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Abstract:

Both radio frequency interference from sources external to the synthetic aperture radar
system and techniques to mitigate radio frequency interference can degrade the quality of
the image products. Often it is the second order data products derived from the images that
are of the most value for a synthetic aperture radar system. Preserving the quality of these
data products, in the presence of radio frequency interference, is paramount to maintaining
the utility of the sensor.
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CHAPTER 1

INTRODUCTION

There are many possible sources of radio frequency (RF) interference for a radar sys-

tem. This dissertation addresses unintentional RF emissions within the receiving band-

width of a synthetic aperture radar. Fine-resolution synthetic aperture radar (SAR) systems

require large amounts of bandwidth, e.g. 1GHz of bandwidth is required for 6 inch reso-

lution. Bandwidth is a finite resource allocated by government agencies such as the NTIA

and FCC in the United States. Typically radar systems can find large, contiguous frequency

allocations at higher radar bands, such as X, Ku, and Ka, but in the future finding large,

uninterrupted frequency bands, even at higher frequency radar bands may not be possi-

ble. To support increasing wireless data demands from a growing number of users, cell

phone communications providers have been researching applications at higher frequencies,

specifically 28GHz [1]. The public need for more bandwidth has created pressure upon

the US Department of Defense to reduce their bandwidth allocations [2]. This means that

as the military acquires more wireless systems, these systems will be required to cooper-

atively share spectrum or avoid interference with other military and civilian systems [3].

Therefore, it is expected in the future that RF systems, including intelligence and surveil-

lance systems such as SAR, must be prepared to continue producing data products in the

presence of interference. While much work has been done towards removing interference

from SAR images, this dissertation seeks to preserve the unique characteristics of coherent

data products that enable creation of elevation maps and change detection products.

RF interference can be very damaging to SAR data, particularly if the SAR system

produces a coherent data product derived from SAR images. SAR images are not the same

1



as optical images and require some level of training to interpret, but the images can be

coherently processed into very accurate height maps through interferometric SAR (IFSAR)

processing, or into other products that have more utility than an optical image. IFSAR

processing requires a high coherence between two images to reduce or limit errors in the

height map [4]. RF interference can lower the coherence such that height maps cannot be

produced from the data, and in some cases the interference mitigation technique itself can

also lower the coherence.

Low frequency SAR systems (e.g. UHF band) have overcome RF interference is-

sues [5–7], however these systems have different characteristics and requirements than a

fine-resolution, high frequency (e.g. Ku band) SAR producing IFSAR and coherent change

detection (CCD) products. One distinguishing characteristic is the structure of the interfer-

ence signal within the radar data as a result of using stretch processing is much different

than if the received data had been directly sampled. The structure of the interference signal

can be key to detecting and removing it from the radar data. Another difference between

low and high frequency systems is the terrain radar cross-section (RCS) characteristics

require unique quality metrics for each frequency range. For example, at UHF band the

scattering characteristics of grass is not observable in the same way as it is for Ku band

because the features of the grass are much smaller than the UHF wavelength.

This dissertation examines the impact of interference mitigation techniques upon the

coherence for a fine-resolution, single channel Ku band SAR, using stretch processing to

produce coherent data products by making repeat collections at the same geometry.

1.1 Overview

This dissertation first provides background material on synthetic aperture radars, in-

terference effects, and coherence. Then a review of existing interference mitigation ap-

proaches and the effects upon second order coherent data products are shown. Next, novel

performance metrics are explained in detail that will be used throughout the dissertation to
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compare the performance between different mitigation techniques.

Properly comparing different mitigation techniques requires some amount of similarity

between each technique. An equalization mitigation method is presented that varies perfor-

mance according to interference signal power. Whereas the performance of other mitigation

methods in this dissertation depend upon interference signal bandwidth. Because of this

difference, the equalization mitigation method is presented in its own chapter.

Because this dissertation assumes that multiple passes of a single channel radar are

used to create second order coherent data products, interference mitigation algorithms can

be restricted to either using a single pass of data or can use multiple passes. Therefore,

interference mitigation algorithms are organized into separate chapters for single aperture

and multiple aperture techniques. Typically the literature only considers the single aperture

mitigation case. However, using multiple apertures can yield an average coherence increase

for many cases.
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CHAPTER 2

BACKGROUND

In this chapter the basic concepts of a synthetic aperture radar (SAR) are explained

from range and cross-range resolution to coherence. These concepts are used throughout

this document to define the characteristics of a fine-resolution, stretch processing synthetic

aperture radar capable of producing coherent data products. The characteristics of the radar

greatly influence the type of interference mitigation that can be applied (chapter 3), and help

to understand the relevant performance metrics (chapter 4) used to compare interference

mitigation techniques.

This chapter begins by discussing range and cross-range resolution for a spotlight mode

synthetic aperture radar. Then linear frequency-modulated (LFM) waveform and stretch

processing concepts are discussed followed by the deskew correction that repairs errors as-

sociated with using the LFM waveform with stretch processing. Next, basic performance

characteristics for a SAR radar are discussed that include impulse response, noise equiva-

lent reflectivity, and coherence. Finally, a model for RF interference is presented to make

clear the effects stretch processing can have upon interference within SAR data.

2.1 Synthetic Aperture Radar

Within this section some basic concepts of radar and SAR are explained to clearly de-

fine the parameters of the SAR system modeled within this dissertation. Not all SAR sys-

tems follow these system design parameters, or nomenclature, as there are many possible

implementations and variations.

A radar in its simplest description radiates microwave energy and receives the reflected
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energy to measure the range of the object that reflected that energy. The radar can only

measure range by comparing the time between transmitting energy and receiving energy;

this is called the range dimension because the time difference measured indicates the range

of a target from the radar. For many pulsed radar systems, the radar transmits a pulse,

then receives the reflected pulse for a particular interval of time, and repeats. If the radar

moves orthogonal to the range dimension between each interval, another dimension be-

comes available to resolve the location of targets; typically this is called the cross-range

dimension because it is orthogonal to the range dimension. Many airborne SAR systems

fly in one direction and point the radar to either side of the aircraft to obtain 2D informa-

tion of targets. Likewise, adding another dimension of movement, such as collecting data

at different heights, will create another dimension (e.g. height) with which to resolve the

target.

A synthetic aperture radar (SAR) is a radar that creates a 2D representation (i.e. image)

of the reflected energy over an area. In this way the source of the reflected energy is

localized in space and represented accordingly in the image product. SAR images are made

of both terrain and objects on the terrain; each has unique reflected energy characteristics.

The interpretation of SAR images is determined by the scattering characteristics of the

frequencies the radar used to collect the data. Fine-resolution, high frequency images are

typically easier to interpret because small wavelengths interact and scatter with objects in a

similar process to optical wavelengths. The quality of SAR images is determined by many

factors of the radar system hardware and processing, but resolution is extremely important.

Resolution in the range dimension of a radar is the minimum distance between two

targets for which it is still possible to distinguish the response from each other [8]. The

range resolution, ρr, is mathematically determined by the pulse envelope (duration) τ and

the speed of light as [8, 9]

ρr =
cτ

2
(2.1)

For a constant frequency pulsed radar, the bandwidth, BW , is defined as the inverse of the
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Figure 2.1: Range resolution determined by pulse length. The longer pulse is not able to clearly
distinguish the two targets, while the shorter pulse is able to distinguish between two
targets.

pulse envelope duration, BW = 1/τ [8]. The only factor that determines range resolution

is the bandwidth of the received pulse; not the range to the target or the center frequency of

the radar [9]. For example, Figure 2.1 illustrates the target resolving ability of a constant

frequency pulsed radar for a both a short and long pulse duration; clearly the shorter pulse

yields better distinction between targets. Notice for the constant frequency pulsed radar

example in Figure 2.1, time and bandwidth are coupled such that a small pulse time is

required for high bandwidth. The small time duration of the pulse limits the amount of

signal power, reducing the sensitivity of the radar system. Typically, SAR systems use a

pulse modulation technique to separate time and bandwidth so signal power is limited by

bandwidth; this will be explained in a later section.

Without synthetic aperture processing, the radar’s cross-range resolution is limited to its

antenna beamwidth, β , much in the same way the size of a lens limits the resolving power

of an optical system. Like range resolution, the cross-range resolution, ρa, is the minimum

distance between targets for which the radar beam can isolate one target’s echo response

from the other target. Throughout this document the term ‘azimuth’ is used interchangeably

6



Figure 2.2: Cross-range resolution determined by radar beamwidth. Although the distance between
each target is the same at both distances R1 and R2, at distance R1 the beam is able
to distinguish the targets, while at distance R2 the beam is unable to distinguish an
absence between the targets.

with ‘cross-range’. The radar’s antenna beam, much like a flashlight, expands over distance

(range), r, and the resolution coarsens according to the simple expression [8]

ρa = 2r sin
(

β

2

)
. (2.2)

Figure 2.2 illustrates the width of the antenna beam at a particular range must be able to

uniquely illuminate one target from another to resolve separate targets. However, because

radar wavelengths are much longer than visible light wavelengths, the size of a microwave

antenna for a real-beam radar must be much larger than optical lenses for modest resolu-

tion. In most cases the physical size of a microwave antenna for fine-resolution will be

larger than what is practical to build or fly on an airborne platform. Nominally, the 3dB

beamwidth of an antenna, β , is related to its physical size, D, by the wavelength λ accord-

ing to [10],

β ∼ 0.89
λ

D
. (2.3)
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Inserting (2.3) into (2.2) results in the expression

ρa = 2r sin
(

0.89λ

2D

)
, (2.4)

ρa ≈
rλ

D
, (2.5)

where it is evident that the cross-range resolution is directly proportional to range and

wavelength, and it is inversely proportional to the physical size of the antenna. Using (2.4),

6 inch cross-range resolution at 5 km distance and at Ku band (16.8GHz) would require an

antenna aperture size of 1 km!

A synthetic aperture radar is named so because through signal processing it synthesizes

a much larger antenna from many measurements made with a smaller antenna. The radar

collects samples for a specific length along a path in space (called a synthetic aperture

length) and makes adjustments to the phase of the data to synthesize a much larger aperture

than the real antenna is capable of resolving. An important result from synthetic aperture

radar processing is that cross-range resolution is no longer dependent upon range; it now

only depends upon the length of the synthetic aperture collected at a particular range. Many

details of SAR processing can be found in the literature such as [8–10].

A stripmap mode SAR collects data along a straight-line path while the antenna is

locked to an angle perpendicular to the direction of travel. For this mode, cross-range reso-

lution is limited by the antenna’s beamwidth because the target is illuminated by the radar

only while it is within the antenna’s beamwidth. (Otherwise, there is no signal from ob-

jects outside the radar’s beam.) In this collection geometry, resolution does not depend on

range because the synthetic aperture length scales accordingly, by collecting more samples

as range increases [10], therefore the cross-range resolution is limited by the antenna size

according to

ρa =
D
2
. (2.6)

In contrast to stripmap mode, spotlight mode SAR collects data along a straight-line

8



path while the antenna is pointed at a fixed point on the ground. For this mode, cross-range

resolution is not dependent on the antenna beamwidth, but upon center frequency, λ , and

the aperture angle, ∆θ , subtended by the flight path according to [9, 10],

ρa =
λ

4sin
(

∆θ

2

) . (2.7)

A synthetic aperture radar collects data in both the range and cross-range dimensions.

This data is collected and stored in a matrix data array. When enough data is collected to

form an image, the data is called a coherent processing interval (CPI) [8]. The data col-

lected while sampling a pulse (in the range dimension) is called fast-time samples because

the time scale within a pulse is very fast, on the order of the speed of light [8]. The data

collected across pulses (in the cross-range dimension) is called slow-time samples because

the time between successive pulses is much slower than the speed of light [8].

2.2 Linear Frequency-Modulated Waveform

A linear frequency-modulated (LFM) (or chirp) waveform is a popular choice for radar

systems, including SAR systems, because it decouples time and bandwidth. This is impor-

tant so that signal to noise ratio can be increased by lengthening the pulse width without

reducing bandwidth. The LFM waveform can be found in several sources in the literature,

a few of the SAR specific sources include [9–11]. This dissertation follows the notation

given by [11] to describe the chirp waveform as

XT (t,n) = AT rect
(

t− tn
T

)
exp j

{
ωT,n(t− tn)+

γT,n

2
(t− tn)2

}
(2.8)

where AT is the transmitted amplitude, t is time, T is the transmitted pulse width, n is pulse

number within synthetic aperture, ωT,n is the transmitted center frequency at nth pulse, tn

is the time from the start of the aperture to the start of the current pulse n, and γT,n is the
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transmitted chirp rate of the nth pulse.

Typical radar processing uses a matched filter to resolve targets [12]. The matched filter

can be implemented in one of two ways: correlation or stretch processing [8]. Although

both are equivalent methods to implement a matched filter, there are important differences

between the two methods, particularly for interference mitigation, that will be explored in

later sections.

2.3 Stretch Processing

Stretch processing is used primarily to reduce the radar receiver’s analog to digital

(A/D) sampling requirements of the radar signal. It is most advantageous for radars with

high bandwidth (fine range resolution) and small scene sizes. As scene size increases the

sampling rate advantage from stretch processing decreases. Details on stretch processing

can be found within several sources [8, 10, 11]. The development and nomenclature in this

document follows [11]. Essentially, stretch processing mixes the complex conjugate of

the transmitted chirp (i.e. matched filter) with the received radar signal before sampling.

The time offset between the received chirp (reflected from a scatterer in the scene) and the

local generated copy of the transmitted chirp (usually time referenced to the scene center

range) after mixing produces a single tone with a frequency that represents the scatterer’s

range from the scene center. This process is also called deramping, because the ramp

(or linear relationship between time and frequency) is removed by the mixer. For stretch

processing, as the range swath increases so does the bandwidth and corresponding sampling

rate requirements. The benefit of stretch processing is that sampling rate requirements can

be reduced to less than the RF bandwidth when fine-resolution is desired over a small range

swath.

A visual illustration is provided in Figure 2.3 of the received LFM waveform from the

near and far edge returns of the range swath at RF bandwidth as a function of time in the

top plot. The middle plot of Figure 2.3 shows a representation of the phase history data

10



after deramp/stretch processing. Notice the near and far edge returns have changed from

RF bandwidth of frequencies to single tones after deramp. Also notes that the near and far

edge returns exist for the same time but are skewed relative to each other. Mathematically,

stretch processing is described in [11] (and many other sources, too) where the deramp

chirp has the form

XL(t,n) = rect
(

t− tn− tm,n

TL

)
exp j

{
ωT,n(t− tn− tm,n)+

γT,n

2
(t− tn− tm,n)

2
}
, (2.9)

where TL is the pulse width of the deramp chirp and tm,n is the time delay to a reference

location for the nth pulse, which is usually the time delay from the radar to the center of

the scene.

The deramped signal that is sampled by the radar is called the phase history and for

stretch processing it is expressed in the form [11]

XV (t,n) = ARrect
(

t− tn− ts,n
T

)
rect

(
t− tn− tm,n

TL

)
exp j

{
[ωT,n + γT,n(t− tn− tm,n)] (tm,n− ts,n)

+
γT,n

2
(tm,n− ts,n)2

}
(2.10)

where ts,n represents the time delay of the target response from the start of the nth pulse.

Often it is useful to express the phase history in terms of range instead of time, par-

ticularly for calculating simulated phase histories based on geometry. Using the relations

following [11],

tm,n =
2
c
|rc,n| ,

ts,n =
2
c
|rs,n| ,

rcs,n = |rc,n|− |rs,n| , (2.11)
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Figure 2.3: Illustrates stretch processing of a linear FM chirp waveform and the resulting data skew
effect upon the phase history and a constant tone interference source (reproduced from
[13]).
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where rc,n represents a vector from the scene center to the radar, rs,n represents a vector

from the scatterer to the radar, and rcs,n is a vector from the scene center to the scatterer.

Essentially, the radar can only measure the delay to the scatterer, relative to a chosen scene

center point, and the radar image indicates the scatterer’s position relative to the scene

center. The phase history notation can be changed from time to a digital, sampled signal by

dropping the rect functions since the signal is time aligned by sampling and setting [11]

t− tn− tm,n = iTs,n + τn, (2.12)

where Ts,n is the fast-time sampling interval (i.e. the inverse of the sampling frequency) for

the nth pulse and τn is a fast-time sampling delay of the nth pulse.

Using the above relations (2.11) and (2.12) in (2.10), the phase history expression can

be rewritten as [11]

XV (t,n) = AR exp j
{
[ωT,n + γT,n(iTs,n + τn)]

2
c

rcs,n +
2γT,n

c2 r2
cs,n

}
, (2.13)

where the phase term 2γT,n
c2 r2

cs,n is called the residual video phase error (RVPE) and is an

error byproduct from deramp processing. Depending on system parameters this term can

be ignored, or it can be remedied by deskew processing [9–11].

