5.1) 

takes into account the signal’s two-way propagation from the transmitter to the target 

and then from the target to the receiver. The transmitter and receiver are co-located 

for monostatic airborne systems. Specifically ),0,( txS is the signal received at ),( tx  

and )0,,( zxS  is the reflectivity from the target located at ),( zx  where a signal source 

is imagined to ‘explode’ at time zero. Therefore, the ice-depth sounding turns out to 

be downward migration from ),0,( txS  to )0,,( zxS .  

 

The wave field of ),,( tzxS   in frequency and wave-number domain 

( ), xkf can be obtained by Fourier transformations over time t and over the horizontal 

axis x : 

∫∫ −−= dxdtetzxSfzkS xkftj
x

x )2(),,(),,( π                                        (5.2) 

And inversely 

∫∫ −= dfdkefzkStzxS x
xkftj

x
x )2(),,(),,( π                                       (5.3) 

Substitute equation (5.3) into equation (5.1), we get 
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and cfk /2π=  is the total wave number, zk  is the wave number in z  dimension. The 

solution of equation (5.4) for the reflectivity is 

)exp(),0,(),,( zjkfkSfzkS zxx =                                                       (5.6) 

The refraction at the air-ice interface and any internal ice layer interface can be 

handled by using different wave propagation velocities across the interface. At the 

air-ice interface, we have 

22222
_ 4)

2
(4 xairx

air
airz kkk

c

f
k −=−=

π
                                                      (5.7)                                                                         
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π
                                                      (5.8)                                                   

where airc  is the speed of light in the air , 
r

air
ice

c
c

ε
= is the speed of light in the ice 

and rε  is the relative dielectric constant of ice. 

 

Based on equation (5.3) and (5.6), the basic f-k algorithm for ice-depth 

sounding, that is to determine )0,,( zxS from ),0,( txS , is as follows:  

(1) Perform 2-D Fourier transform of ),0,( txS over x  and t  to get ),0,( fkS x ; 

(2) Multiply ),0,( fkS x  firstly by 0_ hjk airze  to migrate ),0,( fkS x from the          

aircraft’s height 0h to ice surface and then by 
djk iceze _   to get the wave fields 

),,( fzkS x at depthd ; 

(3) Sum all components overf ( 0=t  at this step in Equation (5.3)); 
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(4) Perform inverse Fourier transform over xk  to obtain )0,,( zxS . 

 

5.3 Motion Compensation 

The aircraft’s flight path is assumed to be at a constant height in the above f-k 

migration algorithm. In practice, when an airplane is trying to keep a constant height, 

it is unavoidable to result in low-frequency height variations because of air turbulence 

and its longitudinal dynamics [69]. It is intuitive that the height variations will result 

in topographic deformations of ice surface, layer and bed in the opposite direction in 

SAR image. The height variations will also result in along-track defocusing based on 

simulation.   The height variations can be calculated with the onboard GPS 

measurements and be compensated. In ice-depth sounding, the along-track offset is 

usually much smaller than target range when the synthetic aperture is not very long. 

In this case, the so-called narrow-beamwidth approximation is valid and the 

compensation can be accomplished by multiplying the collected data in frequency 

domain by hjkce δ2 [67]: 

)2(),0,(),0,( hjkairefxSfxS δ=                                                         (5.9)                                      

where hδ  is the height variation with respect to the nominal height 0h .  

 

As the antenna position is different from that of the GPS receiver, the height 

difference between the antenna and the GPS receiver is a function of the aircraft’s roll 

angle and pitch angle. The effect of this height difference can be included in 
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calculating the height variationhδ . In flight dynamics, the orientation or attitude of an 

airplane in the air is defined by three Euler angles between a local earth-fixed 

coordinate system eeee zyxo  and the vehicle’s body coordinate system 

bbbb zyxO with the flat earth assumption. The three Euler angles are roll, pitch and 

heading angles ( ψθφ ,, ). Usually ee xo is the local north, ee yo  is the local east and 

ee zo  is downward. For our convenience, we translate the origin of eeee zyxo  to the 

origin of bbbb zyxO . The body-fixed system will coincide with eeee zyxo  after three 

successive rotations which are described by the three matrices in equation (5.10). 

Therefore, the coordinates of antenna element in bbbb zyxO can be expressed in 

eeee zyxo  as  
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And the vertical component is  
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So the height difference between the antenna and the GPS receiver is                        
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Because the transmitter and receiver antenna array are installed separately under the 

left and right wing, the right-wing will be going down and the left-wing will be going 

up for positive roll, and it is vice-versa for negative roll. Therefore, the average of the 

height differences for the transmitter and receiver antenna are used in the calculation, 

that is 

2
LR hh

h
∆+∆

=∆                                                                             (5.13) 

where Rh∆  is different for each receiver element but Lh∆  is the same for all 

transmitter elements assuming a common phase center. Finally the height variation is 

)( hhmeanhhh gpsgps ∆+−∆+=δ                                                  (5.14) 

where gpsh  is the altitude from GPS data. 

 

The next example will illustrate the effectiveness of the motion compensation 

algorithm. The data used in the example were collected on September 17 in 

Greenland in low-gain mode. The data file number is from 30 to 34. The aircraft’s 

average height and speed are 575.11m and 134.50m/s. The time histories in Figure 

5.2 show the aircraft’s roll, pitch motions and elevation variations. The pitch and roll 

are from the onboard Inertial Navigation System (INS) measurements and the 

elevation is from the onboard GPS measurements. The aircraft elevation varies 

between -58.61 m and 36.68 m with reference to its mean value. Figure 5.3 is the 

computed height variations of the four antenna elements with respect to the GPS 

receiver using the equations (5.10) – (5.12).   
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          Figure 5.2: Aircraft Motion History                                Figure 5.3: Element Height Differences  

 

 

Figure 5.4: SAR Image without Motion Compensation 
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The SAR image from the first-antenna element without motion compensation 

is shown in Figure 5.4. It is observed in the image that the feedthrough is horizontally 

constant without vertical variations as the distance between the transmitter and 

receiver is fixed and independent of aircraft motions. The surface variations are 

opposite to the changes of the aircraft elevation. There is obvious defocusing for both 

surface and ice layers at along-track distance around 2km and 8.5km because of the 

aircraft’s height variations. The ice layers and bed are not flat.   

 

 

Figure 5.5: SAR Image with Motion Compensation 

 

Figure 5.5 presents the SAR image with motion compensation for comparison. 

The feedthrough varies vertically after motion compensation which actually 

represents the aircraft’s height variations. The surface, ice layers and bed become flat  
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and  most of  the  defocusing  has  been  removed by motion compensation. Figure 

5.6 (a) and (b) are the zoomed-in images of the feedthrough and surface in linear 

scale to illustrate their changes more clearly after motion compensation.  

 

              

                               (a)                                                                    (b) 

 

                                  (c)                                                                  (d) 

Figure 5.6:  Feedthrough, Ice Surface and Bed Comparison with Motion Compensation 

                    (a) and (c) No Motion Compensation,; (b) and (d) with Motion Compensation  
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Figure 5.7: SNR Comparison at Ice Bed 

 

Figure 5.6 (c) and (d) are the zoomed-in images of the ice bed to illustrate 

topographic corrections after motion compensation. Figure 5.7 compares the SNR at 

the ice bed. The noise level is computed as the average of all the data samples 500 

meters beyond the ice bed. The blue chart in the figure is the ice bed SNR without 

motion compensation and the red-dash chart is the SNR with motion compensation. 

The average ice bed SNR is 24.08 dB without motion compensation and 25.19 dB 

after motion compensation. Therefore, on average an improvement of 1.11 dB in 

SNR at the bed has been achieved by motion compensation. The same comparison 

has been performed for other data files. Generally the average SNR improvement is 

around 1~1.6dB. 
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5.4 Algorithm Implementation and Verification 

 

5.4.1 Algorithm Flow Chart and Implementation 

The described f-k migration algorithm for airborne ice-depth sounding has 

been implemented in MATLAB as illustrated in the flow chart in Figure 5.8. The 

section describes the implementation step by step: 

 

(1) Compress the received raw data )0,,( xtS , which is a mn× matrix (usually 

25004672×  for a file recorded by MCRDS radars). A column of the matrix is the 

fast time samples of an echoed transmit pulse and the second dimension of the matrix 

is the slow time dimension. Each file stores 2500 pulses of the same duration. The 

raw data are bandpass signals from 20 MHz to 40 MHz with the center frequency at 

30 MHz. The bandpass signals are converted to baseband, low-pass filtered and the 

pulse compression is carried out in frequency domain by multiplication with the 

conjugate of the base band reference function )(_ tS refb . A window function is 

applied to the reference function either in time domain or frequency domain to reduce 

sidelobes from pulse compression. The baseband conversion represents the bandpass 

signal in complex number with I and Q components of 10 MHz that is half of the 

signal bandwidth. The bandwidth reduction makes it possible to decimate the data 

with a larger factor and the required guardband for filtering.  The equations for base 

band conversion and pulse compression are 

tfj
b

cextSxtS π2)0,,()0,,( −=                                                           (5.15) 
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Figure 5.8:  Flow Chart of f-k Migration Algorithm for Airborne Ice-depth Sounding 
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refc tfj
refrefrefrefb etStS

