30 research outputs found

    A comparison of consecutive and concurrent input text entry techniques for mobile phones

    Full text link

    Near Eyes-Free Chauffeur Computer Interaction with Chording and Visual Text Mnemonics

    Get PDF
    Modern cars are equipped with advanced technology requiring cognitively complex operation that is reliant on the user’s visual attention. It is therefore hazardous for drivers to operate such devices while driving. In this paper a user interface interaction style for in-car user interfaces are proposed. Users interact with the in-car computer using three chording keys and chording pattern sequences are derived based on visual mnemonics. Cases are illustrated for an in-car multimedia system, a mobile phone and a GPS-navigation system. Experimental results demonstrate that the technique is easy to learn, efficient to use and require low visual attention

    Towards high quality text entry on smartwatches

    Get PDF
    Smartwatches now provide users with access to many applications on smartphones direct from their wrists, without the need to touch their smartphone. While applications such as email, messaging, calendar and social networking provide views on the watch, there is normally no text entry method so users cannot reply on the same device. Here we introduce requirements for smartwatch text entry, an optimised alphabetic layout and present a prototype implementation together with preliminary user feedback. While raising some problems, the feedback gives indicates that reasonable quality and speed is achievable on a smartwatch and encourages our future work

    Making Spatial Information Accessible on Touchscreens for Users who are Blind and Visually Impaired

    Get PDF
    Touchscreens have become a de facto standard of input for mobile devices as they most optimally use the limited input and output space that is imposed by their form factor. In recent years, people who are blind and visually impaired have been increasing their usage of smartphones and touchscreens. Although basic access is available, there are still many accessibility issues left to deal with in order to bring full inclusion to this population. One of the important challenges lies in accessing and creating of spatial information on touchscreens. The work presented here provides three new techniques, using three different modalities, for accessing spatial information on touchscreens. The first system makes geometry and diagram creation accessible on a touchscreen through the use of text-to-speech and gestural input. This first study is informed by a qualitative study of how people who are blind and visually impaired currently access and create graphs and diagrams. The second system makes directions through maps accessible using multiple vibration sensors without any sound or visual output. The third system investigates the use of binaural sound on a touchscreen to make various types of applications accessible such as physics simulations, astronomy, and video games

    A Thumb Stroke-Based Virtual Keyboard for Sight-Free Text Entry on Touch-Screen Mobile Phones

    Get PDF
    The use of QWERTY on most of the current mobile devices for text entry usually requires users’ full visual attention and both hands, which is not always possible due to situational or physical impairments of users. Prior research has shown that users prefer to hold and interact with a mobile device with a single hand when possible, which is challenging and poorly supported by current mobile devices. We propose a novel thumb-stroke based keyboard called ThumbStroke, which can support both sight-free and one-handed text entry on touch-screen mobile devices. Selecting a character for text entry via ThumbStroke completely relies on the directions of thumb movements at anywhere on a device screen. We evaluated ThumbStroke through a longitudinal lab experiment including 20 sessions with 13 participants. ThumbStroke shows advantages in typing accuracy and user perceptions in comparison to Escape and QWERTY and results in faster typing speed than QWERTY for sight-free text entry

    Predicting and Reducing the Impact of Errors in Character-Based Text Entry

    Get PDF
    This dissertation focuses on the effect of errors in character-based text entry techniques. The effect of errors is targeted from theoretical, behavioral, and practical standpoints. This document starts with a review of the existing literature. It then presents results of a user study that investigated the effect of different error correction conditions on popular text entry performance metrics. Results showed that the way errors are handled has a significant effect on all frequently used error metrics. The outcomes also provided an understanding of how users notice and correct errors. Building on this, the dissertation then presents a new high-level and method-agnostic model for predicting the cost of error correction with a given text entry technique. Unlike the existing models, it accounts for both human and system factors and is general enough to be used with most character-based techniques. A user study verified the model through measuring the effects of a faulty keyboard on text entry performance. Subsequently, the work then explores the potential user adaptation to a gesture recognizer’s misrecognitions in two user studies. Results revealed that users gradually adapt to misrecognition errors by replacing the erroneous gestures with alternative ones, if available. Also, users adapt to a frequently misrecognized gesture faster if it occurs more frequently than the other error-prone gestures. Finally, this work presents a new hybrid approach to simulate pressure detection on standard touchscreens. The new approach combines the existing touch-point- and time-based methods. Results of two user studies showed that it can simulate pressure detection more reliably for at least two pressure levels: regular (~1 N) and extra (~3 N). Then, a new pressure-based text entry technique is presented that does not require tapping outside the virtual keyboard to reject an incorrect or unwanted prediction. Instead, the technique requires users to apply extra pressure for the tap on the next target key. The performance of the new technique was compared with the conventional technique in a user study. Results showed that for inputting short English phrases with 10% non-dictionary words, the new technique increases entry speed by 9% and decreases error rates by 25%. Also, most users (83%) favor the new technique over the conventional one. Together, the research presented in this dissertation gives more insight into on how errors affect text entry and also presents improved text entry methods

