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Abstract

This thesis describes the development of a data assimilation methodology for

building single-neuron conductance models. Data assimilation seeks to determine

unmeasured states and parameters of experimental systems from observable macro-

scopic quantities. Here, we attempt to estimate parameters governing unobserved

ionic transport at the molecular level from observed membrane voltage recordings.

We implement a variational assimilation method that uses constrained nonlinear

optimization to synchronize the output of neuron models to observed time series

data.

When using real-world data, measurement noise and model error can impede

the identification of the optimal parameter solution. We present a regularization

method that improves convergence towards this optimal solution when data are

imperfect and the model is unknown, and derive the conditions under which this

optimal solution is obtainable. This method is then applied to the construction of

hardware neuron models comprising equations of intracellular currents embodied

in analog solid-state electronics. We successfully transfer the complete dynamics

of hippocampal and respiratory neurons into silicon devices which are found to

respond nearly identically to their biological counterparts under a wide range of

current stimulation protocols.

These solid-state models are used to construct inhibitory neural circuits, and

the dependence of network dynamics on synaptic parameters in these circuits is

quantitatively characterised. The single-neuron parameter estimation developed

in the first part of the thesis is finally extended to the construction of inhibitory

neuronal networks. To overcome the challenges associated with optimizing a whole-

network model, we develop a novel phase reduction approach that allows each

neuron in the network to be optimized individually. This work further expands

the applicability of variational assimilation to complex neuronal systems.
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List of Abbreviations and

Glossary of Terms

Abbreviations

aCSF artificial cerebrospinal fluid

AHP afterhyperpolarization

CaT T-type calcium current

CMOS complementary metal-oxide-semiconductor

CPG central pattern generator

DAQ data acquisition

ECG electrocardiogram

FS fast-spiking interneuron

GHK Goldman-Hodgkin-Katz

HCN hyperpolarization-activated cyclic nucleotide–gated

HCO half-center oscillator

HH Hodgkin-Huxley

ING interneuron network gamma



ISI inter-spike interval

ML Morris-Lecar model

MOSFET metal-oxide semiconductor field-effect transistor

NaP persistent sodium current

NaT transient sodium current

NMRSD normalized root-mean-squared deviation

P postnatal day

PDF posterior distribution function

PING pyramidal interneuronal network gamma

RN respiratory neuron

RSA respiratory sinus arrythmia

RVLM rostral ventrolateral medulla

SOM somatostatin-expressing neuron

SSN solid-state neuron

VLSI very large-scale integration
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Glossary of Terms

Action potential: a sudden and transitory rise and fall in the voltage across

the neuron membrane due to transmembrane ion flow.

Attractor: a stable fixed point in the state space of a dynamical system towards

which system trajectories tends to evolve.

Central pattern generator: a neuronal network that produces an oscillating,

rhythmic output even in the absence of sensory feedback.

Cost function: a function that measures the misfit of a model to the target

data. Data assimilation seeks minima of the cost function.

Data assimilation: a method in which observed data are combined with the

output of a numerical model to produce an optimal estimate of the underlying

evolving state of the system.

Depolarization: a positive change in membrane potential resulting either from

increased permeability to ions or to positive injected current.

Global / local minima: a local minimum of a function is a point where the

function is smaller than at all neighboring points. The lowest possible value of

the function is called the global minimum.

Hodgkin-Huxley model: a mathematical model of ion current flow through

selective channels in the neuron membrane.

Hyperpolarization: a negative change in membrane potential resulting either

from increased permeability to ions or to negative injected current.

Identifiability: a model is identifiable if it is theoretically possible to identify

the true values of the model parameters from a observations of the model output.

Inhibition: a synaptic mechanism in which a presynaptic neuron makes a post-

synaptic neuron less likely to generate an action potential.
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Inverse problem: a problem that consists in using the results of measured

observations to infer the values of the parameters characterizing a system.

Ion channel: pore-forming proteins that allow selected ions to pass through the

neuron membrane.

Lagrangian multipliers: constants λ used to find extrema of a multivariate

cost function f(x) subject to constraints g(x). The minimum of f(x) will always

correspond to saddle points of the Lagrangian function L(x, λ) = f(x)− λg(x).

Lorenz system: a toy model of the Rayleigh-Bénard convection. A canonical

chaotic dynamical system.

Lyapunov exponent: characterises the average exponential rate of divergence

of arbitrarily close trajectories in the state space of a dynamical system.

Membrane potential: the difference in electrical potential between the inside

and outside of a neuron.

Morris-Lecar model: a two-dimensional reduced neuron model comprising two

non-inactivating voltage-sensitive conductances and a passive leakage current.

Neuromorphic engineering: the field of research that attempts to build biolog-

ically realistic models of neural systems in electronic circuits. Often implemented

using VLSI technology.

Non-convex optimization: the problem of maximizing or minimizing a non-

convex function over a potentially non-convex set. Unlike in convex optimization,

local minima are not necessarily global minima.

Observability: a measure of the extent to which internal dynamical states of a

system can be inferred from observations of the model output.

Phase resetting curve: a function that tabulates how much a perturbing input

advances or delays the next cycle length of a running oscillator as a function of

where in the cycle it is received.
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Regularization: a method used for smoothing the surface of a cost function

through the addition of penalty terms to the optimization problem.

Respiratory sinus arrhythmia: a physiological phenomenon in which heart-

rate varies in synchrony with the respiratory cycle.

Reversal potential: the equilibrium potential difference generated by differ-

ential concentrations of an ion on either side of a membrane that is perfectly

selective for that ion.

Saddle-node bifurcation: a quantitative change in the state space of a dynam-

ical system caused by the collision and disappearance of two equilibria.

Sloppiness: the extent to which model behaviour is insensitive to changes in the

values of its underlying parameters.

Synapse: the signalling junction between two neurons where nerve impulses are

transmitted and received by diffusion of a neurotransmitter.

Takens’ Theorem: delay embedding theorem stating that information about

hidden states of a dynamical system can be preserved in a time series output.
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Chapter 1

Introduction

The aim of this chapter is to highlight the most important concepts that form

the motivation for the work presented in this thesis. In particular, we discuss the

difficulties associated with parameter estimation of neuron models and give a brief

overview of the state of the art in the field. We describe how the results in each

chapter of this thesis address several open questions in the neuroscience literature,

and give a brief outline of the techniques that we have developed to overcome these

challenges. Finally, we present a road map for the rest of the thesis.

1.1 Motivation

Neurons in the brain communicate with each other by transmitting sequences of

electrical pulses called ‘spikes’ or ‘action potentials’, a rapid rise and fall in the

voltage across the neuron membrane [1]. The effort to understand the mechanisms

underlying these complex patterns of spiking activity remains one of the major

challenges of neuroscience today [2]. The scientific understanding of neurons and

of nervous system function became increasingly precise during the 20th century. In

1952, Alan Lloyd Hodgkin and Andrew Huxley presented a mathematical model

for transmission of electrical signals in neurons of the giant axon of the squid,

for which they received the Nobel Prize in Physiology or Medicine in 1963 [3, 4].

The Hodgkin–Huxley model gave the first quantitative description of how action

potentials were initiated and propagated through the interaction of sodium and



potassium currents crossing the cell membrane [5]. In recent years, this model

has been generalised to comprise the wider family of ‘conductance-based models’

which may now consider as many as tens of interacting ionic currents [6–8].

Building complex neuron models typically involves a trade-off between bio-

logical realism and tractability: the more accurate the neuron model, the more

difficult the computational task of tuning the model parameters becomes [9, 10].

The number of interacting parameters can increase into the hundreds for biophys-

ically realistic conductance models, making hand-tuning a near impossible task

[11, 12]. Instead, this process must be automated and often involves optimiz-

ing an objective function that measures the accuracy of the model as compared

to observed data [13, 14]. The choice of criteria by which model performance is

judged is user-specific, and can range from correct prediction of spike height or

spike width [13, 15, 16] to accurately reproducing the neuron firing rate or precise

spike timing [17–19]. Recent work has compared electrophysiological traces in a

more direct manner, seeking the global minimum of a least-squares objective func-

tion describing the difference between the data and the model membrane voltage

traces [20–23]. This approach is underpinned by the Takens-Mañé theorem which

states that under certain conditions the full dynamical state of a model may be

reconstructed from scalar measurements of the model output alone [24, 25]. The

challenging nature of this high-dimensional, simultaneous parameter estimation

problem is well known [26–28], and arises due to two primary factors: nonlinearity

of the system of equations describing the dynamics of the model; and non-convexity

of the least-squares objective function used to describe goodness of fit, which can

result in an abundance of sub-optimal local minima in the large parameter space

[29, 30]. A further complication relates to the observation that conductance-based

neuron models with substantially different sets of parameters may display very

similar membrane voltage waveforms under normal conditions [12, 31–33]. It has

recently been argued that is therefore impossible to obtain a single set of param-

eters that“perfectly” replicate experimental data [31, 34, 35]. These observations

then raise the question of whether neurons with similar parameters can nonethe-

less be forced to respond differently with sufficiently discriminating stimulation.

In Chapter 3, we address these issues. We use nonlinear optimization to success-

fully infer the parameters of complex conductance-based models, and demonstrate

8



that the optimal solution, among all others producing equivalent model output,

can be identified under appropriate external stimulation. We also explore the ef-

fects of experimental error and model error on the parameter solutions, and show

that measurement noise can be harnessed to improve convergence to the global

minimum of the objective function. In doing so, we improve on both the success

rate and on the accuracy of previously-reported parameter estimation of numerical

conductance-based neuron models [23].

Neuron models are typically formulated as sets of coupled differential equations

whose size is a function of model complexity [36]. For simpler models, their quan-

titative behaviour can easily be simulated numerically [37, 38], but in the case of

more complex models, or large networks of neurons, the computation necessary

for simulation can quickly become intractable [39, 40]. The field of neuromorphic

engineering seeks an alternative approach, mimicking the structure and emulat-

ing the function of neural systems in a physical, typically silicon, form [41–43].

Hardware implementations of neuron models, unlike numerical simulations, op-

erate in real-time and are highly scalable, removing the need for compromise on

model complexity or network size [44, 45]. However, complex hardware models

face similar challenges associated with estimating optimal parameters, which has

driven the use of simplified models in the field [46–49]. Although these models

are less exact from a biophysical point of view, they have fewer parameters, ren-

dering parameter estimation feasible [50, 51]. However, bioelectronic medicine

is now driving the need for neuromorphic microcircuits that integrate real-time

biofeedback and respond identically to biological neurons, a task which demands

neuron models that emulate the complex dynamics of particular cells [52–54]. In

Chapter 4, we answer this need by designing a biophysically plausible hardware

neuron. We derive the equations of intracellular currents and membrane voltages

that this silicon model embodies, then use the parameter estimation approaches

developed in Chapter 3 to transfer the complete dynamics of a hippocampal and

a respiratory neuron in-silico. The solid-state neurons respond nearly identically

to their biological counterparts.

In Chapter 5, we provide an example of how the development of neuromorphic

systems can answer outstanding questions in experimental neuroscience. Synchro-

nized firing activity has been observed in many central nervous systems, but its

9



underpinning mechanisms and neurobiological function remain a topic of debate

[55, 56]. Experimental studies continue to provide growing evidence of a close

relationship between synchronous firing activity in the brain and a wide range of

cognitive functions [57] including focused attention [58, 59], maintenance of con-

tents in short term memory [60], and the integration of sensory input [61, 62].

Many neuronal populations have been observed to host synchronized firing be-

haviour [63–65], with associated studies showing that this coherence is primarily

due either to excitatory synaptic coupling or to electrical coupling mediated by gap

junctions [66]. Indeed, inhibitory synaptic connectivity has classically been con-

sidered as a mechanism promoting antisynchronous firing [67, 68]. Recent work,

however, has found synchronous networks of interneurons in the hippocampus and

the cortex that are coupled purely by inhibitory synapses [69, 70], experimentally

confirming the existence of inhibition-driven synchrony. In this chapter, we build

small networks of inhibitory silicon neurons and explore the underlying mecha-

nisms that may give rise to inhibitory-based synchronization. By making use of

the real-time behaviour of neuromorphic devices, we are able to simulate hundreds

of network configurations across a wide range of parameters. The use of experi-

mental networks allows us to demonstrate the robustness of synchronized network

states to noise, and we find that delays in synaptic inhibition act to stabilise these

states, a result which is consistent with observed transmission line delays in syn-

chronizing cortical networks [71]. Furthermore, we conclude that the dynamics

of mutually inhibitory neuronal networks are fiercely dependent on synaptic pa-

rameters, a fact which explains the challenging nature of parameter estimation for

neural circuits [72].

