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ABSTRACT

High-Isolation Antenna Technique for CubeSat-Borne, Continuous-Waveform Radar

by

Logan E. Voigt, Master of Science

Utah State University, 2022

Major Professor: Reyhan Baktur, Ph.D.
Department: Electrical and Computer Engineering

Radar is important in tracking, imaging, and weather prediction applications. As

technology is increasingly miniaturized, there is a push for smaller radar. Research and

exploration in outer space also benefit from small, low-power technologies. The NASA Jet

Propulsion Laboratory’s RainCube was the first successful CubeSat-borne radar. CubeSats

will benefit from additional research on how to further miniaturize radar payloads.

This thesis demonstrates that implementing a continuous-waveform radar on a CubeSat

improves the sensitivity, size, weight, and power consumption of the radar. Integrating the

transmit and receive antennas on the solar panels removes the need for antenna-deployment

mechanisms and preserves space in a CubeSat. The physical separation between the anten-

nas helps to provide the isolation required for continuous-waveform radar. Designing the

antennas with opposite circular polarizations further increases the antenna isolation without

weakening the radar return with polarization mismatch. Combining physical-separation and

polarization-diversity isolation enables a novel solution to implement a continuous-waveform

radar on a small platform, like a CubeSat.

(103 pages)
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PUBLIC ABSTRACT

High-Isolation Antenna Technique for CubeSat-Borne, Continuous-Waveform Radar

Logan E. Voigt

Radar is important in target tracking, imaging, and weather prediction applications.

As technology is increasingly miniaturized, there is a push for smaller radar. Research

and exploration in outer space also benefit from small, low-power technologies. The NASA

Jet Propulsion Laboratory’s RainCube was the first successful CubeSat-borne radar. A

CubeSat is a type of small satellite that conforms to specific size and weight standards.

Radar technology benefits from additional research on how to further miniaturize radar

payloads.

Integrating the transmit and receive antennas on the solar panels removes the need for

antenna-deployment mechanisms, preserving space on the CubeSat. This thesis also demon-

strates that implementing a radar that transmits and receives continuously and simulta-

neously (continuous-waveform) on the CubeSat improves the sensitivity, size, weight, and

power consumption of the radar. Continuous-waveform radar suffers from self-interference

because the transmitter and receiver are on at the same time.

To overcome the self-interference, the transmitter and receiver must be isolated. Phys-

ically separating the antennas helps provide the isolation required for continuous-waveform

radar, but is limited by the small size of the CubeSat. Isolation can be further increased

by designing the antennas with opposite circular polarizations. The interfering signal trav-

eling directly between the antennas has a different polarization than the receive antenna is

designed for, so the interference is suppressed. The signal that hits a target reflects with

the opposite circular polarization, so when it arrives at the receiver it has the proper polar-

ization, so it is not suppressed. Combining physical-separation and different-polarization
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isolation enables a novel solution to implement a continuous-waveform radar on a small

platform like a CubeSat.
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CHAPTER 1

INTRODUCTION

Radar plays an important role in tracking, imaging, and weather prediction. Since the

first satellite-borne radar in 1965 [1], engineers and scientists have worked to improve and

miniaturize radar systems to better suit the strict requirements of space. A CubeSat-borne

radar provides low-cost capability for monitoring existing space vehicles and debris, tracking

objects such as asteroids, remote sensing, and studying space weather.

The first, and currently only, CubeSat-borne radar is the RainCube demonstrated by

the NASA Jet Propulsion Laboratory (JPL) in 2018 [2–4]. The RainCube’s radar imple-

ments a pulse-Doppler waveform (PDW), which has numerous advantages but also suffers

from low sensitivity, since pulses reduce the average output power (see Section 2.2.1). To

make up for the loss of power from pulsing, PDW radar is designed with high peak output

power or high gain antennas. In either case, pulsing draws maximum power while trans-

mitting and much less while receiving. This cyclical change in power usage is an inefficient

use of the batteries and decreases their lifespan [5–9].

The limitations of PDW-based radar stem from the requirement that the transmitter

(TX) and receiver (RX) be active at different times; otherwise, the TX signal overwhelms the

nearby RX, preventing accurate measurements. Alternatively, continuous-waveform (CW)

radar transmits and receives continuously and simultaneously. It does not have a duty

cycle, which solves the limitation on the output power. It also has less variation in power

consumption, which improves battery life. This lifts the requirements for power-hungry and

bulky components, promising miniaturization and longer battery life.

A highly accurate CW radar can be realistically designed with two antennas (TX and

RX antennas) that are integrated on the solar panels of a CubeSat [10]. A major challenge

for CW radar is the required high self-interference suppression (SIS) between the TX and

RX.
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This research contains three objectives. First, investigate the SIS of opposite circularly

polarized antennas integrated on solar panels of a CubeSat. Second, study the design trade-

offs to implement an antenna array. Third, build a radar front-end for the high-suppression

antennas. These objectives are respectively labeled Objectives 1, 2, and 3.

The novelty of this work is the combination of physical-separation and polarization-

diversity suppression techniques to realize CW radar on small platforms. While the CubeSat

platform is the focus of this thesis, the design techniques can be applied to other small

platforms, such as small aircraft, drones, and portable radar. The following chapters explain

why CW radar is the method of choice in this research and how the objectives will be

accomplished.
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CHAPTER 2

LITERARY REVIEW

Antenna isolation is not a new concept. There have been many studies done to increase

isolation between antennas in a variety of ways. This chapter covers radar fundamentals and

different types of radar to set the foundation for why CW radar is the radar method of focus

in this work. This chapter also explains the extent of the isolation problem and explores com-

mon solutions that led to the combination of physical-separation and polarization-diversity

isolation.

2.1 Radar Equation

The radar equation [11–13]. describes the received power of a radar signal. The

radar equation has different forms depending on which losses are taken into account, which

parameters are given, and even the application of the radar [14]. One form is the relationship

between the signal-to-noise-ratio (SNR) at the RX to the transmitted power

SNR =
Pr

N
=

PavgGtGrλ
2σ

(4π)3R2
tR

2
rkBTsBn

, (2.1)

where:

Pr = received power [W]

N = available noise power [W]

Pavg = average power transmitted [W]

Gt, Gr = gains of the TX and RX antennas

λ = free-space wavelength [m]

σ = radar cross-section (RCS) [m2]

Rt, Rr = ranges from the target to the TX and RX antennas respectively [m]



4

kB = Boltzmann constant [Joules/K]

Ts = system noise temperature [K]

Bn = effective bandwidth [Hz].

(2.1) is a general form and takes into account bi-static radar (the TX and RX are

separated and use different antennas). If the radar is mono-static (the TX and RX are

collocated and share an antenna) then Gt = Gr and Rt = Rr.

A larger SNR corresponds to a more sensitive and capable radar. (2.1) shows that the

SNR is directly proportional to the average transmitted power. It is then of interest to

know how to increase Pavg, which is calculated as [11]

Pavg = Pt
tp
Tr

(2.2)

= Pttpfr, (2.3)

where:

Pt = peak transmit power [W]

tp = pulse duration [s]

Tr = pulse repetition interval [s]

fr = pulse repetition frequency (PRF) [Hz].

Thus, increasing peak transmit power, pulse duration, or PRF will increase the average

power transmitted.
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2.2 Types of Radar

(2.3) applies to any type of radar. Radars can use a variety of signals. The engineer

decides what type of signal meets the system requirements. Some common radar signals in-

clude pulses, PDW, ultra-wideband (UWB), CW, and frequency-modulated CW (FMCW).

This section briefly introduces these radar waveforms but does not go into detail on the

equations and applications for each system. The focus is to compare each system’s ability

to increase Pavg.

2.2.1 Pulse Radar

Pulse radar is the most basic radar. As diagrammed in Figure 2.1, the TX sends a

pulse of peak amplitude Pt for tp seconds. After which time, the TX turns off and the RX

turns on and detects the reflected pulse, which has a delay τ . At time Tr the RX turns off

and the TX sends out another pulse. The time delay τ from the start of the transmitted

pulse to when the RX receives the return signal is used to calculate the target range. Pulse

radar is limited to range calculations; it can not determine velocities of targets.

0
Pt

tp

1st Transmitted Pulse

Tr Tr + tp

t

2nd Transmitted Pulse

τ
Pr

τ + tp

1st Received Pulse

Tr + τ Tr + τ + tp

2nd Received Pulse

t

Fig. 2.1: Typical pulse radar.

Pulse radar “listens” for the return only while the TX is off. Increasing tp or decreasing

Tr reduces the time the RX is on. The ratio
tp
Tr

is commonly referred to as the duty cycle,
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dt. A smaller dt corresponds to less transmitted average power.

The PRF sets the processing capabilities of the radar. Low PRF is used for processes

that depend on ranging, such as target detection and synthetic aperture radar (SAR) imag-

ing. High PRF is better used for applications that measure target velocity like ground

moving target indication (GMTI) [15]. This distinction is the result of ambiguities intro-

duced by the PRF. The lower the PRF the more doppler ambiguities. The higher the PRF

the more range ambiguities. If the pulses are sent out too rapidly, when a return pulse is

received, it is difficult to determine which of the previous pulses caused this return, and

consequently the value of τ and the resulting range calculation are ambiguous [12]. To avoid

range ambiguity, designers instead increase Pt to get more average power output.

Hardware puts physical limitations on Pt. Too much power for too long can damage

radio-frequency (RF) components in the radar front-end. Hardware that can handle high

power is typically heavier, larger, and less efficient. The radar’s power supply also suffers

from pulsing. Switching back and forth between drawing high current during transmission

and low current when receiving decreases the life span of power supplies [5–9]. It is up to

the engineer to determine the trade-off between dt, PRF, and Pt.

In a pulsing scheme, isolation between TX and RX is important. The isolation is

different depending on the mode of the radar. While in receiving mode, the RX is highly

isolated from the TX because the TX is off. This time separation isolation (TSI) allows the

RX to detect weak returns without being overwhelmed by the TX power. Due to TSI, the

radar does not require much additional isolation between RX and TX while receiving.

While in transmitting mode, the RX is off, so the TX signal will not interfere with a

return signal. However, the front-end components of a radar are designed to receive signals

much weaker than the transmit power. If the RX and TX channels are not sufficiently

isolated, during transmission the high TX power could overdrive and damage the front-end

components [16,17]. Once damaged, these components would not behave as expected in the

receiving mode. Thus, even for pulsing radar, isolation between TX and RX is important.