    Optimizing Human Performance in Mobile Text Entry

    Get PDF
    Although text entry on mobile phones is abundant, research strives to achieve desktop typing performance "on the go". But how can researchers evaluate new and existing mobile text entry techniques? How can they ensure that evaluations are conducted in a consistent manner that facilitates comparison? What forms of input are possible on a mobile device? Do the audio and haptic feedback options with most touchscreen keyboards affect performance? What influences users' preference for one feedback or another? Can rearranging the characters and keys of a keyboard improve performance? This dissertation answers these questions and more. The developed TEMA software allows researchers to evaluate mobile text entry methods in an easy, detailed, and consistent manner. Many in academia and industry have adopted it. TEMA was used to evaluate a typical QWERTY keyboard with multiple options for audio and haptic feedback. Though feedback did not have a significant effect on performance, a survey revealed that users' choice of feedback is influenced by social and technical factors. Another study using TEMA showed that novice users entered text faster using a tapping technique than with a gesture or handwriting technique. This motivated rearranging the keys and characters to create a new keyboard, MIME, that would provide better performance for expert users. Data on character frequency and key selection times were gathered and used to design MIME. A longitudinal user study using TEMA revealed an entry speed of 17 wpm and a total error rate of 1.7% for MIME, compared to 23 wpm and 5.2% for QWERTY. Although MIME's entry speed did not surpass QWERTY's during the study, it is projected to do so after twelve hours of practice. MIME's error rate was consistently low and significantly lower than QWERTY's. In addition, participants found MIME more comfortable to use, with some reporting hand soreness after using QWERTY for extended periods

    Beginners Performance with MessagEase and QWERTY

    Get PDF
    With the increased use of mobile phones, interest in text entry with them has also amplified. Many new mobile phones are equipped with a QWERTY keypad; new methods to surpass the QWERTY performance are also being developed. This thesis compares user performance of virtual QWERTY keypad to MessagEase. MessagEase uses 9 keys and can therefore be used even on very small touch displays. 9 characters are entered with tapping and the rest with a tap-and-slide gesture. An experiment was conducted with 10 participants transcribing text with both text entry techniques. The experiment consisted of three sessions. In each session, the participants transcribed 30 phrases in total - 15 phrases using each text entry technique. Responses to the System Usability Scale (SUS) for each text entry technique and informal interview data were also collected. From a Repeated-measures analysis of variance a significant effect of the text entry method on text entry rate was seen (F1,19= 47.140, p < 0.0001). The effect of the session (i.e. learning) was also statistically significant (F2,18= 3.631, p = 0.047).The interaction of the session and method was also statistically significant (F2,18= 10.286, p = 0.001) indicating different learning rates. Average text entry speed with MessagEase was 7.43 words per minute (wpm) in the first session and 10.96 wpm in the third session. Likewise, text entry speed with the QWERTY soft keyboard was 17.75 wpm in the first session and 17.16 wpm in the third session. No significant difference was found in the error rates. Keywords: text entry method, MessagEase, QWERT

    Investigating retrospective interoperability between the accessible and mobile webs with regard to user input

    Get PDF
    The World Wide Web (Web) has become a key technology to provide access to on-line information. The Mobile Web users, who access the Web using small devices such as mobile phones and Personal Digital Assistants (PDAs), make errors on entering text and controlling cursors. These errors are caused by both the characteristics of a device and the environment in which it is used, and are called situational impairments. Disabled Web users, on the other hand, have difficulties in accessing the Web due to their impairments in visual, hearing or motor abilities. We assert that errors experienced by the Mobile Web users share similarity in scope with those hindering motor-impaired Web users with dexterity issues, and existing solutions from the motor-impaired users domain can be migrated to the Mobile Web domain to address the common errors.Results of a systematic literature survey have revealed 12 error types that affect both the Mobile Web users and disabled Web users. These errors range from unable to locate a key to unable to pin-point a cursor. User experiments have confirmed that the Mobile Web users and motor-impaired Web users share errors in scope: they both miss key presses, press additional keys, unintentionally press a key more than once or press a key too long. In addition, both small device users and motor-impaired desktop users have difficulties in performing clicking, multiple clicking and drag selecting. Furthermore, when small device users are moving, both the scope and the magnitude of the errors are shared. In order to address these errors, we have migrated existing solutions from the disabled Web users domain into the Mobile Web users domain. We have developed a typing error correction system for the Mobile Web users. Results of the user evaluation have indicated that the proposed system can significantly reduce the error rates of the Mobile Web users.This work has an important contribution to both the Web accessibility field and the Mobile Web field. By leveraging research from the Web accessibility field into the Mobile Web field, we have linked two disjoint domains together. We have migrated solutions from one domain to another, and thus have improved the usability and accessibility of the Mobile Web.EThOS - Electronic Theses Online ServiceGBUnited Kingdo
    corecore