π2
_ )()(

−
=                                              (5.16) 

)])([()]0,,([)0,,( _ arefbabc tSFFTconjxtSFFTxfS ⋅=                    (5.17) 

where ])1(::0[ dtndtt −= , ])1(::0[ dtndtt refref −= , Fsdt /1=  is the sampling 

period which is the reciprocal of the sampling frequency sF  and 1+= sref TFn  the 

number of samples of the reference function with duration T . The baseband-

converted signal in (5.15) and (5.16) are passed through a Butterworth filter with 

cutoff frequency at 10 MHz to remove the higher harmonic signals. Butterworth low-

pass filter is used because it has the maximum flatness in the passband so that the best 

sidelobe performance can be achieved during pulse compression. In equation (5.17), 

the FFT is performed on the fast time dimension and the minimum length of FFT is 

1−+= refa nnn  both for the data and the reference function to avoid circular 

convolution. Therefore, 1−refn  zeros are added on the top of each column of 

)0,,( xtSb  to get )0,,( xtS ab  and 1−n  zeros are added at the end of )(_ refrefb tS  to 

get )(_ arefb tS , where ])1(::0[ dtndtt aa −=  is the time axis extended by zero 

appending. The FFT length an  can also be chosen as the first integer power of 2 

greater than 1−+ refnn  so that the FFT operation is faster. However, appending too 

many zeros increases memory requirements, which will be an issue to process big 

data sets. In order to save memory, fast-time data decimation can be performed at this 

step. The compressed-data in baseband are then translated to the transmit carrier 

frequency for SAR processing.  
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(2) Compute parameters needed in SAR processing with known system 

parameters and compressed data. The first SAR parameter is the average height 0h  of 

the aircraft. The average height is calculated from each instant height along track 

using the strong surface echoes identified in time domain after the radar data are pulse 

compressed. In order to calculate the instant height as accurate as possible, the 

maximum surface echo is located as the starting point, and then surface echoes are 

searched on both sides of the maximum surface echo. When there is a sudden jump 

exceeding a reasonable threshold at an along-track position, the height is set to the 

value of its previous location. After removing the unusual jumps which always 

happen in radar data, a polynomial fit equivalent to a low-pass filter is applied to the 

surface echoes to get the instant height at each along-track position. Other SAR 

parameters, including the frequency axisf , wave number axes xk  and zk  are 

calculated as follows: 
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where cF  is the transmit carrier frequency, )1/( −=∆ nFf s is the frequency spacing 

between two adjacent samples, 
ym

k y ∆−
=∆

)1(

2π
 is the along-track wave number 

spacing and y∆ is the average distance the aircraft moves between two adjacent 
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records. In operation the aircraft cannot fly at an absolute constant speed, the actual 

spatial distance between two adjacent records may have small variations. The 

variation can be accounted for by data interpolation in slow time domain. However no 

obvious improvements have been observed by comparing f-k migrated data with and 

without interpolation. In equation (5.19), xk is limited within [-2k, 2k] and thek , 

zk in equation (5.20) should be calculated separately for both air and ice medium 

according to equations (5.7) and (5.8). 

(3) Compensate height variations by applying the filter )2( hjke δ  to the fast 

time compressed data in frequency domain. This is accomplished according to 

equations (5.9) ~ (5.14). 

(4) Take FFT in slow time dimension to transform the data in f-k domain 

(5) Apply K-filter in f-k domain.  The so-called K-filter controls the aperture 

length in SAR processing and removes noise energy. K-filter is actually an idealized 

antenna radiation pattern filter implemented in wave number domain. Figure 5.9 

illustrates an antenna element with beamwidthβ . For a point target T at depthd , the 

effective synthesized aperture length is L. As the aircraft arrives at the left end of L, 

the target first enters the element’s field of view. As the aircraft leaves the right end 

of L, the target exits the element’s field of view. From the geometry, it is obvious that  

2
tan2

β
dL =                                                                                    (5.21) 

and in wave number domain,  
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k
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Figure 5.9: Geometry of K-filter 

So the K-filter is  
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kx                                          (5.23) 

0=− filterK               if  
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k x                                         (5.24)                                                                  

Apply the K-filter to the data as follows: 

filterKkfSkfS xx −= *)0,,()0,,( * kW                                         (5.25) 

The window function kW  is applied to reduce the sidelobes from azimuth 

compression. 
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    Figure 5.10: Trapezoidal K-filter                           Figure 5.11:  Rectangular K-filter 

 

The K-filter described by equations (5.23) and (5.24) is trapezoidal in f-k domain as 

shown in Figure 5.10. The aperture length is proportional to depth in this case. The K-

filter keeps the signal energy within the trapezoid and nulls the noise outside of the 

trapezoid. However this nulling sometimes may result in some artifacts because the 

algorithm sums all frequency components (step 8) for each xk  but at edges of the 

filter some lower-frequency components have been removed at this step. Therefore, 

the rectangular filter shown in Figure 5.11 is employed to avoid the artifacts. The 

aperture length is constant for all depth in this case and the filter keeps the signal 

energy within max_xk±  and nulls the noise outside of the rectangle. The parameter 

max_xk  is half of the maximum width of the trapezoidal K-filter. 

(6) Migrate the data in air medium from the average aircraft height to ice 

surface by multiplying the data with 0_ hjk airze .  

 



 118

(7) Migrate the data from ice surface to the first range bin and then from the 

first range bin to deeper ice with a step size of dz which can be a range bin or 

multiple range bins. This is accomplished by multiplying the data by
dzjk iceze _ .   In 

the fast time dimension, the first range bin is assumed to be at zero time in previous 

steps, but actually there is a time delay between transmit (corresponding to the real 

zero time) and the time when the first range bin is recorded. The time shift is 

compensated in frequency domain at this step by multiplying the migrated data at the 

first range bin by )(2 10 zkhkj iceaire +− . 

 (8) Sum all frequency components at each depth by adding up all samples in a 

column. 

(9) Take IFFT of the summed data for all depths to get the final SAR image. 

  

5.4.2 Algorithm Verification   

The implemented algorithm described in section 5.4.1 is verified with both 

simulation and real data. 

(1) Verification with simulation  

Five point targets in ice at different depths and azimuth positions are 

simulated with MCRDS radar parameters [70, 71]. The coordinates (x, z) of the five 

point targets are (0, 500), (100, 1000), (-200, 1500), (-250, 2000) and (300, 3000) in 

meters. The aircraft height and speed is 500m and 60m/s, which is typical in the radar 

operation with Twin Otter airplane. The antenna beamwidth is set to 10 degrees. In 

the simulation, the transmit chirp is assumed to be 3 us, and the received signal is the 
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superposition of the five point target responses. The refraction at the air-ice interface 

is modeled according to geometry and the Snell’s law [72]. A simplified case is first 

simulated, assuming the point targets are perfect reflectors, no signal spreading loss in 

air, propagation loss in ice and receiver noise. This simulation is to ensure the pulse 

compression performance in terms of range resolution and sidelobe levels, to verify 

the f-k migration across air and ice media, the azimuth resolution improvement and 

the narrow-beamwidth motion compensation. The five lightly-curved strips in Figure 

5.12 are the receiver signals from the five point targets. The strip length is 

proportional to the range for the fixed antenna beam width pattern and the strip width 

is 450m corresponding to the pulse duration. The five strips are compressed into the 

five slightly-curved lines in Figure 5.13. The 3dB compressed pulse width is 6.33m as 

result of using Hanning window to reduce the sidelobes, which is 1.5 times of the 

pulse width of match filtering. The first range sidelobe is -31.6 dB that matches the 

theoretical value of Hanning window.  Figure 5.14 shows the five curved lines focus 

into five points after f-k migration. Since in the simulation the rectangular K-filter’s 

width and the window width are determined by the depth of deepest point target, the 

azimuth sidelobe of this target is -31.6 dB that matches the theoretical value of 

Hanning window. However the window size is wider for other shallower targets, the 

azimuth sidelobes are therefore higher. The sidelobe increases to -28.5 dB for the 

target at the surface. The azimuth resolution is 5.72 m for the deepest target which is 

the theoretical value for 10-degree aperture. The other shallower targets have better 

azimuth resolutions because the rectangular K-filter results in larger apertures than 10 
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degrees for them. The azimuth resolution of the surface target is 4.76m which is the 

best. In order to illustrate the motion effects clearly, large height variations 

( cm20=σ ) are introduced in the simulation. Figure 5.15 shows the five point targets 

blur and spread along-track without motion compensation. These effects are removed 

with motion compensation included in the simulation and the SAR image is almost 

the same with Figure 5.14.  

         

              Figure 5.12: Simulated SAR Signals                     Figure 5.13: Compressed SAR Signals 

 

   

           Figure 5.14: Simulated SAR image                        Figure 5.15: Height Variation Effect 
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A more realistic case is then simulated to verify the SNR improvement of 

SAR processing. In this case the reflectivity is assumed to be a simple exponential 

function of incidence angle. The signal spreading loss in air and the propagation loss 

in ice (20dB/km) are included. The receiver noise is 

dBFkBTN 96.1271029010201038065.1 10/3623
0 −=×××××== −     (5.26) 

Figure 5.16 is the simulated received signals from the five point targets, which shows 

only the first point target is visible and other point targets are immerged in noise.  