In a bi-static radar, the isolation is achieved by the physical separation between the
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TX and RX antennas. For mono-static radar, a circulator provides the isolation (see Sec-

tion 2.3.3).

2.2.2 Pulse-Doppler Waveform Radar

PDW radar follows the same fundamentals as the pulse radar with the additional

capability of measuring target velocities. A PDW radar considers both the delay and

frequency of the return pulse. Range is calculated from the delay. Velocity is calculated

from the difference between the transmit and receive frequencies (Doppler shift) [11,18].

The same trade-offs between Pt and dt exists for PDW as for pulse radar. PDW also

requires enough isolation during transmission to protect RX front-end components.

2.2.3 Ultra-Wideband Radar

UWB radar uses the scaling relationship between time and bandwidth [14]. A pulse

that has a short duration (narrow in time) has a large bandwidth (wide in frequency) and

vice versa. Thus, an ultra-wide frequency band corresponds to a very short pulse (shorter

than 1 ns) [19]. The power of the UWB signal is spread out over the wide bandwidth,

resulting in a very weak return signal. The UWB return signal is integrated at the RX to

recover the return.

UWB radar uniquely incorporates low Pt and small dt. In situations where a radar

system needs to be undetectable to other systems, such as electronic warfare (EW) [20–

23] or when taking measurements of sensitive biological materials [24, 25], UWB radar is

advantageous.

2.2.4 Continuous-Waveform

CW radar does not use pulses. The TX and RX operate continuously and simultane-

ously. The transmitted signal is sinusoidal with one frequency. Since the TX is never off,

there is no duty cycle to limit the average power. This results in Pavg = Pt, which allows

CW radar to transmit a signal with lower peak power and achieve the same or better SNR
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than a pulse radar with higher transmit power [11]. This also means that lighter, smaller,

and more efficient hardware components can be implemented.

By not having a PRF, CW radar can implement multiple processing schemes simulta-

neously. Data collected from a CW radar can be separately processed for target detection,

image formation, or GMTI by interpreting the data with the necessary PRF. An additional

benefit to not having a PRF is the decreased ability that enemy receivers have to detect

the radar transmission. This makes CW radar more difficult to jam in EW.

CW radar also has advantages in multi-static configurations. In multi-statics, each

radar acts as a transmit or receive node. These nodes add “phase centers” or perspectives to

the received data making possible more processing modes like interferometric SAR imaging

[26,27]. Multiple TXs and RXs improve sensitivity, target classifications, and EW resistance

[28]. A constellation of platforms implementing CW radar could each provide a transmit

node, receive node, or both to the multi-static constellation allowing for a large variety of

different node configurations.

The consequence of CW radar is that there is no TSI; this puts a stricter requirement

on the isolation needed between the TX and RX. There needs to be enough isolation that

the RX front-end components are protected. Additionally, there must be enough isolation

so that the RX is not saturated by the strong transmitted signal and rendered unable to

detect the much weaker radar return. “Self-interference” refers to the condition when the

RX is overwhelmed by the TX [29]. In other words, the isolation between TX and RX

needs to be high enough to prevent self-interference. In practice CW requires two antennas

because transmitting and receiving simultaneously required more dynamic range than can

be provided with only one antenna [30].

Additionally, because the transmitted CW signal does not turn on and off, there are

no timing cues in the received signal. This makes it impossible to determine the range of a

target, yet the Doppler shift can still be determined. For this reason, CW can only measure

velocity and not range [11,31].
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2.2.5 Frequency-Modulated Continuous-Waveform

FMCW radar follows the same principles as CW with the additional capability of

measuring range. The sinusoidal frequency of the FMCW transmitted signal varies over

time. A common form of modulation is linear frequency modulation [1, 32]. This variation

of frequency over time allows a delay τ to be measured and utilized to calculate the range

[11,33].

2.3 In-Band Full-Duplex Self-Interference Suppression

In communication systems, the terms full-duplex (FD) and simultaneous-transmit-and-

receive refer to a system that can transmit and receive signals at the same time [29,34–42].

A communications system can be FD by transmitting and receiving at different frequencies.

A radar system cannot. The received signal is a reflection of the transmitted signal; hence,

the frequency of the RX is dependent on the frequency of the TX.

Communications or radar systems that transmit and receive simultaneously at the same

frequency are in-band full-duplex (IBFD) [20, 29, 35–37]. These systems require high SIS.

There are two types of SIS: passive isolation between the TX and RX and active cancellation

to remove the TX signal from the RX signal. CW radar qualifies as an IBFD system and

likewise needs high SIS (see Section 2.2.4).

Sabharwal, et al. [29] identifies three domains in which SIS can occur: Digital domain,

Analog-circuit domain, and Propagation domain. These domains are visualized in Figure 2.2



10

TX Bits

RX Bits

Encoding

Digital 
interference 
cancellation,
Decoding

DAC BPF PA

ADC BPFLNA

Cancellation 
Circuit

Transmit Channel

Receive Channel

Coupling

Propagation DomainAnalog DomainDigital Domain

Fig. 2.2: Three domains of SIS.

Sections 2.3.1–2.3.3 define the region each domain includes and presents the amount of

SIS typically achievable in each domain.

2.3.1 Digital-Domain SIS

The digital domain is in the RX chain following the analog-to-digital-converter (ADC).

In the digital domain, SIS from isolation is impossible because the TX signal interferes with

the RX signal in physical space. At the time of digitization, all self-interference has already

occurred.

The cancellation possible in the digital domain is limited by the dynamic range of the

ADC. The maximum cancellation is equivalent to the dynamic range [29]. If the ADC satu-

rates, cancellation is not possible. Cancellation in the other domains can prevent saturation.

It is therefore important to achieve as much cancellation as possible in the analog-circuit

and propagation domains.
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2.3.2 Analog-Circuit-Domain SIS

The Analog-circuit domain is comprised of the circuitry between the antenna and

the ADC. Isolation techniques apply to the analog-circuit domain. Self-interference can

be caused by power leakage from the TX channel to the RX channel due to hardware

imperfections. Components that are poorly shielded or too close to each other, such as

exposed components on a printed circuit board, can radiate energy away from the intended

path and be sensed by other components. Additionally, channels that share components (i.e.

a circulator; see Section 2.3.3) will have leakage between channels. Analog-circuit-domain

isolation decreases these types of leakage.

Cancellation in the analog-circuit domain is accomplished by intentionally tapping

energy from the TX channel, feeding it into a cancellation circuit, and combining it with

the RX channel [29, 36]. The cancellation circuit adjusts the tapped TX signal to have

the same magnitude and opposite phase as the self-interference. Since the magnitude and

phase of the interfering signal are unknown, this cancellation is done in a control loop

to maximize the cancellation, achieving 15-30 dB of SIS. [29, 34, 43–46]. Sabharwal et

al. [29] and Choi et al. [34] demonstrate that the analog-circuit-domain cancellation behaves

best over “sufficiently narrowband” systems. Thus, analog-circuit-domain cancellation is

limited by analog signal processing imperfections and bandwidth. To minimize the effects

of the limitations in both the analog-circuit and digital domains, performing as much SIS

as possible in the propagation domain is best.

2.3.3 Propagation-Domain SIS

The propagation domain consists of the antenna(s) and the propagation of electro-

magnetic (EM) waves. The benefit of SIS in this domain is that the self-interference is

suppressed before it is a problem in the analog and digital circuitry. In antenna termi-

nology, the suppression achieved in this domain is the magnitude of the S21 scattering

parameter.

IBFD isolation techniques in the propagation domain include physical separation [29],
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polarization diversity [29,42,47,48], via-suppression [49–51], tunable resonators [38,39,52],

meta-materials [53–55], and circulators [17, 56]. Cancellation techniques involve placing

antennas in geometric configurations whereby the TX signal destructively interferes with

itself creating a “spatial notch” at the location of the RX antenna(s) [20,29,37,40,41,57–59].

The following sections describe how each technique is accomplished and present how

effective other researchers have demonstrated these methods to be. The specifications of

interest are the achievable SIS, the fractional bandwidth, the amount of physical space re-

quired, and the number of elements required. Elements include each antenna, via, resonator,

and meta-surface. Having fewer elements simplifies the design and lowers the fabrication

cost and complexity.

Physical-Separation Isolation

Physically separating the TX and RX antennas is the most intuitive way to isolate

them [29]. Physical separation is the isolation technique used in bi- and multi-static radar

[28,60].

The Friis transmission equation [13], given by

Pr =
PavgGtGrλ

2

(4πR)2
, (2.4)

where:

R = distance between antennas [m],

demonstrates that EM waves attenuate by R2 as they propagate. As R increases, the

achievable SIS increases quadratically. As long as R ≫ λ the SIS covers a large bandwidth.

This isolation method only requires two elements: the TX and RX antennas. The space

this method fills can be greater than tens of kilometers.
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Polarization-Diversity Isolation

The polarization of an antenna describes the direction of the time-varying electric-field

vector [13]. The applicable polarizations to this discussion are vertically linear, horizontally

linear, right-hand circular (RHCP), and left-hand circular (LHCP) (see Figure 2.3).

(a) Vertical (b) Horizontal

(c) RHCP, traveling out of page (d) LHCP, traveling out of page

Fig. 2.3: Basic types of antenna polarizations.

A vertically polarized wave is better received with a vertically polarized antenna than

with a horizontally polarized antenna. The same is true for RHCP and LHCP. Balanis [13]

quantifies this concept by including a polarization mismatch term in the expression of the

radar equation to account for antenna misalignment or diversity.

From EM boundary conditions, linearly polarized waves will reflect from a metallic

surface with the same polarization, but circularly polarized waves switch the direction of

polarization at each reflection (see Figure 2.4) [22].
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Single 
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Fig. 2.4: Transmitting and receiving opposite circular polarizations.

For a single or an odd number of reflections, LHCP reflects to be RHCP and vice

versa. A radar with two antennas can take advantage of this polarization diversity. For

example, if the TX antenna is LHCP an RHCP RX antenna would receive the reflected

waves with minimal mismatch. The polarization diversity increases isolation between TX

and RX antennas without weakening the return signal by having a polarization mismatch.

It has been shown that polarization diversity provides 30-40 dB of isolation over a 30-50%

fractional bandwidth [42, 47, 48, 61]. Polarization diversity does not require more elements

than the TX and RX antennas. The antennas can be spaced as close as 0.25λ [47].

