7,955 research outputs found

    Microscopic Theory of Heterogeneity and Non-Exponential Relaxations in Supercooled Liquids

    Full text link
    Recent experiments and computer simulations show that supercooled liquids around the glass transition temperature are "dynamically heterogeneous" [1]. Such heterogeneity is expected from the random first order transition theory of the glass transition. Using a microscopic approach based on this theory, we derive a relation between the departure from Debye relaxation as characterized by the β\beta value of a stretched exponential response function ϕ(t)=e(t/τKWW)β\phi(t) =e^{-(t/ \tau_{KWW})^{\beta}}, and the fragility of the liquid. The β\beta value is also predicted to depend on temperature and to vanish as the ideal glass transition is approached at the Kauzmann temperature.Comment: 4 pages including 3 eps figure

    Deconstructing the glass transition through critical experiments on colloids

    Full text link
    The glass transition is the most enduring grand-challenge problem in contemporary condensed matter physics. Here, we review the contribution of colloid experiments to our understanding of this problem. First, we briefly outline the success of colloidal systems in yielding microscopic insights into a wide range of condensed matter phenomena. In the context of the glass transition, we demonstrate their utility in revealing the nature of spatial and temporal dynamical heterogeneity. We then discuss the evidence from colloid experiments in favor of various theories of glass formation that has accumulated over the last two decades. In the next section, we expound on the recent paradigm shift in colloid experiments from an exploratory approach to a critical one aimed at distinguishing between predictions of competing frameworks. We demonstrate how this critical approach is aided by the discovery of novel dynamical crossovers within the range accessible to colloid experiments. We also highlight the impact of alternate routes to glass formation such as random pinning, trajectory space phase transitions and replica coupling on current and future research on the glass transition. We conclude our review by listing some key open challenges in glass physics such as the comparison of growing static lengthscales and the preparation of ultrastable glasses, that can be addressed using colloid experiments.Comment: 137 pages, 45 figure

    Under vehicle perception for high level safety measures using a catadioptric camera system

    Get PDF
    In recent years, under vehicle surveillance and the classification of the vehicles become an indispensable task that must be achieved for security measures in certain areas such as shopping centers, government buildings, army camps etc. The main challenge to achieve this task is to monitor the under frames of the means of transportations. In this paper, we present a novel solution to achieve this aim. Our solution consists of three main parts: monitoring, detection and classification. In the first part we design a new catadioptric camera system in which the perspective camera points downwards to the catadioptric mirror mounted to the body of a mobile robot. Thanks to the catadioptric mirror the scenes against the camera optical axis direction can be viewed. In the second part we use speeded up robust features (SURF) in an object recognition algorithm. Fast appearance based mapping algorithm (FAB-MAP) is exploited for the classification of the means of transportations in the third part. Proposed technique is implemented in a laboratory environment

    Direct measurements of growing amorphous order and non-monotonic dynamic correlations in a colloidal glass-former

    Full text link
    While the transformation of flowing liquids into rigid glasses is omnipresent, a complete understanding of vitrification remains elusive. Of the numerous approaches aimed at solving the glass transition problem, the Random First-Order Theory (RFOT) is the most prominent. However, the existence of the underlying thermodynamic phase transition envisioned by RFOT remains debatable, since its key microscopic predictions concerning the growth of amorphous order and the nature of dynamic correlations lack experimental verification. Here, by using holographic optical tweezers, we freeze a wall of particles in an equilibrium configuration of a 2D colloidal glass-forming liquid and provide direct evidence for growing amorphous order in the form of a static point-to-set length. Most remarkably, we uncover the non-monotonic dependence of dynamic correlations on area fraction and show that this non-monotonicity follows directly from the change in morphology of cooperatively rearranging regions, as predicted by RFOT. Our findings suggest that the glass transition has a thermodynamic origin

    A screen for round egg mutants in Drosophila identifies tricornered, furry, and misshapen as regulators of egg chamber elongation.