This final point motivates the last results chapter of this thesis. Chapter 6

focuses on the estimation of circuit parameters in networks known as central pat-

tern generators (CPGs). The neurons in these networks produce precisely-timed

electrical bursts that are phase-locked with one another and typically drive rhyth-

mic motor behaviors such as respiration and heartbeat [73, 74]. The study of

CPGs constitutes an active area of research [75, 76] which has confirmed that the

relationships among neuron and synapse parameters in these networks are highly

nonlinear [77]. This particular fact constitutes a major obstacle to designing arti-

ficial CPGs with desired phase lags. In this chapter, we propose a solution to this

10



challenge by describing a novel parameter estimation method that first reduces the

constituent neurons of the CPG to their individual phase resetting curves (PRCs)

[78]. PRCs keeps track of how much a synaptic input advances or delays the next

burst in an oscillating neuron as a function of where in the burst cycle the input is

received [79]. We show that problems concerning phase-lags between the neurons

in the network can be reduced to problems concerning individual neuron PRCs.

This reduction technique allows each oscillator to be optimized entirely separately

such that it possesses the required PRC, enabling the estimation of all neuron and

synapse parameters of the network while avoiding the challenges associated with

searching the high-dimensional parameter space of a whole-network model.

1.2 Thesis structure

Chapter 2 covers the theoretical background needed to arrive at the results pre-

sented in the thesis, beginning with an overview of neuron electrophysiology and

conductance-based neuron models. This is followed by a description of the param-

eter estimation approach used throughout this work. Chapters 3-6 of the thesis are

organised into two main parts on the basis of general themes. Part I (Chapters 3-

4) covers the optimization of neuron models at the single-neuron level. The first

chapter discusses parameter estimation of biophysical conductance-based models,

while the subsequent chapter utilises a similar approach to build predictive solid-

state neurons. Part II of the thesis (Chapters 5-6) concerns neuronal dynamics

at the network level. Chapter 5 uses solid-state neurons to probe the dynamics

of small inhibitory neuronal networks, and Chapter 6 applies the parameter esti-

mation methods developed in Part I to the construction of small network models.

Finally, Chapter 7 presents some general conclusions and suggests some potential

research directions for future work.

1.3 Papers and presentations

The work detailed in this thesis has contributed to four published papers and two

conference presentations. The papers are:
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• Dual mechanism for the emergence of synchronization in inhibitory neural

networks (2018) by A.S. Chauhan, J.D. Taylor, and A Nogaret, published in

Scientific Reports [80]

• Optimal solid state neurons (2019) by K. Abu-Hassan, J.D. Taylor, P.G.

Morris, E. Donati, Z.A. Bortolotto, G. Indiveri, J.F.R. Paton, and A. Nog-

aret, published in Nature Communications [81]

• Estimation of neuron parameters from imperfect observations (2020) by J.D.

Taylor, S. Winnall, and A. Nogaret, published in PLOS Computational Bi-

ology [23].

• Robust design of inhibitory neuronal networks displaying rhythmic activity.

(2021) by J.D. Taylor, K. Abu-Hassan, J.J.A. van Bavel, M.A. Vos, and

A. Nogaret, published in Dynamical Systems Theory and Applications (in

preparation).

Posters were presented and presentations given at the Conference for Complex Sys-

tems 2019 meeting (NUT, Singapore) and the 2019 Dynamical Systems - Theory

and Applications conference ( Lodz, Poland).
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Chapter 2

Background and Methods

A primary focus of this thesis is the construction of conductance-based neuron

models whose free parameters need to be constrained using empirical data. In

this chapter, we begin with an overview of the biophysics of neuron membranes,

highlighting the parameters of interest that we seek to estimate, before introducing

the Hodgkin-Huxley model and its subsequent extensions. The second part of the

chapter expands on the methodology underlying data assimilation, the parameter

estimation approach used to constrain these models, and outlines some of the

challenges posed by nonlinear inverse problems in neuroscience. The chapter ends

with details of the assimilation implementation that we use throughout the thesis

to build predictive neuron models, highlighting some improvements on previously

reported methods.

2.1 Neurobiology background

2.1.1 Neuron membranes

The fundamental unit of electrical signalling in the nervous system is the action

potential, an abrupt spike in the membrane voltage of the neuron. These electrical

pulses are generated by ion flow across the membrane of the cell body or ‘soma’.

Neuron membranes, like those of other cells, act to separate the cell interior and its

external environment. Both the intracellular and extracellular fluid contain high

concentrations of dissolved ions such as sodium (Na+), potassium (K+), calcium



(Ca2+), and chloride (Cl−), but the concentration of each ion species inside the

cell is different to that in the surrounding liquid [82]. In mammalian neurons,

the extracellular medium typically has a high concentration of positively charged

Na+ and Ca2+ ions, and a high concentration of negatively charged Cl− ions. The

intracellular fluid, on the other hand, has a high concentration of positively charged

K+ ions [83]. These differentials cause concentration gradients to form across the

cell membrane, which acts as a leaky capacitor: while the membrane itself is a

nearly perfect electrical insulator - a lipid bilayer with a typical resistance of 100-

300 MΩs [84] - large proteins embedded in the membrane form pores connecting

the cell interior and exterior [85]. These proteins act as ion gates, allowing specific

ions to pass from one side of the membrane to the other. Some of these gates,

known as ion pumps, maintain the ion concentrations on either side of the cell

membrane through the active transport of ions across it [86]. A second type of ion

gate, known as an ion channel, facilitates passive transport, and can be in either an

‘open’ or a ‘closed’ state [82]. When in the ‘open’ state, they allow ions to diffuse

across the cell membrane (Fig. 2.1). Ion channels have the important property

of being ‘ion-selective’; that is, they only allow a restricted class of ions to pass.

They are generally named according to this selectivity; for example, channels that

allow only Na+ diffusion are referred to as being ‘Na+-selective’. Many kinds of ion

channels have been identified [87], and the expression of particular channels may

vary widely even among cells of the same type [88, 89]. It is not generally possible

to know a priori which ion channels are present in a given cell. This fact informs

a large part of the discussion in Chapter 4, where we estimate the parameters of a

conductance model using real, biological neurons from the hippocampus and the

brain stem. A useful advantage of the data assimilation approach that we describe

in this thesis is that it automatically assigns a null value to the conductances of

any channels in the model that are not present in the neuron [21, 22]. We find that

a generic conductance model can therefore be used to fit the behavior of different

classes of neurons, removing the requirement of prior information and biological

intuition of previous approaches [90].

There are two primary forces that drive diffusion through ion channels: con-

centration gradients and electrical potential gradients. Ions tend to flow down

their concentration gradients, from regions of high concentration to regions of low
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Figure 2.1: Voltage-gated ion channels. When the membrane potential is at the threshold
voltage for the channel, an activation gate opens and allows particular ions to flow
through the channel down their electrochemical gradients. After a delay determined
by the ion channel kinetics, an inactivation gate blocks the channel. (Modified from
Ref. [91])

concentration. Table 2.1 shows some typical ionic concentrations across a neuron

membrane. Positive charges outside the cell and the negative charges inside the

cell accumulate on opposite sides of the neuron membrane, creating an electrical

potential gradient across it. We call this the transmembrane potential, or mem-

brane voltage, denoted V . At rest, most mammalian neurons sit at a membrane

voltage of ∼ −70 mV. We shall see in Chapter 4 that this value varies across

neuron types, and is one of the defining properties of a neuron that we seek to es-

timate. For a given ionic species, ion flow across the membrane will continue until

the driving force of the concentration gradient is counterbalanced by the electric

potential gradient provided by the membrane voltage, upon which an equilibrium

is reached. The membrane voltage corresponding to this equilibrium depends on

the ion species in question, and is given by the Nernst equation [92, 93]:

Eion =
RT

zF
ln

[Ion]o
[Ion]i

(mV) (2.1)

where R is the universal gas constant (8.3145 J·mol−1·K−1); T is temperature

in Kelvin; F is Faraday’s constant (96,485 C·mol−1); z is the valence of the ion
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Table 2.1: Typical ion concentrations and reversal potentials in mammalian neu-
rons [82].

Ion

Extracellular
Concentration

(mM)

Intracellular
concentration

(mM) [Ion]o/[Ion]i

Equilibrium
potential

(mV)

Na+ 145 12 12 +67
K+ 4 155 0.026 -98
Ca2+ 1.5 100 nM 15,000 +129
Cl− 123 4.2 29 -90a

aReversal potentials were calculated using the Nernst potential equation (Eq. 2.1)

species; and [Ion]o and [Ion]i are the concentrations of the ion species outside and

inside the neuron, respectively. In summary, the Nernst, or reversal, potential

for a given ion species is the value of voltage across the membrane that exactly

balances the concentration gradient of the ion species. In reality, cell membranes

are permeable to many species of ion. Typical Nernst potentials ENa, EK, ECa,

and ECl for mammalian neurons are summarized in Table 2.1.

It is worth noting that the parameters described in this section correspond

to passive properties of the neuron membrane. While reversal potentials, mem-

brane capacitance, and leakage properties of the cell can be characterised with

electrophysiology, there have been a number of successful attempts to infer these

parameter values from the membrane voltage observations alone. Estimating these

particular parameters, however, is a linear problem. Indeed, in Chap. 3, we find

that these are the parameters that are best-constrained by our data assimilation

approach. The more difficult nonlinear problem of estimating the parameters gov-

erning ion channel kinetics has historically proven challenging [94, 95]. However,

in later chapters we demonstrate the ability of our approach to correctly identify

these parameters, too. We quantify the error on these estimates, finding the pa-

rameters governing ion channel kinetics to be the least well-constrained. In the

next section, we discuss the function of these nonlinear parameters in detail.
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2.1.2 Ionic channels and currents

The flow of ionic currents across the membrane is governed by a number of factors:

the membrane voltage, the reversal potentials of the ion species, and the conduc-

tance of their associated ion channels. The net transmembrane current for a given

ion species at any given moment can be calculated using the following equation:

Iion = gion(V − Eion), (2.2)

where the quantity (V −Eion) is referred to as the driving force, and gion (mS/cm2)

is the conductance of the neuron membrane with respect to that ion. Gener-

ally speaking, these conductances are not constant, but rather time- and voltage-

dependent. It is this property in particular that enables the neuron membrane to

generate information-encoding electrical pulses. The conductance of an individual

channel is controlled by particles called ‘gates’ which switch the channel between

these open and closed states (Fig. 2.1). Depending on the type of gating particle

present, these channels can be sensitive to any of the following factors:

• Membrane potential: these channels are typically described as being

‘voltage-gated’. Their open-closed state is determined by the value of the

neuron membrane potential. The two most common channel types in mam-

malian neurons are voltage-gated Na+ and K+ channels.

• Intracellular chemicals: the state of these channels is determined by the

presence of particular chemical agents inside the cell. One example is the

class of Ca2+-gated K+ channels, which transition from a closed to an open

state in the presence of intracellular calcium.

• Extracellular chemicals: these channels are described as being ‘ligand-

gated’. They open in response to the binding of a chemical messenger (or

‘ligand’), such as a neurotransmitter.

Even though any individual ion channel may only be either open or closed, the net

current flowing through a large population of identical channels may be described

as I = ḡp(V −E), where p is the fraction of channels in the population that are in

the open state, ḡ is the maximal conductance of the ensemble, i.e., the conductance
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when all channels are in the open state (p = 1), and E is the reversal potential

for the current. The gates that determine the transition of these channels from

the closed state to the open state are divided into two kinds: activation gates, and

inactivation gates. We denote the probability of an activation gate being in the

open state by the variable m, and denote the probability of an inactivation gate

being in the open state by h. The fraction of open channels in a large ensemble is

therefore given by p = mahb, where a corresponds to the number of activation gates

per channel and b to the number of inactivation gates. It should be noted that

some classes of ion channel do not inactivate (b = 0) and their associated currents

are termed persistent. Ionic currents associated with channels that do inactivate

are termed transient. The dynamics of the (in)activation variables x ∈ {m,h} are

described by a first-order differential equation:

ẋ = (x∞(V )− x)/τx(V ), (2.3)

where x∞(V ) is a voltage-dependent steady-state function which gives the asymp-

totic value of x for a given membrane potential, and τx(V ) is the time constant

which determines the speed with which x tends towards the asymptotic value.

Smaller values of the time constant τx(V ) result in faster current activation. The

steady-state function is sigmoidal in shape, while the time constant follows a bell-

curve (Fig. 2.2). The exact form of these steady-state and time course curves can

be measured experimentally and incorporated into neuron models [97]. Tradition-

ally, this has been done using voltage-clamp electrophysiology, in which a variety

of pharmacological blockers are applied to groups of neurons in order to tease out

intrinsic currents that contribute to neuron signalling [98, 99]. Due to the phar-

macological manipulations required, it is typically the case that a single neuron

provides information on only one current, requiring that models built using these

data take parameter values averaged over a population of cells. Averages of mea-

sured parameters in nonlinear systems often give rise to non-observed behavior,

since average values may not be valid parameter combinations themselves [100].