Circular-polarization diversity is a common technique in radar meteorology to suppress

rain clutter [61–63] and sense precipitation [64–66]. Rain-clutter suppression comes by using

antennas with the same circular polarization. The EM waves reflect off raindrops once and

switch polarization. The target has many surfaces so some of the reflections bounce an even

number of times and remain the same polarization. The rain clutter is then cross-polarized

while the target has some cross-polarization and some co-polarization returns.
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Via-Suppression Isolation

Via-suppression isolation incorporates microstrip vias between the TX and RX anten-

nas. These vias improve isolation by about 4 dB by shorting the surface waves before they

couple with the other antenna [49]. The drawback to this method is the limited fractional

bandwidth, 1%, over which the isolation is achievable [50]. Each via placed between or

around the antenna adds more elements to the design. Kim and Yook [50] and Sarrazin et

al. [49] have dozens of vias in their designs. The spacing between Sarrazin et al.’s antennas

is less than 0.5λ.

Tunable-Resonator Isolation

Like the via-suppression technique, tunable resonators are another parasitic element

that can be placed between antennas to reduce coupling. Wegener and Chappell [38,39] have

shown that 20 dB of isolation is achievable, but is limited to a narrow fractional bandwidth,

0.3%. Wegerner and Chappell’s design places one to four resonators between the antennas.

Each resonator is made of several varactors, resistors, and dozens of vias. The antennas are

placed 0.5λ apart.

Meta-Material Isolation

Similar to the via and resonator methods, meta-material isolation techniques involve

placing a material or combination of materials designed for specific absorption or reflection

properties between antennas. This meta-material suppresses surface waves from coupling

with other antenna elements. 10-20 dB of isolation has been achieved over fractional band-

widths of 4% and 15% [53–55]. The meta-material design in [53] implements dozens of

patch and via elements within a region 0.75λ wide.
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Ferrite Circulator

For mono-static radar systems, the other suppression techniques described in Sec-

tion 2.3.3 are not realizable because they require separate antennas for TX and RX. Instead,

mono-static radars isolate the TX and RX with a nonreciprocal ferrite circulator. Circula-

tors are included as a propagation domain SIS method (instead of a analog-circuit domain

method) because the circulator replaces the other propagation domain SIS methods for

a mono-static radar and can be combined with the analog-circuit domain SIS techniques

described in Section 2.3.2.

A circulator is a three-port device that allows power to flow between ports in only one

direction. Figure 2.5 shows an imperfect circulator where power is designed to flow from

port 1 to port 2, port 2 to port 3, and port 3 to port 1.

Port 1 Port 2

Port 3

TX

RX

Antenna

Leakage

Transmitted Signal

Received Signal

Fig. 2.5: Mono-static radar application of a ferrite circulator.

Ideally, the isolation from port 1 to port 3 is infinite, meaning the TX and RX are

completely isolated. However, small mismatches at the ports and lossy transmission lines

result in a finite isolation [67]. In practice, circulators provide 30 dB isolation at best [17,56].

The fractional bandwidth of a ferrite cirulator can be as high as 36% [68]. A circulator

interfaces with only one antenna so the number of elements and physical space this isolation

method requires is small.
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Spatial-Notch Cancellation

A spatial notch is a null in the antenna radiation pattern and is created when trans-

mitted EM waves destructively interfere with each other. This cancellation is formed by

EM waves lining up out of phase. Placing the RX antenna in this null isolates it from the

TX antennas.

Phase diversity can be induced by spacing two TX antennas such that one is half a

wavelength further away from the RX antenna than the other TX antenna [34], or the

TX antennas can be equally spaced but fed with different phases [57, 58]. Research shows

a wide range of achievable suppression, 20-55 dB. The disadvantage of this method of

suppression is the number of antennas and physical space required to create the geometry

needed. Additionally, since the location of the notch is dependent on the frequency of

the transmitted EM wave, the bandwidth of cancellation is narrow. Kolodziej et al.’s [58]

design uses nine antennas in a circular region with a diameter of 0.5λ and only achieves a

4% fractional bandwidth.

Some research has been done to widen the fractional bandwidth to 25% and 50% of the

spatial notch configuration at the expense of larger and more complicated geometries [40,41].

2.4 RainCube

The only realized CubeSat-borne radar to date is the NASA JPL’s Radar in a CubeSat

(RainCube) [3]. Launched in 2018, the RainCube was a 6U CubeSat that implemented a

Ka-band radar to observe weather conditions on Earth. Operating at 35.75 GHz with a

20 MHz bandwidth, the RainCube implemented PDW radar with 10 W peak power and

a 10% duty cycle. From (2.2), this corresponds to transmitting an average power of 1

W. The RainCube had a deployable, mesh-parabolic dish antenna. The antenna weighed

approximately 0.5 kg and occupied a 1.5U volume when stowed [4].
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CHAPTER 3

RESEARCH AND DESIGN DECISIONS

This chapter presents how the current research builds on the principles explored in

Chapter 2 to decide the approach to meet each objective declared in Chapter 1. Deci-

sions about the radar type, suppression type, platform size, and operating frequency are

presented. Chapters 4–6 present the methods and results of each objective.

3.1 Radar Type

The five types of radar presented in Section 2.2 are classified into two subgroups:

pulse and continuous. The decision matrix represented in Table 3.1 demonstrates why the

continuous group is a more advantageous type of radar. The criteria used to compare the

subgroups are the average power output, the radar’s ability to process multiple modes, the

impact on the battery, resistance to EW jamming techniques, the number of nodes formed

in a constellation, and the amount of SIS required. Criteria are ranked 0-3 with 3 being the

best.

Table 3.1: Comparison of radar subgroups.

Subgroup Pavg Modes Power Supply EW Nodes SIS Total

Pulse 1 1 1 0 2 3 8

Continuous 3 2 2 1 3 0 11

Table 3.1 demonstrates that the continuous type of radar, which includes CW and

FMCW, is desirable. The advantages the continuous group provides in average power

output, multiple processing modes, low deterioration of power supply, EW protection, and

extra multi-static nodes drives the search to find ways to produce adequate SIS to realize

CW or FMCW radar on a small platform.
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Since FMCW provides range information in addition to the other CW capabilities, an

FMCW signal is better for a CubeSat-borne radar. This permits the radar to better identify

the locations of space vehicles, debris, and asteroids. Since the focus of this work is SIS, the

tests in Chapters 4–6 are simplified and verified with a single-frequency CW signal. These

test remain valid for any frequency within the bandwidth of the antennas and front-end

components; thereby, the tests also verify FMCW radar capabilities.

3.2 Suppression Type

The SIS methods presented in Section 2.3.3 are compared in a decision matrix shown

in Table 3.2. The fractional bandwidth is represented by ∆. The criteria used to compare

methods are quantified and ranked 0-3 with 3 being the best. Since Section 3.1 selects con-

tinuous radar, the suppression method must have at least 2 antennas to support continuous

radar (see Section 2.2.4). Thus, while the circulator has the fewest elements, it receives

a 0 rank in the decision matrix because it only uses one antenna which cannot support

continuous radar.

Table 3.2: Comparison of SIS techniques.

Method SIS ∆ Elements Physical Space Total

Separation 3 3 2 0 8

Polarization 2 3 2 2 9

Via 0 0 1 2 3

Resonator 1 0 1 2 4

Meta-material 1 1 1 2 5

Circulator 2 2 0 2 6

Spatial Notch 2 2 1 2 7

The comparison in Table 3.2 demonstrates that physical separation and polarization

diversity are the most promising SIS techniques. The amount of achievable physical sep-
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aration on a small platform is limited. Unlike the rain-clutter suppression explained in

Section 2.3.3, it is assumed that the target is a single reflector like a flat plate. This allows

for the radar return to have the opposite polarization as the transmit signal, creating the

required polarization diversity.

3.3 Platform Size

The RainCube represents a basis for platform size and power, allowing the capabilities

of the CW radar to be compared to those of the RainCube (see Section 2.4). Thus, this

thesis develops a 6U CubeSat with a 1 W average transmitted power.

3.4 Operating Frequency

The main distinction between the RainCube and the CW radar design is the operating

frequency. The antennas for the CW radar are designed to operate at 2.4 GHz. This

makes fabrication feasible with equipment found at Utah State University’s laboratories.

Additionally, RF components that operate at 2.4 GHz are more readily available.

Antennas designed and verified at 2.4 GHz can later be scaled to operate equivalently

at other frequencies.
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CHAPTER 4

DESIGN METHODS AND RESULTS: SELF-INTERFERENCE SUPPRESSION

Objective 1 of this thesis is to explore how much SIS is achievable by combining

physical-separation and polarization-diversity techniques on a limited platform size. This

chapter describes a design that incorporates decisions in Chapter 3 and presents simulation

and fabrication results to meet Objective 1.

4.1 Noise and Suppression

Before designing and simulating circularly polarized antennas, it is important to deter-

mine how much suppression is required for a radar system carried by a 6U CubeSat. This

understanding establishes a benchmark against which to evaluate the antennas during test-

ing. This section introduces the derivation of the noise power in a radar RX and identifies

how much isolation is required between the antennas.

4.1.1 Receiver Noise Floor

The noise in an RX is defined in decibels (dB) as

N = 10 log10(kTsysBn), (4.1)

where:

N = Noise power [dB]

k = Boltzmann constant 1.38 10−23 [Joules/K]

Tsys = Effective system temperature [K]

Bn = Effective bandwidth [Hz].
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The effective system temperature, Tsys, is the superposition of the effective temperature

of each RX sub-component [69],

Tsys = TA + TR + TAL + TLL, (4.2)

where:

TA = Antenna noise temperature

TR = Effective receiver temperature

TAL = Antenna loss temperature

TLL = Transmission line noise temperature.

The antenna noise temperature can be approximated according to where the antenna

is pointing. A CubeSat-borne, directional antenna in low-Earth-orbit that looks toward the

Earth with low minor lobes approximate TA ≈ 290 K, the temperature of the Earth. An

antenna with stronger minor lobes that point at space or an antenna whose main lobe points

away from the Earth decrease the antenna noise temperature, making 290 K a conservative

approximation.

