25 research outputs found

    Nonvolatile CMOS memristor, reconfigurable array and its application in power load forecasting

    Get PDF
    © 2023 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works. This is the accepted manuscript version of a conference paper which has been published in final form at https://doi.org/10.1109/TII.2023.3341256The high cost, low yield, and low stability of nano-materials significantly hinder the application and development of memristors. To promote the application of memristors, researchers proposed a variety of memristor emulators to simulate memristor functions and apply them in various fields. However these emulators lack nonvolatile characteristics, limiting their scope of application. This paper proposes an innovative nonvolatile memristor circuit based on complementary metal-oxide-semiconductor (CMOS) technology, expanding the horizons of memristor emulators. The proposed memristor is fabricated in a reconfigurable array architecture using the standard CMOS process, allowing the connection between memristors to be altered by configuring the on-off state of switches. Compared to nano-material memristors, the CMOS nonvolatile memristor circuit proposed in this paper offers advantages of low manufacturing cost and easy mass production, which can promote the application of memristors. The application of the reconfigurable array is further studied by constructing an Echo State Network (ESN) for short-term load forecasting in the power system.Peer reviewe

    Quantum Device: Empirical Modelling Of The Resonant Tunneling Diode

    Get PDF
    The transistor was widely employed in integrated circuit design. Nevertheless, the continued scaling the transistor size will affect the device performances. RTD is an efficient high-speed device and has high-frequency operation up to Terahertz (THz) compared to the transistor. It has the potential to replace the transistor in the ultra-high frequency device applications in the future. Furthermore, RTD is a low power consumption device that works at low power compared to the transistor. Low power consumption needs to consider in integrated circuit design to have highest dynamic performance. This study will be modelled two different material system of RTD, which is GaAs/AlAs and In0.8Ga0.2As/AlAs. The physic-based equation will be simulated in MATLAB and the circuit model will be built up in LT Spice IV.Empirical fitting will be done in MATLAB to match the model to the experimental data. Meanwhile, in LT Spice IV, two methods were employed to simulate the circuit model, which are Table simulation and Polynomial simulation. The empirical fitting had been successfully matched the model to the experimental of GaAs/AlAs and In0.8Ga0.2As/AlAs. Based on results analysis, Table simulation had been successfully simulated I-V characteristics of experimental GaAs/AlAs and In0.8Ga0.2As/AlAs better than Polynomial simulation

    Nonlinear Dynamics of Neural Circuits

    Get PDF

    Variability in Resistive Memories

    Get PDF
    This research was supported by project B-TIC-624-UGR20 funded by the Consejería de Conocimiento, Investigación y Universidad, Junta de Andalucía (Spain) and the FEDER program. F.J.A. acknowledges grant PGC2018-098860-B-I00 and PID2021-128077NB-I00 financed by MCIN/ AEI/10.13039/501100011033/FEDER and A-FQM-66-UGR20 financed by the Consejería de Conocimiento, Investigación y Universidad, Junta de Andalucía (Spain) and the FEDER program. M.B.G. acknowledges the Ramón y Cajal Grant No. RYC2020-030150-I. M.L. and M.A.V. acknowl- edge generous support from the King Abdullah University of Science and Technology. A.N.M., N.V.A., A.A.D., M.N.K. and B.S. acknowledge the Government of the Russian Federation under Megagrant Program (agreement no. 074-02-2018-330 (2)) and the Ministry of Science and Higher Education of the Russian Federation under “Priority-2030” Academic Excellence Program of the Lobachevsky State University of Nizhny Novgorod (N-466-99_2021-2023). The authors thank D.O. Filatov, A.S. Novikov, and V.A. Shishmakova for their help in studying the dependence of MFPT on external voltage (Section 4). The devices in Section 4 were designed in the frame of the scientific program of the National Center for Physics and Mathematics (project “Artificial intel- ligence and big data in technical, industrial, natural and social systems”) and fabricated at the facilities of Laboratory of memristor nanoelectronics (state assignment for the creation of new laboratories for electronics industry). E.M. acknowledges the support provided by the European proj- ect MEMQuD, code 20FUN06, which has received funding from the EMPIR programme co-financed by the Participating States and from the European Union’s Horizon 2020 research and innovation programme.Resistive memories are outstanding electron devices that have displayed a large potential in a plethora of applications such as nonvolatile data storage, neuro- morphic computing, hardware cryptography, etc. Their fabrication control and performance have been notably improved in the last few years to cope with the requirements of massive industrial production. However, the most important hurdle to progress in their development is the so-called cycle-to-cycle variability, which is inherently rooted in the resistive switching mechanism behind the operational principle of these devices. In order to achieve the whole picture, variability must be assessed from different viewpoints going from the experi- mental characterization to the adequation of modeling and simulation techni- ques. Herein, special emphasis is put on the modeling part because the accurate representation of the phenomenon is critical for circuit designers. In this respect, a number of approaches are used to the date: stochastic, behavioral, meso- scopic..., each of them covering particular aspects of the electron and ion transport mechanisms occurring within the switching material. These subjects are dealt with in this review, with the aim of presenting the most recent advancements in the treatment of variability in resistive memories.Junta de Andalucía B-TIC-624-UGR20 PID2021-128077NB-I00European CommissionMCIN/AEI/FEDER A-FQM-66-UGR20 PGC2018-098860-B-I00Spanish Government RYC2020-030150-IKing Abdullah University of Science & TechnologyGovernment of the Russian Federation under Megagrant Program 074-02-2018-330 (2)Ministry of Science and Higher Education of the Russian Federation under "Priority-2030" Academic Excellence Program of the Lobachevsky State University of Nizhny Novgorod N-466-99_2021-2023European project MEMQuD 20FUN06EMPIR programmeEuropean Union's Horizon 2020 research and innovation programm

