The glass transition is the most enduring grand-challenge problem in
contemporary condensed matter physics. Here, we review the contribution of
colloid experiments to our understanding of this problem. First, we briefly
outline the success of colloidal systems in yielding microscopic insights into
a wide range of condensed matter phenomena. In the context of the glass
transition, we demonstrate their utility in revealing the nature of spatial and
temporal dynamical heterogeneity. We then discuss the evidence from colloid
experiments in favor of various theories of glass formation that has
accumulated over the last two decades. In the next section, we expound on the
recent paradigm shift in colloid experiments from an exploratory approach to a
critical one aimed at distinguishing between predictions of competing
frameworks. We demonstrate how this critical approach is aided by the discovery
of novel dynamical crossovers within the range accessible to colloid
experiments. We also highlight the impact of alternate routes to glass
formation such as random pinning, trajectory space phase transitions and
replica coupling on current and future research on the glass transition. We
conclude our review by listing some key open challenges in glass physics such
as the comparison of growing static lengthscales and the preparation of
ultrastable glasses, that can be addressed using colloid experiments.Comment: 137 pages, 45 figure