Since the transmit power is 800 W (29 dBW) and the minimum signal power loss 

from spreading and ice attenuation is around -150 dB according to Figure 5.19, the 

biggest received power is around -121 dBW that is 7 dB above the noise power. This 

explains why it is visible. But for the second target, the minimum signal power loss is 

around -170 dBW, and the biggest received power is around -141 dBW that is below 

the noise power. For a bandwidth-time product of 60, the signal-to-noise ratio 

improvement from pulse compression is about 17.78 dB minus the loss from 

mismatch filtering. Therefore, the power level after range compression would be 

around the level of the noise.  This explains why the second target is barely visible in 

Figure 5.17 and other three targets with bigger power losses are invisible. As 

expected, further signal-to-noise ratio improvement from SAR processing brings up 

the second target at location (100, 1000) from noise. This is shown in Figure 5.18.  
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            Figure 5.16: SAR Signals with Noise        Figure 5.17: Compressed  SAR Signals with Noise      

     

                Figure 5.18: SAR Image with Noise                 Figure 5.19:  Simulated Signal Power Loss 

 

(2) Verification with simulation and sea ice data 

The algorithm is further verified using MCRDS P-3 radar parameters and a method 

that combines simulation and a set of sea ice data collected on September 13, 2007 

during the Greenland survey. Figure 5.20 illustrates the verification method and 

Figure 21 is the picture of the sea ice in the sea close to Humboldt glacier, Thule, 

Greenland. Since the strong reflection from the edge of sea ice is similar to the 

response of a point target, a point target is simulated to have the same radar system 
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and SAR geometry parameters with a selected piece of sea ice. The output of the SAR 

code using the simulated data is verified first in terms of SNR and resolution 

improvements and then compared with the output using the sea ice data. Figure 5.22 

shows the radar echogram of the sea ice from the low-gain mode. Each hyperbola 

represents a chunk of sea ice at different range and azimuth position. The aircraft 

height, speed and the spacing between two adjacent records are respectively 660 

meters, 123.83 m/s and 0.7926m.  Figure 5.23 is the output image from the SAR 

algorithm code, which shows the hyperbolas focus into point targets after SAR 

processing. The selected piece of sea ice in simulation is around the middle of the 

SAR image and are marked both in Figure 5.22 and 5.23 as the point target. The 

target range is 3225.8m (2565.8m+660m) and the along-track distance relative to the 

first pulse of the data set is 4797.4m.  

 

 

 

Figure 5.20: Block Diagram of SAR Algorithm Verification 

 

Simulated Data 

Sea Ice Data 

Code of 
SAR Algorithm 

Verification 
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Figure 5.21:  Picture of Sea Ice (courtesy of NASA) 

 

          

         Figure 5.22: Echogram of Sea Ice Data                             Figure 5.23:  SAR Image of Sea Ice 

 

For convenience to verify the SNR improvement from signal processing, the 

SNR is set to zero in the simulation. Figure 5.24 shows the zoomed-in SAR images of 

the point target from the simulation and sea ice.  Because the sea-ice edge is not a 

perfect point reflector, it is observed from Figure 5.24 that the simulated point target 

has a perfect shape and better resolution compared to the sea-ice result. Figure 5.25 

shows the A-scopes across the point target from the simulation. The A-scope across  

target target 
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                                 (a)                                                                  (b)                       

Figure 5.24: Zoomed in SAR Images of Point Target: (a) Simulation; (b) Sea Ice 

 

the point target in range dimension in plot (a) shows the target is buried in noise 

before range compression. The A-scope in plot (b) shows the target is brought up 

from noise as a result of SNR improvement by range compression. The SNR 

improvement is around 17.8dB which is as expected because the signal’s time-

bandwidth product is 60(3us by 20MHz). The range resolution from simulation turns 

out to be 13.5m. The range resolution loss factor is 1.8 from mismatch filtering with 

Chebyshev window. Plot (c) is the A-scopes across the point target in range 

dimension after SAR processing. The blue chart in the plot corresponds to an aperture 

of 281m (5-degree antenna beamwidth). The SNR is about 42.8dB, which means an 

improvement of 25dB from SAR processing. This is as expected, as for an aperture of 

281m about 355 data points along the hyperbola are coherently integrated. The red 

chart in dash line corresponds to a longer aperture of 562m (10-degree antenna 

beamwidth). It is observed the range resolutions are the same and the longer aperture 
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results in additional SNR improvement of 3dB. Plot (d) is the A-scopes across the 

point target in azimuth dimension after SAR processing. The blue chart in the plot 

corresponds to the shorter aperture and the red chart in dash line corresponds to the 

longer aperture. It is observed the azimuth resolution is about twice better for the 

longer aperture. 

 

         

                                               (a)                                                                                (b) 

                 

                                         (c)                                                                                         (d) 

Figure 5.25:  A-scopes  from Simulation: (a) Range Dimension  before Pulse Compression; 

(b) Range Dimension after Pulse compression; (c) Range Dimension after SAR Processing; 

         (d) Azimuth Dimension after SAR Processing 
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                                       (a)                                                                                        (b) 

           

                                   (c)                                                                     (d) 

Figure 5.26:  A-scopes from Sea Ice: (a) Range Dimension  after Pulse Compression;  

(b) Azimuth Dimension after Pulse compression; (c) Range Dimension after SAR Processing;  

(d) Azimuth Dimension after SAR Processing 

 

Figure 5.26 are the A-scopes across the sea-ice point target. Plot (a) and (b) 

are the A-scopes across the sea-ice target respectively in range and azimuth 

dimensions after pulse compression. Since the echo SNR from this piece of sea-ice 

happens to be around 0 dB, the SNR is around 17.8 dB after pulse compression. Plot 

(c) and (d) are the A-scopes across the sea-ice target, respectively, in range and 
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azimuth dimensions after SAR processing that show the SNR is around 42.8 dB and 

the SNR improvement from SAR processing is close to 25dB. The range and azimuth 

resolutions are 20.4 m and 34.3 m according to the A-scopes. Table 5.1 puts together 

the SNR improvement from SAR processing, range resolution and azimuth 

resolutions for comparison.  

 

Table 5.1: Comparison of Simulated Data and Sea Ice Data (5-degree Aperture) 

 Simulated Data Sea Ice Data 

Range Resolution 13.5m 20.44m 

Azimuth Resolution 21m 34.3m 

SNR Improvement by SAR 25dB ~ 25dB 

                   

 

5.5 Data Processing Results of Jakobshavn Glacier 

Jakobshavn glacier is a large outlet glacier in west Greenland. It is one of the 

fastest flowing glaciers on Earth and a major component of ice balance of Greenland 

ice sheet. The glacier’s discharge has doubled in recent years. It drains about 7.5% of 

all the Greenland Ice Sheet. In order to better understand the ice dynamics behind this 

rapid increase in ice discharge, remote sensing data were collected using MCRDS 

Twin Otter along and across the glacier channel on May 29 and 30 in 2006.  The map 

in Figure 5.27 shows the glacier’s east-westward ice stream and three cross flight 

lines marked with three blue short lines. The channel extends about 150 km from 
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calving front to the ice sheet interior where several ice-stream tributaries join to form 

the main channel of the glacier. The three cross-flight lines are respectively about 42 

km, 52.5 km and 63 km upstream of the calving front, and are numbered as cross 

flight 1, 2 and 3 from east to west  for convenience of reference.  

 

Figure 5.28, 5.30 and 5.32 are the SAR images of the channel using high-gain 

data from these three cross flights. A very large synthetic aperture length (30-degree 

antenna beam width) and careful array processing were used to enhance the very 

weak returns from the deep ice bed of the channel. Since the signal propagation loss 

is much greater in the channel than in the interior of the ice sheet where the thickness 

is the same, even with the high sensitivity of the MCRDS Twin Otter, elaborate SAR 

and array processing, the ice bed of the channel are barely mapped from cross flight 1 

and 2. The ice bed of the channel is clearly mapped from cross flight 3. This is 

because the thickness of cross flight 3 is about 200 meters less compared to cross 

flight 1 and 2. Figure 5.29, 5.31 and 5.33 are A-scopes corresponding to the red-

dashed lines in Figure 5.28, 5.30 and 5.32.  Theses A-scopes show that the SNR at the 

channel ice bed is only about 3dB for cross flight 1 and 2, and 4 dB higher for cross 

fight 3. The ice thickness is about 2.7 km for cross flight 1 and 2 and 2.5km for cross 

flight 3. These are the first ever radar soundings of the deepest parts of the 

Jakobshavn channel and match with seismic measurements [73]. 
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Figure 5.32 and Figure 5.34 clearly show in the channel the large amount of 

signal attenuation, which is one of the major challenges in sounding fast-flowing 

glaciers like Jakobshavn. The received signal as a function of depth is compared at 

two locations in Figure 5.32: (1) outside the channel marked with the red-solid line 

and (2) in the channel marked with the red-dashed line. Figure 5.34 is the A-scope 

comparison that indicates the in-channel bed return is 70 dB lower than that for 1-km 

thick ice outside the channel. The total thickness of ice in the channel is about 2.5 km. 

Thus, the total loss consisting of propagation and return losses is about 70 dB for 1.5 

km thick ice in the channel in contrast to the 60 dB combined loss reported by Paden 

[74] for more than 3-km thick ice in the interior of an ice sheet. The very high loss 

might be from warm ice near the bed, high return loss due to impedance matching 

effect caused by increase in ice temperature as a function of depth near the bed, and 

additional scattering loss from volume inclusions in the ice. 