    Cutting Edge Nanotechnology

    Get PDF
    The main purpose of this book is to describe important issues in various types of devices ranging from conventional transistors (opening chapters of the book) to molecular electronic devices whose fabrication and operation is discussed in the last few chapters of the book. As such, this book can serve as a guide for identifications of important areas of research in micro, nano and molecular electronics. We deeply acknowledge valuable contributions that each of the authors made in writing these excellent chapters

    Cumulative index to NASA Tech Briefs, 1963-1967

    Get PDF
    Cumulative index to NASA survey on technology utilization of aerospace research outpu

    Low-Cost Inventions and Patents

    Get PDF
    Inventions have led to the technological advances of mankind. There are inventions of all kinds, some of which have lasted hundreds of years or even longer. Low-cost technologies are expected to be easy to build, have little or no energy consumption, and be easy to maintain and operate. The use of sustainable technologies is essential in order to move towards a greater global coverage of technology, and therefore to improve human quality of life. Low-cost products always respond to a specific need, even if no in-depth analysis of the situation or possible solutions has been carried out. It is a consensus in all industrialized countries that patents have a decisive influence on the organization of the economy, as they are a key element in promoting technological innovation. Patents must aim to promote the technological development of countries, starting from their industrial situations

    Physics of Ionic Conduction in Narrow Biological and Artificial Channels

    Get PDF
    The book reprints a set of important scientific papers applying physics and mathematics to address the problem of selective ionic conduction in narrow water-filled channels and pores. It is a long-standing problem, and an extremely important one. Life in all its forms depends on ion channels and, furthermore, the technological applications of artificial ion channels are already widespread and growing rapidly. They include desalination, DNA sequencing, energy harvesting, molecular sensors, fuel cells, batteries, personalised medicine, and drug design. Further applications are to be anticipated.The book will be helpful to researchers and technologists already working in the area, or planning to enter it. It gives detailed descriptions of a diversity of modern approaches, and shows how they can be particularly effective and mutually reinforcing when used together. It not only provides a snapshot of current cutting-edge scientific activity in the area, but also offers indications of how the subject is likely to evolve in the future

    Vibration, Control and Stability of Dynamical Systems

    Get PDF
    From Preface: This is the fourteenth time when the conference “Dynamical Systems: Theory and Applications” gathers a numerous group of outstanding scientists and engineers, who deal with widely understood problems of theoretical and applied dynamics. Organization of the conference would not have been possible without a great effort of the staff of the Department of Automation, Biomechanics and Mechatronics. The patronage over the conference has been taken by the Committee of Mechanics of the Polish Academy of Sciences and Ministry of Science and Higher Education of Poland. It is a great pleasure that our invitation has been accepted by recording in the history of our conference number of people, including good colleagues and friends as well as a large group of researchers and scientists, who decided to participate in the conference for the first time. With proud and satisfaction we welcomed over 180 persons from 31 countries all over the world. They decided to share the results of their research and many years experiences in a discipline of dynamical systems by submitting many very interesting papers. This year, the DSTA Conference Proceedings were split into three volumes entitled “Dynamical Systems” with respective subtitles: Vibration, Control and Stability of Dynamical Systems; Mathematical and Numerical Aspects of Dynamical System Analysis and Engineering Dynamics and Life Sciences. Additionally, there will be also published two volumes of Springer Proceedings in Mathematics and Statistics entitled “Dynamical Systems in Theoretical Perspective” and “Dynamical Systems in Applications”
    corecore