Furthermore, outside of a few well-studied classes of neurons, these parameters

have not yet been measured. The slopes and magnitudes of the curves in Fig. 2.2

vary between ion channel types and across individual neurons, and in the later
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Figure 2.2: Experimentally-derived activation function m∞(V ) and time constant τm(V )
of the fast transient K+ current in layer 5 neocortical pyramidal neurons. These data
are obtained from voltage-clamp measurements in which additional currents have been
pharmacologically blocked. (Data from Ref. [96].)

chapters of this thesis, our goal is to estimate these quantities from observations

of the membrane voltage alone, which, unlike channel parameters, is a relatively

trivial quantity to measure. Many recent attempts to estimate these nonlinear

parameters from membrane voltage observations have been limited to small con-

ductance models that often fail to give better predictions than phenomenological

models [19, 101]. In contrast, the nonlinear optimization approach detailed in this

thesis has been shown to be effective at inferring parameter values for both linear

and nonlinear parameters [20, 22, 23].

2.2 Conductance-based neuron models

Conductance-based neuron models are derived from an equivalent circuit represen-

tation of a cell membrane in which its protein molecule ion channels are represented

by conductances and its lipid bilayer by a capacitor [3]. In these models, the soma

of the neuron is represented by a single isopotential electrical compartment whose

membrane potential changes as a function of transmembrane currents. Accord-

ing to Kirchhoff’s current conservation law, the total current, I, flowing across a

neuron membrane is equal to the sum of the ionic currents (INa, IK, ICa, ICl . . . )
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and the displacement current CV̇ (the current associated with the charging of the

membrane), or equivalently

I = CV̇ + INa + ICa + IK + ICl + . . . , (2.4)

where C is the specific membrane capacitance (1.0 µF/cm2). The quantity I

denotes all non-ionic currents flowing across the cell membrane, such as current

injected via an electrode, synaptic currents, or currents leaking from other com-

partments of the neuron.

2.2.1 Hodgkin-Huxley model

The first conductance-based model was formulated by researchers Alan Hodgkin

and Andrew Huxley [3] to explain the ionic mechanisms underlying the initiation

and propagation of action potentials in the squid giant axon. The Hodgkin-Huxley

model incorporates three types of ion current, a transient Na+ current, a persistent

K+ current, and a leak current consisting mainly of Cl− ions, each of which has

a corresponding ion channel. Using voltage-clamping techniques, Hodgkin and

Huxley found that the states of the Na+ channels in the squid axon were controlled

by three activation gates (m3) and a single inactivation gate (h), while the states

of the persistent K+ channels were controlled by four activation gates (n4). The

leak current was found to flow through passive (non-dynamic) channels. The state

of the neuron in this model is therefore described by the values of four time-

dependent variables: the membrane voltage V , the sodium activation gate m, the

sodium inactivation gate h, and the potassium activation gate n. The evolution

of this system is described by the following set of equations:

CV̇ = I −
INa︷ ︸︸ ︷

ḡNam
3h(V − ENa)−

IK︷ ︸︸ ︷
ḡKn

4(V − EK)−
IL︷ ︸︸ ︷

gL(V − EL) (2.5)

ṁ = (m∞ −m)/τm(V )

ḣ = (h∞ − h)/τh(V )

ṅ = (n∞ − n)/τn(V ) (2.6)
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where

α∞ =
1

2

(
1 + tanh

V − Vtα
δVα

)
, τα = tα + ε

(
1− tanh2 V − Vtα

δVτα

)
(2.7)

for the gating variables α ∈ {m,h, n}. C is the specific membrane capacitance, and

I is the external injected current (nA/cm2). The shapes of the steady-state curves

(Fig. 2.2a) are determined by the parameters Vtα and δVα, which correspond to the

threshold and the slope of the sigmoid function, respectively. The time constant

bell-curve (Fig. 2.2b) is determined by the parameters Vtα and δVτα - which cor-

respond to the center and half-width-at-half-maximum of the curve, respectively

- in addition to the parameters tα and εα which determine the magnitude of the

time constant. Fig. 2.3 shows some time series associated with the dynamics of

the Hodgkin-Huxley model. If a small amount of current I(t) (positive charge) is

injected into the neuron via an electrode, the membrane potential can be raised

(depolarized). This raising of the membrane potential causes a small efflux of

current from the cell, which counteracts the injected current, and pulls the cell

back to the resting potential (repolarization). Larger injected currents, however,

activate voltage-sensitive ionic currents, which in turn raises the membrane poten-

tial further. This positive feedback loop causes the membrane potential to deviate

considerably from the resting potential, Vrest. This momentary spike in membrane

voltage is the action potential, or spike.

2.2.2 Model extensions

Since the publication of the Hodgkin-Huxley model, this general framework has

been extended to accommodate the wide variety of ion current types found in

biological nervous systems [102, 103], incorporating as many different ion chan-

nel types as necessary for the particular cell being modeled. Most biological cells

display more complex behaviours than the tonic spiking observed in the Hodgkin-

Huxley model, and in the later chapters of this thesis, we model two primary classes

of neuron: pyramidal cells in the hippocampus [104], and respiratory cells in the

brain stem [105]. In Fig. 2.4, we demonstrate some of the complex behaviours that

we observed when recording from these cells, including spike-frequency adapta-
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tion, spontaneous pacemaking activity, and intrinsic bursting, which the Hodgkin-

Huxley model alone cannot reproduce. When constructing models of these cells,

it is therefore wise to include additional ionic currents that are thought to under-

lie these observed behaviours. For example, a common extension found in many

conductance-based models is a set of equations describing internal calcium dy-

namics, the inclusion of which is thought to be necessary for bursting (Fig. 2.4,

bottom) and spike frequency adaptation (Fig. 2.4, top) [106]. As mentioned previ-

ously, in addition to voltage-dependency, many common ion channels demonstrate

a dependence on the internal concentration of calcium which, in many cells, is

observed to increase rapidly upon the firing of an action potential [107]. Cal-

cium currents are known to be prominent in the soma and dendrites of neurons

such as thalamic relay neurons and cerebellar Purkinje cells [108], and have been

demonstrated with voltage-clamp recordings in a variety of central nervous system

neurons [109]. Calcium-dependent currents can be modelled to various degrees of

complexity depending on the requirements of the model. In Chapter 3, we model

Ca2+ dynamics using the Goldman-Hodgkin-Katz (GHK) equation [110], while

in Chapter 6 we use the simpler framework described in Ref. [111]. It has also

been recently shown that the pacemaking behaviour observed in some respiratory

neurons (Fig. 2.4, middle) is due to a persistent, non-inactivating sodium current

[105]. In Chapter 4, we therefore include this long-lived current in our model to

account for the observed spontaneous firing.

Another way in which the Hodgkin-Huxley model has been extended since its

original development is through the inclusion of several neuronal compartments

that account for the spatial structure of biological neurons [112]. In these multi-

compartmental models, the neuron is divided into several compartments represent-

ing different parts of the dendrites, soma, and axon. If sufficiently strong stimula-

tion arrives at one of the compartments, an action potential may propagate into

the vicinity of neighbouring compartments [113]. One advantage of this approach,

among many, is that it allows latency effects of action potential propagation to

be modelled, which depend on the excitability of all compartments along the path

of propagation [114]. While the parameter estimation methods presented in this

thesis can be extended to multi-compartmental neuron models, both the size of the

parameter search space and the computational overhead expand significantly [90].
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Figure 2.4: Complex behaviours of hippocampal cells and respiratory neurons. (Top) We
recorded the response of a CA1 pyramidal neuron to step currents of 200 ms duration
and 120 pA amplitude. The neuron fires tonic spikes which broaden in width and
display spike frequency adaptation. (Middle) Spontaneous spiking activity (pacemaking)
observed in an expiratory neuron in the medulla region of the rat brainstem. Rhythmic
firing occurs in the absence of stimulatory input. (Bottom) Intrinsic bursting observed
in an inspiratory neuron in the pre-Bötzinger complex of the rat brainstem. Bursting in
these cells occurs as a result of the interplay of fast and slow ionic currents, resulting in
rapid firing followed by a period of quiescence.
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In Chapter 4, we demonstrate that a single-compartment somatic model is suffi-

cient to predict the spiking dynamics of two classes of biological cell. We therefore

conclude that the majority of the ionic currents responsible for the electrical activ-

ity of these neurons are present in their highest density in the soma. In Chapter

5, however, we model networks of inhibitory neurons and seek to understand the

effect of synaptic inhibition received at distal dendrites, far from the neuron soma.

We show that the conduction delay associated with this spatial structure can in-

stead be modelled as a delay in the onset of synaptic transmission. In doing so,

we manage to incorporate the specific properties of multi-compartmental models

that are relevant to us without assuming the significant costs associated with such

a full description of the neuron morphology.

2.3 Data assimilation

2.3.1 Introduction

Building a model of a particular complex system requires extracting information

derived from measurements or observations of some of its physical properties.

These observations are very often incomplete or sparse: not all of the properties

of the system are readily accessible to experiment. This challenge of using partial

information from the available observed data and transferring it to a model of the

system generating those data is termed data assimilation [115–117]. The concept

can be more formally stated as follows: over a time interval [0, T ] observations

of some properties of a physical system are made at discrete times ti = iT/N ,

i = 0, 1, ..., N . Using prior knowledge of the physical system in question, we can

construct a model of its dynamics. This model may be expressed as a set of differ-

ential equations (Eqs. 2.5-2.7, for example) which describe how the system evolves

through time. The model, as described so far, is said to be incomplete. There

are many quantities that enter into the model which are as yet unknown. These

are the unobserved properties of the system, which need to be estimated. In this

section, we describe a systematic method for estimating the values of these proper-

ties using the observed data on the interval [0, T ], and thus completing the model.

The model will typically consist of multiple state variables, dynamic quantities
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that evolve through time, and fixed physical parameters. So, in summary, the goal

of data assimilation is to estimate the unobserved parameters and state variables

in the observation window [0, T ]. If we do this well, the full model state (observed

and unobserved state variables) will have been estimated. The completed model

may then be validated by comparing model predictions with further observed data

outside the assimilation window for t > T . It is worth briefly considering the

reasons why a prediction might go wrong.

• Observed data is always imperfect: the overall task of data assimilation

is essentially a statistical problem. The data will always be corrupted by

some experimental error, such as noise. There is therefore a probability

distribution for the model state and parameters, conditioned on the observed

data, and one seeks to find the maximum likelihood expectation of these

quantities.

• The model is wrong: the model may lack a description of important

dynamical features present in the system. Additionally, the physical system

itself may operate in a noisy environment which is impossible to model.

• The assimilation procedure is flawed: it is incapable of extracting in-

formation from the data and transferring it to the model. Estimates of

parameters and state variables are not equal to those of the true system.

This final point emphasizes the importance of using the dynamical model in a se-

ries of so-called “twin experiments”. In twin experiments, data are generated with

a given model and an attempt is made to recover the known parameters using that

data with parameter estimation methods. These experiments are very useful for

discovering the number of measurements required for a successful estimation, since

they allow the experimenter to compare estimated parameters to ground truth val-

ues. In Chapter 3, we use twin experiments to quantify the effects of experimental

and model error on parameter solutions in data assimilation problems.
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2.3.2 Data assimilation in neuroscience

In recent years, data assimilation has been applied to various areas of neuroscience.

For example, it has recently been used to infer spike timings from two-photon cal-

cium imaging [118], and to estimate the connectivity of neuron populations from

electro-cortical activity [119]. Data assimilation is particularly relevant to the

construction of single-neuron models from biological recordings. These models are

often conductance-based, and their equations describe the relationship between

unobserved microscopic ionic currents and the macroscopic evolution of the mem-

brane voltage. The dynamics of voltage-gated ion channels drive the observable

electrical behaviour of the neuron, but are not themselves readily accessible to

experiment. Data assimilation is therefore a good candidate for determining the

parameters controlling ion channel kinetics from observations of membrane volt-

age. The application of data assimilation to the building of single-neuron models

can be visualised in the following way. The problem is one of optimization: given

a numerical model of the neuron, find the set of parameters and unobserved state

variables that most closely reproduce the observed membrane voltage data [116].

A number of attempts have been made to develop methods for estimating

parameter values from membrane voltage measurements [11, 100, 120]. These

approaches have included stochastic, and evolutionary search algorithms [121],

random parameter search [34], simulated annealing [122] and gradient descent

methods [20]. The majority of these, however, have sought to estimate maximal

conductance parameters; a linear problem. Estimating parameters governing ion

channel kinetics is a nonlinear problem, and is thus more challenging. More re-

cently, the parameters and unobserved states of conductance-based neuron models

have been successfully obtained using an approach known as variational assimi-

lation. By synchronizing the output of a neuron model to observed membrane

voltage data, these methods were able to estimate all free parameters in a con-

ductance model to build quantitative and predictive single-neuron models [22, 23,

81].
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2.3.3 Variational assimilation

Variational assimilation is a parameter estimation method based on principles from

control theory, observer theory, and synchronization of chaotic systems [116, 123].