The data sampled after stretch processing, XV , particularly when stored as a CPI in a

matrix, can be said to be in the spatial-frequency domain because in this form each pixel

(or point target or scatterer) in the image exists as a sinusoid in this domain. The sinusoid’s

frequency is directly related to that pixel’s differential range to the radar.

2.4 Deskew Processing

Deskew processing, also called residual video phase error (RVPE) correction, is cov-

ered in many sources, specifically [10, 11] contain detailed derivations. The RVPE is a
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residual phase term from deramp processing. Each fast-time sample contains a spectrum

of frequency information with a bandwidth equal to the intermediate frequency (IF) band-

width because each echo pulse from each range cell in the patch returns a chirp at a slightly

delayed time (delayed by the time equivalent of one range cell). This time delay is propor-

tional to a frequency shift according to the chirp rate. The amount of image degradation

from the RVPE depends on center frequency, aperture length, and distance [11]. The mid-

dle plot in Figure 2.3 from [13] visually describes the skew effect upon a single pulse phase

history as an IF dependent horizontal shift.

Deskew processing can be summarized into the following steps. Because the RVPE is

range dependent, (see the r2
cs,n phase term in equation (2.13)) the correction must be applied

after the range is resolved by first applying a Fourier transform to the spatial-frequency

domain data to resolve the data into a range dependent array.

The RVPE correction is calculated to be the complex conjugate of RVPE in equation

(2.13) by using an estimate of the range. The range is only an estimate because the precise

position of the scatterer is not known to the radar, but only estimated in increments accord-

ing to the length of the FFT based on the IF bandwidth sampling. The correction is a direct

multiplication of (2.14) to cancel the exponential RVPE term [11]. After correction, the

inverse Fourier transform is applied to bring the data back to the spatial-frequency domain

for resampling and image formation processing [11].

exp− j
{

2γT,n

c2 r̂2
cs,n

}
(2.14)

2.5 Impulse Response

The impulse response (IPR) of a radar system indicates the response of the system to

an impulse input. Within an ideal SAR image, without aperture weighting, the impulse

response is a sinc function in each dimension resulting from the bandlimited nature of the

signal support (i.e. the Fourier transform of a sinusoidal pulse is a sinc centered at the
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Figure 2.4: Left image shows a SAR image scene when IPR is poor. Right image shows a SAR
image of terrain when IPR is good. A corner reflector is present in the bottom left of
each image to measure IPR.

sinusoid frequency). The IPR in the range dimension usually represents the impulse func-

tion of the radar hardware, but can be affected by signal processing operations, such as

interference mitigation. The cross-range or azimuth IPR depends upon the performance of

the signal processing operations to process the image. The IPR generally indicates image

quality. If the IPR has large sidelobes, it can indicate degraded image quality. For exam-

ple, Figure 2.4 shows how in the left image large IPR sidelobes from terrain clutter can

result in a SAR image that appears blurry when compared to the right image which has

low sidelobes. In this example, both images have the same aperture weighting to control

sidelobes, but the left image has distortion from interference mitigation. A corner reflector

can be found in the bottom left corner of each image as a bright white cross in Figure 2.4.

The cross appears because the sidelobes of the point target are a larger value than the back-

ground clutter. Notice that the left image’s corner reflector has a line of dots in the vertical

direction; this is the large sidelobe structure that causes blurring. The entire image appears

blurry because every point in the left image has a line of dots in the vertical direction.

Figure 2.5a shows the ideal IPR response is a sinc function along either the range or
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(b) Taylor Weighting

Figure 2.5: An example of an ideal IPR (a) without aperture weighting and (b) with Taylor window
-35dB SLL and n̄ = 4.

azimuth dimension of a SAR image formed from rectangular frequency support. Many

radar systems utilize a window function to suppress the -13dB sidelobes of the sinc function

and the Taylor window is a popular choice [10]. The Taylor window is desirable because it

allows tuning of the sidelobe level and number of constant level sidelobes while minimizing

the IPR broadening compared to other windows [14]. Furthermore, the Taylor window with

peak sidelobe level -35dB and n̄ = 4 is a nearly ideal window that maximizes mainlobe

energy relative to sidelobe energy level [15]. Figure 2.5b shows an ideal IPR with a Taylor

window applied to the data results in a much lower sidelobe level.

To compare one IPR to another IPR, metrics can be calculated to quantify the IPR shape

including width, integrated sidelobe ratio (ISLR), and peak sidelobe level (PSLL). Because

a SAR image is 2 dimensional, an IPR is made for each dimension: range and azimuth. The

mainlobe width is simply a measurement of the width in pixels at particular values from the

peak, typically 3dB and 18dB. The mainlobe width can be a measure of effective resolution

within the image by encapsulating image processing choices such as oversampling and

window function effects. Typically, the image is oversampled with respect to the resolution

to produce a more aesthetically pleasing image. An image oversampling factor of 1.25 is
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reasonable for most cases. The window function further broadens the oversampling factor

so the measurable 3dB mainlobe width in pixels is a product of both factors. The ISLR

is the ratio between the energy in the sidelobes to the energy in the mainlobe. Sidelobe

structure can vary significantly between IPRs and across distance, therefore the ISLR is an

accepted metric that provides a quantifiable comparison of sidelobes. The peak sidelobe

level (PSLL) is exactly as it sounds, the peak sidelobe level from the mainlobe. For a sinc

response, the PSLL is approximately -13dB.

For a Taylor window n̄ = 4 and SLL -35dB, the mainlobe is broadened by a factor of

1.1842 (after image oversampling by 1.25 the measureable 3dB width is 1.5 pixels), the

ISLR is -36dB, and the PSL is -35dB. Figure 2.6 shows all of these metrics applied to

an IPR from a SAR image where the range IPR is plotted on top and the azimuth IPR is

plotted on the bottom of the figure. Occasionally, it is noticeable that the mainlobe doesn’t

appear centered in the IPR plot; the simple explanation for this is the upsampled IPR has a

different peak location than the brightest image pixel. This effect occurs when the true IPR

peak is located in between two image pixel center points.

2.6 Noise Equivalent Reflectivity

To encapsulate the performance of a SAR it is often practical to define the radar cross-

section (RCS) value of noise for the image, called noise equivalent reflectivity or σN [16].

Using this factor it is straightforward to determine if an object is visible within a SAR

image and its signal-to-noise ratio (SNR) by calculating its RCS and comparing it to σN .

If its calculated RCS is greater than σN , it will be visible in the image, and the difference

between the two values is the SNR. The importance of SNR as it relates to coherence will

be made clear in later sections, here it it suffices to say that they are proportional to each

other.

The noise equivalent reflectivity (σN) is not a constant value for a radar system [16].

As a radar specification, σN is defined as a maximum value over the specified region of
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Figure 2.6: An example of an ideal IPR and calculated metrics with Taylor window -35dB SLL and
n̄ = 4. The top plot is the range IPR, the bottom plot is the cross-range (or azimuth)
IPR, and the metrics for each dimension are located to the right of each plot.

operation. Noise equivalent reflectivity varies with radar operating geometry, hardware,

and image processing choices, the details of these relations are found in [16]. Since most

of these parameters are fixed once a radar is in operation, the most important factor to de-

termine σN is the effective duty factor. Stretch processing helps to increase the SNR by

enabling longer pulse widths where geometry allows while maintaining RF bandwidth. At

short ranges, transmitting more pulses than necessary within a sampling interval (called

presumming) can also increase duty factor. These SNR trade-offs (and associated coher-

ence impact) are important to consider when evaluating interference mitigation techniques,

particularly the methods that don’t transmit pulses to sample the interference signal.

2.7 Coherence

Coherence can have multiple connotations. In this document coherence can be consid-

ered a measure of the similarity (or difference) between two images. For example, coher-

ence can be a useful metric to evaluate differences in image processing algorithms if one
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is attempting to make a faster image formation implementation while retaining the same

image quality. The ideal image can be cohered with the image made with the faster algo-

rithm to assess the effects of the processing optimization. The coherence metric not only

measures the magnitude between two images, but also includes the phase component in the

comparison. The coherence measure is the complex cross-correlation of the two images,

but is often computed using the maximum likelihood estimator (MLE) [4, 9, 17]

µ̂n =
∑

L−1
n=1 x1,nx∗2,n√

∑
L−1
n=1

∣∣x1,n
∣∣2 ∑

L−1
n=1

∣∣x2,n
∣∣2 , (2.15)

where L is number of ‘looks’ or local pixels about n, x1,n is the nth pixel of image 1, and

x2,n is the nth pixel of image 2.

There are many sources of loss, including SNR, phase errors, etc. [4,17,18]. The losses

are multiplicative such that any one term can dominate the system coherence. Maintaining

a high level of coherence is important for many radar systems because it can indicate the

quality of data products produced by the radar system.

Coherent data sets can be created in a few different ways, depending upon the applica-

tion. For height map creation, interferometric SAR (IFSAR) processing is necessary, but

can be applied to different radar architectures. To eliminate temporal decorrelation effects

it is desirable to use a multiple channel radar system where each channel is separated in

height. Single channel systems can also create height maps if the flight geometry is adjusted

between collections, usually a particular height separation. For coherent change detection

products, it is the temporal decorrelation that is of interest, so only a single channel system

that repeatedly flies the same collection geometry is all that is required.

The phase component of the coherence estimator when each image is collected under

the right conditions, can be processed to measure the height of terrain and other objects

to create a digital elevation model (DEM). This type of processing is called IFSAR. Today

LIDAR systems are a popular choice for producing height maps, however these systems are

19



Figure 2.7: Example of a DEM created from IFSAR processing with Sandia National Laboratories’
Rapid Terrain Visualization (RTV) system [20].

limited to clear weather unlike microwave systems. One of the most well-known IFSAR

sensors is DLR’s TanDEM-X [19], a spaceborne, X band radar that creates global DEMs.

The reader is referred to [4, 9] for more information about IFSAR. An example of a DEM

from Sandia National Laboratories’ Rapid Terrain Visualization (RTV) system is shown in

Figure 2.7.

Another application of the coherence estimator is interferometric change detection [9],

also called coherent change detection (CCD), where the magnitude of the coherence esti-

mator is calculated between two images collected from different passes (times) under the

same parameters and geometry. Observe in Figure 2.8 that there are no perceptible changes

between the top image Figure 2.8a and the middle image Figure 2.8b, however the changes

are clearly visible in the CCD product in Figure 2.8c by mapping the magnitude of the

coherence estimator, |µ̂|, to grayscale values. White indicates no change between images,

(|µ̂| = 1), while black indicates change has occurred, (|µ̂| = 0). Figure 2.8c shows tire

tracks from where a vehicle has traveled in the time between two images were collected.
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(a) Image from collect 1.

(b) Image from collect 2.

(c) Coherent change detection (CCD) image.

Figure 2.8: Example of a coherent change detection (CCD) product. The changes in (c) shown in
black are not evident in the magnitude images.
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2.8 Radio Frequency Interference

While there are many sources of radio frequency interference (RFI), many of them can

be modeled as a single or collection of constant tones in the form

Atone exp j{ωtone (t− tn− tm,n)} , (2.16)

where Atone is the amplitude and ωtone is the frequency.

However, this form may not accurately describe the signal found within the radar data.

For radars that use stretch processing, the interference tone is mixed with the complex

conjugate of the transmitted chirp waveform in equation to produce the following signal

within the phase history

XDRT = XtoneX∗L

= exp j
{
(ωtone−ωT,n)(t− tn− tm,n)−

γT,n

2
(t− tn− tm,n)

2
}

(2.17)

where DRT subscript stands for deramped tone.

Additionally, due to stretch processing the interference tone is not present during all

of the fast-time samples in the phase history, it is limited by the time equivalent of range

swath (IF bandwidth) [6, 13]. This can visually be seen in the middle plot in Figure 2.3

by projecting the interference tone onto the time axis. From stretch processing, each fast-

time sample contains a band of frequencies, the IF bandwidth. The center frequency of

the band of frequencies moves with every fast-time sample along the RF bandwidth of the

pulse. If the interference only occupies a single or small number of frequencies, then it will

only appear in the fast-time data samples where that fast-time sample’s band of frequencies

includes the interference frequency. The center point of the interference energy within the

fast-time samples is determined by interference and radar center frequency regardless of
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the interference source timing relative to the radar pulse, according to [13]

ωtone−ωT,n

γT,n
. (2.18)

The interference expression XDRT is non-zero in time from [6, 13]

ωtone−ωT,n

γT,n
−

τp

2
< t− tn− tm,n <

ωtone−ωT,n

γT,n
+

τp

2
(2.19)

Where the time it takes light to travel twice the distance of the range swath is τp.

Figure 2.9 verifies the interference tone within the fast-time phase history magnitude

data occupies only a limited number of samples. Expanding the single pulse case to a 2D

SAR image, Figure 2.10 shows only the image artifacts from a single tone interference

source and six point targets.

Figure 2.11a shows that low amplitude single tone interference has little effect upon

the impulse response (IPR). It does increase the ISLR, however the mainlobe and its width

remains unchanged. Figure 2.11b shows the high amplitude single tone interference follows

the trends of the low amplitude case by elevating the ISLR while leaving the mainlobe

width unchanged. The primary concern for single tone interference is the increase in energy

throughout the image. At low interference amplitude levels only the shadow regions will

appear to be affected. However as interference energy increases the image degradation and

associated image artifact levels increasingly obscure the terrain response.

It should be noted that the RCS measurements in Figure 2.11 are not calibrated to

any specific reflector as typical RCS measurements. Because this is simulation, no actual

hardware system values are used and all values are relative to each other except one. The

RCS value is set by defining a maximum RCS to be represented within the SAR image

and the number of bits to represent each pixel value. This dissertation defines 30dB to be

the maximum RCS value and uses 16 bits for magnitude and 16 bits for phase. From this

maximum point, all other RCS and magnitude measures are scaled.
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Figure 2.9: Single pulse phase history containing only a single tone interference source.

Figure 2.10: Image artifacts from a single tone interference source, image artifacts at RCS -10dB.
Point targets are indicated by black circles.
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Figure 2.11: IPR for point target with single tone interference source for (a) image artifacts at RCS
-25dB and (b) image artifacts at RCS -10dB.
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2.9 Summary

This background section has only touched on many subjects relevant to understanding

SAR and the specifics of stretch processing used in this dissertation for fine-resolution, re-

peat pass collections. Hopefully this section serves as a refresher or to clarify the terms

and concepts utilized throughout this document. The next chapter utilizes these concepts

to demonstrate interference effects upon SAR imagery and the application of different mit-

igation strategies for stretch processing.
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CHAPTER 3

INTERFERENCE EFFECTS AND MITIGATION APPROACHES

This dissertation seeks interference mitigation methods that improve the quality of co-

herent data products over existing techniques. Earlier it was explained there are many ways

to make coherent data products (including IFSAR and CCD), but the method considered

for this dissertation is repeat collections of the same area using the same flight geometry

for each pass. Because there is a time separation between passes this also means that the

interference source can change its characteristics between successive passes (e.g. change

frequency or turn on/off). In this chapter it is assumed that the first pass is free of in-

terference and the second pass contains interference; this assumption allows coherence to

quantify image quality effects due to the interference and the mitigation.

This chapter begins by explaining how interference degrades the image and coherent

data products. Then, an overview of many interference mitigation techniques are presented.

Next, it is shown how typical LMS filtering and linear predictor algorithms do not apply

to radars using stretch processing. Then the standard notch algorithm is presented as it is

applied to radars using stretch processing and the coherence impacts of using this mitigation

are revealed.

3.1 Image and Coherent Data Product Degradation from Interference

Earlier, it was shown that interference produces artifacts in SAR imagery. It is these

artifacts themselves that decrease the estimated coherence value, µ̂ . The mechanism for

coherence reduction is a decrease in SNR. The interference energy is not the signal energy,

therefore it adds to the noise energy. The interference energy can be combined with the
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noise energy to define a signal-to-interference-plus-noise ratio (SINR) calculated as [4,17]

µSINR =
SINR

SINR+1
. (3.1)

The interference signal energy is considered additive noise and can be observed in Figures

2.11a and 2.11b as contributing additional energy into the sidelobes of the IPR, but not

distorting the IPR itself. The additional energy from interference can create both false

correlations and false decorrelations; either case results in a poor coherent image product.

As an example of the effect of interference image artifacts upon a CCD, Figure 3.1

shows a simulation of a CCD product with a horizontal, linear decorrelation pattern and

the resulting effects of increasing the interference power as ratio of the power of the phase

history from the reflected radar signals to the power of the interference signal in the phase

history domain, or signal-to-interference ratio (SIR). This simulation uses a single tone

interference source consistent with the model described in section 2.8. As interference

amplitude increases, Figure 3.1f shows that there is a point at which the original disturbance

is no longer visible. This exact point varies according to many factors including the radar

system, signal processing, and the interference signal characteristics.