 

The SAR images from the cross flights provide detailed knowledge of the 

channel’s geometry which is important to understand the glacier’s ice dynamics. 

According to these images, the channel width is about 7 km at the top and narrowed 

to several hundred meters at the bed. It is analyzed that the topographic effects of the 

channel’s narrow width and large depth may increase the geothermal heat flux by as 

much as 50% that is supplied to the basal ice to facilitate fast flow [64]. 
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Figure 5.35 is the SAR image from the flight line along the channel on May 

29, 2006. The channel bed is clearly mapped from 60 km to 130 km of the calving 

front. It is observed that there are two distinct, although weak, echoes for the first 40 

km shown in the image: one from the bed and the other from an interface located 

between 200 m and 500 m above the bed.  Measurements of the temperature adjacent 

to and in the channel indicated that there might be 200-500 m of temperate ice at the 

base of the glacier [75-77]. The return above the bed in the radar image might be 

from the cold-temperate ice interface.  

 

Finally Jokobshavn thickness profile and elevation is given in Figure 5.36 

combining the along, cross flight lines radar data and the NASA Airborne Thematic 

Mapper data. In the figure, the thickness below the sea level are plotted in blue 

vertical lines and the thickness above the sea level are plotted in light gray vertical 

lines. 
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Chapter 6: Ice Surface Clutter Reduction 
 
 
 

6.1 Introduction 

Ice-sounding radars usually have a widebeam antenna pattern because they 

use VHF/UHF frequencies to achieve deep penetration into ice. Although the 

direction of measurement is at nadir, part of the transmitted energy illuminates ice 

surface at large incidence angles. When the surface is smooth, this energy is reflected 

away from radar receivers in the specular direction. When the surface becomes rough, 

some of the energy is backscattered toward the receivers and this backscattered signal 

can mask weak echoes from the internal layers and ice bed that arrive at the same 

time at the receivers. These undesired off-nadir signals are called clutter.  

 

Across-track clutter is a big limiting factor in sounding outlet glaciers since 

the ice surface is heavily crevassed as shown in Figure 1.3 and Figure 1.4 in Chapter 

1. In radar echograms, strong along-track ice surface clutter often forms slant streaks 

when the airplane is either approaching or leaving the clutter source. Because of this 

aircraft motion, the along-track clutter has Doppler shift and thus can be easily 

removed by Doppler or SAR processing. On the other hand, across-track clutter does 

not have Doppler shift, one has to make use of other techniques suppress it. In 

reference [78], two methods are used together to remove the surface clutter in the data 

collected by an incoherent-pulsed airborne radar at the Dry Valleys, Antarctica. The 

first method simulates surface echoes using aircraft position, the modeled radar 
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antenna pattern and the surface digital elevation model (DEM). The simulated data 

are compared with measured data to identify echoes from the surface. The second 

method migrates significant echoes in the radar data to surface and maps them onto 

both the DEM and optical imagery to identify candidate surface returns. These 

methods are critically dependent on having a good model of surface topography and 

are not applicable to outlet glaciers because the crevassed surface changes over time. 

Reference [79] proposes a repeat-pass method for a P-band space-borne radar to 

suppress ice surface clutter. This method uses the geometry of several passes to 

synthesize a sparse array and puts nulls in the direction of clutter. The method 

requires parallel flight paths, which are very difficult to be guaranteed for airborne 

radars. Reference [80] comes up with a concept of interferometric filtering for clutter 

reduction based on the fact that the basal fringes in the near-nadir direction vary much 

faster with cross-track distance than fringes from the clutter generated at large cross-

track distances. Raney suggests the use of polarimetric selectivity for suppressing 

cross-track clutter in a sounding radar in two ways: (1) transmitting full-beam circular 

polarization and separating the desired signal of interest from the clutter based on the 

different signal and clutter polarizations, and (2) transmitting and receiving circular 

polarization at the radar's nadir and elliptical polarization at the radar's off-nadir 

regions and filtering out the elliptical polarization [81].   

 

Since MCRDS radar uses a small linear-array for cross-track ice clutter 

suppression, Reference [82] studied two beamforming techniques based on linear 
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array theory.  The first is the data-dependent Minimum Variance Distortionless 

Response (MVDR) method and the second is a data-independent null-steering method 

in which the DOAs (direction of arrival) of surface clutter from left and right are 

assumed known for a given depth and two nulls are placed in the DOAs to cancel the 

clutter. It is found the MVDR method works well when good estimate of clutter 

DOAs can be obtained from data statistics. High clutter-to-noise ratio or enough 

number of array elements is required to get a good estimate of clutter DOAs. 

However, for weak echoes of deep layers or regions of outlet glaciers where the ice 

bed echoes are very weak, even weak clutter can mask the desired signals. In 

addition, the number of array elements is limited by the aircraft wingspan for airborne 

radar. In order to make the data-independent method work, careful aircraft motion 

compensation and channel equalization must be performed to ensure deep nulls and 

accurate null placements.  

 

This chapter will firstly briefly describe the beamforming theory of linear 

array, presents some results from applying the above two clutter suppression methods 

and then describes a beam-spaced clutter suppression method that does not need to 

accurately estimate clutter DOAs and null placements. This method uses 

beamforming techniques to estimate the clutter power profile from data and then 

remove the clutter by subtracting it from the data. This method works in many clutter 

scenarios.  

 



 145 

6.2 Beamforming Theory of Linear Array 

Consider a linear-array of N  identical elements with uniform spacing d  

along y-axis as shown in Figure 6.1. Assume the array is in the far field of sounding 

targets, so the signals from targets can be thought as plane wave fronts impinging on 

the array. For a homogeneous media, the wavefront from a target at direction θ  

arrives at the N th element first and the first element last. The progressive phase lead 

of the n th element with respect to the )1( −n th element 1 is 

θφ sinkd=                                                                                       (6.1) 

where k  is the wave number. The angle θ  is called the direction of arrival (DOA) in 

beamforming theory.  

 

 

 

 

 

 

 

 

 

 

Figure 6.1: Geometry of Linear Array 
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According to antenna theories [83], the field of the array can be written as the 

multiplication of the field of the first element and the array factor, which is 

)2/sinsin(
)2/sinsin(

)2/sin(
)2/sin( 2/sin)1(2/)1(

1

)1(

θ
θ

φ
φ θφφ

kd
NkdeNeeAF kdNjNj

N

n

nj −−

=

− ===�    (6.2) 

The power gain of the array is the square of the array factor.  

 

The element spacing of a linear-array has to be small enough to avoid grating 

lobes and aliasing signals. It can be observed from the above equation that the array 

factor has maximums equal to N  when πθ mkd ±=2/sin  or dm /sin λθ ±= , where 

m  is an integer and λ is the wavelength. The maximum at nadir, 0=θ , is the desired 

mainlobe and the other maximums are undesired and called grating lobes. Obviously 

the condition to avoid grating lobes is λ<d .  From the point of view of spatial 

sampling [84], one can think of the linear array as sampling the wavefront at a spatial 

frequency of d/1 . Since the spatial frequency of the wavefront along the array 

is λθ /sin , similar to Shannon’s theorem for discrete-time sampling, in order to avoid 

aliasing the spatial sampling frequency has to satisfy 
λ

θsin21 ≥
d

 which reduces to 

2λ≤d  for �� 9090 ≤≤− θ . Since smaller spacing than 2/λ  only provides 

redundant information and conflicts with the desire to have as much aperture as 

possible for a fixed number of array elements, the spacing of a linear array is 

generally set to 2/λ . 
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Figure 6.2: Beamforming Operations 

 

Figure 6.2 illustrates the basic operations of beamforming where signals from 

each element )(1 tx , )(2 tx ,…, )(txN  are multiplied respectively by complex weights 

*
1w , *

2w ,…, *
Nw  and summed to form the array output )(ty . The complex weights are 

determined in such a way that the signals from a particular direction of interest are 

emphasized and the ones from other directions are suppressed. Thus a beamformer 

can be thought as a spatial filter similar to a frequency filter for temporal signals. In 

vector notation, a beamformer can simply be written as 

)()( tty H xw=                                                                                   (6.3) 

where 

T
Nwww ],...,,[ 21=w                                                                         (6.4) 

T
N txtxtx )](),...,(),([ 21=x                                                                (6.5) 

*
1w  

*
2w  

*
Nw  

)(1 tx

)(2 tx

)(txN  

�  � )(ty
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and superscripts T and H denote the transpose and complex conjugate transpose of a 

vector or matrix. For a linear-array, the steering vector to the direction of interest, θ , 

is defined as 

TNjjj eee ],...,,,1[)( )1(2 φφφθ −=S                                                         (6.6) 

and the beamformer response is  

)()( θθ Sw Hg =                                                                                (6.7) 

The square of the response magnitude 2)(θg  is known as the beam pattern, which is 

usually used to evaluate the performance of a beamformer. 