It is typically implemented by coupling the output of an experimental system with

a model x(t) of the system, such that the model and the physical system are ‘syn-

chronized’. This synchronization is posed as a constrained optimization problem

in which a cost function describing the distance between the system output and

model output is minimized, subject to the model equations of motion. This min-

imization problem is typically large and requires high-performance optimization

software, such as IPOPT [124] or SNOPT [125] to be solved numerically. The full

state x(t) = [x1(t), x2(t), ..., xL(t)] of a physical system can be described by a set of

L state variables, a set of K parameters p, and any external inputs. Typically only

a subset M of these quantities can be measured in the physical system (M < L).

For the inverse problem of estimating neuron parameters from membrane voltage

observations, only a single state variable x1(t) ≡ V (t) is available (M = 1). The

evolution of the system is described by a set of first-order differential equations:

dxl(t)

dt
= Fl(x(t),p, t), l = 1, ...L. (2.8)

The goal is to find the unmeasured state variables and fixed parameters through

the minimization of the least-squares distance between the observed experimental

data Vexp(t) and the equivalent model output x1(t) ≡ V (t). The distance between

the membrane voltage state variable of the model and the experimentally observed

membrane voltage over the observation window 0 < ti < T is given by the least-

squares distance, or ‘cost’ function

N∑
i=0

(Vexp(ti)− V (ti))
2 . (2.9)

The true, or “optimal”, parameters correspond to the parameter set p∗ for which

this distance is minimized. This is equivalently described as finding the global

minimum of the cost function. Variational assimilation seeks to find this optimal

parameter set by gradient descent over a search surface in parameter space. For
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highly nonlinear systems, the search surface may host many spurious local minima

corresponding to sub-optimal parameter sets encountered by iterative gradient de-

scent approaches [126, 127]. To partially address this issue, we included a coupling

term u(t)(Vexp − V (t)) in the neuron model equations of motion, which helps to

smooth the search surface by driving synchronization between the model and the

data. It works by eliminating positive conditional Lyapunov exponents in the joint

model-data system [14, 128]. Since this coupling variable u(t) does not form part

of the true model dynamics, we penalize large values of u(t) though its inclusion

in the cost function. Thus, as the parameter search reaches the global minimum,

u(t) is driven to zero [22, 128]. The full cost function is therefore given by:

C(x(0),p) =
1

2N

N∑
i=0

{(Vexp(ti)− V (ti,x(0),p))2 + u2(ti)}. (2.10)

This cost function is minimized subject to a number of equality constraints, which

enforce the model equations of motion between neighbouring time points, and

inequality constraints, which consist of upper and lower bounds on the parameter

and state variable values. Note that the cost function is normalized according to

the length of the observation window, and the dependence of the model voltage

V (t,x(0),p) on the initial model state at t = 0 has been made explicit.

2.3.4 Implementation details

The minimization process was performed using the open-source Interior Point OP-

Timizer (IPOPT) software which is designed for solving large-scale constrained

nonlinear optimization problems [124] of the form

min
x∈Rn

f(x) (2.11)

s.t. g(x) = 0 (2.12)

xL ≤ x ≤ xU , (2.13)

where f(x) is the objective function, g(x) are equality constraints on the optimiza-

tion, and x ∈ Rn are the optimization variables: in our case the state variables
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at all time points and the global system parameters. The optimization variables

are constrained by lower and upper bounds xL and xU , respectively, with the

model gating variables being bounded between zero and one, and the K free pa-

rameters being subject to user-defined upper and lower bounds pk,L ≤ pk ≤ pk,U ,

k = 1, ..., K. In addition to these inequality constraints, the minimization in-

cludes equality constraints g(x) that specify the rate of change of state variables

across consecutive time points, as specified by the model equations. IPOPT uses

an interior-point line-search method which replaces inequality constraints with a

logarithmic barrier term that is added to the objective function, and seeks to

minimize the following auxiliary barrier problem

min
x∈Rn

ϕµ(x) = f(x)− µ
n∑
i

ln(xi) (2.14)

s.t. g(x) = 0. (2.15)

For a given value of the barrier parameter µ > 0, the barrier objective function

ϕµ(x) goes to infinity if any of the problem variables xi approach their zero bound.

An optimal solution will therefore be in the interior of the region defined by the

logarithmic barrier. IPOPT solves a sequence of barrier problems in which µ→ 0,

where the optimal solution of the final problem corresponds to that of the original

problem (Eq. 2.11-2.13). The optimizer solves the auxiliary problem by gradient

descent using a Newton-Raphson algorithm, seeking extrema, ∇f(x) = 0, of the

objective function within the search space bounded by the logarithmic barrier. It

is important to note that not only local minimizers, but also some maximizers and

saddle points satisfy this criterion. To mitigate this fact, IPOPT requires that the

sparsity structure of the constraint Jacobian and the Lagrangian function Hessian

be specified prior to computation. The Lagrangian function for the optimization

problem is defined as f(x) + g(x)Tλ and the Hessian of the Lagrangian function

is ∇2f(x) +
∑m

i=1 λi∇2gi(x), where λi are Lagrangian multipliers [129]. These

matrices had to be computed in advance, and were calculated using symbolic dif-

ferentiation with the custom-built Python library pyDSI [23] which takes a simple

text file formulation of the model equations and outputs correctly formatted and

linked C++ files to be interfaced with IPOPT. Successful optimizations resulted
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in the output of data files containing estimates for the model parameters and state

variables at the final iteration of the optimization. Matrix computations were

performed using the MA97 solver library (http://www.hsl.rl.ac.uk/catalogue) and

all assimilations were performed on a 16-core (3.20GHz) Linux workstation with

64GB of RAM.

Since the experimental membrane voltage data is sampled discretely, the equa-

tions of motion imposed as equality constraints needed to be transformed from

continuous time to discrete time. This linearization can be formulated as the

following transformation dx(t)
dt

= F(x(t)) → x(tn+1) = x(tn) + g(x(tn)), where

the choice of discretization method informs the mathematical formula denoted by

g(x). One possibility is to use Simpson’s integration rule, which has been used

extensively throughout the literature [20–22]:

xl(ti+2) =xl(ti) + ∆t

[
1

3
Fl(x(ti)) +

4

3
Fl(x(ti+1)) +

1

3
Fl(x(ti+2))

]
, (2.16)

and another is to use the higher-order Boole’s integration rule [130]:

xl(ti+4) =xl(ti) + 2∆t

[
7

45
Fl(x(ti)) +

32

45
Fl(x(ti+1)) +

12

45
Fl(x(ti+2))

+
32

45
Fl(x(ti+3)) +

7

45
Fl(x(ti+4))

]
, (2.17)

which should be expected to result in a higher accuracy of parameter estimates. In

order to test the errors associated with each of these two methods, we generated

model data using the 3-dimensional Lorenz system parametrized in a non-chaotic

regime [131] and configured with two parameters σ = 5.00, ρ = 40.0. We then

used our IPOPT-based assimilation procedure to estimate the model parameters

from time series observations of the x-variable of the system. The estimated pa-

rameter values are shown in Table 2.2 for increasing values of model step size

(∆t). We compare the parameter estimates for estimations using Simpson’s rule

with those using Boole’s rule, and find that the higher order method has a much

greater accuracy, particularly at larger step sizes. In Chapter 3, we describe a

novel assimilation technique which implements a variable sampling rate, filtering

points during slow-changing sub-threshold dynamics of the neuron. Boole’s rule
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Simpson’s Rule O(h4) Boole’s Rule O(h6)
∆t σ ρ σ ρ

0.005 5.000014 39.99992 5.000007 39.99996
0.01 5.000227 39.99865 5.000087 39.99952
0.02 5.003508 39.97946 5.001243 39.99378
0.04 5.050703 39.71837 5.015792 39.94637
0.05 5.116377 39.37814 5.032581 39.93155
0.06 5.225957 38.84805 5.053511 39.99929
0.07 5.39159 38.10238 5.068867 40.29379
0.08 5.629235 37.06659 5.053436 41.11519
0.09 5.985983 37.06659 4.943448 43.16304
0.1 6.615143 32.55311 4.574006 48.39547

- - - - -
0.16 10 22.30755 1.739742 100

Table 2.2: Comparison of accuracy of parameters extracted using the Simpson rule
and Boole rule. True parameter values: σ = 5.0, ρ = 40.0.

allows us to increase the step size in these regions considerably (Table 2.2) while,

in contrast, Simpson’s rule quickly breaks down. The accuracy of Boole’s rule

was found to be ideal for the 50 kHz sampling rate (∆t = T/N = 0.02 ms) pri-

marily used throughout the work in this thesis. Furthermore, while we also tried

alternative integration methods such as high-order Runge-Kutta schemes [130], we

found that they significantly increased the computation time required to solve the

optimization problem. Boole’s rule is therefore well-suited for the optimization of

neuron models.

When performing parameter estimation, we found that imposing the model

equations of motion alone as equality constraints on the optimization was in-

sufficient for obtaining a good estimate for unobserved state variables. As a

demonstration, in Fig. 2.5, we once again present the results of a twin experi-

ment on the Lorenz system in which we attempt to infer the full model state

x(t) = [x(t), y(t), z(t)] from observations of the x-variable [131]. For these ex-

periments the system was parametrized in the chaotic regime using the canonical

parameter set (σ, β, ρ) = (10, 8/3, 28). While the observed state variable, x(t), is

well-estimated across the assimilation window, the estimates for the unobserved

variables display high-frequency oscillations close to the true solution. This ef-
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Figure 2.5: Twin experiment for the three-dimensional Lorenz system [131]. Using the
data assimilation approach described in this section, we attempt to infer the evolution
of the two unobserved state variables y(t) and z(t) from time series observations of
the x-variable. In the absence of additional constraints enforcing smoothness on the
state variables, we observe sub-optimal solutions (black) which oscillate close to the true
solution (red).
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fect has been observed previously in an optimization-based estimation framework

[132]. In order to ensure smoothness of the estimated solutions, we used Hermite

polynomial interpolation for all state variables as well as for the coupling variable

u(t) to constrain data mid-points:

xl(ti+1) =
1

2
[xl(ti) + xl(ti+2)] +

∆t

8
[Fl(ti)− Fl(ti+2)], (2.18)

By imposing these additional interpolation constraints, we ensured that non-

smooth solutions were considered invalid estimates of the model state. This is

important, since the hidden states of conductance-based neuron models are known

to exhibit smooth dynamics.
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Chapter 3

Parameter estimation from

imperfect observations

3.1 Introduction

Data assimilation has been used to successfully obtain predictive neuron models

from membrane voltage data [81, 133, 134], but parameter estimation methods for

these models have been reported to accept multi-valued parameter solutions [135,

136]. Identifying a single optimal parameter set is vital for constructing models

that will perform well in response to novel stimuli. Furthermore, under ordinary

conditions, neurons and biocircuits may exhibit functional overlap [137, 138] and

redundancies [139, 140], complicating efforts to estimate actual neuron param-

eters. Systematic methods for estimating the true parameters of such systems

is necessary for a number of tasks, including classifying neuronal phenotypes of

unidentified cells [134, 141–143], and understanding the effects of disease on neu-

ron dynamics at the molecular level [144–147]. In later chapters, we extend the

methods presented here to the construction of predictive solid-state neuron models

(Chapter 4) and inhibitory networks (Chapter 6) whose uses include the robust

emulation of biological circuits [80] and providing a novel mechanism for improv-

ing cardiac function in a biomedical context [33, 53]. Neuron-based conductance

models consist of coupled nonlinear differential equations which describe the evo-

lution of state variables including membrane voltage and ion channel gates. The



Takens-Mañé embedding theorem states that information about the full state of a

dynamic system may be preserved within the time series recording of a single state

variable [148, 149]. This theory underpins the parameter estimation approaches

which seek to constrain neuron models using membrane voltage data alone. How-

ever, the existence of a unique parameter solution is dependent on a number of

conditions. Firstly, the modelled system must be observable, meaning its initial

conditions can be estimated from observations of its state dynamics over a finite

time window [150–152]. Secondly, the system must possess identifiability : any two

distinct parameter sets p1 6= p2 must produce different state trajectories under

the same driving force and initial conditions. The criteria required for identifia-

bility have not been extensively studied so far, partly because most investigations

have focused on autonomous dynamical systems, rather than driven systems like

stimulated neurons [137, 153]. Finally, variational cost functions are often riddled

with local minima [154]. The arrival of gradient descent approaches at these local

minima gives false parameter solutions. Obtaining false solutions becomes even

more likely when the data are noisy, as the gap between the misfit to data of an

optimal model and that of a sub-optimal model becomes narrower. In this situ-

ation, simply minimizing the cost-function will often fail to resolve true solutions

from spurious ones. Regularization methods that allow the optimal solution to be

recovered are therefore needed.