As derived by Doerry [70], the effective receiver noise temperature is

TR = T1 +
T2

G1
(4.3)

= T0(F − 1), (4.4)

where:

T1 = Temperature of 1st RF component [K]

T2 = Temperature of 2nd RF component [K]

G1 = Gain of 1st RF component

T0 = Reference temperature [K] (290 K in LEO)

F = Receiver noise factor.
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The noise factor is the ratio of the input and output SNRs of the RX. The noise factor

for a RX is expressed as

F = F1 +
F2 − 1

G1
+

F3 − 1

G1G2
+ ...+

Fk − 1

G1G2...Gk−1
, (4.5)

where:

F1, F2, F3, Fk = Noise factor of 1st, 2nd, 3rd, kth RF component respectively

G1, G2, Gk = Gain of 1st, 2nd, kth RF component respectively.

The first RF component is typically a band-pass filter (BPF) followed by a low-noise

amplifier (LNA). The BPF prevents out-of-band frequencies from damaging the LNA. The

LNA typically has a large gain (≥ 20 dB) so (4.5) is typically truncated to the first two

terms

F = F1 +
F2 − 1

G1
. (4.6)

The noise figure is the noise factor expressed in dB. The noise figure is a common spec-

ification on a datasheet for an active component. The noise figure for a passive component

is the magnitude of the insertion loss.

Taking the pass-band insertion loss of the BPF to be 1.5 dB, the LNA gain to be 20

dB, and the LNA noise figure to be 2 dB (typical values), the effective receiver temperature

can be calculated from (4.4)

TR = T0(F1 +
F2 − 1

G1
− 1)

= 290(1.41 +
1.58− 1

0.71
− 1)

≈ 360K.
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The antenna loss temperature is defined as

TAL =

(
1

eA
− 1

)
TPA, (4.7)

where:

eA = Antenna efficiency

TPA = Antenna physical temperature.

Assuming an antenna with low loss resistance, eA ≈ 1 and TAL = 0.

The equation for the transmission line loss temperature is of the same form. Assuming

efficient transmission lines, TLL = 0.

The conservative approximations for TA and TR make up for the assumptions that the

antenna and transmission lines are lossless. Combining the derived values for TA, TR, TAL,

and TLL results in

Tsys ≈ TA + TR

≈ 290 + 360

≈ 650 K.

Assuming the antennas have a 2.5% fractional bandwidth, the effective receiver band-

width is 60 MHz. To account for imperfections in the antennas, 65 MHz is applied to this

calculation.

The noise power is then

N = 10 log10(kTsysBeff )

= 10 log10(k · 650 · 65× 106)

= −123 dBW.
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Commonly, radar power is expressed in decibels relative to 1 mW (dBm). Power in

dBm is 30 dB greater than power relative to 1 W (dBW). So, N = −93 dBm.

4.1.2 Suppression Requirement

For the self-interference to have a negligible impact on the RX it must be suppressed

to, or below, the RX’s noise floor (see Figure 4.1). Mathematically, that is

S ≥ Pavg −N (dB), (4.8)

where:

S = Total SIS in RX [dB].

By choosing the Pavg, the total suppression required can be calculated. To stay com-

parable to the RainCube (see Section 3.3), the Pavg in this model is 1 W (30 dBm). The

total SIS in the RX can additionally be split into the superposition of the suppression in

each domain. Applying typical values from the literature for the suppression in the digital

and analog domains (see Section 2.3), and assuming a 54 dB dynamic range, (4.8) becomes

S ≥ Pavg −N (dB)

|S21|+ Sa + Sd ≥ 30− (−93) (dB)

|S21|+ 30 + 54 ≥ 123 (dB)

|S21| ≥ 39 (dB), (4.9)

where:

|S21| = Propagation-domain suppression (i.e. insertion loss) [dB]

Sa = Analog-circuit-domain suppression [dB]

Sd = Digital-domain suppression [dB].



26

Suppression
dBm

ୟ୴



ௗ

ଶଵ

Fig. 4.1: Visualization of suppressing the self-interference below the noise floor.

Figure 4.1 presents the manner by which the three domains of suppression push the

self-interference below the RX’s noise floor. The derivation leading to (4.9) shows the goal

of this research. By implementing physical separation and polarization diversity techniques,

the |S21| of the CW radar must be greater than 39 dB.

4.2 Antenna Simulation Results

This section presents results of antenna models designed using Ansys HFSS® to meet

the suppression requirements developed by Section 4.1. To improve on the RainCube, the

presented antennas are low-profile patch antennas that are implemented on the solar panels.

This reduces the volume dedicated to the antenna and removes the need for deployment.

As explained in Section 3.4, the antennas are designed to operate at 2.4 GHz.

To realize polarization diversity, one antenna is LHCP and the other is RHCP. Fig-

ure 4.2 shows two circularly polarized patches that are designed using the corner-cut tech-

nique.
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(a) (b)

Fig. 4.2: LHCP (a) and RHCP (b) patch antennas designed using the corner-cut method.

The patches shown in Figure 4.2 are designed on a Rogers Corporation substrate. The

patches are about 0.3λ in each direction. The corners are trimmed about 0.03λ along each

side. Appendix A specifies the substrate’s material properties, how to make a circularly

polarized antenna using the corner-cut method, and the precise geometry of the final design

depicted in Figure 4.2.

4.2.1 Simulated Antenna Performance

The antennas depicted in Figure 4.2 are designed such that the simulation results

demonstrate acceptable radiation requirements (S11 < −10 dB) and axial ratio (< 3 dB).

The results for the LHCP antenna are shown in Figures 4.3 and 4.4. Figure 4.5 shows

the elevation pattern of the LHCP antenna. The RHCP results for S11, axial ratio, and

elevation pattern are equivalent.
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Fig. 4.3: Simulated LHCP return loss.

Fig. 4.4: Simulated LHCP axial ratio and cross-polarization.
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Fig. 4.5: Elevation pattern of LHCP patch antenna.

In addition to the axial ratio, Figure 4.4 shows the cross-polarization of the LHCP

antenna. Cross-polarization is the difference between the co-polarization (CoPol) and cross-

polarization (XPol) radiation levels. The cross-polarization of the LHCP antenna is near

30 dB. Figure 4.5 shows the radiation levels of CoPol and XPol vs elevation angle through

two cuts in azimuth (Az) angle. Near bore-sight, the CoPol gain is 7.3 dB and the cross-

polarization is more than 27 dB down, which is congruent with Figure 4.4.

4.2.2 Simulated Antenna Isolation

To simulate the isolation between the antennas, two configurations are modeled. The

first is with the antennas “looking up” when mounted on the inside of the solar panels

(Figure 4.6b). The second is “looking down” when mounted on the outside of the panels

(Figure 4.6c). The S21 simulation results are shown in Figure 4.7.
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Sat Model

(a) Look-up and look-down configurations.

LookUp 
Model

(b) Model of look-up configuration.

LookDown 
Model

(c) Model of look-down configuration.

Fig. 4.6: Look-up and look-down simulation models.
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Fig. 4.7: Simulated S21 of look-up and look-down configurations.

At 2.4 GHz, there is 41 dB of isolation when looking down and 65 dB when looking up.

These results give confidence that the 39 dB of isolation required by (4.9) can be realized.

4.3 Antenna Prototype Results

This section provides the results of fabricating and testing the prototype antennas. The

patch antennas are fabricated using an LPKF ProtoMat® S103 milling machine. Figure 4.8

shows the fabricated antennas after connectors have been mounted.
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(a) (b)

Fig. 4.8: Fabricated LHCP (a) and RHCP (b) patch antennas.

Tests are performed to verify that the antenna prototypes behave as designed. The

first type of test verifies the individual antenna performance. The second type of test

measures the isolation between antennas on a CubeSat model. In both test types, an

Agilent Technologies FieldFox N9914A network analyzer performs the measurements.

4.3.1 Prototype Antenna Performance

Measurements of the return loss of the fabricated antennas are shown in Figure 4.9.

These results show that the LHCP S11 is comparable to the simulation results, but there

is minor degradation in the RHCP antenna. The discrepancy can be attributed to milling

tolerances. The RHCP S11 curve shows the null is slightly higher in frequency than de-

sired. This suggests the patch is slightly smaller than designed. This change in geometry

also impacted the antenna’s return loss, though not significantly; S11 below -15 dB is still

acceptable.



33

Fig. 4.9: Return loss of fabricated patch antennas.

Two tests verify the circular polarization of the antennas. The test set-up for the first

test is shown in Figure 4.10.

45 45

LHCP RHCP

d d

Fig. 4.10: Test set-up to verify circular polarization.

The network analyzer measures the S21 parameter while the antennas are fixed at 45◦

angles from a flat, metallic surface. Then, one of the antennas is rotated 90◦ about the

axis normal to the patch (depicted with a dashed line) and the measurement is taken again.

Figure 4.11 overlays the measurements. Since the orthogonal measurements closely match

each other near 2.4 GHz, the test shows that the transmission between antennas is not

dependent on the relative rotational orientation of the antennas. This independence verifies

that the antennas are circularly polarized near 2.4 GHz.
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Fig. 4.11: Measured S21 between antennas in two different orientations.

The second test quantitatively verifies the opposite circular polarization of the antennas

by measuring the cross-polarization level. First, the set-up in Figure 4.10 is used to measure

the received power for the CoPol. Then, the antennas are spaced a distance of 2d and pointed

directly at each other to measure the XPol (see Figure 4.12). The cross-polarization is the

difference of these measurements. Table 4.1 shows the received power for CoPol and XPol

when the transmitted power is 0 dBm and d = 32.4 cm. The receive power measurement is

taken multiple times and averaged to better estimate the cross-polarization.

LHCP RHCP

2d

Fig. 4.12: Test set-up to measure XPol level of fabricated antennas.
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Table 4.1: Measurements of CoPol and XPol power levels of fabricated antennas.

Polarization
Received

Power (dBm)

Average

Power (dBm)

CoPol -22 -24 -23 -22 -23.25

XPol -42 -38 -42 -43 -41.25

From Table 4.1, the difference between the average CoPol and XPol is 18 dB. 18 dB of

cross-polarization is lower than the 27 dB predicted by simulation. Part of this discrepancy

is due to the fact that this test could not be performed in the anechoic chamber. This

results in the interference of waves reflecting from the walls and other surfaces in the room.

Noting this measurement inaccuracy, 18 dB of cross-polarization is still acceptable to verify

that the antennas are opposite circularly polarized.