 

From simple to complex, there are three commonly used beamforming 

techniques: 1) conventional beamformer; 2) null-steering beamformer; 3) optimal 

beamformer [85].  A conventional beamformer steers the array in a particular 

direction 0θ  known as look direction and its mean output power is the same as the 

signal power from the look direction. The weights of conventional beamformer is 

N
)( 0θSw =                                                                                        (6.8) 

where )( 0θS  is the steering vector to the look direction. Obviously the weights of 

conventional beamformer have equal magnitude.  A null-steering beamformer has a 

unity response in the look direction 0θ and places zero response at clutter or interferer 

directions 1θ , 2θ ,…, kθ . This property can be written in the following simultaneous 

equations: 
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gw =CH                                                                                           (6.9) 

where C  is the steering matrix and g  is the response vector 

)](),...,(),([ 10 kC θθθ SSS= ,       2−≤ Nk                                      (6.10) 

T]0,...,0,1[=g                                                                                   (6.11) 

The weight vector of the null-steering beamformer is obtained by solving equation 

(6.9) and turns out to be:  

1)( −= HHTH CCCgw                                                                     (6.12) 

The objective of an optimal beamformer is to maximize the signal-to-interference-

plus-noise ratio (SINR). The optimal weights are of the following form: 

)( 0
1 θα SRw −
+= ni                                                                              (6.13) 

where ni+R  is the interference-plus-noise correlation matrix, α  is a constant that can 

be set to satisfy some constraint. When the look-direction distortionless response 

constraint 

1)( 0 =θSw H                                                                                    (6.14) 

is imposed, the optimal beamformer is known as MVDR beamformer which has been 

discussed in Chapter 4. Substituting equation (6.13) in (6.14), it can be derived that 

)()(
1

0
1

0 θθ
α

SRS −
+

=
ni

H                                                                     (6.15) 

The optimal weights for MVDR beamformer are obtained by substituting the above 

equation in (6.13): 
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)()(
)(

0
1

0

0
1

θθ
θ

SRS
SRw −

+

−
+=

ni
H

ni                                                                    (6.16) 

 

6.3 Ice Clutter Reduction Algorithms 

Three clutter reduction algorithms have been studied at CReSIS based on 

beamforming theories: 1) data-dependent MVDR algorithm, 2) data-independent 

null- steering algorithm and 3) clutter-power estimation algorithm. Chapter 4 presents 

the FMV algorithm for RFI suppression, an implementation of MVDR algorithm in 

frequency domain. The implementation can be used the same way for ice clutter 

suppression. Therefore this section will only present the implementation of the second 

and the third algorithms. 

 

6.3.1 Data-Independent Null-Steering Algorithm 

The detail implementation of the data-independent null-steering algorithm 

given here is complimentary to the discussion by Chandini [82]. The clutter scenario 

is illustrated in Figure 6.3, in which the desired nadir echo 2 and the undesired 

surface echoes from 1 and 3 arrive at the receiver simultaneously. When the power of 

signals from 1 and 3 is stronger than 2, the clutters will mask the signals from nadir.  

The null steering method assumes the DOA of ice surface clutter be calculated 

according to  

)(cos 1

R
h−±=θ                                                                                (6.17) 
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where h  is the aircraft height above the ice surface, and R  is the range of the ice 

surface clutter on both sides to the receiver. This range is equal to the equivalent 

range from the ice bed to the receiver that consists of two components: 

dhR iceε+=                                                                                (6.18) 

where d  is the ice bed depth and iceε  is the dielectric constant of ice. 

 

 

 

 

 

 

 

 
Figure 6.3: Illustration of Surface Clutter 

 
 

After the array data matrix ),,( NMLX ( NML ,, are the numbers of range 

bins, along track snapshots and array elements) has gone through SAR processing 

with motion compensation and channel equalization, the procedures of the null 

steering algorithm are: 

1) Starting from the a range bin 0i which is either at the ice surface or at some 

depth below the surface, calculate the range R  and DOA of ice surface clutter for 

each deeper range bins using equations (6.17) and (6.18) 

iicei dhR ε+=                                                                               (6.19) 

d

R 
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� 
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)(cos 1

i
i R

h−
± ±=θ                                                                             (6.20) 

where Liii ,...,1, 00 += . 

2)  Calculate the optimal weights using equations (6.1), (6.6) and (6.10) ~ 

(6.12) 

)](),(),0([ +−= iiiC θθ SSS ,                                                               (6.21) 

1)( −= H
ii

H
i

TH
i CCCgw                                                                    (6.22) 

3) Combine the array data with the optimal weights for each range bin 

��
= =

=
L

ii

M

j

H
i jiXiY

0 1
):,,(:),( w                                                              (6.23) 

where the colon denotes the inside summation applies to the same range bin for all 

snapshots. 

 

6.3.2 Clutter-Power Estimation Algorithm 

While both the MVDR and the above data-independent null-steering 

algorithms are element-spaced processing where signals from each element are 

weighted and summed to generate the array output, the clutter power estimate 

algorithm presented in this section is beam-spaced processing that includes two stages 

as shown in Figure 6.4. The first stage is to form two beams )(1 ty and )(2 ty  in 

element space.  The first beam )(1 ty  is the main beam that is formed by choosing the 

weights *
1u , *

2u  ,…, *
Nu  to point the beam to nadir and with clutter partly suppressed. 

The second beam )(2 ty  is the clutter beam that is formed by choosing the weights *
1v , 
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*
2v , … , *

Nv  to put a null at nadir and to have maximum gains in the direction of 

clutter. The second stage is to subtract the weighted clutter beam from the main beam 

after properly compensating for the gain difference between the two beams based on 

power profiles estimation.  According to Brookner [86] and Gabriel [87], in situations 

where clutter directions are known (which is the case for ice surface clutter), the 

beam-spaced processing may lead to more efficient clutter cancellation. In presence  

 

 

 

 

 

 

Figure 6.4: Beam-Spaced Processing 
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of beam pointing errors (this is the case for airborne radar arrays resulting from not 

completely-compensated aircraft motion, channel mismatch, mutual coupling and 

wing flexure, etc) beam-spaced processing is generally more robust and outperforms 

element-spaced processing [88]. 

 

Assuming the array data matrix ),,( NMLX has gone through SAR 

processing with motion compensation and channel equalization, the detail 

implementation of the clutter power estimation algorithm are described below: 

 

1) Form the main beam using weights determined by Hanning function 

)1(1 hu = , )2(2 hu = ,…, )1( += Nhun                                           (6.24) 

)]
2

2cos(1[5.0)(
+

−=
N

nnh π , 2,...,1,0 += Nn                              (6.25) 

where the order of Hanning function is the number of array element plus 2. We 

discard the first and the last zero Hanning coefficients to avoid large power loss of 

signals since we only have a small number of array element.  

 

2) Form the clutter beam using the null-steering beamformer described by 

equations (6.9) ~ (6.12). The look direction is the null direction and the nulls are 

placed around nadir. 
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3) Determine the weights applied to the clutter beam to compensate the gain 

difference of the main beam and clutter beam. The mean power-versus-depth profiles 

of the two beams are first estimated and the weights as function of depth are 

determined as the ratio of the two power profiles. 

�

�

=

== M

i

HH

M

i

HH

NiLXNiLX

NiLXNiLX
w

1

1

),,(),,(

),,(),,(

vv

uu
                                              (6.26) 

where the summation is performed in the along-track direction. 

4) Subtract the weighted clutter beam from the main beam to get the output of 

the beam-spaced array processing with clutter reduced. 

)()()( 21 tywtyty −=                                                                    (6.27) 

 

6.4 Data Processing Results 

6.4.1 Results of Applying FMV and Null-Steering Algorithms on Sea Ice Data 

The sea ice data used in Chapter 5 to verify the SAR algorithm is also an ideal 

data set to test the ice-surface clutter reduction algorithms. The sea ice on both sides 

along the aircraft flight path can be taken as surface clutter. For FMV algorithm, the 

DOA of sea ice can be well estimated from the data because the reflected echoes from 

the sea ice are very strong. For the null steering algorithm, the DOA of clutter can be 

accurately computed through the known sea ice location. In addition, these targets can 

be used to calibrate the receiver channel mismatches.  
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(a)                                                                          (b) 

Figure 6.5: Sea Ice Clutter (a) Locations; (b) Clutter-to-Noise Ratio 

 

In the SAR image of Figure 5.23, forty pieces of high clutter-to-noise ratio 

(CNR) are selected as clutter targets. Figure 6.5(a) illustrates the targets locations. 

The horizontal axis is the along track distance and the vertical axis is the range from 

the sea ice to the radar receiver. Figure 6.5(b) shows the CNR of these sea ice clutter 

targets. The minimum CNR is 19.43dB and the maximum is 58dB. The mean CNR of 

the forty targets are 38.42dB.   

 

Figure 6.6 and 6.7 are receiver channel amplitude and phase mismatches 

estimated from each piece of the selected sea ice, taking the first array element as the 

reference. According to Figure 6.6, the mean values of the amplitude mismatch are 

[ 141312 /,/,/ eeeeee ] = [0.8960, 0.9842, 0.6785]. The standard deviations of the 

amplitude mismatch estimates are 0.047, 0.055 and 0.034 around the mean values. 