In this chapter, random Monte-Carlo simulations are performed to sample the

posterior distribution functions (PDF) of parameters of a conductance-based neu-

ron model estimated from noisy data. It is shown analytically how the interplay of

model nonlinearity, experimental error, and model error acts to shift the maximum

likelihood expectation and standard deviation of parameter estimates. The pres-

ence of noise is found to shift the location of the local and global minima relative

to one another on the data misfit surface. This observation is subsequently har-

nessed to develop a novel approach to cost function regularization, increasing the

probability of convergence towards the true global minimum from 67% to 94% for

the conductance model, essentially making the parameter solutions independent

of initial parameter guesses.

The chapter is structured as follows. The first section describes mathemati-

cally the effects of experimental error and model error on the data misfit surface.
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The parameter offset δpσζ is calculated as a function of both model error and

of the magnitude (σ) and realization (ζ) of additive noise. The second section

demonstrates these results experimentally by computing the PDFs of estimated

parameters and confirming the presence of noise-induced shifts in parameter so-

lutions. The third section describes the novel regularization method that makes

constructive use of the parameter offset to enhance the probability of convergence

to optimal parameter solutions. The fourth section describes how parameter iden-

tifiability can be enhanced through the choice of external stimulation of the model

and an increased assimilation window duration. Finally, the last section discusses

predictions made by models configured with optimal and sub-optimal parame-

ters. These results confirm that under appropriate conditions of stimulation, the

predictions produced by distinct sets of parameters can always be distinguished.

3.2 Methods

3.2.1 RVLM neuron conductance model

In this chapter, we investigate a conductance-based model of a mammalian neuron

from the rostral ventrolateral medulla (RVLM). RVLM neurons play a key role in

cardiovascular function, which includes the control of blood pressure and respira-

tion. These neurons possess a much greater complement of ionic currents than the

Hodgkin-Huxley neuron [155, 156], and include transient sodium (NaT), delayed-

rectifier potassium (K), low-threshold calcium (CaT) and a hyperpolarization-

activated cation current (HCN) [105, 156]. These currents operate across a wide

range of time courses and activate at significantly different thresholds, making

these neurons ideal when testing the accuracy of the data assimilation method.

The neuron model obeys the following equation of motion:

C
dV (t)

dt
= −JNaT − JK − JCaT − JHCN − JL + Iinj(t)/A, (3.1)

where C is the membrane capacitance (1.0 µF/cm2), V (t) is the membrane po-

tential, Iinj(t) is the external applied current, A is a parameter relating to the

surface area of the neuron, and Jion are the ion current densities (µA/cm2) across
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the cell membrane. The equations of motion governing individual ion currents are

summarized in Table 3.1. The amplitudes of these currents are determined by

their respective maximal conductances (gNaT , gK , gHCN , gL), reversal potentials

(ENa, EK, EHCN, EL), and gating variables (m, h, n, p, q, z). Ionic gating variables

evolve according to the Hodgkin-Huxley framework:

dx

dt
=
x∞(V (t))− x(t)

τx(V (t))
, (3.2)

where x ∈ {m,h, n, z} represents the state of (in)activation of the NaT, K and

HCN ionic gates (Table 3.1). The (in)activation steady-state functions of the

voltage-dependent gates are modelled by:

x∞(V ) =
1

2

(
1 + tanh

V − Vtx
δVx

)
, (3.3)

where Vtx is the threshold voltage of the gate, and δVx defines the slope of the

sigmoid curve. The (in)activation time constant functions are modelled as:

τx(V ) = tx + εx

(
1− tanh2 V − Vtx

δVτx

)
, (3.4)

where δVτx is the half-width-at-half-maximum of the bell-curve, and tx, εx de-

termine the height of curve peak. The transient low-threshold Ca2+ current is

described by the Goldman-Hodgkin-Katz (GHK) equation:

JCaT = p · p2 · q · z2 · V F
2

RT
·

[Ca2+]i − [Ca2+]o · exp −zFV
RT

1− exp(−zFV
RT

)
, (3.5)

where the gating variables p and q describe the activation and inactivation of

the CaT channel, respectively. pT is the maximal permeability of the channel,

[Ca2+]i and [Ca2+]o are the intracellular and extracellular calcium concentrations,

z = 2 is the valence of Ca2+, F is the Faraday constant, R is the gas constant,

and T = 298.15K. The GHK equation displays singular behaviour at V = 0 mV.

To avoid this singularity, the Wolfram Mathematica software package was used

to expand the GHK equation, giving a Horner form polynomial of order n = 25
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which approximates Eq. 3.5 over the typical dynamic range of membrane voltages

[157]. As described in Chapter 2, a nudging control term u(tn)[Vexp(tn) − V (tn)]

was added to Eq 3.1 to drive synchronization of the model to the observed data

by smoothing irregularities in the search landscape [158].

3.2.2 Generating synthetic data

An array of complex current protocols Iinj(t) were generated to provide stimulation

to the model. These consisted of rapidly changing positive and negative current

steps of varying duration and amplitude (Fig. 3.1, blue trace). The protocols were

calibrated to elicit depolarization, spiking, and hyperpolarization across a range

of time scales that encompassed the recovery times of the ion channels. This is a

necessary requirement of the assimilation procedure; in order that the membrane

voltage observations contain sufficient information for a successful parameter esti-

mation, the neuron must be driven to operate across a wide dynamic range [159].

Data were synthesized by forward-integrating the neuron model (Eqs. 3.1-3.5) in

response to the current protocols. The model was paramatrized according to the

set of parameters denoted ptrue in Table 3.2. The model equations were integrated

using the LSODA solver in the from the Python SciPy library [160] which is ideal

for stiff nonlinear systems [161]. Measurement errors were added to the model

membrane voltage time series by the addition of Gaussian noise with zero-mean.

This process obtained pairs of current and membrane voltage time series, Iinj(ti)

and Vexp(ti), to be used in the parameter estimation. The sampling rate of the

time series was 100 kHz (∆t = 10 µs).

3.3 Results

3.3.1 Cost function expansion

The distance between the model membrane voltage state variable Vmod(ti,x(0),p)

and the experimentally-observed membrane voltage Vexp(ti) is given by a least-

squares cost function. The cost function is evaluated as the sum of distances at

each time point i = 0 . . . n of the assimilation window of duration T and is given
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by

c(x(0),p) =
1

2

n∑
i=0

{(Vexp(ti)− Vmod(ti,x(0),p))2 + u2(ti)}, (3.6)

where the variables xl(t), l = 1 . . . L define the state of the condutance-based model

and the K model parameters are denoted pk, k = 1 . . . K. The state variables of the

model are evaluated at discrete times ti = iT/n, i = 0 . . . n across the assimilation

window. They comprise the membrane voltage and gating variables of the neuron.

The function u(t) is the coupling term (Sec. 2.3.3) which regularizes the search

space, smoothing convergence by eliminating positive values of the conditional

Lyapunov exponents [162, 163]. As with the model variables, u(t) is also evaluated

at each discrete time point.

The different contributions of the experimental error and model error to the

shift in parameter solutions can be considered by introducing the concept of the

useful membrane voltage, denoted Vuse(ti). This is the voltage that would be

measured by the ideal current clamp (Fig. 3.1(a)) in the presence of zero noise,

allowing us to separate experimental error, defined as εexp(ti) = Vexp(ti)− Vuse(ti),
from model error, εmod(t,x(0),p) = Vmod(t,x(0),p)− Vuse(t). Experimental error,

εexp(ti), corresponds to the contributions of measurement noise, thermal fluctu-

ations etc. Assuming that these contributions can be considered random errors,

they can be modelled as n + 1 random variables εσζ(ti), i = 0 . . . n, each sampled

from a normal distribution, N (0, σ), with zero mean and standard deviation σ.

Generating a set of n + 1 variables this way gives an error for each point in the

assimilation window, and each distinct set is called a noise ‘realization’. Individ-

ual realizations are labelled ζ. The second form of error contributing to the shift

in parameter solutions is model error. Model error, unlike experimental error, is

a function of the model equations, model parameters and the initial state of the

system. Having defined the two sources of error, εexp(ti) and εmod(t,x(0),p), the

cost function may be expanded as:
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c(x(0),p) =
1

2

n∑
i=0

{ε2mod(ti,x(0),p) + u2(ti)} (3.7)

+
1

2

n∑
i=0

ε2σζ(ti) +
n∑
i=0

εσζ(ti)εmod(ti,x(0),p),

making explicit the separate contributions from model errors and experimental

errors.

Using this expanded cost function, one can now consider precisely how the

cost function is modified in the presence of errors. Since parameter estimates cor-

respond to the arrival of gradient descent algorithms at local / global minima,

it is sufficient to consider the effect of errors in their vicinity. The global mini-

mum at zero noise, corresponding to the true parameter set, is labelled p∗0. The

perturbation of the cost function by noise of standard deviation σ is given by

δc = c(x(0),pσζ)− c(x(0),p∗0). This quantity is the data misfit. Expanding about

the true global minimum p∗0 gives:

δc = F + (p− p∗0)TG +
1

2
(p− p∗0)T Ĥ(p− p∗0) . . . (3.8)

The first three terms in the expansion correspond to: the offset F representing

signal noise entropy (Eq. 3.11); a finite gradient G that arises from a combina-

tion of model nonlinearity and the noise realization (Eq. 3.9); and the Hessian Ĥ

perturbed by experimental and model errors (Eq. 3.10).

Gk =
n∑
i=0

εσζ(ti)
∂Vmod
∂pk

∣∣∣∣
p∗0

,

(3.9)

Hkk′ =
n∑
i=0

{
∂Vmod
∂pk

∣∣∣∣ . ∂Vmod∂pk′

∣∣∣∣
p∗0

+
∂2Vmod
∂pk∂pk′

∣∣∣∣
p∗0

[εσζ(ti) + εmod(ti,x(0),p)]

}
,

(3.10)

F =
1

2

n∑
i=0

ε2σζ(ti) +
n∑
i=0

εσζ(ti)εmod(ti,x(0),p). (3.11)
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Figure 3.1: The data misfit surface is perturbed by experimental and model error. (a)
Membrane voltage, Vexp(ti), is recorded in discrete time ti, i = 0, ..., n (cross symbols); we
denote the useful membrane voltage obtained from an ideal measurement apparatus by
Vuse(t) (black line); membrane voltage state variable of the conductance model, Vmod(t)
(red line). Experimental error is given by εexp(ti) = Vexp−Vuse(ti). Model error is given
by: εmod = Vmod−Vuse(t). (b) Lines of constant data misfit, δc = f(σ, ζ), in the vicinity
of the global minimum p∗0. Different noise realizations, ζ1(ζ2), shift the global minimum
in different ways p∗0 → p∗σζ1 (p∗0 → p∗σζ2). Noise also tilts the principal axes of the data
misfit ellipsoid (red / blue arrows) and modifies the principal semi-axes (λi, λj). (c)
RVLM neuron model membrane voltage Vexp (black line) driven by current injection Iinj

(blue line). Additive noise εσζ is incorporated in the model data prior to assimilation.
(d) Posterior distribution function π(pk) of parameter pk, k = 1, ...,K.
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Let us now consider what each of these three terms means for parameter solu-

tions at the global minimum. The surface of constant data misfit, δc = f(σ, ζ)

(Fig. 3.1(b)), is a K-dimensional ellipsoid. The finite gradient term G (Eq. 3.10)

acts to shift the centre of this ellipsoid from the true value, p∗0, to a new location

denoted p∗σζ . This shift moves the global minimum to a new location in parameter

space. Practically speaking, this means that any variational assimilation approach

landing at the global minimum will no longer correspond to the true parameter

set. Note that this shift depends on the noise realization, ζ (Fig. 3.1(b)). Gen-

erally speaking, the vector components of G will remain finite (Eq. 3.10). This

can be understood by considering the quantity ∂Vmod/∂pk. The precise timings of

the rapid swings in membrane voltage that occur at the site of action potentials

(-100 mV to +45 mV) are highly sensitive to tiny changes in parameter values.

Thus, very small changes in the timing of an action potential result in a very

large change in the value of Vmod for data points in the vicinity of that spike.

Hence, the noise-weighted derivatives ∂Vmod/∂pk averaged across the assimilation

window typically give non-zero gradient values Gk(ζ) which are noise realization-

dependent. Therefore, distinct noise realizations, ζ, will give different parameter

offsets, δpσζ = p∗σζ − p∗0 (Fig. 3.1(b)).

Consider next the Hessian expansion term, Ĥ, arising as a result of the super-

position of noise and model error. The first term in Hk,k′ determines the curvature

of the data misfit surface (Eq. 3.9). This term defines the ‘sloppiness’ of model

parameters [136]. Parameter sloppiness is a term describing the fact that mod-

els may be more sensitive to changes in certain combinations of parameters than

others. Small curvature in data misfit space corresponds to ‘sloppy’ parameters

that are less tightly constrained [164]. The second term in (Eq. 3.9) defines the

perturbation of this curvature by noise and model error. Just as for G, the sec-

ond derivative of Vmod with respect to pk and pk′ typically does not exactly cancel

in the summation across the assimilation window. As a result, the finite term

that remains is expected to tilt the principal axes of the data misfit ellipsoid and

change their semi-axes. Practically speaking, this corresponds to an alteration in

parameter correlations.