Once the image artifacts from the interference exceeds an image and/or coherence

degradation threshold that is unique for a particular radar and mission, a mitigation tech-

nique is required to remove the interference energy. The type of interference mitigation

technique must be chosen carefully so that the mitigation is not worse than the interference

itself. The remainder of this chapter discusses various techniques in the literature as they

apply to multiple pass deramp SAR systems.

3.2 Interference Signal and Stretch Processing

For radars that use deramp or stretch processing, the deramp chirp signal spreads the

spectrum of the interference while the IF filter limits the bandwidth. The resulting phase
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(a) No Interference (b) 10dB SIR

(c) 5dB SIR (d) 0dB SIR

(e) -5dB SIR (f) -10dB SIR

Figure 3.1: Simulation of the average coherence effects from a single tone interference source as
interference signal power increases.
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history for a single tone interferer is a signal limited in time duration to the patch range

length as expressed earlier in section 2.8, equation (2.19). For many detection and mitiga-

tion techniques it is desirable to minimize the number of samples containing interference.

It turns out that the deskew correction that removes the residual video phase error term

from deramping also reduces the number of samples occupied by the interference by re-

moving the residual chirp term of the deramped interference signal [6, 13]. The following

development explains exactly how this cancellation occurs.

Recall from section 2.8 a constant tone interference source is limited in time. The time

period for which XDRT is non-zero will be represented as tp. The expression for XDRT in

equation (2.17) becomes

XDRT = exp j
{
(ωtone−ωT,n) tp−

γT,n

2
t2
p

}
. (3.2)

For deskew processing the data is transformed from the spatial-frequency (time domain)

to a range profile (frequency domain) by the Fourier transform before applying the phase

correction [10, 11]. If it is assumed for the purpose of calculating the Fourier transform of
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XDRT that tp is not limited, the Fourier transform of XDRT is calculated as follows:

F [XDRT ] =
∫

∞

−∞

exp
{

j
[
(ωtone−ωT,n) tp−

γT,n

2
t2
p

]}
e− jωtpdtp.

Using substitution: ω∆ = ωtone−ωT,n,

F [XDRT ] =
∫

∞

−∞

exp
{
− j

γT,n

2

(
t2
p +

2
γT,n

(ω−ω∆) tp

)}
dtp,

= e j 1
2γ
(ω−ω∆)

2
∫

∞

−∞

exp

{
− j

γT,n

2

(
tp +

1
γT,n

(ω−ω∆)

)2
}

dtp.

Where: x =

√
jγT,n

2π

(
tp +

1
γ
(ω−ω∆)

)
,

dtp =

√
2π

jγT,n
dx, and∫

∞

−∞

e−πx2
dx = 1.

F [XDRT ] =

√
2π

jγT,n
exp j

{
1

2γT,n
(ω−ω∆)

2
}
,

=

√
2π

jγT,n
exp j

{
1

2γT,n

(
ω

2−2ωω∆ +ω
2
∆

)}
. (3.3)

Since ω is limited in frequency to the IF bandwidth, and from stretch processing the image

range extent is determined entirely by the IF bandwidth, ω can be expressed in terms of

the range according to the relation ω =
(

2γT,n
c

)
r̂cs,n, where r̂cs,n approximates the range

position over the image range extent. Substituting this relation into the first phase term of

equation (3.3) produces the following form

exp j

{
1

2γT,n

(
2γT,n

c

)2

r̂2
cs,n

}
,

exp j
{

2γT,n

c2 r̂2
cs,n

}
. (3.4)

It should be clear that the phase correction applied for deskew processing in equation (2.14)

will cancel the above phase term responsible for spreading the spectrum of the single tone

interferer.
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There are two benefits for applying the deskew processing to reduce the number of sam-

ples containing interference energy: one is mitigation techniques will modify less samples,

and the second is that the samples containing interference have higher power and may be

easier to detect.

3.3 Detection

There are many ways to detect interference but the theory is simple: find a domain

where the interference signal is unique from the radar signal. Many detectors evaluate if

a data sample has an unusually high power level in the frequency domain [21], or in the

time sampled data [13]. For this dissertation the details of the detector or the particular

interference characteristics matter little for evaluating the impact of different mitigation

techniques. All practical detectors will be better or worse at detecting a particular signal

at a particular power level, so there is a possibility for interference signal energy to pass

through the detector. This can become problematic when measuring the average coherence

values because it has been shown in Figure 3.1 that the interference signal itself is a source

of decorrelation. In the case of residual interference energy changing based upon detector

type, it is difficult to compare the relative effectiveness of different mitigation methods

since each method has different interference energy to mitigate.

Whether by an interference detector or spectrum coordination requirements, in the end

all that matters from a detector is that a region of spectrum has been identified to contain

interference. For this dissertation an ideal detector is assumed that is able to completely

detect all interference energy so that coherence effects from only the mitigation technique

are evaluated.

3.4 Spectrum Sniffing

One simple and effective interference mitigation method used by several radars is to

directly record the interference signal itself, without the radar return signal [5, 22]. For the
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CARABAS radar, data is collected in bursts of pulses and within a burst the radar turns off

the transmitter for one pulse to record only the interference signals [5]. Later during pro-

cessing, a frequency filter is constructed with the interference signals previously recorded

to remove interference in the other pulses within that burst [5]. Ferrell [22] describes a

radar system that alternates between collecting data and collecting only interference sig-

nals to overcome time-varying characteristics of the interference signals.

A limitation for these techniques is that if the interference changes faster than the rate

at which it is recorded, then it will not be removed. Another limitation is that recording

only the interference signal requires not transmitting a radar pulse; this lowers the SNR of

the system and may lower the achievable coherence of the radar system.

3.5 Coherent Estimation and Removal

Coherent estimation of the interference signal for direct subtraction from the radar echo

data is a technique used by many in the literature. It is a desirable approach because if the

estimated signal is accurate, there is minimal disturbance to the phase history signal. Many

of these techniques use a simple model for the interference as a single or summation of

tones for which the amplitude, frequency, and phase of each interference signal must be

estimated. The signals from scatterers in the scene occupy the entire RF bandwidth of the

radar and approximate bandlimited noise in contrast to the sinusoidal interference signals.

As this is a challenging problem, and each radar is different, there are many approaches

available. Typically most approaches estimate the frequency of the interference sources

then solve for the amplitude and phase.

In an early paper by Braunstein [23], the performance between a maximum likelihood

estimator, least-squares, and autoregressive models are compared. Miller [24] uses knowl-

edge of the interference sources and develops a specifically tuned least-square estimator to

calculate the interference signal. A phased-locked loop [25] and a gradual RELAX algor-

tihm [26] has been used to estimate the interference signal [25].
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The LMS adaptive algorithm can also be used to estimate the interference signal pa-

rameters based on the data. Potsis [27] directly uses the LMS algorithm to improve inter-

ference mitigation, while Golden [6] describes an iterative processing algorithm similar to

LMS where the radar collects data of the interference signals only to estimate the frequency

of the interference sources. Then with the frequencies known an iterative estimation algo-

rithm, called Parametric Maximum Likelihood, calculates the amplitude and phase of each

frequency within the data to be filtered [6].

An autoregressive approach utilizing a linear predictor is shown to yield good results

[28].

The difficultly applying these techniques to deramp SAR is that the phase history infor-

mation contains sinusoids that represent the scatterers in the scene while the interference

is a chirped signal. Or the interference is only present for so few samples that it is diffi-

cult to estimate the amplitude and phase if the frequency of the interference was known or

detectable.

3.6 Sidelobe Apodization

There are a several techniques to reduce the appearance of sidelobes in the SAR im-

agery by applying a weighting function (i.e. apodization) [29–32]. Doerry [33] took a

unique approach to reduce sidelobe energy from interference mitigation by minimizing

each pixel value between the original image with interference and the image where interfer-

ence has been mitigated. In this way, the higher sidelobes from the mitigation’s distortions

are replaced with lower values from undistorted sidelobes and the fine mainlobe response is

preserved in the mitigated image. This works because interference is additive to the image

and does not corrupt the IPR as previously shown in Figure 2.11a.

Although, if the average RCS of the interference artifacts are of a high enough value, on

the order shown in Figure 2.11b or Figure 3.1f, then the mitigated image may not receive

any benefit from the original image.
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3.7 Compressive Sensing

In recent years compressive sensing has been an active research area for the radar com-

munity. It is an attractive idea because it may allow less samples to be collected by the

sensor to achieve the same, or similar, image quality. The application benefit is clear when

considering the case where a digital camera collects RGB data values for every pixel of an

image and then much of that information is lost through JPEG compression. A compres-

sive sensing approach may yield the same quality JPEG image with fewer captured pixels

or enable a higher quality image as if more pixels were captured by the sensor. Many radar

applications apply compressive sensing techniques to augment missing data samples or re-

pair undesirable image artifacts. Actually, repairing data distortions and correcting a poor

IPR is not an entirely new concept, especially for radar. There are many spectral estima-

tion algorithms applied to SAR imaging to reduce sidelobes and enhance resolution [29].

CLEAN [34] has been proven to repair point targets in SAR images [13], but it is not

designed for SAR terrain (as will be demonstrated later).

Compressive sensing takes the approach that a signal has a sparse representation in

some domain, then creates a mapping from the sparse domain to the final product that

matches a constraint.

The difficulty for fine-resolution, deramp SAR is selecting an appropriate domain for

sparsity. Many applications select a few of the brightest radar returns and zero the rest

of the image values to create sparsity in the image domain. However, for change detec-

tion and height mapping applications, the clutter (i.e. terrain) values contain important

information and cannot be simply zeroed out. Likewise, every sample of the phase history

contributes to every pixel in the image, so zeroing data in the spatial-frequency domain

will lose power and resolution. Also, many applications of compressive sensing require

a random loss of data samples, whereas for a notching type of interference mitigation the

samples corrupted with interference do not have to be randomly distributed throughout the

phase history because the interference’s frequency characteristics determine its location in
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the phase history.

Most of the papers that have been published on compressive sensing for SAR have a

priori knowledge of the number of point targets in the image, or there is no clutter/terrain

required in the final image. Nguyen [35] has published a paper that uses a compressive

sensing technique to repair the phase history from notching interference, but it is not an

application of a fine-resolution, deramp SAR capable of change detection products.

This dissertation examines the mechanisms that influence coherence performance. It

is with this understanding that these compressive sensing techniques need to be applied if

they are to prove useful over other mitigation methods.

3.8 Least Mean Square Adaptive Filter

A very popular method to remove interference is to apply a least-mean-square (LMS)

filter to remove the interference [7, 36–40]. This usually works well for the case when the

interference signal is present throughout the entire recorded phase history data samples,

such as direct sample radars. The drawback of the LMS filter is that it requires a start-up

time, it is sensitive to the filter parameters, and it does remove a portion of the radar signal

while filtering the interference.

The LMS filter uses a weighting of a number of previous samples (i.e. a filter) to predict

the next sample value [41]. The filter becomes adaptive when the weighting changes each

sample interval based upon the data output. Implementation of LMS requires setting three

parameters: filter order (M), delay (∆), and step-size (η) [41]. Then solving the equations

e(n) = x(n)− y(n),

y(n) = wH(n)x(n−∆),

w(n+1) = w(n)+ηx(n)e∗(n).

A block diagram of an adaptive LMS filter is shown below in Figure 3.2. Examples of
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Figure 3.2: Block diagram of LMS filter.

applications of LMS filters applied to SAR data to remove interference can be found in

[36–38].

Unfortunately, the LMS filter is unsuitable for radars with deramp processing for two

reasons. The first is the sudden change found in deramp SAR data between the radar echo

signal and the interference signal (see top plot of Figure 3.3 for one example). The step-size

parameter η can help the filter adapt quickly to changing power levels, but there are limits

to the step-size parameter values [41]. If η is too big, then the filter can overestimate values

and grow unstable [41], however if η is too small then the signal cannot adapt quickly

enough to the sudden amplitude increase from the interference, and the interference is not

suppressed.

The second reason the LMS filter is unsuitable for deramp radars is that the LMS adap-

tive filter estimates the interference signal as a sinusoid [36, 38]. The deramped phase

history itself is a sum of sinusoids, so the filter must uniquely identify the interference si-

nusoid from the sinusoids of all the other reflectors in the scene. But it has already been

shown that the interference is actually a chirp signal unless deskew processing has removed

the chirp while dramatically reducing the signal length. This is contrary to the assumption

LMS filters make that the radar echo data is noise-like [36, 38].

A 1D simulation was made for a single point target at 15dB, clutter level of -13dB,

and SIR of 0dB using the parameters in Table 3.1 below to approximate a typical point
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target in typical terrain. Figure 3.3 shows the results of using MATLAB’s normalized LMS

filter from the DSP System toolbox with optimal LMS parameters from [36] where the

filter order is 512, step-size is 0.1, and delay is 1 sample. The normalized LMS is slightly

different than the LMS in that it weights the filter weight coefficient update by the energy

in the input data [41]; practically this helps stabilize the filter.

Center Frequency 16.8GHz
Resolution 0.1524m
Scene Size 354m

Image Oversample Factor 1.5
Window Function Taylor

n̄ = 4
-35dB SLL

Table 3.1: LMS filter 1D simulation parameters

Figure 3.3 shows the radar signal contaminated with an interference signal, x(n), in the

top plot, the output of the filter, y(n), in the middle plot, and the resulting filtered signal

from subtracting the filter output from the original signal, e(n), in the bottom plot. It should

be evident the interference signal remains in the filtered signal, e(n). The performance of

the LMS filter is poor because the filter output contains too much of the original radar

signal and not enough of the interference signal is estimated by the filter coefficients. From

deramp processing, the interference is confined to the samples between approximately 1200

to 2000, while the filter output extends across the entire duration of the fast-time phase

history, modifying every sample of data that does or does not contain interference. This

modification of the radar signal may distort the image.

These filter parameters are most likely not optimal, but empirically changing their val-

ues has little effect on the overall results. However, to ensure that there is no error in the

parameters and the implementation, a simulation is created where the same phase history

data set is used, but now the interference exists over all of the fast-time samples. A com-

plex sinusoid is added to the point target and clutter signal at a SIR of 0dB; the top plot

of Figure 3.4 shows the interference signal now occupies all fast-time samples. The filter
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Figure 3.3: Normalized LMS filter results of a deramp radar for 15dB single target phase history in
-13dB terrain/clutter with interference at a level of 0dB SIR.
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output, y(n), in Figure 3.4 (middle plot) shows the ‘ramp-up’ effect of the filter by the re-

duced magnitude in filter output from the starting data sample. This reduction results in

un-suppressed interference signal in the first few samples of the filtered signal in Figure

3.4. But overall the LMS filter is able to remove the interference signal. It is curious to

note that the signal level of the filtered signal in Figure 3.4 does not have the same mag-

nitude as the original signal, shown in the top plot of Figure 3.3. However, the amplitude

reduction effect consistent with [38] that reported similar amplitude reductions from using

LMS adaptive filters.

3.9 Linear Predictor Filter

Another type of adaptive algorithm implementation is a linear predictor. Abend and

McCorkle [28] use an autoregressive model for the interference that assumes the interfer-

ence is a sinusoid. A MATLAB implementation was created to represent using a linear

predictor filter. Figure 3.5 shows a block diagram of the implemented filter. First the linear

predictor coefficients are estimated using MATLAB’s signal processing toolbox function

lpc. Then the filter coefficients are applied to the fast-time data samples, x(n), to calculate

an estimate of the interference within the fast-time data, x̂(n). Then the estimated interfer-

ence is subtracted from the data to yield the filtered result, e(n).

Applying the linear predictor to deramp data is not optimal because it is designed to

identify sinusoids in data and the deramped radar signal itself is a summation of sinusoids.

In fact, the deramped interference is a chirped sinusoid. If the data is deskewed, then the

problem becomes finding the interference sinusoid of very short duration amongst the radar

signal sinusoids. The linear predictor is conceptually very similar to the LMS filter but it

differs in implementation by only requiring a single parameter, the filter order.

A simulation was created the same as the LMS filter example in the previous section,

Figure 3.6 shows the results of applying an order 1 linear predictor to a 15dB single target

phase history in -13dB terrain/clutter with an single tone interference source at a level of
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Figure 3.4: Normalized LMS filter results of a direct sample radar for a 15dB single target phase
history in -13dB terrain/clutter with an interference source at a level of 0dB SIR.
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Figure 3.5: Block diagram of linear predictor filter implementation.

0dB SIR. The simulation parameters are identical to those used for LMS algorithm in Table

3.1. The simulation results are very similar to the LMS algorithm results in Figure 3.3.

To show how Abend and McCorkle’s method [28] would work for a non-deramp radar,

the interference source was replaced with a 1 MHz complex sinusoid with a duration over

the entire fast-time data. Figure 3.7 shows that the filtered signal (in the bottom plot)

has removed the interference because it is nearly the same magnitude as the data without

interference in the top plot of Figure 3.6. Note that the linear predictor filtered signal has

greater amplitude than the LMS filtered signal in Figure 3.4.