According to Figure 6.7, the mean values of the phase mismatch are 
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[ 141312 ,, eeeeee −−− ] = [-20.92, -34.74, -116.13] degrees. The standard deviations 

of the phase mismatch estimates are 2.26, 3.41 and 3.18 degrees around the mean 

values. The mean values of the amplitude and phase mismatch estimates are used in 

channel equalization prior to applying the clutter reduction algorithms to the sea ice 

data. 
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Figure 6.6: Channel Amplitude Mismatch Estimates from Sea Ice 
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Figure 6.7: Channel Phase Mismatch Estimates from Sea Ice 



 158 

Figure 6.8 shows the sea ice echogram after clutter reduction using the null 

steering algorithm, and Figure 6.9 is the clutter reduction result from FMV algorithm. 

Comparing to the echogram in Figure 5.22, the clutter reduction by both algorithms is 

obvious.  
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Figure 6.8: Sea Ice Echogram after Clutter Reduction by Null Steering Algorithm 
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Figure 6.9: Sea Ice Echogram after Clutter Reduction by MVDR Algorithm 
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We evaluate the performance of a clutter reduction algorithm by comparing 

the clutter power of the algorithm output with that of combining the array data with 

uniform weights or Hanning weights. Figure 6.10 shows the receive beam patterns of 

MCRDS P-3 of uniform weights and Hanning weights when the four channels are 

identical without any mismatches. According to the beam patterns, the relative clutter 

power level will reduce about 12 dB and 40 dB, respectively, with uniform weights 

and Hanning weights when the DOA of the clutter is greater than 70 degrees.  
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Figure 6.10: Receive Beam Patterns of MCRDS P-3 with Weighting Functions 

 

Figure 6.11 shows the clutter reduction performance of Hanning weighting, 

the null steering algorithm and the FMV algorithm by plotting the power reduction 

for each sea ice target compared to the normalized power from uniform weighting. It 

turns out that the mean value of the clutter reduction is 20.58dB, 28.57dB and 

34.30dB respectively by Hanning weighting, the null-steering algorithm and the FMV 

algorithm. The arrows pointing to the peaks in the A-scopes of Figure 6.12 indicate 
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Figure 6.11: Clutter Reduction Performance of Null Steering Algorithm 
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Figure 6.12: Clutter Reduction Performance of FMV Algorithm 
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the sea ice clutter from different DOA (different depth in the figure). This figure 

illustrates the power reduction of these peaks by the Hanning weighting and the FMV 

algorithm. The performance of Hanning weighting and the null-steering algorithm is 

more limited by the variations of the channel mismatches. The FMV algorithm is 

more effective in this case than the null-steering algorithm. The FMV algorithm uses 

the specular ocean surface reflection to calculate the nadir steering vector, and uses 

strong clutter signals to calculate the DOA. It is therefore more adaptive to the 

channel mismatches’ variations, residual aircraft motion effects etc. 

 

In most cases the ice clutter encountered in field survey is distributed as 

shown in Figure 6.16. Both the FMV and null steering algorithms are not very 

effective for distributed clutter. In the sea ice case, the clutter power dominates in 

specific directions as shown by the A-scope in blue in Figure 6.12, the FMV 

algorithm is able to place deep nulls in these directions according to the DOA 

estimation to reduce the clutter power effectively. On the other hand, for ice clutter 

with distributed power profile as shown by the red plot in Figure17, It is impossible 

for FMV to place deep nulls in all the clutter directions. In addition the weak ice bed 

echoes and non-specular reflection from rough ice surface prevent FVM from 

accurately estimating the steering vector. Without high-SNR ice surface or ice bed 

echoes, channel mismatches cannot be accurately estimated and the null-steering 

algorithm fails to form a deep null and accurately place the null at the clutter angles 

when channel mismatches cannot be well compensated. 
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6.4.2 Results of Applying Clutter-Power Estimation Algorithm on Ice Data 

Figure 6.13 is a SAR image from a single element of MCRDS P-3. Most part 

of the ice bed in this image is masked by ice clutter. Only a short portion starting 

from 8km to the end is barely visible at depth of 2km. The data were collected in 

Greenland on Sept. 17, 2007. The file numbers are 890-894. The aircraft was flying 

south along a straight line from )'4.465,'5.3844( ��−  to )'9.365,'3.4844( ��−  at an 

average height of 1386 m. The DOA of the surface clutter at the depth of 2 km is 

about 73.7 degrees according to the equations (6.19) and (6.20). 
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Figure 6.13: SAR Image with Ice Clutter 

 

Figure 6.14 shows the receive beam patterns of MCRDS P-3 used in the 

clutter power estimation algorithm. These patterns are ideal assuming all channels are 

identical. The beam pattern of Hanning weighting is the same with the one in Figure 
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6.10, and is used to form the main beam that keeps signals from nadir and rejects 

clutter from both left and right sides. The beam pattern in red-dash line is obtained by 

setting the look direction at 60 degrees and putting two nulls at -2 and 2 degrees in 

equations (6.9)~(6.12). This beam pattern is used to form the clutter beam that rejects 

nadir signals and keeps clutter signals from angles greater than 60 degrees. 
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Figure 6.14: Receive Beam Patterns of MCRDS P-3  

Used in Clutter Power Estimation Algorithm 

 

Figure 6.15 shows the image of the main beam from combining the four 

channel data with the Hanning weighting. The clutter is reduced by about 20 dB, and 

some sub-surface layers and most part of the ice bed become visible. But the clutter 

around the ice bed is still visible. Figure 6.16 shows the image of the clutter beam 

after applying the beam pattern with nulls at �2± .  It is observed that the short potion 

of the visible ice bed in Figure 6.13 is removed and the ice clutter is left.  The 
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averaged power profiles are calculated for the main beam and clutter beam as show in 

Figure 6.17. The power profile in blue is from the main beam and the two small peaks 

around 2km depth are the result of ice bed echoes. The power profile in red is from 

the clutter beam and the ice bed signals are totally masked. The weights as a function 

of depth in equation (6.26) is determined as the ratio of the main power profile over 

the clutter power profile in Figure 6.17. The clutter beam of Figure 6.16 is then 

multiplied by the weights and is subtracted from the main beam of Figure 6.15 

according to equation (6.27). Figure 6.18 shows the image after the beam subtraction. 

On average the subtraction reduces clutter by 10.3dB. The A-scopes of Figure 6.20 

are from the 700th record around 2.8 km in Figure 6.15 and 6.18, and illustrate the 

clutter reduction compared to Hanning weighting. Finally adaptive Wiener filter is 

applied to reduce the additive white noise to further enhance the visibility of the ice 

bed as shown in Figure 6.19.  
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Figure 6.15: Image of Main Beam 
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Figure 6.16: Image of Clutter Beam 
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Figure 6.17: Averaged Power Profiles of Main and Clutter Beams 
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Figure 6.18: Clutter Reduction by Beam Subtraction 
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Figure 6.19: Bottom Enhancement by Wiener Filter 
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Figure 6.20: A-scope Illustration of Clutter Reduction by Beam Subtraction 

 
 

Figure 6.21 shows another clutter case with the P-3 aircraft flying at a lower 

altitude around 550 m.  The data were collected on September 23, 2007 over 

Greenland. The aircraft was flying south from )'7.2166,'3.5138( ��−  

to )'3.2166,'1.339( ��− . The distance is 3012 m. The file numbers are 118-119. The ice 

bed in this image is completely masked by ice clutter. Figure 6.22 is the result of 

combining the array data by the Hanning weights. The ice bed becomes barely visible 

at depth of around 800 m. In this case, the Hanning weighting only reduces clutter by 

7.2 dB on average compared to uniform weighting.  Figure 6.23 is the result of 

applying the clutter power estimation algorithm. The clutter is reduced further by 9.6 

dB on average and the ice bed become very clear.  
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Figure 6.21: SAR Image with Ice Clutter 
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Figure 6.22: Clutter Reduction by Hanning Weighting 
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Figure 6.23: Clutter Reduction by Beam Subtraction 

 

Figure 6.24 is a SAR image with ice clutter across Jakobshavn channel from a 

single element of MCRDS Twin Otter. The data were collected on May 27, 2006 

when the aircraft was flying across the channel from south )'8.1169,'7.5748( ��−  to 

north )'4.669,'1.5848( ��−  at an average height of 648 m. The file numbers are 170-

174. A small part of the northern channel bank is barely visible at depth of about 700 

m.  

 

Figure 6.25 shows the receive beam patterns of MCRDS Twin Otter used in 

the clutter power estimation algorithm. Unlike in the MCRDS P-3 case, the beam 

pattern of Hanning weighting in green only reduces at most by 10 dB compared to 
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uniform weighting in blue for clutter at DOA larger than 60 degrees. Similar to the 

MCRDS P-3 case, the clutter beam pattern in red-dash line is obtained by setting the 

look direction at 60 degrees and putting two nulls at -2 and 2 degrees in equations 

(6.9)~(6.12).  

 

Figure 6.26 shows the image of the main beam from combining the five 

channel data with the Hanning weighting. The channel’s north bank becomes clear 

because the clutter around it is reduced by about 20 dB as shown by the A-scopes in 

Figure 6.28. The ice surface multiple masked by ice clutter becomes clear and the 

south bank at  the depth of  about 1.3 km on the left of the SAR image is also brought 

up as the result of clutter reduction.  Figure 6.27 shows the image after applying the 

clutter-power estimation algorithm. On average the incoherent beam subtraction 

reduces clutter further by 7.2dB in this case. This improvement is visible by 

comparing the image portions deeper than 1.5 km in Figures 6.26 and 6.27 and is also 

shown by the A-scope differences between green and red ones the in Figure 6.28. 

