518,154 research outputs found

    FRAM for systemic accident analysis: a matrix representation of functional resonance

    Get PDF
    Due to the inherent complexity of nowadays Air Traffic Management (ATM) system, standard methods looking at an event as a linear sequence of failures might become inappropriate. For this purpose, adopting a systemic perspective, the Functional Resonance Analysis Method (FRAM) originally developed by Hollnagel, helps identifying non-linear combinations of events and interrelationships. This paper aims to enhance the strength of FRAM-based accident analyses, discussing the Resilience Analysis Matrix (RAM), a user-friendly tool that supports the analyst during the analysis, in order to reduce the complexity of representation of FRAM. The RAM offers a two dimensional representation which highlights systematically connections among couplings, and thus even highly connected group of couplings. As an illustrative case study, this paper develops a systemic accident analysis for the runway incursion happened in February 1991 at LAX airport, involving SkyWest Flight 5569 and USAir Flight 1493. FRAM confirms itself a powerful method to characterize the variability of the operational scenario, identifying the dynamic couplings with a critical role during the event and helping discussing the systemic effects of variability at different level of analysis

    Air Quality Prediction in Smart Cities Using Machine Learning Technologies Based on Sensor Data: A Review

    Get PDF
    The influence of machine learning technologies is rapidly increasing and penetrating almost in every field, and air pollution prediction is not being excluded from those fields. This paper covers the revision of the studies related to air pollution prediction using machine learning algorithms based on sensor data in the context of smart cities. Using the most popular databases and executing the corresponding filtration, the most relevant papers were selected. After thorough reviewing those papers, the main features were extracted, which served as a base to link and compare them to each other. As a result, we can conclude that: (1) instead of using simple machine learning techniques, currently, the authors apply advanced and sophisticated techniques, (2) China was the leading country in terms of a case study, (3) Particulate matter with diameter equal to 2.5 micrometers was the main prediction target, (4) in 41% of the publications the authors carried out the prediction for the next day, (5) 66% of the studies used data had an hourly rate, (6) 49% of the papers used open data and since 2016 it had a tendency to increase, and (7) for efficient air quality prediction it is important to consider the external factors such as weather conditions, spatial characteristics, and temporal features

    Municipal Energy Management: Best Practices from DVRPC's Direct Technical Assistance Program

    Get PDF
    This guide highlights best practices and lessons learned from municipal energy management projects in southeastern Pennsylvania. In 2013 and 2014, DVRPC worked with nine municipalities in southeastern Pennsylvania to provide direct technical assistance with measuring, analyzing, and developing implementation strategies for energy management in municipal buildings. The goal of energy management is to identify opportunities for improving how energy is being used at a facility and to develop analyses that support decision making on how best to prioritize and implement these improvements. These improvements can remedy various problems -- high energy and maintenance costs due to malfunctioning, poorly installed or aging equipment, poor occupant comfort due to a lack of weatherization, or poorly controlled equipment. This guide will illustrate several best practices for identifying and implementing energy management opportunities that save money and improve building comfort

    Screening of energy efficient technologies for industrial buildings' retrofit

    Get PDF
    This chapter discusses screening of energy efficient technologies for industrial buildings' retrofit

    Leveraging Edge Computing through Collaborative Machine Learning

    Get PDF
    The Internet of Things (IoT) offers the ability to analyze and predict our surroundings through sensor networks at the network edge. To facilitate this predictive functionality, Edge Computing (EC) applications are developed by considering: power consumption, network lifetime and quality of context inference. Humongous contextual data from sensors provide data scientists better knowledge extraction, albeit coming at the expense of holistic data transfer that threatens the network feasibility and lifetime. To cope with this, collaborative machine learning is applied to EC devices to (i) extract the statistical relationships and (ii) construct regression (predictive) models to maximize communication efficiency. In this paper, we propose a learning methodology that improves the prediction accuracy by quantizing the input space and leveraging the local knowledge of the EC devices

    Internal report cluster 1: Urban freight innovations and solutions for sustainable deliveries (2/4)

    Get PDF
    Technical report about sustainable urban freight solutions, part 2 of

    Demand response within the energy-for-water-nexus - A review. ESRI WP637, October 2019

    Get PDF
    A promising tool to achieve more flexibility within power systems is demand re-sponse (DR). End-users in many strands of industry have been subject to research up to now regarding the opportunities for implementing DR programmes. One sector that has received little attention from the literature so far, is wastewater treatment. However, case studies indicate that the potential for wastewater treatment plants to provide DR services might be significant. This review presents and categorises recent modelling approaches for industrial demand response as well as for the wastewater treatment plant operation. Furthermore, the main sources of flexibility from wastewater treatment plants are presented: a potential for variable electricity use in aeration, the time-shifting operation of pumps, the exploitation of built-in redundan-cy in the system and flexibility in the sludge processing. Although case studies con-note the potential for DR from individual WWTPs, no study acknowledges the en-dogeneity of energy prices which arises from a large-scale utilisation of DR. There-fore, an integrated energy systems approach is required to quantify system and market effects effectively
    • …
    corecore