3.10 Standard Notch

A notch (or notch filter) in the phase history’s spectral domain has been demonstrated

to be effective at removing interference for direct sample SAR systems [21, 25, 42, 43].

A difficulty arises in applying the spectral notch to deramp SAR data in that the spectral

filtering techniques to identify the frequency components of the interference use a Fourier

transform of the data. A Fourier transform of a deramp SAR phase history yields the

spectrum of IF frequencies and is also the range profile of the image. The chirp upon the

interference signal from deramping spreads the interference signal across all IF frequencies

(all ranges). An example of this is shown in Figure 3.8 where a single pulse of phase history

data with and without interference has been Fourier transformed to reveal the IF spectrum

(or range profile of the image). Comparing the two figures, the bright point targets are
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Figure 3.6: Linear predictor filter for stretch processing radar applied to 15dB single target phase
history in -13dB terrain/clutter with interference at a level of 0dB SIR.
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Figure 3.7: Linear predictor filter for direct sample radar applied to 15dB single target phase history
in -13dB terrain/clutter with an interference source of 1MHz single sinusoid over full
fast-time duration at a level of 0dB SIR.
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Figure 3.8: Comparison between the spectrum of phase history data (a) with and (b) without inter-
ference.

indicated by single spikes and appear in both figures, while in Figure 3.8a, the interference

artifacts appear throughout the entire IF frequency band increasing the overall RCS of the

image when compared to Figure 3.8b. Therefore identifying the frequency of interference

for deramp data is not as straightforward as a Fourier transform.

For interference mitigation purposes, transforming the direct sample raw data into the

spectral domain results in the interference signal occupying less data samples than in the

time domain such that fewer data samples need to be notched. Deramp SAR data is nearly

the opposite in that the interference occupies less samples in the time domain (i.e. fast-time)

data samples. For deramp SAR, the best place to notch is the phase history domain.

For this dissertation the standard notch is defined as the notching approach used by

Wahl et al. [13] for stretch processing radars where phase history data samples detected to

contain interference are forced to a value of zero.

The standard notch requires an interference detector that makes a binary decision for

each sample of data whether it contains or does not contain interference. Wahl et al. [13]

describes a power threshold detector that identifies samples above a certain power as con-

taining interference. An example of the magnitude of fast-time data samples containing
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(b) Standard notch applied

Figure 3.9: Example of applying the standard notch technique to deramp SAR data containing in-
terference (a) before and (b) after.

interference is shown in Figure 3.9a where the interference is clearly visible as a dramatic

increase in magnitude value extending from approximately sample numbers 1700 to 2700.

Applying a power threshold detector as described in Wahl et al. [13] results in notching the

large magnitude samples to zero, as shown in Figure 3.9b.

Because this dissertation is concerned with the coherence effects from the mitigation

technique itself, it is sufficient to accept that a detector has determined that a certain per-

centage of samples at a particular location in the phase history contain interference.

Notching a few data samples is relatively benign to image quality. It is an accepted rule

of thumb that notching less than 2% of the data samples is acceptable for radar systems [44].

Although there are probably other requirements, even for SAR, that ultimately determine

the acceptable notching limit. To observe the effects of the standard notch upon a SAR

image and its CCD, Figure 3.10 shows three cases: the first case has no notching applied,

the second has 2% of samples notched, and the third case has 25% of samples notched.

As more samples are notched, the image becomes darker due the signal power lost within

the notch and the average coherence of the CCD image decreases. At 25% of samples

notched the disturbance pattern from the vehicle is becoming difficult to identify and only

gets worse as the notch increases. Eventually the notched image cannot be registered or
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correlated to the previous image and no coherent data product can be produced.

3.10.1 Repairing Damage from Notch

There are many techniques available in the literature to repair the distorted IPR from

notching. Wahl et al. [13] successfully repairs the IPR with a technique called CLEAN.

CLEAN is a radio astronomy algorithm adapted to coherent microwave imaging to improve

image quality [34]. The algorithm first assumes that the brightest pixel(s) in the image can

be modeled as a point target. Then an ideal model of a point target response corrupted by

a known mechanism (in this case the notch) is matched to the brightest pixel value and

subtracted from the image. The process repeats until only pixel brightness values in the

noise remain. The resulting summation of ideal point targets represents an image without

noise and without IPR distortions. However for a SAR producing coherent data products

the clutter is the most important feature of the image. Alternatively for SAR imaging, the

summation of ideal point targets can be added back to the clutter/noise image to form a

corrected image.

The CLEAN algorithm is successful at repairing point targets (as demonstrated in [13]),

however CLEAN is unable to model SAR image terrain (or anything that isn’t a point

target). SAR image terrain is modeled as circular white Gaussian noise [4, 17], the same

model as thermal noise. Therefore CLEAN cannot distinguish between clutter and thermal

noise, and without a proper model for the clutter, CLEAN is unable to fit a model to the

distorted data to repair the clutter IPR. For a SAR producing coherent data products, the

clutter IPR and coherence is important to be able to resolve an accurate height map or to

detect changes within the scene.

An example is shown in Figure 3.11 to illustrate the effect of applying CLEAN to

the point targets of an image while the clutter remains distorted. For the image in Figure

3.11a point-like scatterers make up only a small portion of the image, and while CLEAN

repairs the IPR of the point targets in the bottom left of the image by eliminating the range
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(a) Image, no samples notched (b) CCD, no samples notched

(c) Image, 2% samples notched (d) CCD, 2% samples notched

(e) Image, 25% samples notched (f) CCD, 25% samples notched

Figure 3.10: Examples showing the effect of notching a SAR image and notching one image of a
CCD image pair to mitigate interference.
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(a) Image repaired with CLEAN (b) CCD repaired with CLEAN

Figure 3.11: CLEAN applied to the second image of a coherent pair of images that has been
notched 25% showing (a) the image and (b) CCD.

sidelobes (vertical streaks in Figure 3.10e are removed), the clutter/terrain in the rest of the

image remains distorted. The CCD in Figure 3.11b is formed from another image from

a previous pass without interference and confirms that the clutter is indeed distorted by

comparing the overall coherence value to the 25% notch case in Figure 3.10f.

3.11 Summary

In this section, the mechanism for coherent product degradation by interference has

been revealed as an additive, SINR loss that doesn’t distort the image IPR. At a particular

point this SINR loss needs to be mitigated to restore coherence. A few standard meth-

ods were demonstrated that do and do not apply to deramp SAR systems. It was shown

that these mitigation methods themselves distort the image IPR and lower the average co-

herence. Attempts to repair the IPR distortion from interference mitigation for the clut-

ter/terrain within the image are unsuccessful. This dissertation will explore in the following

chapters the mechanisms and mitigation methods to improve or restore coherence.
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CHAPTER 4

PERFORMANCE METRICS

The evaluation of the quality of second-order products (i.e. CCDs) can be highly sub-

jective. It really depends on who is looking for what features under a particular set of

conditions. A major factor in the quality measure can be attributable to maximizing the

average coherence value. However, maximizing the average coherence value is not a suffi-

cient quality metric by itself. Coherence measures the ‘sameness’ between two images; it

matters little if each image has a ‘good’ IPR so long as the IPR is the same. To compare

the effectiveness of different interference mitigation techniques, this dissertation will use

several quantitative measures. These metrics include IPR, average magnitude coherence,

and a statistical contrast metric. Each metric has particular strengths and weaknesses that

will be discussed in detail throughout this chapter.

4.1 IPR

Inevitably, the image IPR is disturbed when the phase history samples are modified.

Depending on how the phase history samples are modified results in a desirable or un-

desirable IPR according to the radar system specifications. The ideal IPR for a deramp

SAR image is the result of a multiplication of a constant tone with a rectangular window

that results in a sinc function after applying a Fourier transform. The rectangular window

represents the finite sampling of the constant tone. Typically, the -13dB sidelobes of the

resulting sinc are judged to adversely affect image quality and a window function is applied

to the data to reduce sidelobe level [9, 10, 15].

Any effective perturbations to the amplitude of the phase history data resulting from
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interference mitigation affect the sidelobe level and structure in a similar way to a window

function. Exactly how the IPR is affected is complicated to predict [15], but quantifiable by

typical IPR measures including peak sidelobe level (PSLL), mainlobe width, and integrated

sidelobe ratio (ISLR). Each of these measures are technically explained in section 2.5.

Mainlobe width is directly related to image resolution and the choice of window function

or perturbations to the phase history envelope from interference mitigation can increase the

mainlobe, introduce ripples, and decrease effective image resolution. PSLL is a measure of

the highest sidelobe level and usually indicates how bright the sidelobes of each reflection

will appear. If the PSLL is above or close to the average surrounding values, then the

sidelobe itself can be visible and indicate a false target or obscure a dimmer target. ISLR

is a measure of the average sidelobe level and can indicate how clearly a target can be

resolved. ISLR is related to PSLL, but different in that it is a measure of total energy within

the sidelobes of a scatterer response. If the ISLR is a small value, most of the energy from

the scatterer is located in the mainlobe and the scatterer will be easier to localize. However,

if the ISLR is large (> 0dB), then the sidelobes have as much or more energy than the

mainlobe and it can be difficult to localize the position of the scatterer.

For situations where a large amount of the data is perturbed, ISLR may not be a reliable

predictor of image quality. ISLR requires defining a mainlobe separate from the sidelobe;

it becomes difficult to isolate one from the other as the sidelobes increase and the mainlobe

distorts. Typically, the first nulls of the IPR define the mainlobe, but if the mainlobe is

distorted, as shown in Figure 4.1a and Figure 4.1b, the mainlobe width can be less than

‘normal’ therefore some mainlobe energy is counted as sidelobe energy. This phenomenon

becomes important when evaluating image quality to localize a target. Although Figure

4.1a has a lower ISLR, the corresponding image in Figure 4.1c shows the target as a bright

streak where it is difficult to locate the target or identify any nearby targets. While the

higher ISLR in Figure 4.1b shows that the total energy outside of the first nulls is higher,

the overall level of the far sidelobes is much lower than Figure 4.1a. Figure 4.1d shows the
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lower sidelobes at far distance from the point target can help to localize the point target and

resolve nearby scatterers.

4.2 Average Magnitude Coherence

As previously shown in section 2.7 the coherence estimator produces a complex value.

When averaged over an area, or the entire image, the magnitude of the coherence estimator

can be used as a metric for the similarity between images. For example, average magnitude

coherence can compare the performance of different image processing algorithms against

a true, or optimal result [45]. Additionally, maximizing coherence is important to IFSAR

performance [4].

Coherence encompasses many data collection and signal processing factors, including

choice of window function and flight geometry [17, 18]. In the case of interference, sev-

eral mechanisms can reduce coherence depending on the chosen detector and mitigation

method. The aforementioned references are guides to understanding the underlying mech-

anisms in a synthetic radar system that impact coherence. The absolute performance (i.e.

maximum achievable coherence) can only be judged for a particular radar system, imaging

a particular target, and interpreted by a particular detector. Coherence is a multiplicative

factor of individual loss factors that can be represented as a product of the individual co-

herence loss factors [4, 17, 46]:

µ = µsnr ·µtemporal · ...µipr, (4.1)

where the coherence due to SNR is represented by µsnr, µtemporal is the coherence due to

temporal changes between images, and µipr is a loss due to IPR mismatch. There are many

more coherence loss factors for a real SAR system than are represented here that can be

found in the literature [4, 17, 18, 46].

This dissertation evaluates the coherence impact related to the signal processing op-
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Figure 4.1: Example showing a lower ISLR does not necessarily mean a target is better localized
than a high ISLR when phase history is distorted.
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erations to mitigate interference. Therefore, only the relative performance between each

mitigation method, all other factors being equal, is important to compare different mitiga-

tion techniques. While the literature [4,17,18] discusses and analyzes methods to maximize

coherence, this dissertation needs only to compare the relative coherence impact of the dif-

ferent mitigation methods; the absolute maximum achievable coherence of the radar system

matters little when comparing the performance of different mitigation methods.

For this dissertation all of the system coherence losses are held constant and combined

into one term, µx, for all comparisons such that the final coherence impact is attributable to

the mitigation itself and expressed as

µ = µx ·µmitigation, (4.2)

where µmitigation term encapsulates the coherence impact of the mitigation method. All

effort in this dissertation will be to measure the change in coherence of the µmitigation term.

The µmitigation term encapsulates many facets of image quality and coherence, including

IPR quality and SNR. A straightforward measurement of the average magnitude coherence

value is a direct method of quantifying the value of µmitigation when all other factors are

equal. Image simulations of synthetic clutter are helpful to remove the coherence losses

associated with phase errors from motion, autofocus, and registration differences.

Within image simulations, the SNR value of the system is precisely controlled by ad-

justing the clutter and noise variance. However, a reduction in average coherence magni-

tude due to SNR can be observable due to the additional energy from the interference signal.

It is well documented in [9, 17] that the SNR, or in the case of interference the SINR, has

a direct relationship to coherence. When comparing multiple mitigation techniques, the

average magnitude coherence value can indicate a level of un-mitigated interference by a

lower SINR.

Another mechanism for reduced average magnitude coherence is a difference between
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image IPRs from the mitigation method. Bickel [17] discusses the many factors that can

cause IPR mis-match between images. Different interference mitigation techniques con-

tribute in different ways to the mechanisms described in [17]. But the overall effect of

the mitigation that is important is the cumulative coherence loss because it may limit the

achievable coherence of the radar system.

Maximizing coherence is important, but the true coherence value itself is an important

performance indicator of the maximum likelihood coherence estimator. Bickel [17] shows

that high coherence reduces the bias and variance of the coherence estimator. But it re-

quires particular applications to determine if a certain level of coherence is sufficient. For

example, IFSAR applications use the coherence magnitude as an indicator of the quality of

an IFSAR pair [4] by indicating the amount of phase noise. Phase noise directly translates

to inaccuracy in height estimates; the lower the coherence, the noisier the phase, the more

error in the height values.

While average magnitude coherence can indicate similarity between images, it cannot

measure image quality in all cases. It is possible to get high coherence from poor images,

and likewise low coherence from high quality images. The IPR metrics can quantify image

quality when compared against an ideal IPR, but it is another matter if the image meets

system specifications. For CCD applications to be useful the changed regions need to be

distinguishable from the unchanged regions. Maximizing coherence will primarily affect

the unchanged regions; leaving the changed regions dominated by temporal decorrelation.

Interpretation of the distinction between changed and unchanged regions can be highly

subjective, so there should be a contrast metric to quantify the separation between regions.

4.2.1 Measuring Average Coherence

The actual computation of average coherence is a straightforward sample mean of the

magnitude of the coherence value estimates. However to compute the coherence estimate

using equation (2.15) requires setting the number of local averaging pixels, N, and a large
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enough image to achieve a stable estimate of the average coherence. It has been the au-

thor’s experience that coherence value deviations on the order of thousandths are difficult

to observe with the eye, therefore an image size is desired that allows deviation on the order

of thousandths.

A simple simulation was created to compute the average magnitude coherence as a

function of image size. The clutter power was set at -28dB and the noise level set to -38dB

yielding a 10dB SNR. The ideal coherence value is calculated according to [17]

µSNR =
SNR

SNR+1
, (4.3)

which using a 10dB SNR calculates a coherence value of 0.9091. The clutter and noise

statistics both follow circular white Gaussian statistics and were computed independently

for each image calculation 96 times for each image size. The simulation was repeated

3 times to test the effect of changing the number of local pixels used in the coherence

estimator. Figure 4.2 shows the results of the simulation for local pixel averages of 25, 49,

and 81 pixels. As the number of local pixels averaged increases, the bias in the coherence

estimate is reduced as predicted in [17]. Furthermore, by evaluating 96 cases for each image

size a reasonable estimate of the standard deviation can be made. Figures 4.2b, 4.2d, and

4.2f show the coherence deviation amount for 3 standard deviations about the mean value.

According to Figures 4.2b, 4.2d, and 4.2f, an image size of 100m by 100m is sufficient.