The test set-up in Figure 4.10 also provides the ability to calculate the gain of the

antennas using the Friis transmission equation (2.4). Rearranging (2.4) gives

Pr

Pavg
=

GtGrλ
2

(4πR)2
. (4.10)

The LHCP antenna is at the TX and the RHCP at the RX. The ratio

Pr

Pavg

is the S21 parameter measured on the network analyzer as shown in Figure 4.11. (4.10) can

be rearranged so that

GtGr = S21
(4πR)2

λ2
. (4.11)

Or, in dB,

Gt +Gr = S21 + 10 log

(
[4πR]2

λ2

)
(dB). (4.12)

Table 4.2 provides the values measured for R and S21 and calculated for Gt + Gr at

2.4 GHz.
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Table 4.2: Calculation gain of prototype antennas.

Parameter Value

R 14 cm

λ 12.5 cm

S21 -10 dB

Gt +Gr 13 dB

Assuming the LHCP and RHCP antennas have the same gain, the gain of each antenna

is 6.5 dB. This is lower than the 7.3 dB estimated in simulation, but still acceptable for a

patch antenna.

4.3.2 Prototype Antenna Isolation

A CubeSat model made out of aluminum foil holds the prototype antennas during

testing. This section discusses the practicality of this model compared to a metallic frame

and presents the test results from using the CubeSat model.

Practicality of an Aluminum-Foil Model

An aluminum-foil model (see Figure 4.13) adequately replaces a typical CubeSat metal-

lic frame because the thickness of aluminum foil is much larger than the skin depth of

aluminum at 2.4 GHz.
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Fig. 4.13: CubeSat model made from aluminum foil.

Skin depth, δs, characterizes the depth in meters an EM wave can penetrate a conduc-

tive medium. The thicker or more conductive a conductor is, the less an EM wave can pass

through it. The magnitude of an EM wave penetrating a conductor is less than 1% of its

initial value at a depth of 5δs. The formula for skin depth, given by Ulaby [71], is

δs =
1√

πfµσc
, (4.13)

where:

f = Frequency [Hz]

µ = Magnetic permeability [H/m]

σc = Conductivity [S/m].
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At 2.4 GHz, the skin depth of aluminum (σc = 3.5× 107, µ = 4π × 10−7) is

δs =
1√

π(2.4× 109)(4π × 10−7)(3.5× 107)

= 1.74× 10−6 m.

This CubeSat model uses aluminum foil that is 0.02 mm thick, which is 11.5 times larger

than the skin depth. Only a negligible amount of energy passes through the aluminum foil.

Since the aluminum foil is thick enough to block EM waves, the foil is an adequate substitute

for an actual CubeSat frame when testing the isolation capabilities of the structure.

Isolation Results Using CubeSat Model

Measurements of S21 with the CubeSat prototype verify the simulation results of Sec-

tion 4.2.2. Figure 4.14 shows the test set-up for the S21 measurements in an anechoic

chamber and Figure 4.15 provides the measured results.
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Fig. 4.14: Test set-up for measuring S21 in look-up configuration.

Fig. 4.15: S21 measurements in look-up and look-down configurations.
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Figure 4.15 shows 43 dB of isolation when looking down and 57 dB when looking up.

The measured isolation, when looking down, is comparable to simulation. When looking up,

the measured isolation is 8 dB less than simulation. Though corresponding to a received

power more than six times greater than the simulation shows, this discrepancy is not a

concern when comparing the S21 values as unitless ratios and not in dB (see Table 4.3)

Table 4.3: Comparison of the simulated and measured S21 in look-up configuration.

S21 dB Unitless

Simulation -65 3.16× 10−7

Measurement -57 2.00× 10−6

The unitless S21 demonstrates that the power coupled from TX to RX is more than

six orders of magnitude less than the transmitted power. With these small magnitudes of

power, any noise present in the network analyzer has a noticeable effect on the measured

power. Figure 4.15 shows that the noise floor of the network analyzer is not much further

below the measured S21 (about -65 dB), suggesting that the noise could be tainting the

measurement.

Even with the effects of noise, the measured isolation is greater than the amount re-

quired by (4.9). This verifies that the combination of physical separation and polarization

diversity adequately suppresses the self-interference of CW radar. The additional sup-

pression achieved in the look-up configuration demonstrates that the CW radar can be

unaffected by self-interference even when the SIS realized in the digital and analog domains

are lower than the values assumed in the derivation of (4.9).
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Isolation vs Spacing

Another metric of interest is how close together the antennas can be placed without

violating the minimum required isolation of 39 dB as derived in (4.9). This test is done in

an anechoic chamber with the set-up shown in Figure 4.16. This test was performed five

times and averaged for each spacing. Table 4.4 shows the measured and averaged S21 for

each spacing, D.

LHCP RHCP

D

Fig. 4.16: Test set-up for measuring the S21 for different spacing, D.

Table 4.4: Measured S21 with different spacing.

Spacing (mm) Spacing (λ) S21 (dB) Average S21 (dB)

100 0.80 -32.2 -32.3 -32.4 -32.6 -32.7 -32.5

140 1.12 -36.4 -36.6 -36.6 -37.1 -36.7 -36.8

180 1.44 -39.9 -39.4 -39.5 -38.5 -38.6 -39.0

220 1.76 -41.7 -41.5 -42.1 -41.5 -40.4 -41.4

260 2.08 -42.7 -43.0 -42.0 -42.9 -43.5 -42.9

300 2.40 -44.9 -45.3 -44.6 -43.3 -45.0 -44.6

340 2.72 -46.2 -47.0 -48.3 -47.0 -46.5 -47.2

380 3.04 -46.7 -47.2 -48.0 -48.9 -47.6 -47.9

420 3.36 -48.8 -51.5 -48.9 -49.2 -50.1 -49.9

460 3.68 -48.3 -49.2 -49.1 -53.6 -51.2 -50.8

500 4.00 -51.6 -52.3 -52.0 -50.6 -51.4 -51.6

540 4.32 -50.2 -49.8 -53.3 -52.9 -53.5 -52.4

560 4.48 -53.4 -53.3 -51.1 -51.9 -52.5 -52.2
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As expected from (4.10), the S21 in Table 4.4 decreases as the spacing increases. Since

isolation is the inverse of S21, the isolation increases as the spacing increases. Table 4.4

demonstrates that the spacing between antennas must be at least 1.44 λ to maintain the

minimum isolation of 39 dB derived in (4.9).
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CHAPTER 5

DESIGN METHODS AND RESULTS: ARRAY TRADE-OFF

Objective 2 of this thesis investigates the achievable isolation when patch-antenna

arrays replace the single-patch antennas designed in Chapter 4. This chapter presents

simulation models and results that accomplish Objective 2.

Antenna arrays are common since they increase the antenna’s gain and decrease the

effects of clutter in the received signal. Clutter is the radar return from objects seen by

the minor lobes of the antenna pattern. The trade-off is that an array takes up more space

than a single element.

Increasing the gain of the antenna pattern makes the antenna more directive. This

suggests that the isolation between the TX and RX increases since the TX is not pointed

at the RX. The reason for studying the effects of an array is that self-interference occurs

between each element in both arrays. Since the distance between each pair of TX and

RX array elements is not constant, the amount of coupling is different for each pair. The

effect this has on self-interference is an important characteristic to understand to adequately

suppress the interference.

5.1 Array Simulation Model

The array effects are modeled and observed in simulation only. The array structure is

fed with a microstrip feed network and shown in Figure 5.1. The feed network is placed on

the opposite side of the ground plane as to not distort the behavior of the antenna elements.

The substrate and ground layers are transparent so the feed network and patch elements

are simultaneously visible. Figure 5.2 shows the arrays integrated on the CubeSat model.

The arrays are spaced so that their centers are 437.5 mm (3.5 λ) apart.
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Fig. 5.1: LHCP array and feed network viewed from the bottom.

(a) Look-up configuration. (b) Look-down configuration.

Fig. 5.2: Simulation models of antenna arrays.

To compensate for the larger size of the array, the CubeSat model is enlarged to keep

the entire array on the solar panel. Realistically, the size of the CubeSat is fixed. The

practical solution is to design an antenna array that operates at a higher frequency so all

the elements fit within the size constraints of the CubeSat. To keep the results comparable

to the single element simulations of Section 4.2, no changes in the geometry and frequency

of individual patches are made.
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5.2 Array Simulation Results

This section presents the results of simulations using the 2x2 antenna array model. The

array performance and isolation simulations are described in the following two subsections.

5.2.1 Simulated Array Performance

As with the single-element antenna (see Section 4.2.1), the arrays are designed to

demonstrate acceptable radiation characteristics and axial ratio. The simulated character-

istics for the LHCP array are shown in Figures 5.3 and 5.4. Figure 5.5 shows the elevation

pattern of the LHCP array. The RHCP-array results for S11, axial ratio, and elevation

pattern are equivalent.

Fig. 5.3: Simulated LHCP-array return loss.
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Fig. 5.4: Simulated LHCP-array axial ratio and cross-polarization.

Fig. 5.5: Elevation pattern of 2x2 LHCP array.

In addition to the axial ratio, Figure 5.4 also shows the cross-polarization of the LHCP

antenna array. The cross-polarization of the array is near 20 dB, which is lower than the

single element (see Figure 4.4), but is still acceptable. Figure 5.5 shows the radiation levels
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of CoPol and XPol vs elevation angle through two cuts in Az angle. Near bore-sight, the

difference in polarization levels is above 18 dB, which is congruent with Figure 5.4.

5.2.2 Simulated Array Isolation

The look-up and look-down models represented in Figure 5.2 are used to simulate the

isolation between the antennas arrays. The S21 simulation results are shown in Figure 5.6.

Fig. 5.6: Simulated S21 of antenna arrays in look-up and look-down configurations.

At 2.4 GHz, there is 74 dB of isolation when looking down and 81 dB when looking up.

These results give confidence that the isolation required by (4.9) can be realized with array

configurations, even though the coupling between antenna arrays is more complicated than

single-element arrays. The additional suppression achieved using antenna arrays demon-

strates that the CW radar can be suppress self-interference below the noise floor even when

the SIS realized in the digital and analog domains are lower than the values assumed in the

derivation of (4.9).
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CHAPTER 6

DESIGN METHODS AND RESULTS: RADAR FRONT-END

Objective 3 of this thesis realizes a functional radar front-end that operates at 2.4 GHz

with the antennas or antenna arrays designed in Chapters 4 and 5. To meet Objective 3,

this chapter first models the CubeSat-borne, CW radar’s capabilities in a power budget.

Next, this chapter presents tests to ensure the realized radar meets capabilities specified by

the power budget. Lastly, front-end circuitry is designed and built to support the antennas

fabricated in Chapter 4 and tested to verify performance.