    Get PDF
    The elongation of tissues and organs during embryonic development results from the coordinate polarization of cell behaviors with respect to the elongation axis. Within the Drosophila melanogaster ovary, initially spherical egg chambers lengthen dramatically as they develop to create the elliptical shape of the mature egg. This morphogenesis depends on an unusual form of planar polarity within the egg chamber's outer epithelial cell layer known as the follicle cells. Disruption of follicle cell planar polarity leads to the production of round rather than elongated eggs; however, the molecular mechanisms that control this tissue organization are poorly understood. Starting from a broadly based forward genetic screen, we have isolated 12 new round egg complementation groups, and have identified four of the mutated genes. In mapping the largest complementation group to the fat2 locus, we unexpectedly discovered a high incidence of cryptic fat2 mutations in the backgrounds of publicly available stocks. Three other complementation groups correspond to the genes encoding the cytoplasmic signaling proteins Tricornered (Trc), Furry (Fry), and Misshapen (Msn). Trc and Fry are known members of an NDR kinase signaling pathway, and as a Ste20-like kinase, Msn may function upstream of Trc. We show that all three proteins are required for follicle cell planar polarity at early stages of egg chamber elongation and that Trc shows a planar polarized distribution at the basal follicle cell surface. These results indicate that this new mutant collection is likely to provide novel insight into the molecular mechanisms controlling follicle cell planar polarity and egg chamber elongation

    Thermodynamics of nano-spheres encapsulated in virus capsids

    Full text link
    We investigate the thermodynamics of complexation of functionalized charged nano-spheres with viral proteins. The physics of this problem is governed by electrostatic interaction between the proteins and the nano-sphere cores (screened by salt ions), but also by configurational degrees of freedom of the charged protein N-tails. We approach the problem by constructing an appropriate complexation free energy functional. On the basis of both numerical and analytical studies of this functional we construct the phase diagram for the assembly which contains the information on the assembled structures that appear in the thermodynamical equilibrium, depending on the size and surface charge density of the nano-sphere cores. We show that both the nano-sphere core charge as well as its radius determine the size of the capsid that forms around the core.Comment: Submitte

    Static correlations functions and domain walls in glass-forming liquids: the case of a sandwich geometry

    Get PDF
    The problem of measuring nontrivial static correlations in deeply supercooled liquids made recently some progress thanks to the introduction of amorphous boundary conditions, in which a set of free particles is subject to the effect of a different set of particles frozen into their (low temperature) equilibrium positions. In this way, one can study the crossover from nonergodic to ergodic phase, as the size of the free region grows and the effect of the confinement fades. Such crossover defines the so-called point-to-set correlation length, which has been measured in a spherical geometry, or cavity. Here, we make further progress in the study ofcorrelations under amorphous boundary conditions by analyzing the equilibrium properties of a glass-forming liquid, confined in a planar ("sandwich") geometry. The mobile particles are subject to amorphous boundary conditions with the particles in the surrounding walls frozen into their low temperature equilibrium configurations. Compared to the cavity, the sandwich geometry has three main advantages: i) the width of the sandwich is decoupled from its longitudinal size, making the thermodynamic limit possible; ii) for very large width, the behaviour off a single wall can be studied; iii) we can use "anti-parallel" boundary conditions to force a domain wall and measure its excess energy. Our results confirm that amorphous boundary conditions are indeed a very useful new tool inthe study of static properties of glass-forming liquids, but also raise some warning about the fact that not all correlation functions that can be calculated in this framework give the same qualitative results.Comment: Submited to JCP special issue on the glass transisio

    04251 -- Imaging Beyond the Pinhole Camera

    Get PDF
    From 13.06.04 to 18.06.04, the Dagstuhl Seminar 04251 ``Imaging Beyond the Pin-hole Camera. 12th Seminar on Theoretical Foundations of Computer Vision\u27\u27 was held in the International Conference and Research Center (IBFI), Schloss Dagstuhl. During the seminar, several participants presented their current research, and ongoing work and open problems were discussed. Abstracts of the presentations given during the seminar as well as abstracts of seminar results and ideas are put together in this paper. The first section describes the seminar topics and goals in general. Links to extended abstracts or full papers are provided, if available
    corecore