The final term in the expansion is F which represents the signal noise entropy

plus the sum of the products of noise and model error values. The first term in F
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dominates, and corresponds to the random energy TσζdS relating to noise entropy

dS through the Johnson-Nyquist theorem [165, 166]:

1

2

n∑
i=0

ε2σζ(ti) = 2(n+ 1)kBTσR∆f, (3.12)

where kB is the Boltzmann constant, Tσ is the noise-equivalent temperature, R is

the membrane resistance of the neuron, and ∆f is the bandwidth of noise.

Having considered the effects of model and experimental error on the cost

function, one can now proceed with the calculation of the noise-induced parameter

offset. The shift δpσζ is obtained through principal analysis of the Hessian matrix

term Ĥ′. In the basis of its eigenvectors, the Hessian Ĥ′ = V̂T ĤV̂ is a K × K
diagonal matrix:

Ĥ ′ =


λ−2

1 0 . . . 0

0 λ−2
2 . . . 0

...
...

. . .
...

0 0 . . . λ−2
K

 (3.13)

where the λk are the principal semi-axes of the data misfit ellipsoid. V̂ is the

K × K orthonormal matrix of eigenvectors transforming δp into δp′ = V̂T δp in

the new basis and G into Ĝ′ = V̂T Ĝ. The data misfit δc = f(σ, ζ) may be written

as:

δc = F ′ +
K∑
k=1

(
δp′k +

G′k
λk

)
1

2λk

(
δp′k +

G′k
λk

)
, (3.14)

where

F ′ = F −
K∑
k=1

(G′k)
2

2λk
. (3.15)

The noise-induced offset follows from Eq. 3.14 as δp = VT Ĥ−1G. Through the

gradient term G, experimental error gives the first-order contribution to the shift

in parameter solutions (Eq. 3.14). A second-order contribution is given by model

error through its perturbation of Ĥ. The principal axes of the ellipsoid are tilted
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according to the eigenvectors of the matrix V, and their semi-axes are the eigen-

values λk of V.

3.3.2 Twin experiments: posterior distribution of param-

eters

In this section, we demonstrate the above results experimentally with the RVLM

neuron model by computing the posterior distribution function (PDF) of the esti-

mated parameters in the presence of noise. This is done by performing a statistical

ensemble of assimilations, each member of which has a different noise realization,

and tabulating the parameters estimated in each. The following section will then

analyse the effect of individual noise realizations on parameter solutions by calcu-

lating individual parameter offsets relative to the zero-noise situation.

The RVLM model has 7 state variables (L = 7) and 41 parameters (K = 41).

The biological parameters are the vector components of ptrue presented in Ta-

ble 3.2. Model membrane voltage data, Vmem(t), were synthesized by configuring

the RVLM model with ptrue and forward integrating the model response to the

current protocol shown in Fig. 3.1(c) (blue line). In order to validate that the

nonlinear optimization method could infer the true parameter solution, a “twin-

experiment” was conducted which attempted to recover the model parameters by

performing data assimilation on the model data with no noise. The parameters

were estimated using the interior point line parameter search algorithm [167] de-

scribed in Sec. 2.3.3. The assimilation window had n = 10, 000 mesh points with

mesh size ∆t = 20 µs (T = 200 ms). The 41 parameters of the optimal solution

p∗0 are listed in Table. 3.2. All parameter estimates were found to be within 4% of

their true value.

Before computing the PDFs of the model parameters, noisy, ‘experimental’

data were synthesized by adding noise to the useful membrane voltage: Vexp(t) =

Vmem(t)+εσζ(t). A set of R = 1, 000 different time series were generated (each with

a different noise realization, ζ) to generate a statistical distribution of estimated

parameters π(p∗σζ). Since the quantity of interest is the parameter solution at

the global minimum, the parameter search was initialized at p∗0 in order to reduce

the computational time associated with gradient descent over a large cost-function
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Figure 3.2: Probability distributions of estimated model parameters. (a) Scatter plot of
parameters pk, k = 1, ..., 41, estimated by assimilating RVLM membrane voltage traces
incorporating different realizations of Gaussian noise. Noise amplitude: σ = 0.75 mV.
The dependence of the distribution on noise amplitude is plotted for two parameters:
(b) the recovery time tz of HCN inactivation gate and, (c) the maximum permeability
pT of the CaT ion channel. (d,e) Probability density functions (PDF) of parameters tz
and pT calculated at increasing noise amplitudes σ = 0.25, 0.50 and 0.75 mV. Statistical
sample: 1000 parameter sets extracted for different noise realizations. The initial guess
for the estimations was p∗0 (f) Eigenvalue spectrum of the 41× 41 covariance matrix of
parameter estimates. The λκ, κ = 1, ..., 41 are the semi-axes of the data misfit ellipsoid
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Figure 3.3: Dependence of the cost function on parameter pairs. (a) Dispersion of ex-
tracted parameters (EL, εr) superimposed on a contour map of the noiseless cost function
in the EL−εr plane. The topography of the cost function was mapped by optimizing for
different combinations of fixed EL and εr. The colour bar gives the terminal value of the
cost function upon completion of the minimization. (b) Same as (a) for the parameter
pair (pT , A).

space. Fig. 3.2(a) plots the distribution of estimated parameters centred on their

mean value for a noise intensity of σ = 0.75 mV. The sloppiest parameters are the

recovery time constants, specifically those of the Na+ channel (tm), HCN channel

(tz), and low threshold Ca2+ channel (tq). This is consistent with previously

described results in the literature [22, 81]. Increasing the noise amplitude from

σ = 0 to 0.75 mV was found to broaden the distribution of estimated parameters.

This is presented in Figs. 3.2(b,c) for the HCN recovery time parameter (tz) and the

maximum Ca2+ permeability (pT ). For the parameter tz, as the noise amplitude

increases from σ = 0 to 0.75 mV the maximum likelihood estimate (horizontal

black line) remains approximately constant and the standard deviation of the

distribution broadens symmetrically (Fig. 3.2(b)). In contrast, the MLE of the

permeability parameter pT increases as noise amplitude increases. This is due to

the fact that for pT, the parameter distribution is asymmetrical even at low noise

levels.

The 1,000 parameter estimations were then used to compute the PDFs of the

model parameters, revealing the effects of model nonlinearity on the cost function

perturbations. The PDFs of the parameters controlling the slopes of the activation

curves of K+ (δVn) and HCN (δVz) are plotted in Figs. 3.2(d) and (e), respectively.
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The Gaussian best fits (solid red line) are overlaid on top of the PDFs at three

noise levels, σ = 0.25, 0.5, 0.75 mV. For parameter δVn, just as was observed for tz,

the MLE of parameter is noise-independent. The PDF of this parameter remains

approximately Gaussian even at large noise levels, and the standard deviation

of the PDF increases with noise amplitude (Fig.3.2(d)). On the other hand, for

parameter δVz, as with pT , the PDF is non-Gaussian and broadens asymmetrically

as σ increases (Fig.3.2(e)).

Lastly, the correlations between estimated parameters and the effect of in-

creasing noise amplitude on these correlations were investigated. This required

computing the following covariance matrix:

Σ̂l,m =
1

R− 1

R∑
r=1

(pl,r − p̄l) (pm,r − p̄m) , (3.16)

which is related to the Hessian (Eq. 3.13) through Ĥ = Σ̂−1. We computed the

eigenvalues λ2
k of Σ which correspond to the squares of the principal half-lengths

of the data misfit ellipsoid (Fig. 3.2(f)). It was observed that the parameters of the

RVLM model exhibit correlations spanning several orders of magnitude. Although

most parameters are well-constrained, not all correlations vanish as the noise in-

tensity diminishes (σ → 0). The two leftmost points (black circles) indicate pairs

of parameters which remain highly correlated irrespective of noise level. By in-

specting the eigenvectors of the covariance matrix, one finds that these parameters

are the recovery time constants tm, tz and tq previously noted in Fig. 3.2(a) to have

a wider parameter spread. As expected, increasing noise intensity led to increased

parameter correlation. The dependence of the standard deviation of the PDF, sp,

as a function of the noise intensity σ was also calculated. Fig. 3.2(g) presents some

of these calculated values for arbitrarily-chosen parameters.

3.3.3 Twin experiments: cost function topography

To conclude this section, it is worth considering how the posterior distributions

of the model parameters relate to the shape of the cost function in the vicinity

of local and global minima. To illustrate this relationship, parameter estimations
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were performed on the noiseless model data in which pairs of parameters were fixed

to certain values during the assimilation. In the first example, the parameters EL

and εr took values on a grid within ranges −65.1 mV < EL < −64.9 mV and

280 ms < εr < 300 ms. For each value of (EL, εr) on the grid, the cost function

was minimized, and the value (height) of the cost function was recorded. This

allows us to map the ‘true’ zero-noise cost function landscape. Fig. 3.3(a) shows

the dependence of the cost function value on (EL, εr) in terms of contour lines.

One can see that in the middle there exists a long, thin expanded area near the

true global minimum solution (290, -65.0) where the cost function is almost zero.

The noise-perturbed parameter estimates for the pair (EL, εr) that were presented

in Fig. 3.2 are superimposed on the cost function contour map. The perturbations

occur along directions of minimum curvature, as predicted in Sec. 3.3.1. Fig. 3.3(b)

shows the dependence of the cost function magnitude on a second parameter pair

(pT , A). The cost function in this plane increases almost uniformly in all directions,

and the noise-perturbed parameter estimates that are superimposed reflect this.

These results give further evidence that noise-induced shifts in parameter solutions

can be used to sample from the posterior distribution of the parameter set, or,

equivalently, to map the topography of the cost function in the vicinity of local

and global minima.

3.3.4 Additive noise regularizes the cost function

As discussed in Sec. 2.3.3, the cost function associated with nonlinear models is

often highly irregular, hosting a plethora of local minima. This fact necessar-

ily means that certain initial guesses of state variables and parameters may lead

the gradient descent algorithm to arrive at sub-optimal solutions which are local

minima of the data misfit function. We found empirically that the addition of

Gaussian noise to the membrane voltage data often acted to regularize the data

misfit surface, removing spurious local minima. We now demonstrate this, by

first identifying the local minimum nearest to the global minimum by running an

ensemble of parameter searches initialized at random points in parameter space

using the zero-noise time series. The parameter solution associated with this lo-

cal minimum in the absence of additive noise is given in Table 3.2 as p`0. Having

52



Data Estimates
Ion Parameter pppL,pppU ppptrue ppp∗0 ppp∗σ ppp`0

C µF.cm−2 1.0, 1.0 1.0 1.0 1.0 1.0
ENa mV 42, 50 41 41.007 41.075 60.000
EK mV -90, -80 -100 -100.005 -100.763 -90.000
EH mV -30, -5 -43 -42.963 -42.793 -30.000
ELeak mV -110, -65 -65 -64.999 -64.964 -66.541
A ×104µm2 202 - 502 2.90 2.90 2.91 2.90

NaT gNaT mS.cm−2 100, 120 69 68.912 69.924 100.000
m Vm mV -49, -27 -39.92 -39.921 -39.965 -30.931

dVm mV 5, 32 10 10.000 9.949 15.850
dVtm mV 5, 23.39 23.39 23.380 23.254 0.100
t0m ms 0.02, 0.7 0.143 0.143 0.157 0.815
εm ms 0.012, 7 1.099 1.099 1.094 19.543

h Vh mV -79, -39 -65.37 -65.365 -65.558 -52.863
dVh mV -35, -5 -17.65 -17.652 -17.629 -13.752
dVth mV 4, 43 27.22 27.218 27.670 14.107
t0h ms 0.02, 90 0.701 0.701 0.684 0.502
εh ms 1, 470 12.9 12.898 12.942 10.629

KDR gKDR
mS.cm−2 0 6.9 6.905 6.736 2.232

m Vm mV -69, -21 -34.58 -34.557 -34.763 -39.654
dVm mV 5, 34 22.17 22.178 21.932 13.118
dVtm mV 5, 34 23.58 23.588 23.851 21.556
t0m ms 0.01, 5.4 1.291 1.291 1.273 0.434
εm ms 0.002, 23 4.314 4.311 4.248 6.416

CaT pT ×10−4 cm.s−1 0, 80 1.035 1.035 0.210 0.130
Vm mV -80, -35 -65.5 -65.491 -64.483 -67.767

m dVm mV 5, 39 12.4 12.391 14.003 9.958
dVtm mV 10, 57 27 27.123 28.911 14.985
t0m ms 0.02, 0.9 0.719 0.693 2.232 7.556
εm ms 0.5, 97 13.05 13.059 11.759 8.370

h Vh mV -90, -55 -86 -86.011 -73.916 -74.356
dVh mV -34, -5 -8.06 -8.065 -4.547 -3.962
dVth ms 3, 55 16.71 16.760 9.829 0.100
t0h ms 5, 190 28.17 28.120 27.435 55.095
εh mV 0.5, 7000 288.68 287.067 319.355 1000.000

HCN gH mS.cm−2 0, 10 0.150 0.150 0.149 0.177
h Vh mV -90, -40 -76 -76.001 -76.297 -79.121

dVh mV -30, -5 -5.5 -5.517 -5.430 -11.876
dVth mV 5, 40 20.27 20.273 21.861 100.000
t0h ms 0.1, 500 6.31 6.348 0.100 10.000
εh mV 0.1, 5000 55.05 55.019 60.471 50.323

Leak gL mS.cm−2 0.01, 0.6 0.465 0.465 0.463 0.482

Table 3.2: True and estimated parameters of the RVLM neuron model. From
left column to right column: lower and upper bounds on the parameter search
interval, [pL,pU ]; true parameters used to generate the model data, ptrue; optimal
parameters estimated at the true global minimum of the cost function, p∗0 (σ = 0);
sub-optimal parameters estimated at the global minimum shifted by noise, p∗σζ
(σ = 0.5 mV); sub-optimal parameters estimated at the local minimum, pl0 (σ =
0), nearest to the global minimum p∗0.