4.3 Statistical Contrast Metric

A CCD can indicate which parts of the image have changed and not changed in the time

between two data sets were collected. The contrast of the CCD can determine how clear

this distinction can be made by any given detector. Intuitively humans can use grayscale

color values mapped to coherence values to distinguish between areas of change and no

change. To develop a quantitative contrast measure, first it is necessary to re-examine how
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Figure 4.2: Simulation of the effect of the local averaging window size and image size upon the
bias and variance of the average magnitude coherence sample mean estimator.
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the coherence estimator is influenced by changes. An excellent model for SAR images

containing general terrain features is circular white Gaussian noise (CWGN) [4, 4]. Under

this model, the coherence estimator can be modeled according to the following probability

density function (PDF) [17]:

p(µ̂|µo,L) = 2(L−1)(1−µ
2
o )

L
µ̂(1− µ̂

2)(L−2)
2F1
(
L,L;1; µ̂

2
µ

2
o
)
, (4.4)

where µ̂ is the estimated coherence value (and random variable), µo is the true coherence,

L is the effective number of looks, and 2F1 is a hypergeometric function. Note that the

coherence estimator PDF in equation (4.4) depends only upon the true coherence, µo and

the effective number of looks, L. If no change is present from one image to the other, its

true coherence will be a value of 1. If a completely decorrelated change is present, its true

coherence will be a value of 0. Whether the number of effective looks is the same or not,

the true coherence value for each case has defined two separate PDFs. These PDFs are

somewhat unique in that the independent variable, true coherence, µo, and the dependent

variable, estimate of coherence, µ̂ , are both limited to the interval [0,1]. An example of

these two PDFs are plotted in Figure 4.3a.

To distinguish between a change and a no change area in CCD products, essentially

there must be adequate separation between these two PDFs. Adequate is a very relative

term that depends on what is desired to be observed, and how the image is scaled. For this

dissertation’s purposes a non-specific, general and quantitative measure is the best choice

to compare relative performance, because fundamentally it is the separation between the

change and no change PDFs that determine the limit to identifying change for any detector.

A straightforward approach to measure the difference between the change and no change

cases is to compute the difference between the peak or mean values for each PDF. Or, more

directly, the difference between the peak or mean coherence value of each region in the

image. In theory, the larger the difference between the two numbers, the better the dis-

58



Coherence
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

N
o
rm

a
liz

e
d
 P

ro
b
a
b
ili

ty

0

0.05

0.1

0.15

0.2

0.25

Real Change Mean: 0.71558
No Change Mean: 0.99589

Real Change

No Change

(a) No mitigation applied
Coherence

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

N
o
rm

a
liz

e
d
 P

ro
b
a
b
ili

ty

0

0.05

0.1

0.15

0.2

0.25

Real Change Mean: 0.27116
No Change Mean: 0.68084

Real Change

No Change

(b) Notch mitigation applied

Figure 4.3: Comparison between coherence PDFs for change and no change cases for (a) when no
mitigation is applied and (b) a notching mitigation is applied to 27% of samples.

tinction between the change and no change cases. Figure 4.3 shows an example where the

better contrast is actually indicated by the lower difference between peak and mean coher-

ence values. In Figure 4.3a the difference between mean values is 0.27808 and there is an

extremely clear distinction between the changed PDF and the no change PDF coherence

values because there is very little overlap in their coherence values. However, in Figure

4.3b the difference between the mean values increases to 0.41 although it is not clear if

coherence values between 0.4 and 0.6 represent changes or the absence of change. This

example illustrates that the peak or mean value is not sufficient to characterize the overlap

between the PDFs and another approach is necessary.

To truly quantify the separability between change and no change, the metric needs to

account for both a changing mean and variance values. Adopting the scene change model in

[47,48], the case where no change occurs between images is called the null hypothesis, H0,

and the case where change occurs is the alternative hypothesis, H1. To simplify evaluation

of each distribution, it is assumed that the change case has a true coherence value of 0

and the no change case has a true coherence of 1. Fitting the coherence estimator PDF to

a histogram of CCD image values makes it possible to quantify the PDF overlap region
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above or below any given threshold value by integration of the PDF. The problem becomes

choosing the right threshold in the interval [0,1] to compare all mitigation methods.

A single threshold value is not sufficient because all that matters in making compar-

isons between interference methods is the separation of the two PDFs despite changing

peak/mean values and changing variance. Radar engineers address this issue by setting

a constant false alarm rate from which to calculate a threshold. The threshold set by the

constant false alarm rate is robust against mean and variance changes for the individual dis-

tributions. Again, the same problem for choosing a threshold appears in choosing a proba-

bility of false alarm. The probability of a false alarm, Pf a, is the area of the no change PDF

between zero and the threshold value; this should be minimized. The probability of detec-

tion, Pd , is the area of the change PDF between zero and the threshold value; this should be

maximized. Ideally each PDF would exist completely on either side of the threshold value

so that Pd = 1 and Pf a = 0, but this is not always the case. To get around the limitation

of choosing a particular threshold value and preserve the generality of the comparison, it

is possible to express the Pd as a function of Pf a; this plot is called a receiver operating

characteristic (ROC) curve. It relates two PDFs by the area of each PDF according to a

varying threshold. Computing the ROC begins with the PDF of the null hypothesis, the

probability of a false alarm is

Pf a =
∫

γ

0
p(µ̂|µ0,L)dµ̂, (4.5)

where the limits of this expression at first glance may seem backwards from the typical

Pf a expression that integrates from a threshold value, γ , to ∞. However, these are coher-

ence PDFs so the alternative hypothesis occupies lower values of coherence than the null

hypothesis. Also, remember the threshold values are bound within the interval [0,1]. The

integration of equation (4.5) can be tricky because of the hypergeometric function, 2F1, in

equation (4.4). One analytical method begins by first transforming the coherence PDF into
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the magnitude-squared coherence PDF [49]. The magnitude-squared coherence function is

expressed as the square of equation (2.15) [49]

|µ̂|2 =

∣∣∣∑L−1
n=1 x1,nx∗2,n

∣∣∣2
∑

L−1
n=1

∣∣x1,n
∣∣2 ∑

L−1
n=1

∣∣x2,n
∣∣2 . (4.6)

To find the transformation between these PDFs and properly distinguish between the square

of the magnitude coherence random variable and the magnitude-squared coherence random

variable, the following definitions are made to use different letters for each random variable

p(x) = p(µ̂|µo,L) ,

p(y) = p
(
µ̂

2|µo,L
)
. (4.7)

Then the PDFs can be transformed according to

p(x) = T (p(y)) , (4.8)

where T is some transformation that can be found by equating each random variable’s

cumulative distribution function (CDF) in the general form

p(x) =
d
dx

∫ y=T (x)

−∞

p(y)dy. (4.9)

Applying the PDF limits of the interval [0,1] replaces the lower integration limit with zero.

Since it was previously defined x = |µ̂| and y = |µ̂|2, then y = x2 replaces the upper inte-

gration limit. Now the PDF transformation expression becomes

p(x) =
d
dx

∫ x2

0
p(y)dy. (4.10)

Notice that the integral now becomes the CDF of p(y) at the value of x2, or P(x2). By
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definition, the derivative of a CDF is the PDF, and applying the chain rule to compute the

derivative of P(x2) results in equation (4.10) expressed as

p(x) = p(x2)2x. (4.11)

Now substituting back into the expression x2 = y and rearranging yields the PDF of the

magnitude-square coherence to be

p(y) =
1
2x

p(x),

p
(
µ̂

2|µo,L
)
= (L−1)(1−µ

2
o )

L(1− µ̂
2)(L−2)

2F1
(
L,L;1; µ̂

2
µ

2
o
)
. (4.12)

It may not appear much has been done toward solving the integral in the Pf a expression in

(4.5), however notice that because of the properties of the magnitude coherence PDF, the

expression for Pf a is an expression of the magnitude coherence CDF. The CDFs between

the magnitude coherence and magnitude-squared coherence can be related by going back

to (4.10) and rearranging into

∫ x

0
p(x)dx =

∫ x2

0
p(y)dy,∫ x

0
p(x)dx =

∫ y

0
p(y)dy,

P(x) = P(y). (4.13)

Therefore, the CDF of the magnitude-squared coherence is the same as the CDF of the

magnitude coherence. while the CDF of the magnitude coherence is not solved, the CDF

of the magnitude-squared coherence is a known expression [49]. Fisher [50] derived the

magnitude-squared CDF from the magnitude-squared PDF into a closed-form solution by

assuming the number of looks is an integer value. Using the magnitude-squared CDF result

62



from [50] the Pf a expression becomes [49]

Pf a(γ) =

(
1−µ2

o
1−µ2

o γ2

)L

γ
2

L−2

∑
k=0

(
1− γ2

1−µ2
o γ2

)k

2F1
(
−k,1−L;1; µ

2
o γ

2) . (4.14)

According to [48], (4.14) can be simplified further by making the following substitutions

2F1
(
−k,1−L;1; µ

2
o γ

2)= (1−µ
2
o γ

2)k+L
2F1
(
1+ k,L;1; µ

2
o γ

2) , (4.15)

using the hypergeometric transformation formula 15.3.3 in [51]. Therefore, a final expres-

sion of Pf a becomes [48]

Pf a(γ) = γ
2(1−µ

2
0 )

L
L−2

∑
k=0

(1− γ
2)k

2F1
(
1+ k,N;1; µ

2
0 γ

2) . (4.16)

Likewise, the probability of detection can be computed in a similar manner using the alter-

native hypothesis

Pd =
∫

γ

0
p(µ̂|µ1,L)dµ̂, (4.17)

where the same limits of integration are used because the alternative hypothesis is the case

where change has caused a decrease in coherence and is detected as a change once it is less

than the threshold, γ . Therefore, the expression for Pd as a function of threshold is

Pd(γ) = γ
2(1−µ

2
1 )

L
L−2

∑
k=0

(1− γ
2)k

2F1
(
1+ k,N;1; µ

2
1 γ

2) (4.18)

where this is exactly the same expression as (4.16) except the true coherence value of the

null hypothesis, µ0, has been replaced by the true coherence of alternative hypothesis, µ1.

Now that Pf a and Pd are expressions of the threshold value, numerical methods can

solve for threshold values according to discrete values of Pf a, which can then be used to

compute Pd . This creates a relationship between Pd and Pf a that can be expressed in a ROC

curve. The value of Pd shown for a particular value of Pf a represents a constant area of
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the null hypothesis, so if there are multiple mitigation techniques, where each technique

affecting the PDFs differently, the ability to detect a change is directly comparable by

holding the area of the null hypothesis curve at a constant probability (or area). The ROC

curve not only evaluates the ability to detect a change at one threshold, but varies over

all the possible threshold values as the Pf a changes. In this way, if the ROC curve from

one method has a higher Pd value, then more of the alternative hypothesis PDF is below

the threshold value and the separation between the null and alternative hypothesis PDFs is

greater, so the contrast would be better.

The ROC curve does not indicate if a performance level is enough to detect a particular

target change signature. First, one would have to have to know the relationship between Pd

and Pf a for the specific target; as can be seen above, this is a complicated calculation when

true coherence values have been assumed to be binary values for change or no change. Sec-

ond, the coherence values for any mitigation method are dependent upon the total system

coherence budget that limits the maximum achievable coherence. A real radar system can

change these coherence loss parameters due to many factors thereby limiting the achievable

coherence of the system that bounds the coherence estimator’s bias and variance [17].

Additionally, the ROC curve cannot quantify the effect of sidelobe level upon detection

of any change signatures, but the ROC can quantify the effect of the sidelobe level upon the

change and no change case statistics. It should be clear that detecting a change in a CCD

image and the statistics represented by the ROC are very different concepts. The detection

of change in a CCD image requires a detector to determine if a certain coherence value

represents a true change. While for the statistical representation, it is already known that a

region of the image contains a change (or does not).

4.3.1 Practical Implementation of Contrast Metric

To implement the contrast metric it is necessary to have the values of true coherence and

effective number of looks to construct the PDF for each change and no change case. As it
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is uncertain the analytical relationship between the mitigation method upon true coherence

and effective number of looks, these values can be estimated from the CCD histogram. The

image must be simulated as a model of CWGN over many pixels to obtain a reasonable

number of points from which to estimate the histogram and resulting PDF parameter esti-

mates. A single image can be divided into two regions: one of change and another of no

change, demonstrated by the resulting CCD in Figure 4.4. Using guard bands to obtain

homogeneous statistics, the PDF for each half of the CCD is estimated from the histogram.

Then a stochastic search technique can be used to estimate the true coherence and effective

number of looks that best fits the estimated PDF. Once those values are known for each

change and no change case, numerical evaluation can calculate the ROC curve.

It is important that no interference is present within the CCD used to estimate PDF

parameters, because it will affect the histogram statistics. For example, the interference

artifacts introduce changes where there should be none, affecting the resulting histogram

of the no change case by lowering the coherence separately from the mitigation technique.

Essentially the interference itself will have its own PDF with unique parameters, and likely

a different distribution than equation (4.4). Remember, the PDF in equation (4.4) is only

valid for Gaussian statistics, not the statistics of interference sources.

The restriction of an interference free image/CCD can be overcome by using multi-

ple images during simulation. One image can contain interference, and the calculated

mitigation based on that image with interference can be applied to both the image with

interference and the image with the change/no change pattern in Figure 4.4. Applying the

mitigation to an image without interference is particularly straightforward when the miti-

gation can be implemented as a weighting vector; this will be demonstrated in following

chapters.

It is important to determine how many pixels are required to achieve a stable estimate

of the coherence PDF parameters. Once a PDF is estimated by the histogram, the calcu-

lation of the PDF parameters are deterministic using numerical methods. It is the image
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Figure 4.4: CCD image pattern of change and no change regions from which to estimate coher-
ence PDF parameters. Values outside the red rectangles are ignored for the parameter
estimation.

size and the number of histogram bins that determine the statistics such that values calcu-

lated through PDF parameter estimation are repeatable and stable representations of those

statistics. A simulation is created very similar to the simulation in the previous section

for determining an acceptable image size to measure average coherence magnitude. Two

images were created with CWGN statistics and 10dB SNR, except for half of the image the

clutter values were decorrelated as shown in Figure 4.4. Since the previous average coher-

ence magnitude analysis shows an image size greater than 100m by 100m is desirable, this

simulation starts with this image size and increases to 300m by 300m. The ROC requires

a total of 4 parameter estimates: µ0, L0, µ1, and L1. Because the coherence estimator is

biased and increases variance as the true coherence value decreases, the alternative hypoth-

esis parameters (i.e. change case, µ1 and L1) are not evaluated for repeatability. Figure 4.5

shows the results of varying the scene size upon the estimates of the no change case (i.e.

null hypothesis) true coherence and effective number of looks for different values of the

local averaging window and number of histogram bins. The results are shown in terms of

66



parameter value deviation from the mean to three standard deviations. Since each value is

computed from CWGN regenerated for each trial, each measurement is independent and

Gaussian statistics are assumed; therefore these plots show by how much 99.7% of the pa-

rameters estimates deviate from the mean value. It turns out that the number of histogram

bins, which defines the number of points of the coherence PDF, has little impact upon the

value of the parameter estimates. The mean value of the effective number of looks increases

with the size of the local averaging window, therefore its deviation value also increases. In

summary, the simulations represented in Figure 4.5 indicate despite changing the size of

the local averaging window or the number of histogram bins, there is no significant stabi-

lization in values for either the coherence or effective number of looks. If the same criteria

used for average magnitude coherence is applied to selecting image size, then the image

should be at least 125m by 125m.

The choice for the size of the local averaging window is a trade-off between the desire to

resolve change details in the CCD product and reducing bias and variance in the coherence

estimator. A larger averaging window results in lower bias and reduced variance for the

MLE coherence estimator [17]. While Figure 4.6 shows increasing the local averaging

window blurs the disturbance pattern. Three choices have be selected for comparsion, 25,

49, and 81. Odd values are chosen so that the local average window is square and centered

upon a pixel, though this is not a requirement.

Given that in this dissertation the relative performance between methods is being mea-

sured, the absolute accuracy of the coherence estimate is not required, so long as a stable

measurement is made. Since the purpose of the images in Figure 4.6 are qualitative evalu-

ation, the choice is made to use a local averaging window of 5x5 so the CCD disturbance

patterns appear sharper.
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(a) No change coherence (µ0), N = 25
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(b) No change effective number of looks (L0), N = 25
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(c) No change coherence (µ0), N = 49
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(d) No change effective number of looks (L0), N = 49
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(e) No change coherence (µ0), N = 81
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(f) No change effective number of looks (L0), N = 81

Figure 4.5: Simulations showing the parameter value deviation at 3σ for estimating coherence PDF
parameters as a function of scene size while varying local averaging window size and
the number of histogram bins.
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(a) Local averaging window: 5x5

(b) Local averaging window: 7x7

(c) Local averaging window: 9x9

Figure 4.6: Comparison of a disturbance pattern as the size of the local averaging window is in-
creased from 5x5 to 9x9 local pixels.
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4.4 Summary

In this chapter three classes of metrics have been introduced to evaluate the impact

of different interference mitigation techniques upon image quality, average coherence, and

contrast for change detection. It has been shown how each of these methods can and cannot

evaluate the effects from various mitigation techniques. The prime concern of this disserta-

tion is evaluation of the performance difference between one mitigation technique against

another mitigation technique.

Based upon the results in Figure 4.2, Figure 4.5, and Figure 4.6 a simulation will yield

stable measures of average coherence and PDF parameter estimates for an image size of

100m by 120m, 100 histogram bins, and a local averaging window size of 5x5. A non-

square image size is chosen to help aide in debugging throughout image and signal pro-

cessing.