However, the channel bed is still not visible because of the huge in-channel ice 

attenuation.  

 

Figure 6.29 is a SAR image across Jakobshavn channel near Jakobshavn 

calving front from a single element of MCRDS P-3. The data were collected on 

September 21, 2007 when the aircraft was flying across the channel from north 

)'1.1069,'0.1349( ��−  to south )'1.469,'4.1349( ��−  at an average height of 835m. The  
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Figure 6.24: SAR Image across Jakobshavn Channel with Ice Clutter 
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Figure 6.25: Receive Beam Patterns of MCRDS Twin Otter  

Used in Clutter Power Estimation Algorithm 
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Figure 6.26: Image of Main Beam across Jakobshavn Channel 
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Figure 6.27: Clutter Reduction across Jakobshavn Channel by Beam Subtraction 
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Figure 6.28: A-scope Illustration of Clutter Reduction by Beam Subtraction 

 

file numbers are 125-129. The ice bed in the channel is totally invisible and seems 

masked by across-track ice surface of uniformly distribution that is the case the 

clutter-power estimation algorithm effectively applies to. Figure 6.30 Figure shows 

the image of the main beam from combining the data of four channels with Hanning 

weighting. Figure 6.31 is the SAR image with nulls placed around nadir direction. 

Figure 6.32 is the image after beam subtraction according to the clutter-estimation 

algorithm. Figure 6.33 shows the A-scope comparison at the distance of 2.865m 

among the data from single element, Hanning weighting and the beam subtraction. It 

is observed that the A-scope from Hanning weighting is almost the same as the one of 

the single element. Although the A-scope of beam subtraction reduces power about 

8.3dB on average, the trend keeps the same without change.  
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For across-track ice surface clutter at large angles, we usually can observe 

obvious clutter reduction by just uniform or Hanning weighting as shown in previous 

examples. However, in this case and other cases near Jakobshavn calving front, we 

have not observed obvious clutter reduction from any array processing, including 

uniform weighting, Hanning weighting, null-steering and MVDR algorithms. This 

raises a question: are the dominant signals over calving front that mask the ice bed 

really the ice surface clutter from across-track direction at large angles as we assumed? 

There might be two possibilities that result in the failure of any array processing. The 

first possibility is that the dominant signals are from across-track volume 

backscattering within the main beam of the receive array because of the increased 

water content in ice close to calving front. Since the ice surface is heavily crevassed 

and the topography is not flat at calving front, the second possibility is that the 

dominant clutter-like signals are from surface slope and multipath scatterings that are 

not accounted in SAR processing. Figure 6.34 is pasted from the posted SAR images 

on CReSIS website, and seems to support the argument with the very apparent 

correlation between the vertical clutter steaks and the ice variable surface topography. 
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Figure 6.29: SAR Image near Jakobshavn Calving Front  
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Figure 6.30: Image of Main Beam near Jakobshavn Calving Front 
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Figure 6.31: Image with Null at Nadir near Jakobshavn Calving Front 
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Figure 6.32: Image after Beam Subtraction near Jakobshavn Calving Front 
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Figure 6.33: A-scope Comparison for Data near Jakobshavn Calving Front  

 

 

Figure 6.34:  Correlation of Vertical Clutter Streaks with Surface Topography   
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Chapter 7:  Summary and Recommendations 
 
 

7.1 Summary 

The MCRDS airborne radars are developed at CReSIS to map the ice-sheet 

bed, deep internal layers and sound fast-flowing outlet glaciers with its high 

sensitivity and array processing ability for clutter reduction. This dissertation covers 

the waveform design, the development and implementation of SAR and clutter 

reduction algorithms for MCRDS radars to achieve range low-sidelobes, improve 

SNR and reduce clutter.  

 

The sidelobes of strong ice-bed echoes may mask or be misinterpreted as 

returns from deep layers. Based on a simulation with GRIP-ice model, a low sidelobe 

level of –60dB is required to reliably detect the weak echoes of deep layers that are 

close to the ice bed. Chapter 3 of this dissertation explores two kinds of low-sidelobe 

waveforms. The first waveform is tapered linear-chirp and the second one is 

complementary-coded waveforms. It is known for a linear-chirp signal that its 

rectangular-like spectrum results in high-level sidelobes in time or range domain. 

Mismatched filter with various window functions such as Hanning, Blackman and 

Dolph-Chebyshev is effective in reducing close sidelobes but cannot reduce the 

distant sidelobes to the required low level. The distant sidelobes are attributed to the 

Fresnel ripples in the linear chirp’s spectrum. Since the sharp rise and fall of the 

chirp’s envelope at the start and end result in the Fresnel ripples, properly tapering the 
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waveform edges will smooth the Fresnel ripples and reduce distant sidelobes. The 

achievable low level of sidelobe is also dependent on the chirp’s time-bandwidth 

product. Dolph-Chebyshev window is chosen for mismatched filter as it has the 

minimum mainlobe width for a specified constant sidelobe level. The PSL and ISL as 

a function of different taper ratios are calculated for the 3-us (TB=60) and 10-us 

(TB=200) chirps used by MCRDS radars. The lowest PSL is -50 dB and -70 dB, 

respectively, for the tapered 3-us and 10-us chirp waveforms with optimal taper ratio. 

The sidelobe levels are first verified with laboratory measurements. The effects of the 

actual waveform amplitude and phase distortion on sidelobes are evaluated.  The 

sidelobe levels are then verified with the real-survey data over Greenland in 2007 

using high-SNR specular echoes from ocean surface, smooth ice surface and bottom. 

The lowest sidelobe level verified is about -64 dB. This is for the first time for ice-

sounding radars to report such low sidelobes from real data. Theoretically 

complementary-coded waveforms cancel out all sidelobes. But unavoidable 

waveform amplitude and phase mismatches because of imperfectness of hardware 

will result in sidelobes. According to simulation the amplitude and phase mismatches 

between two complementary waveforms should not exceed 1% and �5.0  if -60-dB 

sidelobe level is needed. In laboratory measurements, sidelobe levels of -72.56 dB 

and -64.89 dB are achieved with two different high-precision waveform generators. 

32-bit and 80-bit complementary-coded waveforms are designed respectively for the 

low-gain and high-gain modes of MCRDS radars. The sidelobe level is -50 dB 

according to laboratory measurements. The sidelobe level of the complementary 
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waveforms is verified to be -48 dB and -49dB with the real-survey data over 

Greenland in 2008 using high-SNR specular echoes from ocean surface, smooth ice 

surface and bottom. This is for the first time for ice-sounding radars using 

complementary waveforms. 

 

Chapter 4 describes three data-preconditioning steps including reference 

function calibration, channel equalization and RFI reduction. Reference function 

calibration is employed to reduce waveform-distortion effects caused by the system 

for maximizing the gain from pulse compression. Well-calibrated reference function 

is needed and can be obtained from elaborate system loopback measurements in 

laboratory for each of transmit channels. The total SNR gain from previous reference 

function calibration for MCRDS Twin Otter is quantified using ice bed echoes at 1.5 

km depth in Chapter 4, and turns out to be about 0.55dB and 1.10dB for its low and 

high gain modes. The gain may look trivial, but SNR improvement of even half dB is 

important in detecting very weak signals like the ones from the deepest ice bed in 

Jakobshavn glacier.  Channel equalization is a necessary step for effective array 

processing and clutter reduction because most widely- used array theories assume 

identical channels. High-SNR echoes from ocean surface, smooth ice surface and 

bottom are used to estimate channel mismatches. Channel mismatches of MCRDS P-

3 are found to be varying with a random component superimposed on constant values. 

Constant mismatches can relatively easily be compensated to obtain some SNR 

improvement of nadir signals in array processing. But the random mismatches make 
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it difficulty to perform accurate beamforming and null placement for clutter reduction. 

Monte Carlo simulation is carried out in Chapter 4 to evaluate the random amplitude 

and phase mismatch effects on null depth and location for MCRDS P-3’s array 

configuration. It turns out 1% of random amplitude mismatch will result in �3 random 

variations in null locations around 
�

70  and 9.5-dB random variations in null depth. 

Random phase mismatch of �1  will result in �2.6 random variations in null locations 

around 
�

70  and 9.5-dB random variations in null depth.  Part of the data collected by 

MCRDS P-3 in 2007 are severely degraded by RFI from laser altimeter and an 

Ethernet cable used to download data while the radar was in operation. Anechoic 

chamber measurements show the radar sensitivity is reduced by 15 dB by the RFI of 

the Ethernet cable.  In Chapter 4, various methods for RFI suppression are reviewed 

and an implementation of MVDR algorithm in frequency domain originally used in 

acoustic application is employed and modified to reduce the RFI effects in the 

contaminated data collected by MCRDS P-3. This implementation first estimates the 

steering vector using strong echoes of ice surface or bottom. The optimal weights are 

then calculated with the steering vector and the array correlation matrix to combine 

array data to reduce the RFI by spatial filtering. Details of the implementation are 

described in Chapter 4. The RFI is suppressed by 12 dB in applying the algorithm to 

ice data. As a result, deep ice layers that are weak or invisible because of RFI are 

either enhanced or brought up.  
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 MCRDS radars employ SAR processing to improve the SNR of ice layers and 

bottom, to refine the azimuth resolution and reduce the along-track ice surface clutter. 

