'Institute of Electrical and Electronics Engineers (IEEE)'
Doi
Abstract
The Internet of Things (IoT) offers the ability
to analyze and predict our surroundings through sensor
networks at the network edge. To facilitate this predictive
functionality, Edge Computing (EC) applications are developed
by considering: power consumption, network lifetime and
quality of context inference. Humongous contextual data from
sensors provide data scientists better knowledge extraction,
albeit coming at the expense of holistic data transfer that
threatens the network feasibility and lifetime. To cope with this,
collaborative machine learning is applied to EC devices to (i)
extract the statistical relationships and (ii) construct regression
(predictive) models to maximize communication efficiency. In
this paper, we propose a learning methodology that improves
the prediction accuracy by quantizing the input space and
leveraging the local knowledge of the EC devices