It should be noted that any application to a real radar system depends upon the specific

interference source upon a specific radar system and its mission. Ultimately, it is up to

the radar system engineer to determine if an interference mitigation meets specifications.

Some of the factors affecting the radar system engineer’s decision have been summarized

into the metrics described in this chapter, but these by no means should be the only factors

in selecting an interference mitigation technique.
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CHAPTER 5

A NEW APPROACH TO POWER EQUALIZATION

The concept of power equalization of phase history data is used by [40,52,53] to remove

the effects of interference from SAR images. Each of these methods differ in implementa-

tion and the resulting effects are unique to each algorithm. A novel approach is presented

that is better suited for deramp SAR applications.

The reason phase history equalization is desirable can be attributed to the ideal response

for the radar system. The deramp radar, in essence, samples a tone in time that represents

an echo of the transmitted radar pulse from a single scatterer. Many of these tones are com-

bined according to the principle of superposition to create a SAR image. Considering the

case of a single scatterer, from deramp processing the frequency of the tone sampled in time

determines the single scatterer’s relative position to the radar. Typically a Fourier transform

can be used to measure the frequency value of the tone to resolve the range of the single

scatterer. Because this tone is only sampled for a finite period of time, the Fourier transform

operates upon a time-limited sinusoid and the result is a sinc function. This is also called

the impulse response (IPR) of the radar system. A sinc function by definition has -13dB

sidelobe level and for SAR images it is generally accepted that suppressing these -13dB

sidelobes results in a more aesthetically pleasing image [10]. To reduce sidelobe level, typ-

ically SAR processors use a window function to shape the amplitude of the sampled signal

before the Fourier transform is applied. The amplitude envelope of the single scatterer tone

directly affects the IPR shape. When interference appears in the phase history, it distorts

the amplitude envelope of the phase history, so the natural tendency would be to flatten the

amplitude envelope to return the phase history data to the ideal case.
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The interference actually combines with the single scatterer tone by superposition so

the Fourier transform can be considered as operating on each signal separately so there

is no change in the single scatterer IPR, however the artifacts from the resulting Fourier

transform upon the interference signal add to the IPR. The power of the interference signal

relative to the scatterer signal combined with the signal processing and radar hardware

specifications determine the point at which the interference effects are no longer benign

within the image. The power equalization technique seeks to equalize the power of the

interference signal to that of the radar signal such the interference effects are minimized,

however the interference energy is never completely removed. When the interference is

band-limited and narrower than the radar bandwidth, the integration gain of the Fourier

transform upon the interference signal is greatly reduced from the integration gain upon

the scatterer signal. Thus when the interference energy is of similar amplitude to the phase

history and narrow in bandwidth relative to the phase history, after the Fourier transform

the amplitude of the image artifacts are greatly reduced.

The following section describes a novel equalization algorithm used to estimate the

interference energy level and equalize the phase history amplitude. Then a series of sim-

ulations shows how the algorithm is applied to phase history data and two test cases to

evaluate its performance against the standard notch.

5.1 Algorithm

The primary issue for power equalization is determining the true radar signal energy

level to equalize the interference data values. The algorithm can avoid estimating the true

radar signal energy by creating an envelope of the phase history magnitude, including in-

terference, to then equalize the entire phase history. Because the envelope is computed

by low-pass filtering with a median filter, the choice of the median filter parameters are

paramount to its performance.

The calculation of an envelope for each phase history pulse is unique from [52] where

72



a single average value for each range-compressed pulse is used to normalize the data.

Since deramp interference spreads across all the range-compressed pixels, Zhu et al.’s [52]

method adjusts not only the interference artifacts but the clutter/terrain values, too. The

normalization process in [52] does not change the signal to interference power ratio unlike

the median filtered envelope.

The median filtered envelope is more flexible than the approach used by Lamont-

Smith [40] where an internal/loopback calibration path provides a reference signal for

equalization. The Lamont-Smith [40] equalization averages together several pulses of data

so any interference sources that are stationary from pulse to pulse will be represented in

the envelope while the variance of the radar signal smooths the envelope. However, if the

interference changes rapidly from pulse to pulse, even if frequency stable, the amplitude

over several pulses can be reduced. In contrast, the median filtered envelope is able to ad-

just independently to the characteristics of the interference as it changes, if necessary, for

each pulse. But it also has the flexibility to be applied over any number of local pulses or

pulses throughout the aperture.

Following the block diagram in Figure 5.1, the algorithm begins with a single pulse of

phase history data after deramp processing and sampling in the form

Asi = |As|e jθs + |Ai|e jθi, (5.1)

where As is a complex signal describing the reflected radar energy from the scene, Ai is

a complex signal describing the interference energy received by the radar, and Asi is the

combination of both signals that make up the phase history data for a single pulse. The

magnitude of the data, |Asi|, is low-pass filtered to create an envelope (or smoothed version)

of itself, |Ãsi|. Then to normalize the power level, the mean of the envelope, µ|Ãsi|, is divided

out to yield

|Ãsio|=
|Ãsi|
µ|Ãsi|

, (5.2)
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which is inverted to produce a weighting vector,

wpe =
1
|Ãsio|

, (5.3)

that can be applied to the original data to get the power equalized data,

Ape = Asiwpe. (5.4)

The inversion of the low-pass filtered envelope, |Ãsio|, makes it convenient to apply the

correction envelope as a multiplication instead of a point-by-point division.

Figure 5.1: Block diagram of power equalization implementation.

Another equalization method by Fan et al. [53] uses median filtering, however its appli-

cation is different. Fan et al. [53] applies a detector to select only the samples containing

interference to be median filtered with adjacent data samples. The median filter width is

twice that of the band containing interference so assuming there are no adjacent bands of

interference energy, the magnitude value of the resulting median filtered samples will be

at most half of the original the interference energy. Also, the variance of the phase history

data determines the RCS value. Smoothing a section of the data will alter the variance char-

acteristics of the data. An extreme example is if a section of the phase history is flattened

completely; that produces a false point target at the scene center. The ‘resolution’ of the

point target depends upon the width of the flattened phase history data. And the resulting

image IPR is distorted (in a similar method as observed earlier after applying the standard

notch) because the zero variance within the flattened phase history affects all components

of the image.

The low-pass filter minimizes the phase history variance. Ideally, the correction en-
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velope should be as smooth as possible. Any reductions in the median filter size that try

to account for sharp variations in amplitude from interference trade-off any interference

suppression gains against reducing the phase history variance.

5.1.1 Calibration Effects

Although the amplitude of the phase history is equalized such that the bandlimited

interference is the same power level as the rest of the phase history, the total power in the

phase history, including the interference is preserved, so that the clutter RCS values in the

image have actually increased due to the interference energy. This happens because the

envelope is normalized by µ|Ãsi|, which is the average value of the reflected radar energy

plus the interference energy. The interference energy is preserved by amplifying the entire

phase history.

In practice it is difficult to separate the interference signal from the radar signal (oth-

erwise mitigation would be a simple coherent subtraction), but if the proper energy level,

µ|As| was known through some means, replacing its value into equation (5.2) would still not

return the correct clutter RCS. A portion of the signal has been reduced in magnitude by the

interference via the correction envelope, so a correction factor is necessary to account for

that magnitude reduction. Ideally the total power in the phase history would be comprised

of the original signal power plus the reduced magnitude interference power.

One possible work-around if the image contains a point target and mild to moderate

interference is to measure the RCS of the point target before mitigation. From Figures

2.11a and 2.11b it is known that the RCS of a point target is relatively stable if interference

energy is significantly below the peak value. The RCS of the point target can be adjusted

after equalization to return its peak value to its original value before equalization.
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5.2 Simulations

Below, simulations are made to compare the performance of the equalization technique

against the standard notch technique. Fundamentally the detector for each method is dif-

ferent. The equalization combines the detection of interference into the calculation of the

equalization envelope by the median filter. If the interference is of shorter duration than the

median filter, then the median filter results in an envelope value that is less than the inter-

ference, thus it is not completely suppressed by the equalization. In contrast the standard

notch is compatible with a multitude of detector implementations, but requires a binary de-

cision whether a sample contains interference or not. That binary decision is not possible

within the described equalization algorithm.

It is critical the mitigation methods have the same detector. Interference sources can

vary greatly in structure and each detector will vary in the data samples identified to con-

tain interference. Every detector has a certain amount of interference energy leakage; this

leakage will impact coherence measurements and may skew the results for or against a

mitigation technique when it is really the detector influencing the results.

The way to compare the equalization method to the standard notch is to use a rect

function as an ideal envelope for the interference. The width of the rect function will

determine the performance of the standard notch, while the performance of the equalization

will vary with the height of the rect function that represents the SIR.

5.2.1 1D Simulation

To illustrate how the equalization technique works, a 1D simulation is created conform-

ing to the parameters below in Table 5.1. The technique begins with fast-time data samples

from a single pulse, shown in Figure 5.2a, that contains the radar return signal and an in-

terference signal. The interference signal is band-limited Gaussian noise adjusted to a SIR

of -5dB where its additional energy is obvious in Figure 5.2a as the large increase in signal
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amplitude between fast-time sample numbers 400 and 550. For this simulation, instead of

using a low-pass filter, an idealized envelope is created from the known band-limited pa-

rameters of the interference signal. The normalized and inverted weighting vector is shown

in Figure 5.2b. Once the weighting is applied to the fast-time samples, Figure 5.2c verifies

the resulting data values are relatively constant and any interference energy is seemingly

removed.

Typically, flattening the phase history improves IPR, in a similar way window func-

tions shape the mainlobe/sidelobe structure. The constant amplitude, constant frequency

tone from a single scatterer yields an ideal sinc function after the Fourier transform is ap-

plied during image processing. However, the addition of interference energy to the data,

despite flattening the magnitude of the combination of the radar signal and the interfer-

ence, actually shapes the envelope of the radar return signal. Because this is a simulation,

it is straightforward to apply the equalization weighting to the original phase history data

without the interference signal. Figure 5.2d verifies the phase history of the radar signal

is in fact not equalized. The radar signal may not be equalized but the attenuated signal

improves the IPR response and reduces distortion compared to the standard notch. Also,

the interference image artifacts are greatly reduced in value, reducing their appearance in

the image and reducing their SINR loss contribution to coherence.

Center Frequency 16.8GHz
Resolution 0.1524m (6”)
Scene Size 100m

Image Oversample Factor 1.5
Window Function Taylor

n̄ = 4
-35dB SLL

Point Target RCS 25.5dB
Clutter RCS -28dB
Noise RCS -38dB

Table 5.1: 1D equalization simulation parameters
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Figure 5.2: Fast-time phase history data for simulation parameters in Table 5.1 to illustrate how the
equalization mitigation works for a simulated interference power of -5dB SIR.
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5.2.2 Relation to Standard Notch

There is a limit to the effectiveness of equalization in that as the interference magni-

tude increases, the signal within the interference will be further suppressed, approaching a

condition close to notch filtering. IPR metrics can be used to examine when equalization

becomes equivalent to the standard notch. It should be noted that by evaluating IPR, the

effects of the residual interference energy due to the detector differences are ignored. The

mitigation methods differ in that the standard notch is capable of completely suppressing

the interference energy only if it is detected, while the equalization method makes no bi-

nary decision when equalizing data and residual interference energy is always present. This

becomes important later for comparing average coherence where the residual interference

energy from equalization for a low SIR case contributes a coherence loss by lowering the

SINR.

Figure 5.3a shows a plot of ISLR as a function of SIR for the simulation parameters in

Table 5.1. The interference occupies 20% of the fast-time samples and is centered at 3/5 of

the length of the fast-time samples, as shown in Figure 5.2a. As expected the ISLR of the

standard notch is constant because changing the SIR does not change the mitigated data.

The ILSR of the equalization mitigation increases (i.e. gets worse) as a function of SIR,

until it approaches the standard notch. For visual verification, the IPR of the standard notch

is plotted in Figure 5.3b. The equalization IPR at 5dB SIR in Figure 5.3c shows a mod-

erately increased sidelobe level at a distance of 10 pixels with a large increase in sidelobe

energy very close to the mainlobe. At a -25dB SIR, Figure 5.3d shows the equalization IPR

is a match for the standard notch IPR with nearly identical shape, 3dB width, ISLR, and

PSLL.

Therefore, based on the IPR characteristics, as SIR decreases the equalization method

image distortion approaches that of the standard notch.
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Figure 5.3: Simulation showing the IPR distortion due to equalization mitigation increases as SIR
decreases.

5.2.3 2D Simulation

A simulation is made with images of simulated point targets and terrain to evaluate

the average coherence magnitude differences between equalization and the standard notch.

Unlike the IPR analysis above, these simulations will include the effects of residual interfer-

ence energy from equalization. This residual interference energy is the difference between

Figure 5.2c and Figure 5.2d. The residual interference source is a CWGN noise windowed

by a rect function in the spatial-frequency domain to represent band-limited interference.

The variance of the CWGN is modified to achieve the desired SIR. A rect function repre-
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sents the ideal correction envelope to calculate the equalization weighting and the output

of an ideal detector for the standard notch. All parameters from Table 5.1 are used with the

addition of an azimuth patch dimension of 120m. The interference is centered within the

fast-time sample data for two different widths of 5% and 25% of the number of fast-time

data samples. Both simulation cases vary the SIR level to change the performance of the

equalization mitigation.

Figures 5.4a and 5.5a show the average coherence as a function of SIR for a notch width

of 5% and 25%, respectively. In both cases at high SIR the equalization method is better

than applying no mitigation or the standard notch, but as the interference energy increases

(i.e. SIR decreases), the average coherence of the equalization becomes worse than the

standard notch. There are two reasons for this behavior. The first is that as was observed

in Figure 5.3a, as SIR decreases the IPR distortion approaches that of the standard notch,

which decreases the average coherence to the level of the standard notch. The second

reason is the residual interference energy, the difference between Figure 5.2c and Figure

5.2d, contributes to the noise power and reduces the average coherence by equation (3.1).

If it were not for the residual energy the equalization performance would approach that of

the standard notch, as demonstrated in the 1D simulation.

Although the limit of the equalization performance is worse than the standard notch,

there is a clear region at high SIR values where the equalization mitigation yields a co-

herence improvement. To illustrate these regions two SIR values of 10dB and -15dB were

chosen to create qualitative images with a disturbance pattern for each simulation case in

Figure 5.4 and SIR values of 5dB and -15dB for Figure 5.5. The disturbance pattern ap-

proximates tire tracks and is placed in a horizontal direction to exacerbate any possibility

of elevated range sidelobes from the mitigation affecting the disturbance.

The SIR region where the equalization mitigation improves over the standard notch

increases with the size of the notch, up to 50% of the fast-time data samples. Beyond

50% the interference signal dominates the phase history signal and the equalization has
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less effect upon the signal-to-interference ratio as the interference signal approaches 100%

of the fast-time data samples. It should be straightforward to consider when interference

occupies 100% of fast-time data samples that any weighting modification to the phase

history cannot change the signal-to-interference power ratio.

5.3 Summary

In this chapter it has been shown that a novel method for equalizing the fast-time data

samples for a deramp SAR can improve coherence in cases where the signal-to-interference

ratio is high. However, it was also shown that residual interference energy from high levels

of interference energy can contribute to a coherence loss that is worse than the standard

notch. Another factor to consider is the interference detector for the equalization is different

from the detector used for the standard notch in that it does not require a binary decision if

interference is present or not. This is a weakness in the standard notch (or any mitigation)

in that if the detector cannot detect the interference energy, or detects it incorrectly, then

residual interference energy can be present. It is important to note that the cases presented

here represent an ideal detector whereas the performance for a real detector upon a real

interference source can vary.

The primary advantage of the equalization mitigation over the standard notch is when

interference energy is low and narrowband, where the standard notch mitigation can be

worse than doing no mitigation. But as the interference energy increases, equalization

and standard notch are not sufficient so additional mitigation methods are explored in the

following chapters.
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Figure 5.4: 2D simulation comparing average coherence magnitude between equalization and stan-
dard notch for a notch width of 5% the fast-time data samples located at the center of
fast-time samples.
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Figure 5.5: 2D simulation comparing average coherence magnitude between equalization and stan-
dard notch for a notch width of 25% the fast-time data samples located at the center of
fast-time samples.

84



CHAPTER 6

SINGLE APERTURE INTERFERENCE MITIGATION

As demonstrated in chapter 3, the standard notch mitigation can be a simple and effec-

tive method to mitigate interference. It is simple in that data samples are forced to zero

value where interference is detected. It is effective in that no residual energy remains from

the detected interference. The problem for the standard notch is that as the number of sam-

ples notched increases, the image distortion increases and the resolution decreases. It has

been shown that both of these effects lower the average coherence of second order SAR

image products. This chapter examines interference mitigation techniques that are applied

to one image of the coherent pair to improve the average coherence.