Time constraints make it impossible to launch and test the radar in space, so ground

testing replaces space testing. Ground testing is adequate to show valid results by exploiting

ratios in (2.1).

6.1 Power Budget

A power budget provides an analytical representation of a radar’s capabilities. The

power budget derives from (2.1). To develop the power budget, a mono-static approximation

is incorporated. This approximation results in the simplified radar equation

SNR =
Pr

N
=

PavgG
2λ2σ

(4π)3R4kBTsBn
. (6.1)

The CW radar is strictly bi-static because the TX and RX do not share the same

antenna. However, some approximations make the radar quasi-mono-static and allow for

the model to be described by the mono-static radar equation. These approximations are

� The antennas are designed with the same gain

Gt = Gr = G (6.2)
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� The distance between antennas, Rd, is much smaller than the range to target R (see

Figure 6.1), so

Rt = Rr ≈ R (6.3)

TX

RX

𝜎

𝑅

𝑅

𝑅

𝑃

𝑃

𝐺

𝐺

𝑅

Fig. 6.1: Visualization of parameters specified in radar equation.

It is often convenient to work with (6.1) in decibels

SNR (dB) = Pr −N (dB)

= Pavg + 2G+ σ + 10 log10

(
λ2

43π3R4

)
−N − L (dB)

= Pavg + 2G+ σ + Ls −N − L (dB), (6.4)

where:

Ls = Path Loss [dB]

L = Additional Loss [dB].

The additional loss, L, makes up for any inaccuracies due to approximations.
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6.1.1 Detectable Targets

Rearranging (6.4) to calculate the minimum detectable RCS of a target when a mini-

mum required SNR, SNRmin, is known, results in

σ = SNRmin − (Pavg + 2G+ Ls −N − L) (dB). (6.5)

SNRmin is determined by the detection and false-alarm probabilities specified for the

radar (see Appendix B). A radar that implements a coded channel [72] can reduce the

required SNRmin. Pavg is set by Section 3.3, G for the fabricated antennas is calculated in

Section 4.3.1, N is derived in Section 4.1.1, and L is arbitrary. Table 6.1 summarizes these

parameters for an uncoded channel and Table 6.2 provided these parameters for a coded

channel.

Table 6.1: Set parameters for calculating the minimum detectable RCS of an uncoded
channel.

Parameter Value Units

SNRmin 14 dB

Pavg 1, 30 W, dBm

G 6.5 dB

N -93 dBm

L 2 dB
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Table 6.2: Set parameters for calculating the minimum detectable RCS of a coded channel.

Parameter Value Units

SNRmin 5 dB

Pavg 1, 30 W, dBm

G 6.5 dB

N -93 dBm

L 2 dB

Using the parameters from Table 6.1 and a 2.4 GHz radar, Table 6.3 provides the

minimum detectable RCS at various ranges and a target that has an equivalent or greater

RCS. Likewise, Table 6.4 provides the minimum detectable RCS when using the coded

channel described by Table 6.2.

Table 6.3: RCS of detectable objects at various ranges for an uncoded radar channel.

Range (km) σ(m2) Detectable Object

0.1 15 0.14 m2 debris

1 150× 103 Hubble Space Telescope

4.5 61× 106 James Webb Space Telescope

10 3× 109 International Space Station

Table 6.4: RCS of detectable objects at various ranges for a coded radar channel.

Range (km) σ(m2) Detectable Object

0.1 1.86 0.05 m2 debris

1.6 150× 103 Hubble Space Telescope

7.6 61× 106 James Webb Space Telescope

20 3× 109 International Space Station
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The equivalent objects in Table 6.3 assume a flat plate target and are found by solving

for s in

σ =
4πs2

λ2
, (6.6)

from Lacomme [73], where:

s = Area of flat-plate target

6.2 Ground Testing: The Uncoded Channel

This section provides the results of tests that verify the detection capabilities outlined

by Section 6.1. Due to time and cost constraints, ground tests replace space tests. An

anechoic chamber houses the ground tests. The anechoic chamber limits the range of these

ground tests to R = 2.5 m. For the quasi-mono-static radar equation (6.1) to be applied in

the ground tests, the approximation in (6.3) must be valid. The CubeSat model from Sec-

tion 4.3.2 provides 0.575 meters between the antennas. Applying the Pythagorean theorem

to the triangle with lengths R, 0.5Rd, and Rt or Rr depicted in Figure 6.1, the approxima-

tion in (6.3) holds true within 1%. This tolerance is acceptable for ground testing.

Since the range of these ground tests is limited to the size of the anechoic chamber,

other parameters in (6.1) are adjusted to maintain the same ratio. Rearranging (6.1) to

have all the fixed parameters on the left-hand side of the equation results in

SNRmin(4π)
3

λ2G2
=

Pavgσ

NR4
= γ, (6.7)

which is denoted as γ. As long as γ remains unchanged, Pavg, σ, N , and R can change. For

the model of an uncoded channel, SNRmin is 14 dB.

For the ground tests described in this chapter a Hewlett Packard E4433B Signal Gen-

erator sources the TX, and an Agilent Technologies CXA N9000A Signal Analyzer acts as

the RX. The CXA N9000A has a noise floor of -73 dBm.
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Taking the 0.1 km values from Table 6.3 and letting the subscript 1 denote the modified

parameters, maintaining the overall ratio γ results in

γ = γ1

=
Pavg1σ1
N1R4

1

=
Pavg1σ1

N(100)
(
R
40

)4
=

Pavg1σ1
NR4

(
404

100

)
=

Pavg1σ1
NR4

(25600),

noting that 2.5 m is one-fortieth of 0.1 km and -73 dBm is 100 times greater than -93 dBm.

A flat plate with area 36 × 30.5 in2 (0.9144 × 0.7747 m2) acts as the target in the

anechoic chamber. From (6.6), this target has σ1 = 403.58 m2, which is 26.9 times greater

than 15 m2. Applying this modified parameter in γ produces

γ =
Pavg1σ

NR4
(26.9× 25600)

=
Pavg1σ

NR4
(688776).

The γ ratio shows that a 1.45×10−6 W (-28.5 dBm) transmit power provides 14 dB of SNR

in the ground test.

Figure 6.2 shows the test set-up to verify this ratio. The 6U CubeSat model from

Section 4.3.2 holds the antennas.
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Target

CubeSat Model Signal Generator Spectrum Analyzer

Fig. 6.2: Test set-up to verify the radar’s detection capabilities.

An accurate result of the test is identifiable when the detected signal power is -59 dBm

(14 dB above the noise).

6.2.1 Initial Test Results

Table 6.5 summarizes the radar parameters for ground testing derived in Section 6.2.

Figure 6.3 presents the received power with this set-up and the radar in look-up configura-

tion.

Table 6.5: Parameters for initial ground test.

Parameter Value Units

R1 2.5 m

N1 -73 dBm

σ1 403.58 m2

Pavg1 -28.5 dBm
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Fig. 6.3: Measured Pr for ground test using parameters from Table 6.5.

The peak of the return power in Figure 6.3 is -64 dBm. This is only 9 dB higher than

the noise floor. This does not meet the required received power of -59 dBm to achieve the

SNR of 14 dB used in (6.7), and the test fails. Before continuing to test the radar’s detection

capabilities in the look-down configuration, Section 6.2.2 develops additional tests to verify

the radar performance is as presented in Section 6.1.

6.2.2 Target-Effective-Area Test

The results in Section 6.2.1 do not match the expectations derived in Section 6.1. To

identify where the tests went wrong, this section analyzes the parameters in (6.7).

Since N1 and R1 are fixed by the equipment and testing environment, they are known

and cannot be responsible for the error. Pavg1 is the result of the derivation of γ1, so Pavg1

too is not responsible for the error. Thus, σ1 is the cause of the inaccuracy. The formula

(6.6) is accurate, so the conclusion is that the entire plate is not reflecting.

Further tests show when absorbers are placed in front of different regions of the target,

some regions decrease the received power while other regions do not. Table 6.6 shows the
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additional loss in power when a 4 in. wide absorber is placed over various regions of the

target.

Table 6.6: Additional loss due to placing absorber in front of target. Region placement is
measured in inches from the left edge of the target.

Placement 0-4 in 4-8 in 8-12 in 12-16 in 16-20 in 20-24 in 24-28 in 28-32 in 32-36 in

Region 1 2 3 4 5 6 7 8 9

Loss 0 0.5 4 10 10 10 4 0.5 0

Table 6.6 shows that the edge regions do not contribute much to the received power.

This is due to the geometry of reflection. EM waves that reflect off the target in regions 1,

2, 8, or 9 do not end up near enough to the receive antenna to be detected. Only regions

3-7 reflect waves near enough to the RX antenna to contribute to the received power. This

shrinks the effective width of the target to be only 20 in. (0.508 m). The effective RCS, σe,

from (6.6), is then 127 m2. Applying σe to γ1 results in

γ =
Pavg1σe
NR4

(25600)

=
Pavg1σ

NR4
(8.3× 25600)

=
Pavg1σ

NR4
(212585).

In this case, a 4.7 × 10−6 W (-23.5 dBm) transmit power preserves the γ ratio in the

ground test.

6.2.3 Complete Ground Test

With the error in Section 6.2.1 resolved, the test in Section 6.2.1 is continued to mea-

sure Pr for both look-up and look-down configurations. Using the same test set-up as in

Figure 6.2, the test now uses the parameters in Table 6.7. Figure 6.3 presents the received

power with these parameters.
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Table 6.7: Parameters for initial ground test.

Parameter Value Units

R1 2.5 m

N1 -73 dBm

σe 127 m2

Pavg1 -23.5 dBm

Fig. 6.4: Measured Pr for ground test using parameters from Table 6.7.

The peak of the return power in Figure 6.4 is -59 dBm for both look-up and look-down

configurations. Receiving -59 dBm provides more than 14 dB of SNR and verifies that the

test successfully models the radar. This result confirms that the prototype radar meets the

detection capabilities outlined in Table 6.3 when in look-up and look-down configurations.
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6.3 Ground Testing: The Coded Channel

A coded channel can lower the minimum SNR requirement while maintaining the de-

sired probabilities of detection and false-alarm [72]. This allows the radar to detect targets

with a smaller RCS. The manipulation of the ratio in (6.7) for a coded channel follows the

same steps as shown in Section 6.2.