In Chapter 3, a SAR algorithm based on wavefront reconstruction theory is 

implemented in frequency and wave-number domains. This algorithm takes 

advantages of FFT and is thus much faster than time domain methods. The refraction 

at the air-ice interface and any internal-ice layer interface is handled by using 

different wave propagation velocities across the interface. The synthetic aperture 

length is controlled by the beamwidth of K-filter that is actually an idealized antenna 

radiation pattern filter implemented in wave number domain. The aircraft motion 

causes defocusing and topographic deformations of ice surface, layer and bed. In 

Chapter 5, a narrow beamwidth motion compensation algorithm is derived and 

implemented in which the height variations of each antenna element from the 

aircraft’s translational and rotational motion are computed using GPS and INS data. 

The motion compensation algorithm is verified with ice data in terms of the 

correction of topographic deformation and SNR improvement. The SAR algorithm is 

carefully verified with both simulation data and sea ice data in terms of SNR and 

azimuth resolution improvements as a function of aperture length.  The data collected 

by MCRDS Twin Otter over Jakobshavn glacier in 2006 are processed with the SAR 

algorithm. Very weak echoes from the deepest parts of the channel are detected for 

the first time using large synthetic aperture length in radar soundings and the depths 

match with seismic measurements. 
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In addition to the big attenuation encountered in sounding fast-flowing outlet 

glaciers, across-track ice clutter is another challenge that is being addressed with 

great efforts at CReSIS. Chapter 6 first reviews basic beamforming theories of linear 

array and then explore three clutter reduction algorithms: 1) data-dependent MVDR 

algorithm, 2) data-independent null-steering algorithm and 3) clutter power 

estimation algorithm. Similar to RFI, ice clutter is actually another kind of 

interference. Therefore the FMV algorithm, the frequency-domain version of MVDR 

in Chapter 4 for RFI reduction is also used to reduce ice clutter. The data-independent 

null-steering algorithm first calculates the angle of ice surface clutter for each depth 

bin according to the geometry that the clutter signals take the same time as the ones 

from depth to arrive at the receivers. Optimal weights with nulls on both left and right 

at the calculated angle are then used to sum the array data to reduce clutter. When the 

first two algorithms apply to sea ice data, they reduce clutter signals from sea ice by 

34.30 dB and 28.57 dB. The FMV outperforms the null-steering algorithm as it is 

optimal and adaptive using data statistics. In the case of sea ice, each piece of sea ice 

is close to a point target with high clutter-to-noise ratio and is used to calculate 

accurate DOA estimates of clutter signal and channel mismatches. For the FMV 

algorithm, the high-SNR specular echoes from ocean surface also provide a very 

good means to calculate the steering vector. Most important, since the clutter power 

concentrates in few specific directions, the FMV algorithm is able to place deep nulls 

accordingly to reduce the clutter effectively. For the null-steering algorithm, the 

accurate DOA and channel equalization assure the nulls’ placement precision and 
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depth in the sea ice clutter case. But both the FMV and null-steering algorithm are not 

very effective when applied on survey data with distributed ice clutter. In the 

distributed ice clutter scenario, the FMV algorithm is not effective because it cannot 

place deep nulls in many directions simultaneously to reduce the distributed power. 

And the null-steering algorithm is limited in the distributed ice clutter scenario 

because no good source is available to estimate the channel mismatches that degrade 

the null’s placement precision and depth greatly. If the clutter is from volume 

scattering, no improvement is possible with both algorithms. Unlike the first two 

algorithms that are element-spaced, the clutter-power estimation algorithm is a beam-

spaced method. It is more robust to channel mismatches and errors in the estimate of 

clutter angle and also applies to volume clutter. There are two stages of the beam-

spaced method. The first stage is in element space to form a main beam and a clutter 

beam. The main beam is formed by choosing weights to enhance the nadir signals and 

with clutter signals partly reduced. The clutter beam is formed by choosing weights to 

put a null at nadir and to have maximum gains in the direction of clutter. The second 

stage is to subtract the weighted clutter beam from the main beam to properly 

compensate the gain difference between the two beams based on power profiles 

estimation. Two clutter scenarios are used to illustrate the effectiveness of the beam-

spaced algorithm. In the first scenario, the aircraft’s altitude is high at 1386 m and the 

clutter-masked depth is deep around 2 km, while in the second case the aircraft’s 

altitude is low at 550 m and the clutter-masked depth is shallow around 800m. In both 

scenarios the beam-spaced algorithm reduces clutter further beyond the reduction by 
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Hanning weighting. The further clutter reduction is around 10.3 dB in the first case 

and 9.6 dB in the second one. Two examples are given for reducing the ice clutter 

over Jakobshavn channel with the beam-spaced method. In the first example, the 

algorithm is able to reduce the ice clutter across the channel by 7.2 dB over the clutter 

reduction by Hanning weights. But the channel bed is still not visible after the clutter 

reduction because of the huge ice attenuation in the channel. The second example is 

the ice clutter near Jakobshavn calving front. The beam-spaced method seems not 

working. Actually any array processing methods we have tried all fail in this case. 

Therefore we should put in more efforts to understand what these clutter-like 

dominating signals are and where they come from. 

 

7.2 Recommendations 

Based on the work of this dissertation, stated below are some conclusions and 

recommendations: 

 

(1) The linear-tapered chirp waveforms prove to have achieved very low 

sidelobe levels and make it possible to detect the weak echoes from deep ice layers 

close to the bed. The sidelobe performance of complementary-coded waveforms is 

more sensitive to and limited by system distortions. Because of the π−0  phase 

shifting, complementary coded waveforms have much wider spectrum and tend to 

interfere with other systems. It was reported that other systems on board were 

interfered when MCRDS-P3 was using complementary-coded waveforms to collect 
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data. The SAR images of complementary-coded waveforms are not as clear as the 

ones of the linear chirp waveforms because of the RFI interference from other 

systems. Therefore, complementary-coded waveforms are not a good option for 

MCRDS radars. 

 

(2)  The implemented SAR algorithm in f-k domain with narrow-beam motion 

compensation performs very well in most data collection scenarios. In the case of 

outlet glacial like Jakobshavn channel, a very long synthetic aperture is desired to 

enhance the much-attenuated nadir echoes while the aircraft has to follow the 

wandering and up-and-down topography. A time domain SAR algorithm like back 

projection algorithm needs to be implemented with three-dimensional widebeam 

motion compensation and slope compensation. Time-domain methods are more 

flexible to incorporate these compensations. 

 

(3) Ice basal SAR images with bed scattering characteristics can be generated 

from the data collected by MCRDS radars with SAR processing and beamforming. 

Figure 7.1 is an example of such images of the ice bed near the south of Thule in 

Greenland. The data were collected by MCRDS-P3 on September 17, 2007. The 

images are generated by combining the four nadir-looking SAR images of its four 

channels with two sets of optimal weights. One set of weights forms a beam looking 

at 30 degrees to the left and suppressing the right signals. The other one forms a beam 

looking at 30 degrees to the right and suppressing the left signals. The top and bottom 
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images in Figure 7.1 respectively cover a left and right area of about 11.5 km (along 

track) by 0.6 km (across track). Some basal areas with strong back scatterings are 

identified in both the left and right images. 
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Figure 7.1: Ice Basal SAR Images by Beamforming 

 

(4)  The random variations in magnitude and phase of channel mismatch are 

the main limiting factor for various clutter-reduction algorithms. The mutual coupling,  

scattering effects of aircraft wing and fuselage and wing flexure combine to result in 

the variations. The mutual coupling and the aircraft wing and fuselage scattering 

effects can be modeled by 3D full-wave electromagnetic field simulation using design 

tools like HFSS. For this purpose, the existing array models of MCRDS radars used 



 188 

in HFSS simulation needs to include the realistic geometry of the wing and fuselage. 

Optimal weights taking into these effects can be calculated for beamforming based on 

the results from reliable HFSS simulations. To resolve the problem of wing flexure, 

acceleration sensors need to be installed on each element of the antenna array to 

measure their movements. The knowledge of position variations of each array 

elements is necessary in both SAR and beamforming processing to obtain the best 

gain. 

 

(5) The beam-based clutter power estimation algorithm works best for the 

clutter scenario when the clutter power profile as a function of depth does not change 

much along track because the algorithm estimate the profile by averaging the ones of  

multiple snapshots of the clutter beam. A moving averaging window may be included 

in the algorithm to make it adaptive to the profile changes along track. On the other 

hand, the algorithm does not make use of the phase information of the main beam and 

clutter beam.  Adaptive and optimal beam-based algorithms with phase information 

that exist in literature worth further exploration for ice clutter reduction. For example, 

if we replace 1y , 2y  and y  in Figure 6.4 with 1y , 2y  and y , the structure is called 

post-beam former interference canceller (PIC) in [85], and the optimal weights to 

minimize the mean output power for PIC are calculated by 

uu
uv

R
Rw H

H
=                                                                                         (7.1) 

The mean output power is 
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uuuvvuvv RRRRwP HHHH /)( −=                                                 (7.2) 

And the performance of PIC is well studied with conventional main beamformer and 

different interference beamformer in the literature. 
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