Two new interference mitigation algorithms are proposed called spectral notch and split

window notch. First, each algorithm is described in detail. Next a simulation quanti-

fies image quality, coherence, and contrast performance for an ideal detector under many

conditions. Finally, real data examples validate the simulation results to demonstrate the

mitigation method with the most coherence improvement.
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Figure 6.1: Spectral notch block diagram.

6.1 Spectral Notch

Earlier it was explained that typical spectral notching techniques are ineffective for

deramp SAR because interference occupies less data samples in the phase history than the

radar signal. This fact arises in part from assuming the interference is narrowband relative

to the radar’s RF bandwidth. To work around the limitations of the deramped data, it is

possible to compute the spectrum of the deramp phase history by applying digital signal

processing to reramp the phase history data.

The reramping process begins for each pulse of phase history data by upsampling to

the RF bandwidth. Then the data is multiplied by a chirp signal with the same chirp rate

used to collect the data. Now a Fourier transform resolves the spectrum of the data and any

spectral domain filter of choice may be applied. After notching or filtering the RF spectrum

it can be inverse-Fourier transformed, deramped, and downsampled back into phase history

data. A block diagram of the processing steps is shown in Figure 6.1.

As an example, a deramped phase history of a constant tone interference source is

shown in Figure 6.2a and its corresponding spectrum via the Fourier transform is shown in

Figure 6.2b. The interference is clearly visible in Figure 6.2a as the increased magnitude

from approximately sample number 300 to 500, and contributes evenly across the IF spec-
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trum in Figure 6.2b elevating the average magnitude. Upsampling and reramping the data

produces Figure 6.2c; this signal is not equivalent to what would have been recorded by the

radar if the radar had not used stretch processing and sampled at the RF bandwidth. The

interference signal is limited to a portion of the upsampled and reramped signal because

the deramp processing has truncated it in time. Upsampling doesn’t change the span of

time the interference signal is present, it still follows equation (2.19). Multiplying a chirp

to the signal only removes the chirp placed on the existing, time limited interference signal

by the deramp processing.

Now that the interference signal is returned to its original form, Figure 6.2d shows the

Fourier transform resolves its true frequency components, although slightly broadened due

to the finite support of the interference signal in the reramped phase history. Since the

interference source in this particular example is a constant frequency tone at the radar’s

center frequency, a spike at the center of the RF bandwidth is shown in Figure 6.2d. Within

the RF spectral domain any responses from scatterers within the scene occupy the full radar

bandwidth. Therefore any RF sources from transmitters external to the radar system that

are less than the RF bandwidth of the radar will appear only within a portion of the RF

spectral domain.

At this point any method [21, 42, 43] for spectral domain notching can be applied. If

the interference is notched from the RF spectrum, deramped, and downsampled the result

is shown in Figure 6.2e. The IF spectrum of the notched data shown in Figure 6.2f is

significantly lower magnitude than the interference containing IF spectrum in Figure 6.2b.

6.1.1 Comparison to Standard Notch

The spectral notch may appear to be comparable to the standard notch with deskew

correction. For a single tone or narrowband signal the deskew correction removes the

residual chirp signal in the phase history domain thus reducing the number of samples that

the interference energy occupies. After the deskew correction, the time sample location of
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Figure 6.2: Example of spectral notch processing.
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the interference signal is determined by equation (2.18) that relates the frequency difference

between the tone and the radar center frequency to time by the radar’s chirp rate. So in a

sense, the phase history itself is a representation of the RF spectrum through this mapping.

One may consider notching a certain percentage of samples in the phase history domain as

equivalent to notching the same percentage of samples from the RF spectrum.

After deskew processing a single tone interference source may appear as a spike in the

phase history, but its Fourier transform still spreads across the entire RF bandwidth because

it is now very limited in duration and approximates a delta function. Any notches in the

phase history introduces magnitude and phase discontinuities into the sinusoids represent-

ing the scatterers. Since the sinusoids from all of the scatterers in the scene exist throughout

the entire phase history, a notch in the phase history disturbs every scatterer in the scene.

By notching the RF spectrum, only the frequencies of the interference are removed

from the data. Every scatterer in the scene is represented by all frequencies across the RF

bandwidth, so not all the frequencies that makeup the scatterer’s response are disturbed.

Once those frequencies are notched or filtered in the RF spectrum, the matched filter is

applied via the deramp process such that the resulting sinusoids in the phase history do not

have the same magnitude and phase discontinuities as the phase history notch.

6.2 Split Window Notch

Typically SAR image processing applies a window function to reduce the sidelobe lev-

els of bright objects to create a more aesthetically pleasing image [10]. However, once the

data has been notched typical window functions no longer create desirable sidelobe levels

and the result is what has been classified in this dissertation as IPR distortions. It is the

discontinuity in the phase history that causes the increased sidelobe level. In fact, it has

been shown that under the constraint of maintaining a narrow mainlobe and large peak-

to-sidelobe ratios that the IPR cannot be repaired by shaping any window over the entire

aperture [54]. An example of the typical window function, modified by the standard notch
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Figure 6.3: Comparison between (a) typical image processing window function and standard notch
and (b) splitting the window function by the notch.

can be observed in Figure 6.3a where the discontinuity is clear. The split window notch

seeks to reduce the sidelobe levels caused by the discontinuity in the phase history from

notching regardless of mainlobe characteristics.

Practically, this approach requires a particular detector that can identify the interference

into a contiguous region. A window function is calculated for each remaining region that is

detected to not contain interference, while the regions containing interference are zeroed to

eliminate any interference artifacts from the final image. To illustrate the difference, Figure

6.3 shows an example of a notched phase history that is windowed by a typical window and

an example of the split window applied to the same notched phase history.

Smoothing discontinuities in the phase history data is not a novel concept. A seem-

ingly related mitigation algorithm tunes an FIR filter to the interference frequency [25,43].

The split window mitigation is unique in that no adaptive algorithm is used to modify

the interference amplitude because notching the data values to zero eliminates all inter-

ference energy. Both techniques could rely upon the same detector mechanism, but the

adaptive algorithms require an optimization constraint that is not required for the split win-

dow notch. Furthermore, the split window algorithm is implemented in the fast-time phase

history domain, not upon the true data frequency spectrum as in [25, 43] which requires
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more processing.

6.2.1 IPR Comparison

A pair of a point target IPRs are shown in Figure 6.4 for when 20% of data samples

are notched from the center of the fast-time data and then a -35dB, n̄ = 4 Taylor window

is applied across the apertures as indicated in Figure 6.3. The IPR in Figure 6.4a uses a

window applied across the entire aperture and yields an ISLR of -16.2dB, which is sub-

stantially higher than the ideal IPR ISLR of -36.1dB (from Figure 2.6). However, notice

the 3dB width of the IPR in Figure 6.4a is much narrower than it should be, particularly

when considering the resolution loss from notching spectrum should have increased the

3dB width. The red dots in Figure 6.4 identify the nulls where the mainlobe is defined

from the sidelobe from which to calculate the ISLR. Since the mainlobe is not accurate,

then the location of the first nulls may also be incorrect, therefore due to the IPR distortion

the ISLR calculation is not able to accurately discriminate between the true mainlobe and

sidelobes to calculate an accurate energy ratio between the two. Consequently, it is difficult

to use ISLR in this case to quantify the IPR distortion.

What is of particular importance for the distorted IPR is the level of the sidelobes far

away (> 10 pixels) from the center. The IPR in Figure 6.4b at more than 10 pixels away

has sidelobes that are more than 15dB below that of Figure 6.4a. The lower sidelobes mean

less instances of false decorrelations because the number of neighboring pixels affected by

the poor IPR is reduced. Later it will be shown that the fact that the sidelobe level is lower

means the split windowed notch yields improved image products.

6.3 Performance Comparison by Simulation

With the introduction of two unique mitigation methods, simulations are useful to com-

pare the performance differences between them and the standard notch because parameters

can be very precisely controlled and repeatable. Simulations bypass issues in real data that
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Figure 6.4: Comparison of the IPR for point targets after applying (a) standard notch and (b) split
window notch mitigation techniques for 20% of data samples notched from the center
of the fast-time data.

include mis-registration, non-ideal IPR, autofocus, and inhomogeneous scattering mecha-

nisms (e.g. shadows introduce decorrelation amongst correlated terrain). These simulations

are for the single aperture mitigation algorithms, therefore all CCD products and coherence

measures are computed with a reference image free of any interference or mitigation ef-

fects. Because the reference image is ‘clean,’ average coherence values are indicative of

image quality. The simulation parameters in Table 6.1 have been modeled after the pa-

rameters of the real data set used in the following section and parameters from chapter

4.

Center Frequency 16.8GHz
Resolution 0.1524m (6”)
Scene Size 100m Range

120m Cross-Range
Image Oversample Factor 1.5
Window Function Taylor

n̄ = 4
-35dB SLL

Terrain RCS -28dB
Point Target RCS 25.5dB
Noise RCS -38dB

Table 6.1: Coherence comparison simulation parameters
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Figure 6.5: Ideal case for the qualitative simulation image without interference or interference mit-
igation. The decorrelation pattern approximates tire tracks. Image contains a single
point target at the center.

The performance metrics of merit have been identified and explained in chapter 4. To

measure the performance metrics the simulation requires three images to be simultaneously

processed. To measure average coherence, one image is composed entirely of clutter (i.e.

terrain) without any changes to clutter other than thermal noise. A second image is required

to estimate the PDF parameters of the change and no change regions of a CCD to generate

ROC curves. As explained in chapter 4, this image does not contain an interference signal

to preserve the PDF characteristics of the coherence values. This image does include a

point target in the center of the scene, but it doesn’t affect the PDF characteristics because

the guard bands for PDF estimation around each change and no change region exclude the

pixels of the point target. Any distortions to the IPR from interference mitigation spread in

the range direction and do not intersect into either change or no change regions. A third im-

age includes a pattern of disturbances and a point target at the center for a qualitative check

of the average coherence and contrast performance. Figure 6.5 shows the qualitative CCD

image used in all simulation cases without interference or mitigation techniques applied;

this is the ideal CCD image. The decorrelation pattern chosen approximates tire tracks and

is placed along a horizontal direction in the image to increase any IPR distortion effects in

the vertical direction from applying mitigation techniques that increase range sidelobes.
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6.3.1 Simulation Results

This simulation will compare the results of using different methods to implement the

notch as it varies in size at different locations in the fast-time data. The location of the notch

within the fast-time samples affects the amount of distortion [15]. For example, the same

notch size located at the edge of the data will result in less IPR distortion than locating the

notch at the center of the data [15]. For comparison a case without interference and using

the standard notch are each included in simulation results as a benchmark to bound results.

Figures 6.6, 6.7, and 6.8 show simulation results for centering the notch at 3 different

locations, the edge, the center, and in-between the edge and center, respectively. Since the

IPR is symmetrical, there is no reason to simulate the notch at the other edge. Technically,

the notch isn’t centered at the edge, it starts at the edge and continues to the number of sam-

ples corresponding to the notched percentage. Therefore, Figures 6.6a and 6.7a converge

to the same coherence values when the notch reaches a width of 50% of samples.

The overall coherence decreases as the center of the notch moves towards the center

of the data samples, due to the increasing IPR distortion predicted by [15]. Overall the

spectral notch maintains the best coherence for the same percentage of samples notched.

Examination of the contrast ratio via the ROC in all simulations show the spectral notch

CCD has superior contrast. Figures 6.6e and 6.6f indicate the contrast ratio is nearly the

same as the case without interference.

Although the split window notch results in the lowest coherence for all cases, the qual-

itative images in Figures 6.6d, 6.7d, and 6.8d show there is no observable coherence loss

due to IPR sidelobes of the point target unlike the other mitigation cases. The notch op-

eration generally increases the sidelobe level, however, applying the split window notch

is able to better control the sidelobe levels so they are less noticeable. Because the first

image doesn’t have a mitigation applied, the change in sidelobe level (and shape) causes

the vertical decorrelation streak (at the center of the image) observable in the CCD for both

the standard notch and spectral notch cases in all simulations.
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Figure 6.6: Comparison of standard notch, spectral notch, and split window notch where the same
percentage of samples have been notched from the edge of fast-time data samples.
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Figure 6.7: Comparison of standard notch, spectral notch, and split window notch where the same
percentage of samples have notch centered between the edge and center point of fast-
time data samples.
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Figure 6.8: Comparison of standard notch, spectral notch, and split window notch where the same
percentage of samples have been notched from the center of fast-time data samples.
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6.4 Real Data Examples

The simulations use a CWGN model as an approximation for terrain. This section

will use real SAR data of terrain to test the impact of the different mitigation methods

upon average coherence and present some qualitative examples. The contrast cannot be

measured for this data because there is no single homogeneous region of change or no

change from which to estimate statistics.

An interference source is not used within this example. Any type of interference

source would require some form of detector to identify the data samples containing in-

terference. Any implemented detector cannot perform identically for the spectral notch,

standard notch, and the split window notch. If the detectors for each mitigation technique

are not identical, then interference energy not detected by the detector is present within

the image products and lowers the coherence estimate, obscuring the coherence effects due

solely to the mitigation method.

Instead of an interference source and detector, these examples place a notch centered

within the fast-time data and vary the width of the notch up to 50% of the fast-time data

length to correspond to the simulation results in Figure 6.8. Representative images and

CCDs are shown in Figure 6.9 to illustrate the visual effects of each mitigation technique

upon the image and CCD products for when 20% of data samples are notched. Figure

6.9a shows the spectral notch yields the best coherence as the simulation in Figure 6.8

predicted. Visually, the spectral notch CCD in Figure 6.9f appears dramatically improved

over the standard notch and split window notch in Figures 6.9d and 6.9h, respectively. It

is interesting to note that although the split window average magnitude coherence is the

lowest in all cases, its image in Figure 6.9g appears good because it does not have the high

sidelobe levels that create the vertical streaking artifacts present in the other images.
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Figure 6.9: Evaluation of standard notch, spectral notch, and split window notch mitigation tech-
niques at prescribed notch widths centered within fast-time data. (continued on next
page)
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(e) Spectral notch image
(20% samples notched)

(f) Spectral notch CCD
(20% samples notched)

(g) Split window notch image
(20% samples notched)

(h) Split window notch CCD
(20% samples notched)

Figure 6.9: Evaluation of standard notch, spectral notch, and split window notch mitigation tech-
niques at prescribed notch widths centered within fast-time data.
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6.5 Summary

The performance of two novel mitigation algorithms called spectral notch and split

window notch has been evaluated against the standard notch when applied to one of the

images in the coherent pair. It has been shown that mitigation at the center of the data

samples is the most damaging to coherence, as IPR distortion predicted in [15]. It has

also been shown that notching the RF spectrum via the spectral notch technique is the least

damaging to the IPR by evaluating the average coherence. However, it should be noted that

the qualitative image quality of the split window notch appears to be superior due to the

overall lower sidelobe level, even when compared to the spectral notch.

This chapter has limited the corrections to only one of the images in the coherent pair.

While this expresses image quality into the average coherence measurement, it has ignored

the fact that maximum coherence arises from spectral overlap between the coherent pair

of images [17, 18, 55]. The next chapter will evaluate methods that maximize the spectral

overlap between the coherent pair of images.
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CHAPTER 7

MULTIPLE APERTURE INTERFERENCE MITIGATION

Throughout this dissertation, it has been assumed that the radar is a single-channel

system whereby second order image products are created from subsequent passes, or col-

lections. This chapter examines the case where interference mitigation manipulates both

apertures. Previously, in the single aperture techniques a reference image without interfer-

ence was used to make CCD products. The average coherence of the CCD encapsulated

the image quality resulting from the applied mitigation algorithm. However, when evaluat-

ing multiple aperture techniques the average coherence no longer indicates image quality.

Multiple aperture techniques make it possible to remove the IPR/spectrum mismatch that

occurs from notching a single image of the coherent pair by corrupting both apertures in the

same way. It is well known that aperture alignment of the phase histories of a CCD/IFSAR

product is critical to maximizing coherence [17, 18, 55]. Only applying a notch to one im-

age exacerbates the spectral mismatch, but if the notch is applied to both apertures, for the

same spectrum then any coherence loss due to the IPR mismatch is removed. There are

disadvantages to applying the notch to both apertures, such as poor image quality.

In this chapter, two novel methods are introduced to mitigate interference that requires

making adjustments to both apertures of the CCD/IFSAR product. The first technique,

called co-notch, combines the concept of aperture alignment with the standard notch to

mitigate interference by identically notching both data collections of the coherent image

pair, regardless if only one aperture contains interference. The second technique, called

split window co-notch, is a modification of the standard window function where instead

of applying a single window function across the entire data span, the window function is

102



split at the notch to smooth the transition between the notched and retained data spectrum.