Taking the 0.1 km values from Table 6.4 with SNRmin = 5 dB it can be shown that

in the look-up configuration, which has 57 dB of isolation, the radar can detect a flat plate

with area 6 × 6 in2 (0.1524 × 0.1524 m2) and σ = 0.4338 when Pavg = −20 dBm. This

transmit power ensures that the self-interference is below the noise floor. The test set-up

to verify these calculations is shown in Figure 6.5. Figure 6.6 shows that without a target,

no self-interference appears above the noise floor. When a target is present, 6 dB of SNR

is achieved which is greater than the required coded SNRmin of 5 dB.

When performing the same test in the look-down configuration there is only 41 dB of

isolation, so the self-interference is not pushed below the noise floor. This has the result of

raising the noise floor to the level of the self-interference and lowering the achievable SNR.

Figure 6.7 shows that the self-interference is 8 dB above the noise floor. When there is also

a target to detect, the received power is greater than the self-interference, but only by 3

dB.

Fig. 6.5: Test set-up to verify detection of a small target.
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Fig. 6.6: Measured Pr for ground test modeling a coded channel when looking up.

Fig. 6.7: Measured Pr for ground test modeling a coded channel when looking down.

The 3 dB of SNR achieved in Figure 6.7 is less than the minimum 5 dB required by the

coded channel model, so the target cannot be detected. This demonstrates the significance

of providing enough isolation to suppress the self-interference below the noise floor of the

RX.
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6.4 Front-End Prototype

This section provides the design, implementation, and results of a radar front-end. A

radar front-end consists of the electronics between the digital-to-analog-converter (DAC)

and the antenna (ANT) in the TX channel and between the antenna and the ADC in the

RX channel. The front-end also includes circuitry for a local oscillator (LO) if required.

A typical, front-end design for both TX and RX includes a cascade of amplifiers, filters,

and mixers (MIX) (see Figure 6.8). The main amplifier in the TX channel is the high

power amplifier (HPA). The LNA is the main amplifier in the RX channel. Between each

component shown in Figure 6.8, the proper addition of amplifiers and attenuators keep the

power levels entering each component within levels specified by the component’s datasheet.
Generic Radar Front End

DAC HPA

ANT

BPF BPF

LO

IF RF

Generic TX

MIX

(a) TX front-end.

Generic Radar Front End

ANT

BPF

General RX

LNAADC

LO

IF RF
BPF

MIX

(b) RX front-end.

Fig. 6.8: Front-end designs for the (a) TX and (b) RX channels of a generic radar.

The front-end of the radar design is simplified for ground testing. A Hewlett Packard

E4433B Signal Generator replaces the entire TX front-end. The RX front-end and LO

circuitry are reduced to the components shown in Figure 6.9.
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Specific Radar Front End

ANT

Specific RX

LNAADC

LO
IF RF

BPF
MIX

VCO

2.4 GHz  2.4 GHz  

2.3025 GHz  

97.5 MHz  

Fc = 98 MHz
BW = 20 MHz

Fig. 6.9: Front-end design of reduced RX channel.

The filter located immediately after the antenna is removed because the anechoic cham-

ber ensures that the only signal picked up by the RX is the one transmitted. The LO is com-

prised of a single component, a voltage-controlled oscillator (VCO). This design is realized

in Figure 6.10 with commercial-off-the-shelf components. The components are characterized

in detail in Appendix C.

Fig. 6.10: Realization of radar front-end.

The power consumption of the front-end is an important characteristic, especially when

the radar is implemented on a CubeSat. Table 6.8 shows the power consumed by each

component and the channel as a whole.
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Table 6.8: Power consumed by radar front-end.

Component Supply Voltage (V) Supply Current (mA) Power Consumed (W)

LNA 5 60 0.3

VCO 12 25 0.3

ADC 5 340 1.7

Total - 425 2.3

To verify performance, the Agilent Technologies CXA N9000A Signal Analyzer replaces

the ADC. The front-end circuit is then tested to verify the target used in Section 6.2

is detectable in both look-up and look-down antenna configurations (see Sections 4.2.2

and 4.3.2) with an uncoded channel. Figure 6.11 shows the received spectrum measured by

a signal analyzer immediately before the ADC.

Fig. 6.11: Spectrum of received signal entering the ADC.

The power level of the received signal at the output of the front-end in both configu-

rations is near -56 dBm. The noise floor has decreased due to the reduction in bandwidth

of the signal analyzer to only 100 MHz, see (4.1).
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6.4.1 Digitization

The final stage of the front-end is digitization with an ADC. Digitization samples the

received signals in preparation for a computer or field-programmable gate array to apply

signal processing algorithms to the data to find or track targets, form images, or determine

weather characteristics depending on the radar’s purpose. The various algorithms for these

applications are outside the scope of Objective 3, but the digitization is not.

The Airspy R2 is selected as the ADC for its low cost and ease of use. The free SDR#

(pronounced SDR Sharp) software is compatible with the Airspy R2. SDR# displays 8

MHz bandwidth of the received signal’s power spectrum and spectrogram (see Figure 6.12).

Various demodulation types are available. The “RAW” option shows the unmodified signal

received by the Airspy.

Demodulation

Spectrum

Spectrogram

Recording

Fig. 6.12: SDR# software display.

SDR# provides recording capabilities that output the sampled, time-domain signal as

a .wav file. These recordings are then ready for further processing. Figure 6.13 shows the

power spectrum of the signals recorded by SDR#.

Sampling has base-banded the spectrum. The frequency marked with a red line in the
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spectrum of Figure 6.12 has been mapped to zero hertz, placing the signal of interest at

about 0.5 MHz. The power level at the peak of the signal is -59 dBm, which is 3 dB lower

than the measurement on the spectrum analyzer. This difference shows that digitization

has some loss.

Fig. 6.13: Power spectrum of digitized receive signal.

There is also a noticeable difference in frequency between the two peaks in Figure 6.13.

As shown, the difference is about 50 kHz. This is the result of the thermal instability of

the Airspy R2. As the temperature changes, the internal circuitry behaves differently. The

time it takes to switch the configuration of the antennas is long enough that the increased

temperature of the Airspy R2 creates a noticeable shift in frequency. The frequency drift is

slow but noticeable. Figure 6.14 shows the measured frequency shift over time. The linear

trend line is describe by

y = 1.433× 10−3x+ 97.75. (6.8)

The quadratic trend line is described by

y = −2.755× 10−6x2 + 2.232× 10−3x+ 97.72. (6.9)
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Fig. 6.14: Measured frequency drift of Airspy R2.

(6.8) shows that over the duration of the measurements the frequency drifted 1.4 kHz/s.

However, the quadratic trend line fits the measurements better. This suggests that the fre-

quency drift slows down over time. (6.9) predicts that the frequency drift should eventually

stop after 405 s.

The thermal sensitivity depicted in Figure 6.14 is not exclusive to the Airspy R2. A

consciousness of the system temperature and a way to maintain the temperature at a desired

level are important to developing a radar system but are outside the scope of Objective 3.

The front-end developed in this chapter is not immediately implementable on a Cube-

Sat. Special components designed to withstand the harsh environment of space are re-

quired, but the layout of the front-end is comparable to one that can go into space. With

space-verified components, a front-end like this one could operate in space. Additionally,

less power-hungry components should take the place of the Airspy R2 in a CubeSat-borne

radar.
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CHAPTER 7

CONCLUSION

The NASA JPL’s RainCube was the first, and is currently the only, CubeSat-borne

radar. This thesis presents a radar design that improves the characteristics of CubeSat-

borne radars. The RainCube was limited by dedicating 25% of its volume to the stowed

antenna, which became wasted space after deployment. The RainCube also utilized pulse-

Doppler waveform radar that requires high peak-power pulses. This thesis presents a radar

design that overcomes the limitations of a deployable antenna and high peak power.

The radar design in this work uses two antennas that are integrated on the satellite’s

solar panels. This removes the need for antenna storage and deployment. The radar also

decreases the required transmit power and increases the CubeSat’s battery life by trans-

mitting and receiving simultaneously and continuously. To overcome the self-interference

that continuous-waveform radar faces, a novel self-interference suppression technique is suc-

cessfully implemented by combining physical-separation and polarization-diversity isolation

methods.

The amount of suppression required is calculated to be at least 39 dB. Test show that

the combination of physical separation and circular-polarization diversity achieves up to

65 dB of isolation in simulation and 57 dB with fabricated antennas. This verifies that

the combination of physical-separation and polarization-diversity isolation methods provide

enough isolation for a continuous-waveform radar to be realized on a CubeSat.

Antenna arrays are common in radar systems because they increase the directivity

of the radar. This provides more gain in the direction of interest and less clutter in the

received signal. Understanding the isolation achievable when using antenna arrays instead

of single-element antennas is of interest. The concern is that the elements of an antenna

array at the receiver are not the same distance from the elements of a transmit-antenna

array.
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Simulation shows that even more isolation is achievable with the antenna array than

with the single element antennas. The isolation is above 81 dB. These simulations assure

that combining physical-separation and polarization-diversity isolation methods to antenna

arrays is feasible and improves performance.

To verify the radar’s capabilities to detect targets in space, ground tests are performed.

These ground tests use a different target range, system noise floor, radar cross-section of

the target, and transmit power than intended for space applications. By maintaining the

overall ratio of these parameters described by (6.7), the ground tests measuring the radar’s

capabilities are valid for space applications.

A functional radar front-end is built for the receive channel. This front-end produces

a digitized signal ready for signal processing. Tests show that the front-end operates as

designed. The front-end is compact and, except for the Airspy R2, does not consume a lot

of power. A similar front-end, with space-grade components, could support a continuous-

waveform radar on a CubeSat.

This work presents a good first step to improving the capabilities of CubeSat-borne

radar. Future efforts can further develop this research by raising the operating frequency,

implementing antenna arrays, and developing a full radar front-end.

The antennas presented are designed to operate at 2.4 GHz. This makes fabrication

feasible with the resources accessible to the research. Future efforts can design antennas

to operate at higher frequencies, miniaturizing the design and making implementation on a

CubeSat more feasible.

With a radar system operating at a higher frequency, the next step is to design antenna

arrays that fit within the size constraints of the solar panels. These arrays can then be

fabricated and tested to verify the simulated results of Chapter 5.