53



identified a local minimum, the effect of noise amplitude σ and noise realization ζ

on the relative positions of p∗σζ and p`σζ can be studied.

The regularization method is depicted schematically in Fig. 3.4(a). The method

relies on the principles behind the noise-induced shift in parameter solutions de-

scribed in the previous sections. To begin, a single realization of additive noise

(ζ) was chosen and the amplitude of that realization was scaled in the range −0.5

mV< σ < +0.5 mV. The method proceeds as follows: (i) starting from the zero-

noise situation, σ = 0, the local and global minima, p`0 (pink star) and p∗0 (red

star), are separated by a saddle point (white dot) in the cost function surface; (ii)

as the noise amplitude σ increases, the two minima undergo a shift relative to one

another, moving closer together or further apart depending on the sign of σ. As the

local and global minima p∗σζ and p`σζ approach one another, there exists a critical

noise amplitude σcrit (iii) where the saddle point and the local minimum merge

through a saddle-node bifurcation [106]. Note that a gradient descent method

(blue dot), which may previously have arrived at the local minimum, would now

continue towards the global minimum: p`σζ → p∗σζ ; (iv) p∗σζ(ζ) is then set as the

new initial guess of the parameter search. The noise amplitude σ is then ramped

down from σcrit to zero, thus obtaining the optimal parameter solution p0.

Steps (i) to (iii) of the method are demonstrated numerically in Figs. 3.4(b,c).

Two distinct noise realizations ζ1 and ζ2 were applied to the voltage data in

Figs. 3.4(b) and Figs. 3.4(c), respectively. The assimilation window had N =

10, 000 points and ∆t = 20µs. The parameter search was initialized at the lo-

cal minimum p`0 where the cost function was c(x(0),p`0) = 9.105306 × 10−5. For

reference, the cost function at the global minimum p∗0 was almost two orders of

magnitude smaller at C(x(0),p∗0) = 1.179402 × 10−6. For each noise realization,

the estimation procedure was allowed to proceed from its initialization at p`0. In

both cases, the parameter solution of the estimation was projected in the two-

dimensional plane (εz, EL). This process was repeated for scaled noise amplitude

σ in the range 0 to +0.5 (red dots) and 0 to -0.5 (blue dots). Again, the solu-

tions to the estimations at each of these noise levels were projected in the (εz, EL)

plane. Note that the choice of plane is arbitrary. The same qualitative results are

observed in other projection planes. At σ = 0, the parameter solution remains

the local minimum (Figs. 3.4(b,c), magenta star), as expected. In the case of the
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Figure 3.4: Noise-based regularization of parameter search. (a) Schematic profile of the
data error misfit function δc plotted along a straight line passing through the global
minimum p∗0 (red star) and the nearest local minimum pl0 (magenta star). (I) In the
absence of noise (σ = 0), the two minima pl0 and p∗0 are separated by a saddle point
(open dot). (II) By increasing the noise amplitude to a critical value σ < σcrit, one
can shift the local solution, pl0 → plσζ , and the global solution, p∗0 → p∗σζ (blue dots).

(III) At some critical amplitude σcrit, the barrier vanishes as the local minimum plσcritζ
merges with the saddle point. (IV) Parameter search initialized at plσcritζ now converges
smoothly to the optimal solution p∗0 as the noise amplitude is reduced to zero. In this way,
parameter search is regularized. (b) Trajectory traced by the local solution parametrized
by noise as the noise amplitude is varied from σ = −0.5 mV to +0.5 mV. The amplitude
of the noise is colour coded in each dot. The noise realization remains the same (ζ1).
The 41-dimensional trajectory is projected onto the arbitrarily-chosen 2D plane (EL,
εz). At σcrit = −40 µV, plσζ merges with p∗σζ (step III). (c) Same as in (b) but for
a trajectory calculated with a distinct noise realization, ζ2. Here σcrit = +50 µV. (d)
Multiple different trajectories of the solution p∗σζ during step IV. The distinct starting
points are the shifts induced by different realizations of noise, ζ3, ..., ζ8. (e) Probability of
convergence to the optimal solution with (red) and without (blue) noise regularization.
The success rate was calculated using a statistical sample of 150 parameter estimates
performed from random parameter initializations.
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first noise realization, ζ1, for σ > 0, the local and global minima move away from

one another causing p`σζ to shift monotonically away from p∗σζ as σ increases (red

dots). In contrast, when σ < 0, the distance between the two minima decreases.

At a critical value of noise amplitude σcrit = −40 µV, the saddle point vanishes,

and the solution of the estimation procedure abruptly transitions from the local

minimum p`σζ to the global minimum p∗σζ . The effect of using a different noise

realization ζ2 in Fig. 3.4(c) is to change the path traced by the solutions in pa-

rameter space. In this instance, the local and global minima move away from one

another for σ < 0. For ζ2, the saddle-node bifurcation occurs at a positive noise

amplitude of σcrit = +50 µV.

Steps (iii) to (iv) of the regularization method are demonstrated in Fig. 3.4(d).

The optimal solution p∗0 was then recovered by ramping down the amplitude from

σcrit to zero. Fig. 3.4(d) shows the trajectories traced for five different noise real-

izations ζ1 . . . ζ5 as σ is progressively decreased from σcrit. In each case, the shifted

parameter solution p∗σζ converges to p∗0. Fig. 3.4(d) thus demonstrates the depen-

dence of the noise-induced parameter offset on noise realization, as predicted by

Eq. 3.14.

This experiment verifies experimentally that harnessing the effect of noise on

parameter solutions can be used to regularize convergence towards the global min-

imum. The algorithm of the regularization method can be summarized as follows:

(i) first, solve the inverse problem using smooth data. The estimation procedure

will arrive at either a global or local minimum, corresponding to an optimal or

sub-optimal solution, respectively; (ii) the second step is to apply a realization of

additive noise to the data and scale its amplitude until an abrupt step in both δp

and δc is encountered; (iii) finally, progressively reduce noise amplitude to zero to

obtain the optimal parameter solution. Using this algorithm for the RVLM neuron

model starting from R = 150 random parameter initializations was found to boost

the probability of reaching the optimum solution from 67% to 94.3% (Fig. 3.4(e)).

In the remaining 33% and 5.7% of cases, respectively, the estimation terminated

at local minima in the search space. In the case of more complex neuron models,

for which the initial probability of finding the optimal solution is necessarily lower,

this algorithm may prove an even more powerful regularization method than this

experiment demonstrates.
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3.3.5 Reducing parameter correlations

When performing parameter estimation of neuron models from observed mem-

brane voltage data, it is important that the time series data contain sufficient

information to constrain the model parameters. Large parameter uncertainties

and correlations can arise if this criterion is not fulfilled. For conductance-based

neuron models, this means that the assimilation window must contain examples

of depolarization, hyperpolarization, and action potentials. To satisfy this, the

current protocols used to stimulate the neuron must: (i) include current steps of

different durations to probe the recovery of ionic gates with different kinetics, and

current steps of different amplitude to extract information from the depolarized,

sub-threshold and hyperpolarized states of a neuron; (ii) be sufficiently long to

encompass multiple spikes, since most model parameters control the dynamics of

depolarization and neuron spiking. Increasing the window length can therefore

contribute to better constrained global parameter solutions and less correlated pa-

rameters. However, as the window length increases, the cost function is known to

become highly irregular with an increasing number of local minima. This effect

has been discussed extensively, specifically in the geophysical literature [168, 169].

In order to increase the length T of the assimilation window while keeping

the cost function sufficiently regular, a smart sampling method was implemented

which sampled sub-threshold dynamics with a larger step size than for action

potentials. For values of membrane voltage above some threshold, say, -65 mV,

a step size of ∆t1 = 10 µs was applied, while membrane voltage values below

this threshold were sampled with a larger step size ∆t2 = n∆t1. For the results

presented below, a threshold value Vthresh = −65 mV was chosen. Since, for

neuron models, sub-threshold dynamics are controlled by fewer parameters than

depolarized states, this approach allows for considerable increases in the duration

of the assimilation window without increasing the number of data points in the

problem. This has the additional benefit of keeping the computation time roughly

constant, even as the window duration is increased. In this section, the effects

of both (i) stimulation complexity and (ii) assimilation window length on the

correlations and uncertainties of estimated parameter sets were explored.

First, the effect of the assimilation window length on parameter correlations
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Figure 3.5: Increasing the total duration of the assimilation window reduces the un-
certainty on estimated parameters. An adaptive step size was implemented to increase
the duration of the assimilation window without increasing the total size of the problem
(n = 10, 000 samples). The base step size was ∆t1 = 0.01 ms during the depolarization
time intervals (Vexp > −65 mV) and ∆t2 = m∆t1, m = 1, 2, 4, elsewhere (Vexp ≥ −65
mV). (a) Dependence of the parameter correlations on the duration of the assimilation
window as it was increased from T = 200 ms (m = 1), 320 ms (m = 2) to 382 ms
(m = 4). Additive noise had amplitude σ = 0.25 mV. (b,c) Posterior distribution func-
tions of two parameters chosen for their contribution to distinct dynamics at increasing
window durations. (b) PDFs for gNaT , a parameter governing action potentials via the
sodium current. (c) PDFs for εr, which governs sub-threshold oscillations via calcium
kinetics. These PDF historgrams were generated using 1000 assimilations initialized at
the global minimum, each with a unique noise realization.
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was investigated by computing the eigenvalue spectra of the covariance matrix

Σ̂ (Fig. 3.5(a)). The covariance matrix was generated by performing an ensem-

ble of R = 1000 assimilations, each with a distinct additive noise realization of

amplitude σ = 0.75 mV. The assimilation window had N = 10, 001 data points

with non-uniform time steps as determined by the adaptive step method previ-

ously described. Fig. 3.5(a) plots the eigenvalue spectra for assimilation windows

of increasingly long duration, corresponding to ∆t1 = 10 µs (T = 200 ms), 20 µs

(T = 320 ms), 40 µs (T = 382 ms). It is clear from the results that increasing the

duration of the assimilation window significantly reduces parameter correlations,

λ2
k, for all 41 parameters. This can be compared with Fig. 3.2(f) where some pa-

rameter correlations remain even as the noise intensity tends to zero. Fig. 3.5(b)

plots the PDFs of the parameter gNaT for increasing T . Since maximal conductance

parameters are relatively well-constrained, the PDF does not narrow considerably

with increasing window duration. In contrast, the PDF of the parameter εCaT be-

comes significantly narrower as T increases (Fig. 3.5(c)). For loosely-constrained

parameters governing recovery time constants, the standard deviation of the PDFs

were found to decrease by orders of magnitude as the duration of the assimilation

window increased from T = 200 ms to 382 ms. A second advantage of using the

adaptive step size method is that it facilitates longer assimilation windows, al-

lowing longer current steps to be applied (500 ms). This is essential to quantify

the effect of slow decaying currents on their long term modifications of neuron

properties [170].

Secondly, the effect of current stimulation complexity on parameter correla-

tions and uncertainty was investigated. The eigenvalue spectrum of the covariance

matrix Σ̂ was first computed for an ensemble of R = 1000 assimilations performed

using membrane voltage data generated using a complex current injection protocol.

The parameter spreads for this ensemble are shown in Fig. 3.6(a), again for a noise

level of σ = 0.75 mV. A sample of the protocol used is shown in Fig. 3.6(c). This

experiment was then performed using a less complex current protocol, with slower

changing current steps of longer duration (Fig. 3.6(c)). The parameter spreads

for this experiment are shown in Fig. 3.6(b) for a noise level of σ = 0.75 mV. It

is clear that the current protocol consisting of long rectangular steps fails to con-

strain the model parameters as successfully as the more complex protocol. The
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eigenvalue spectra of the covariance matrices of the two experiments are shown

in Fig. 3.6(d). In the case of the more complex current protocols, parameter cor-

relations are uniformly depressed. These results demonstrate the importance of

selecting appropriate stimuli that probe the full dynamic range of the neuron for

parameters to be identifiable.