Each technique is explained in detail with an analysis of the image quality and coherence

performance.

7.1 Co-Notch

The concept of aperture alignment is not new for coherent data processing and it is

well documented in many sources [17, 18, 55] that deviations in the flight path can cause

frequency and azimuth shifts in the spectrum between successive data collections. Apply-

ing this concept to interference mitigation means that both phase histories of the coherent

data pair must be notched in the same way. Notching interference is an effective way to

remove all possible image artifacts resulting from the interference signal. However, the

amplitude/phase discontinuity from notching results in a poor image IPR. When only one

image in the coherent pair has a poor IPR, a coherence loss occurs. Aperture trimming will

remove the loss associated from the IPR mismatch by essentially corrupting both IPRs. If

the IPRs for each image are identical the average coherence will increase over the cases

(in the previous chapter) where only one image is notched, (or when the two images are

notched differently).

7.1.1 Algorithm

The challenge is to align the phase history’s spectrum between collections. For a real

SAR data collection frequency and phase shifts occur between data collections due to non-

stationary objects, radar motion, or error of the estimated motion. These frequency and

phase shifts, if not properly aligned, can cause decorrelation in point targets and clutter,

including decorrelation in the sidelobes.

The radar can be very precise when measuring the phase of its backscattered signal.

At 16.8GHz (Ku band) the wavelength is 17.8mm, which means the radar phase can only

distinguish between changes in range within a wavelength. If the radar changes its position
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by more than a wavelength, then the radar must use other means than the phase to estimate

its position or the position of the scatterer. Any unknown errors in these other measures

result in unknown phase shifts (including unknown multiples of 2π) between collections.

By whatever means the radar uses to estimate its position, if it is not exactly in the same

location for each pulse transmission and reception there will be a phase offset from pass

to pass. A constant phase offset doesn’t affect coherence, but how the phase offset varies

between pulses may affect the coherence [17]. Real-time motion compensation changes

the chirp rate and center frequency of each pulse based upon the estimated location of the

radar at that point in time. Assuming the estimated location of the radar is accurate, the

radar may not be in exactly the same position for each collection. Fundamentally, if the

collection angles don’t precisely align, the data describes different signals, so coherence

is not going to be perfect. The aperture collection plane is a 3 dimensional surface that

is a function of spherical coordinates of azimuth angle, grazing angle, and frequency (in

radial direction) [9]. There are acceptable tolerances that allow coherent data processing,

but technically the signal is not identical unless the collection angles and bandwidth are

identical.

Another way to understand this is to consider a resolution cell for terrain consists of

many small scatterers randomly distributed within the resolution cell. The backscattering

coefficient for randomly distributed scatterers is a random process without correlation from

one angle to another so the signal from different angles is a different signal. If the collection

angles are repeated, then the backscattering coefficient, though a random process, returns

the same backscattering signal.

All of the technicalities of motion mentioned above mean that care must be taken when

aligning apertures, and that simulation results may not match results from real data (see

discussion in section 7.2 on IPR sidelobe coherence). It turns out that motion doesn’t have

to be identical between apertures to achieve high coherence due in part to the coherence

estimator.
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For the reasons aforementioned regarding aperture alignment, mainly not-identical mo-

tion between apertures, an excellent place in the image formation process to notch the phase

history data is after the phase history is interpolated from polar to rectangular coordinates.

The rectangular grid for both apertures is defined based upon a nominal set of coordinates

that should be identical for repeat pass data collections. This allows for the actual mea-

surements of position, bandwidth, etc. to vary for each collection as they need to while

the interpolation brings these values into coincident data indices that make it easy to notch

both apertures.

A block diagram of the processing flow for the co-notch is presented in Figure 7.1.

After resampling, a detector of choice can be applied to each aperture to identify the data

samples to be notched. The index values from each detector are applied to both images

before proceeding to create a coherent data product.

7.1.2 Limitations

The coherence loss from non-overlapping apertures may be eliminated, but because less

spectrum is available, the overall coherence value is lower than if there was no notching

and no interference. Bickel [17] discusses how increasing resolution increases coherence

because there is more spectral overlap.

A related limitation is that if interference is present in both apertures, at similar fre-

quencies, the performance gain of co-notching over notching each aperture may be small.

7.1.3 Applying a Split Window for Improvement

Where the interference occupies a large percentage of the bandwidth, the IPR degrada-

tion can be extreme as examples have demonstrated previously in this dissertation. Alter-

natively, for image formation the range window can be modified as previously described

in section 6.2, except now the same split window is applied to the phase history for each

image in the CCD pair.
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Like in the single aperture case, applying the split window requires a modification of the

detector output to identify contiguous regions of interference. For multiple apertures this

process gets more complicated by using the detector outputs of both apertures to identify

contiguous regions.

7.2 Simulation Performance

Using the metrics described in chapter 4, simulations were created to compare the per-

formance differences from co-notching with a window across the entire aperture (i.e. co-

notch) and splitting the range window for each section of contiguous data (i.e. split window

co-notch). The simulation parameters and test cases are identical to the single aperture sim-

ulations in the previous chapter (section 6.3). For these simulations it is assumed the first

aperture of the coherent data product does not contain interference, and the second aper-

ture does contain some kind of interference. The key difference in this chapter is that the

mitigation applied to the second aperture is now identically applied to the first aperture

even though it does not contain interference. Although this may sound counter-intuitive,

as explained earlier, coherent data products must be spectrally aligned to achieve the best

coherence [17, 18, 55].

The first set of simulations evaluate the performance of each mitigation with an ideal

detector for simulated clutter. The ideal detector detects all samples containing interfer-

ence. Because these mitigation techniques notch all data samples containing interference

to zero value, there is no residual interference signal energy present in the final image prod-

ucts. These simulations show the effects of increasing the number of samples notched for a

single notch location in fast-time data. The notch location is varied from the edge, center,

and in-between while the size of the notch is increased from 1% to 50% in each location.

From the simulations in Figures 7.2, 7.3, and 7.4, it is clearly shown that applying the

same mitigation method to both apertures (using either co-notch or split window co-notch)

maintained the average coherence to the level of the no mitigation case. However, there
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is an important difference between the co-notch and split window co-notch mitigation for

all three cases: IPR. Referring to the standard notch CCD in Figure 7.4b, the point target

at the center of the image shows decorrelation as a dark vertical streak because the IPR

distortion due to the notch mitigation does not match the IPR of the original image. This

phenomenon is present in the other cases in Figures 7.2b and 7.3b, but is most pronounced

in the case the notch is centered in the fast-time data samples for Figure 7.4b. When both

images are notched the same, the IPR, although distorted, no longer is different between

the two images and correlates to create the vertical white streak shown in Figure 7.4c. In

this case the sidelobes are correlated because this is a simulation. The phase history re-

sponse of a point target is exactly identical in both apertures because the simulated motion

is exactly the same. The point target response is identical between the two apertures, in-

cluding the sidelobes. Because the sidelobe level is higher than the surrounding clutter, it is

visible as a white streak. Real motion throughout a synthetic aperture data collection is not

going to be identical between passes; this subtle position difference changes the recorded

range to a point target and its associated phase measurement so the IPR between the two

image is not going to be strictly identical. In the following section, real SAR data is used

to show the point target sidelobes in the co-notch CCD are not correlated and visible as

black streaks. Also, notice the sidelobe structure of the split window co-notch in Figure

7.4d is greatly reduced from that of the co-notch in Figure 7.4c. The smaller sidelobe cor-

relation (or decorrelation for real data) is desirable for CCD images because it limits the

contribution the point target has upon its neighboring pixel values. Because the point target

can have more energy than the surrounding clutter its coherence may obscure any changes

within the CCD. Likewise, for height maps the phase of the point target may prove prob-

lematic for 2D phase unwrapping algorithms or falsely influence the height measurements

of the neighboring pixels. In all cases, it is desirable to limit the spread of any scatterers

throughout the image as much as possible. This average coherence impact of sidelobes

is negligible in the simulation case because there is only one point target so any sidelobe
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correlation (or decorrelation) is only a small contribution to the average coherence. Later,

real data examples provide a clearer distinction in average coherence performance.

Notice that the ROC in Figure 7.4e shows the probability of detection is higher for the

split window and co-notch mitigations than the no interference case while the other ROC

curves at 20% notch in Figures 7.4e and 7.4e do not indicate that any mitigation method

results in a higher probability of detection than the no interference case. To explain this

difference, first remember the ROC curves are measuring the separability between the co-

herence values for the change and no change PDF, not the probability of detecting any

feature. It turns out after estimating the coherence and effective number of looks that there

is a very slight change in the overlap regions of the change and no change case histograms

for the ROC in Figure 7.4e. This slight change in overlap is most likely due to the er-

ror estimating the PDF parameters. To show how similar the estimated values for the no

interference, co-notch, and split window co-notch are Table 7.1 displays the estimated co-

herence values. Considering the coherence estimator increases its bias and variance as the

true coherence decreases [17], and the coherence estimator is used to create the CCD from

which the values are used to estimate the parameters in Table 7.1. There is some error in

estimating the change PDF parameters for the split window case that slightly increases its

coherence value. The coherence value estimated for all the mitigations should be zero, but

as stated before the coherence estimator is biased at low coherence values. The change in

the µchange values for different mitigation methods is consistent with the increased variance

in the coherence estimator for low coherence values. So actually the split window most

likely doesn’t have a superior contrast to applying no mitigation, it is more likely the con-

trast is very similar to the no mitigation case. The results of this ROC show that despite

notching the center of the phase history, where IPR distortion is the worst, the separation

between the change and no change case values remains as well as when no notching is

applied.
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µchange Lchange µnochange Lnochange
No Mitigation 0.1537 9.7961 0.9092 8.1141
Standard Notch 0.1358 11.6791 0.6879 8.5181
Co-Notch 0.1589 10.7911 0.9091 8.5911
Split Window Co-Notch 0.1648 10.0501 0.9096 8.1741

Table 7.1: Estimated coherence PDF values for Figure 7.4e

7.3 Real Data Examples

As the case with the single aperture mitigation comparisons, no interference source

has been added to the data in these examples so only the performance of the mitigation

technique is observed in the results by eliminating any possibility of residual interference

energy contributions to coherence loss. Any residual interference energy is an indication

of the detector performance, not the mitigation performance.

The real data example for multiple aperture mitigation uses the same data and param-

eters as the single aperture real data example in Figure 6.9 and mirrors the simulation in

Figure 7.4. Figure 7.5a shows average coherence plotted as a single notch of varying width

(from 1% to 50% of the data vector length) centered within the fast-time data. Overall,

applying the same notch mitigation to both images results in nearly restoring the original

average coherence value before mitigation with a slight average coherence degradation in-

creasing with the percentage of samples notched that was not observed in simulations due

to sidelobe decorrelation. The most notable difference between the co-notch mitigation in

Figure 7.5c and the split window co-notch in Figure 7.5d is the effects of the IPR sidelobe

decorrelation discussed in section 7.2. The bright targets in the scene produce a distorted

IPR with sidelobe levels that appear as dark vertical streaks in Figure 7.5c (less noticeable

in Figure 7.5b due to the overall lower coherence) and affect pixels over a large portion

of the image. Notice in particular the dark vertical streaks along the bright return from

the fence line at the bottom of the image appear decorrelated due to subtle difference in

aircraft/radar motion between the two collections. Another, effect from high sidelobe lev-
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els to observe is the bright targets that have changed positions between collections created

decorrelated (dark) vertical streaks throughout much of the image in Figure 7.5c because

the target has moved there is no poor sidelobe structure to correlate so average coherence

decreases. The high correlation of the clutter in Figure 7.5c shows that the IPR sidelobes,

not the mainlobe response, are causing decorrelation which is consistent with simulation

results that showed high correlation for clutter in Figures 7.2b, 7.3b, and 7.4b. Overall, Fig-

ure 7.5d shows that even though resolution has been lost by the notch, the lower sidelobe

level from applying the split window co-notch greatly reduces the extent of the sidelobe

decorrelation effects and results in a clearer, higher coherence CCD. When Figure 7.5d is

directly compared to the original CCD, (without interference), in Figure 6.9b there is little

difference between the two.

7.4 Summary

Two novel interference mitigation techniques have been introduced to restore coher-

ence. It turns out that spectrally aligning both apertures in the coherence pair may not yield

the best coherence. Because in a multiple pass data collection objects can appear and disap-

pear from the images and motion isn’t identical between passes, the sidelobe decorrelation

can become problematic. Therefore the split window co-notch shows it is best to apply a

mitigation equally to both apertures that minimizes the sidelobe level, even at the expense

of mainlobe broadening and distortion.
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Figure 7.1: Block diagram of co-notch algorithm.
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Figure 7.2: Comparison of standard notch, spectral notch, and split window co-notch where the
same percentage of samples have been notched from the edge of fast-time data samples.
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Figure 7.3: Comparison of standard notch, co-notch, and split window co-notch where the same
percentage of samples have been notched centered between the edge and center of fast-
time data samples.
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Figure 7.4: Comparison of standard notch, spectral notch, and split window co-notch where the
same percentage of samples have been notched from the center of fast-time data sam-
ples.
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prescribed notch widths centered within fast-time data. For the original CCD without
interference see Figure 6.9b.
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CHAPTER 8

CONCLUSION

For many SAR systems, the coherent data product is the most important product of the

radar. Whether making a height map of terrain or coherent change detection a synthetic

aperture radar will do that job through clouds, rain, at night, or at long stand-off distances.

In the increasingly co-operative RF environment the synthetic aperture radar must continue

to do its job despite RF interference. It has been shown for deramp radars most existing

interference mitigation methods cannot apply or do not preserve the coherent data product

in all conditions.

8.1 Current Results

In total four novel methods have been demonstrated throughout this dissertation to im-

prove coherence under particular conditions. For cases when SIR is high, equalization can

improve coherence. For cases where only one image receives interference mitigation, the

spectral notch can yield a performance improvement over the standard notch. Although, if

the image product is all that is desired, for substantially less computation the split window

notch works well. If it is possible to process both images at the same time, then co-notching

or split window co-notch for both images yields the highest coherence.

This dissertation has reinforced aperture alignment is key to maximizing coherence, but

has revealed that it is not enough. While most mitigation techniques have been concerned

with repairing the IPR to an ideal response or minimizing the mainlobe to sidelobe energy

levels, this dissertation shows that it is really the sidelobe level that makes the most dif-

ference in the average coherence. The two mechanisms causing sidelobe decorrelation in
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coherent data products come from objects that appear and disappear in the time between

collections and the unique motion between collects that influence subtle differences in the

sidelobe structure between collections.

Despite the need to trim both apertures the same, the single aperture mitigation case is

very important to consider for any mitigation technique. Coherence is a powerful metric

to evaluate the effectiveness of a mitigation technique, particularly techniques that attempt

to coherently remove the interference signal or reconstruct missing data samples. If the

mitigation technique was truely successful at either task, the IPR of the image (point targets

and clutter) would be restored to ideal conditions. But IPR measurements require a point

target to make effective measurements, whereas the change in the clutter IPR can be better

approximated with coherence. Even if the mitigation was not absolutely perfect, in many

cases the sidelobes from point targets and clutter may be below the clutter level and their

decorrelation would not be noticeable in the CCD product.

Another novel contribution of this dissertation was applying the ROC to measure the

contrast in the CCD product as a result of applying an interference mitigation method. It is

conceivable that a mitigation method, particularly ones that use multiple apertures of data,

can artificially increase the average coherence to appear to outperform other mitigation

methods. However, measuring the contrast via the ROC ensures that adequate separability

is maintained between regions of change and no change.

Many interference mitigation techniques do not apply image quality metrics to evaluate

the results of the mitigation technique. Very few mitigation techniques [21,27,43] consider

coherence impacts of the mitigation itself. This dissertation is novel in that is uses sev-

eral quantifiable metrics to evaluate the performance of mitigation techniques and compare

them. These novel metrics include IPR, average coherence, and CCD contrast.
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8.2 Future Work

It has been shown [54] that it is not possible to achieve a desirable mainlobe to sidelobe

ratio by applying a window function across the entire span of data when it contains a

notch. Future investigations should focus upon selecting an aperture weighting that can be

equally applied to both apertures while minimizing the sidelobe level, at the expense of the

mainlobe width.

Another topic for study is the effect of mitigation techniques upon the change detec-

tion target signatures. A simple contrast metric was used in this dissertation to quantify

the distinction between change and no change cases in the CCD. What really is needed is

an analysis of the true coherence for a particular target signature and how its coherence

changes with respect to mitigation method. Furthermore, depending on the shape charac-

teristics of the target signature, its detector may require a particular contrast ratio that can

then be used as a threshold to select a mitigation method.

The next step to implementing the results of this dissertation for practical interference

mitigation is to combine this analysis with a detector. The performance of a detector varies

according to the types of interference; this is why a detector is not used in this general

evaluation of interference mitigation methods.
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