The radar front-end design can be improved to include a full transmitter instead of

using a signal generator. It would also be interesting to design a power distribution system

that fits on the CubeSat. With a full receiver, transmitter, and power supply, future works

can verify that the space and power these electronics require are sustainable on a CubeSat.
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The development of a CubeSat-borne, continuous-waveform radar opens the door to

future innovations involving radar on small platforms. Platforms like small aircraft, drones,

and hand-held devices benefit from the improved power usage, battery life, small form

factor, and isolation of the antenna designs presented in this thesis and suggested for future

research.
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APPENDIX A

Antenna Material and Geometry

A.1 Substrate Material

The antennas designed in Chapter 4 and described in this appendix use Rogers

ULTRALAM® 2000 as the substrate. Table A.1 provides the substrate’s material proper-

ties.

Table A.1: Rogers ULTRALAM® 2000 material properties.

Parameter Value Units

Dielectric Constant, ϵr 2.5 NA

Dissipation Factor, tan(δ) 0.0022 NA

Substrate Thickness 1.524 mm

Copper Thickness 17 µm

A.2 Corner-Cut Technique

This section presents a descriptive summary of how the corner-cut technique creates

a circularly polarized patch antenna and how to analyze and tune the size of the cuts to

optimize the antenna characteristics.

Input Impedance of Rectangular and Square Patches

A rectangular patch is one of the most used configuration of a microstrip antenna.

Balanis [74] provides equations for the length (l) and width (w) for a rectangular patch

with good radiation efficiency. At resonance, the input edge impedance, Ze, of the patch

is purely real. When the the substrate is thin (h ≪ λ), the resonant input edge resistance,

Re, is described by

Re = 90
(ϵr)

2

ϵr − 1

(
l

w

)
. (A.1)
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(A.1) shows that increasing the width of the patch decreases the input resistance. Typical

values of Re are > 150 Ω. To maintain aperture efficiency, the width of the patch is designed

to be

l ≤ w ≤ 2l. (A.2)

To make a circularly polarized antenna, the corner-cut method uses a square patch.

w = l minimizes the size of w and maximizes Re. Typical values of Re for a square patch

are near 300 Ω.

Circular Polarization with a Square, Corner-Cut Patch

Trimming the corners changes the polarization of the antenna. With the corners cut,

the square patch excites two orthogonal modes with 90◦ of phase difference, which make

the antenna circularly polarized.

Figure A.1 depicts a circularly polarized patch antenna made with the corner-cut

method. The trim, t, makes the path between one set of opposite corners shorter than the

path between the untrimmed corners. This causes the mode excited between the trimmed

corners to lead in phase. When t is the right size, the amount of phase difference is 90◦ and

circular polarization is created.

t

t

ℓ

w

Ze

Current

Handedness

Fig. A.1: Method of determining handedness of corner-cut patch antenna.
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The handedness of the antenna depends on which corners are cut. The direction of

current on the patch is from the port to the opposite edge. The head of the arrows depicting

the modes in Figure A.1 follows the direction of the current and points at the edge opposite

the port. By pointing ones fingers along the leading mode with the finger tips at the head

of the arrow and curling the fingers towards the head of the lagging mode, the thumb points

normal to the patch for the hand that describes the polarization of the patch. This identifies

the patch depicted in Figure A.1 as LHCP. Cutting the opposite corners of the patch would

result in an RHCP antenna.

Determining t

It is unclear from Balanis [74] how large t should be to create a circularly polarized

antenna. Since changing the length of w affects the input resistance of a rectangular patch,

it makes sense that trimming the corners does too. Observing the input impedance as well

as the axial ratio and cross-polarization levels of the antenna for different sizes of t helps to

determine the right t for circular polarization.

As an example, a square patch antenna is designed with l = w = 31.25 mm. The

Ze of this square patch is plotted in Figure A.2 as a function of frequency. The resonate

frequency is when the imaginary part of Ze goes to zero. From the results in Figure A.2,

the resonate frequency is 2.79 GHz.
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Fig. A.2: Real and imaginary parts of Ze.

Letting t be proportional to the length of the patch provides the relationship

t = αl, for 0 ≤ α ≤ 0.33. (A.3)

For various values of the constant of proportionality, α, Figure A.3 shows the value of Re.

Fig. A.3: Resonant edge resistance for various trim sizes.
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Re is over 300 Ω when the corners are whole. As α increases, Re decreases until it

settles at about 150 Ω or half of the original edge resistance. Before examining how well

the patch behaves like an antenna, the patch needs to be matched to the feed structure.

300 Ω and 150 Ω are difficult to match with a microstrip line using the resources available

at Utah State University, so matching is accomplished by using a probe feed. The probe

inset distance, y0, is calculated as follows [74]

Rin(y = y0) = Rin(y = 0)cos2
(π
l
y0

)
Rp = R0cos

2
(π
l
y0

)
y0 =

l

π
cos−1

(√
Rp

R0

)
, (A.4)

where:

Rin(y = y0), Rp = input resistance of probe [Ω]

Rin(y = 0), R0 = input resistance at edge of patch [Ω].

The result of (A.4) is y0 = 11.4 mm. After tuning in Ansys HFSS®, y0 = 10.7 mm is

applied.

The corners of the patch are then trimmed and the input impedance at the probe, Zin,

is observed. Figure A.4 shows Zin for frequencies around the resonant frequency at various

values of α.
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(a) (b)

(c) (d)

Fig. A.4: Zin for different trim ratios: (a) α = 0.0 (b) α = 0.05 (c) α = 0.1 (d) α = 0.15.

With no trim (Figure A.4a) and a small trim (Figure A.4b), there is only one resonant

frequency. When the trim is large enough, the real Zin begins to split into two peaks

(Figure A.4c). This shows that two frequencies are resonating in the patch. The higher

frequency is a result of the shorter distance between the trimmed corners. As the trim

ratio is enlarged further, the peaks separate and distinctly show two resonant frequencies

(Figure A.4d).

While the visualization in Figure A.4 is helpful to understand how cutting the corners of

a square patch makes multiple resonant modes, it is not enough to show circular polarization;

for that, the axial ratio and cross-polarization need to be considered as well. A linearly

polarized antenna has a large (ideally infinite) axial ratio. A perfectly circularly polarized
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antenna has an axial ratio of 1 (0 dB). In practice, circular polarization has an axial ratio

< 3 dB and linear has an axial ratio > 30 dB [22]. Anything else is characterized as

elliptically polarized. A good circularly polarized antenna has a cross-polarization > 20 dB.

The axial ratio and cross-polarization of the patch antenna for four trim ratios is shown

in Figure A.5.

(a) (b)

(c) (d)

Fig. A.5: Axial ratio and cross-polarization for different trim ratios: (a) α = 0.0 (b) α = 0.05
(c) α = 0.1 (d) α = 0.15.

As expected, Figure A.5a is linearly polarized. Because the axial ratio of Figure A.5b is

below 30 dB, it depicts an elliptically polarized antenna. Figure A.5c is circularly polarized

and has a cross-polarization of 23 dB. Despite the two resonant frequencies in Figure A.4d,

Figure A.5d is elliptically, not circularly, polarized. This demonstrates that two resonant
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frequencies alone is not enough for circular polarization. The resonant frequencies need to

be near each other to couple properly.

Another observation is that the frequency with the lowest axial ratio in Figure A.5c

(2.84 GHz) is not one of the two resonant peaks shown in Figure A.4c. Instead, the lowest

axial ratio is found approximately midway between the resonant peaks.

Referring back to Figure A.3, Re = 170 Ω for the 0.1 trim ratio that produces circular

polarization in Figure A.5c. This shows that the best circular polarization parameters come

before Re settles. The trim ratio should be chosen so that Re is near, but still greater than,

half the original edge resistance. Also, knowing the edge resistance of the corner-cut patch

that provides the best circular polarization, (A.4) can be used to calculate a new y0 that

will provide a better match.

A.3 2.4 GHz Antenna Geometry

The dimensions, trim size, and feed location of the patch antenna described as an

example in Appendix A.2 are tuned until the patch behaves like a circularly polarized

antenna at 2.4 GHz. Figure A.6 shows the geometry of the LHCP patch antenna, and

Table A.2 provides values for each dimension. The size in wavelengths assumes an operating

frequency of 2.4 GHz. y0 is such that Zin = 50 Ω. It is worth noting that the trim ratio for

this antenna is 0.09 which is near the ratio of 0.1 found in Appendix A.2. All of the RHCP

dimensions are comparable.
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Fig. A.6: Geometry of circularly polarized patch antenna.

Table A.2: Dimensions from Figure A.6 in both physical size and number of wavelengths.

Parameter Label Size (mm) Size (λ)

Length of Ground Plate L 125 1

Width of Ground Plate W 125 1

Length of Patch l 38.125 0.305

Width of Patch w 38.125 0.305

Length of Trim t 3.5266 0.028

Feed Inset Distance y0 11 0.88

Figure A.7 shows Zin for the antenna described by Figure A.6 and Table A.2. For

convenience and comparison, Figure 4.4 is copied here as Figure A.8 to show the axial ratio

and cross-polarization of this antenna design.
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Fig. A.7: Zin of the antenna described by Figure A.6 and Table A.2.

Fig. A.8: Axial ratio and cross-polarization of the antenna from Figure A.6 and Table A.2.
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APPENDIX B

Detection and False-Alarm Probabilities

The SNR design requirement for a receiver is chosen based on the desired probability

of detection (Pd) and probability of false-alarm (Pfa). The relationship between the SNR,

Pd, and Pfa is shown in Figure B.1 for nonfluctuating targets and Figure B.2 for fluctuating

targets. Further derivations and calculations can be found in [30,75]

Fig. B.1: Probability of detection based on SNR for a non-fluctuating target.
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Fig. B.2: Probability of detection based on SNR for a fluctuating target.
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APPENDIX C

Radar-Front-End Components

The components in the radar front-end from Section 6.4 are shown explicitly in Ta-

ble C.1.

Table C.1: Part numbers of components in the radar front-end shown in Section 6.4.

Component Label Manufacturer Part Number

LNA Mini-Circuits ZX60-272LN-S+

MIX Mini-Circuits ZX05-30W

VCO Mini-Circuits ZX95-2500

BPF KR Electronics, Inc. KR 2722

Mini-Circuits has made the exact part numbers obsolete for the mixer and VCO listed

in Table C.1. At the time of publication of this thesis, the updated part numbers are

ZX05-30W-S+ and ZX95-2500-S+ respectively.

A datasheet for each component is accessible on the manufactures’ websites. The Mini-

Circuits website is https://www.minicircuits.com. The KR Electronics, Inc. website is

https://krfilters.com.

https://www.minicircuits.com
https://krfilters.com
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