3.3.6 Dependence of predictions on parameter accuracy

We now compare the predictions of models configured with optimal versus sub-

optimal parameter sets. In this section, we demonstrate that predictions made

with sub-optimal parameters (pv0 or p`0) are always discernible from those made

with the optimal set p∗0. The RVLM model was configured with 3 sets of param-

eters: the zero-noise global minimum, p∗0, a local minimum p`0, and pv0, a vicinal

location to the global minimum defined as the global minimum shifted by noise.

These parameters are listed in Table 3.2. Fig. 3.7(a) shows the locations of the

local minimum p`0 (purple dot) and the vicinal minimum pv0 (orange dot) on the

cost function surface relative to p∗0 (red dot). The distance in parameter space

to the optimum solution was evaluated using the Euclidean norm ‖p− p∗0‖. The

predictions Vpred(tn) of the neuron model configured with the three parameter sets

p∗0, pv0 and p`0 are shown in Fig. 3.7(b), (c) and (d) respectively (red lines). These

are plotted on top of the model data Vmod(tn) (black line) generated using the true

parameter set ptrue. The prediction error ∆V (tn) = |Vpred(tn) − Vmod(tn)| is the

cyan line (Fig. 3.7(b-d)). Predictions obtained using the global minimum param-

eter set p∗0 are nearly identical to the model data. In contrast, the predictions

obtained using the vicinal minimum parameter set pv0 show multiple discrepancies

in depolarized regions, especially at the site of action potentials (Fig. 3.7(c)). The

height of the action potential peaks is often incorrect, and spike bursts are incor-

rectly predicted as individual action potentials. Sub-threshold, the predictions are

still very accurate, however. Finally, predictions made using the local minimum

parameter set p`0 result in some spurious extra spikes, in addition to sites where

spikes are missing compared to the true model data. (Fig. 3.7(d)). Fig. 3.7(a)

shows that both of the sub-optimal minima used to generate predictions are not

particularly far away from the global minimum in cost function space. Despite
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Figure 3.7: Effect of optimal and sub-optimal parameters on model predictions. (a) The
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dots) in the vicinity of the global minimum (red dot) plotted as a function of the Eu-
clidean distance to the global minimum. The blue dots correspond to local minima
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voltage (red lines) predicted by configuring the RVLM model with parameters: (a) p∗0,
(b) p∗σζ , (c) pl0. The difference between the predicted voltage and the reference voltage
is the prediction error (cyan lines).

this, the predictions still generate sizeable discrepancies relative to the true model

data. This suggests that only the original parameters are capable of predict-

ing the experimental time series, provided the stimulating current is sufficiently

discriminating. In other words, the current here allows the system to fulfill the

identifiability condition. The membrane voltage time series data contains enough

information to possess a single-valued parameter solution, as described by Takens’

theorem.
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3.4 Discussion

In this chapter, it is argued that the parameters and initial conditions that control

neuronal oscillations can generally be inferred from the observation of its mem-

brane voltage over a finite time interval [148, 149, 171], provided that certain

conditions are satisfied. By recovering the original model parameters in twin ex-

periments, it was shown that the condition of observability can be satisfied by

conductance-based neuron models. The second condition, parameter identifiabil-

ity, requires that the system be driven by a sufficiently complex external stimulus

to constrain all parameters. It was demonstrated in Fig. 3.6 that parameter sets

inferred from data generated using simpler stimuli are less identifiable and are

therefore poorly constrained compared to those listed in Table 3.2 (p∗0). This

proves that driving the neuron across a wide dynamic range is therefore a neces-

sary condition for guaranteeing identifiability.

In addition, this chapter presented novel approaches to help to mitigate the

pervasive ‘sloppiness’ of biological models [136]. By using an adaptive time step

method to increase the duration of the assimilation window, it was shown that

parameter uncertainties as well as the correlations between parameters could be

uniformly reduced, while avoiding a more irregular cost function landscape. The

result of this is increased parameter identifiability (Fig. 3.5). In summary, if an

experimenter is able to meet the conditions of observability and identifiability,

sub-optimal parameters can be forced to give sub-optimal predictions, even when

these parameter solutions are very close to the optimal solutions in parameter space

(Fig.3.7). Therefore, it has been shown that single-valued solutions are accessible

to parameter estimation algorithms, even when the model is complex.

Another challenge addressed in this chapter is the presence of local minima in

the cost function. When data are distorted by experimental error, local minima

become difficult to distinguish from the true global minimum. In Fig. 3.4, a reg-

ularization method was presented that makes constructive use of additive noise

to destabilize local minima through saddle-node bifurcations, allowing gradient

descent methods to arrive at the global optimum solution with a increased proba-

bility of 94%. This work examined separately the effect of experimental and model

error on perturbations to parameter solutions. By expanding the cost function in
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the vicinity of minima in the search space, it was found that both forms of error

shift the parameter solution on the data misfit surface in particular ways. The

primary cause of this offset is experimental error, with model error providing a

second order contribution.

These results show that even when biological systems exhibit a high degree of

parameter sloppiness, the underlying parameter configuration may still be deter-

mined provided a sufficiently discriminating external driving is applied. Therefore,

the degree of parameter identifiability attainable is always relative to the degree

of sophistication of external stimulation of the physical system. While recent work

has found similar network activity arising from disparate circuit parameters in

self-sustaining oscillator networks, such as central pattern generators operating in

the steady-state without external input [138, 139, 172, 173], this chapter argues

that subjecting central pattern generators to a wider range of entrainments would

further reduce the set of parameters compatible with the observed outputs, up to

the point where a unique parameter solution would remain that characterises all

electrical properties. There is therefore no theoretical limitation to inferring the

underlying structure of ion channels or connectivity of small networks above and

beyond designing stimulation protocols that fulfill identifiability conditions.

In this chapter, we applied data assimilation to a model problem in which

the system generating the data is identical to the model we sought to optimize.

In the next chapter, we extend the methods presented here to the optimization

of artificial silicon neurons using electrophysiological recordings. By configuring

individual ion channels of a solid-state neuron model with parameters estimated

from the assimilation of biological data, we are able to successfully transfer the

complete dynamics of hippocampal and respiratory neurons in-silico. In doing so,

we demonstrate that the parameter estimation procedure developed in this chapter

remain highly effective in the presence of real-world data and in situations where

the inverse problem is ill-posed.
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Chapter 4

Optimizing solid state neurons

4.1 Introduction

Computational models have been used to explore the properties of neural systems

at every level of neuroscience, from the molecular and cellular level to the systems

and cognitive level [102, 174, 175]. With the advent of neuromorphic engineer-

ing, the ability of researchers to construct detailed hardware models of neural

system is now growing [176, 177]. The central goal of neuromorphic engineer-

ing is the design of integrated electronic systems that emulate the function and

structure of biological neural systems. By exploiting analogies that exist between

the gating kinetics of biological neuron channels and the physics of semiconduc-

tor devices, neuromorphic electronics can mimic neural circuitry in ever-greater

detail [178]. These devices are typically fabricated from analog very-large-scale

integrated (VLSI) circuitry with very low power consumption, and can be con-

figured to behave in a qualitatively similar way to biological neurons. Although

many silicon neurons and synapses have been designed in recent years [41, 179–

181], the purpose of these devices was not to replicate the behaviour of biologi-

cal cells in full and complete detail. Rather, these devices are typically designed

for objectives including course-grained emulation of general neurobiological archi-

tectures [182, 183], bio-inspired computing technologies [184, 185], and high level

machine-learning applications [186, 187]. In contrast, bioelectronic medicine is

now driving the need for hyper-realistic neuromorphic circuits that interface with



nervous systems, integrating raw nervous stimuli and responding identically to bi-

ological neurons. An increasing focus on implantable bioelectronics for treating

chronic disease is instilling new urgency in the need for low-power analogue solid

state devices that accurately mimic biocircuits [188].

Building high-fidelity solid state neurons requires a systematic method for esti-

mating the optimal parameters of reconfigurable circuitry that reproduce recorded

electrical responses. In recent years, many parameter estimation approaches have

been applied to the problem of constructing numerical neuron models. These

approaches range from hand-tuning [189] and trial-and-error fitting [190, 191] to

genetic algorithms, Bayesian inference and statistical interpolation [121, 192, 193].

Most of these methods have been successful in estimating linear parameters such

as maximal ionic conductances. In Chapter 3, constrained nonlinear optimization

was employed to estimate nonlinear parameters, such as voltage thresholds and

recovery times, which are essential for accurately predicting dynamical features

such as spike timings. The problem of applying these data assimilation meth-

ods to transferring information from a biological cell to biomimetic hardware is

met with additional difficulties that arise from fabrication constraints [194, 195].

For example, conventional neuromorphic circuitry assigns a constant slope to the

steady-state activation function of ion channels [196]. In biology, this slope factor

varies across neuron types and between ion channels. A more biologically plausi-

ble neuromorphic design is therefore needed, with the additional requirement that

its mathematical description be compatible with nonlinear optimization methods.

This neuromorphic design could then be configured with a set of optimal parame-

ters such that its response to external stimuli is identical to to that of a biological

neuron.

In this chapter, we describe a novel analogue circuit design that is capable of

modelling any generic ion channel. By performing ab-initio analysis of the silicon

components of a solid state neuron (SSN) implementing these ion channels, the

equations describing the evolution of the membrane voltage and gating variables

of the SSN are derived. This mathematical model of the SSN shares similarities

with the Hodgkin-Huxley model, however it derives from the equations governing

current flow through transistors operating in the weak inversion (or sub-threshold)

domain. The model embodies the variable slopes of activation curves and time con-
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stants associated with gating kinetics, allowing parameters extracted from model

optimization to be automatically tuned in the electronic device. A three ion chan-

nel SSN model that included a transient sodium current, a non-inactivating potas-

sium current, and a leakage current was constructed and was found to predict the

spike timings of the Hodgkin-Huxley model with 96.4% accuracy. Finally, a six-

channel silicon neuron was constructed that faithfully modelled the dynamics of a

CA1 hippocampal pyramidal neuron, and a five-channel silicon neuron was opti-

mized to accurately predict the dynamics of a respiratory neuron. The completed

models predicted the membrane voltage of biological neurons with high fidelity,

demonstrating the possibility of fabricating bionic neurons that can accurately

reproduce the response of biological cells through the use of data assimilation.

The chapter is structured as follows. The first section describes the biomimetic

solid state ion channel that will be configured using data assimilation methods, and

discusses how the channel differs from traditional conductance-based neuron mod-

els. A mathematical description of the hardware is derived from a first-principles

analysis of the semiconductor physics. The second section presents the success-

ful transfer of information from the Hodgkin-Huxley model membrane voltage

data to a solid state neuron comprised of a VLSI sodium and potassium chan-

nel. Predictions generated using the configured solid state neuron are compared

to the Hodgkin-Huxley output, and a high degree of agreement between the two is

found. Finally, after validating the parameter estimation process in this way, the

third section presents the results of assimilating biological neuron recordings into

a more complex silicon neuron model, comprised of up to six active biomimetic ion

channels. The final section gives a discussion of the results, and details promising

applications of the presented methods.
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4.2 Methods

4.2.1 Building solid-state neurons

Biomimetic solid-state ion channel.

The solid-state ion channel described in this chapter is composed of complementary

metal-oxide-semiconductor (CMOS) transistors, and exploits the similarities in the

underlying physics of these devices and of biological ion channels. The circuit dia-

gram for this channel is shown in Fig. 4.1. The channel is composed of an activation

sub-circuit denoted m, and an inactivation sub-circuit denoted h. Unlike in the

Hodgkin-Huxley framework where the gating variables are multiplied together, in

our biomimetic ion channel the net ionic current is given by the difference between

the activation current Im and the inactivation current Ih output from the two

sub-circuits, respectively. The maximum ionic conductances are set by the source

currents Igγ, while the recovery time constants are set by the source currents Iτγ

and ITγ. The threshold voltages of the ionic gates are Vtγ, where γ ∈ {m,h}. By

tuning these parameters, the solid-state ion channel may be configured to mimic

any individual channel type thought to be present in a particular biological neuron.

As many channels as deemed necessary can then be added to the neuron membrane

circuit. As discussed in previous chapters, we know that the gate recovery time

of the majority of biological ion channels is membrane voltage-dependent. This

dependence is described by the equation τ(V ) = t0 + ε
[
1− tanh2 V−Vt

δVτ

]
, which is

a bell-shaped curve with width δVτ centred on the (in)activation voltage Vt, and

where t0 and t0 + ε0 are the base and peak latency times, respectively. These bio-

logical kinetics τγ(V ), γ ∈ {m,h} are represented in our solid-state channel by the

current IΣγ in Fig. 4.1(a). By connecting in series n-type and p-type differential

pair circuits (Fig. 4.1(c)), a bell-shaped dependence is obtained. The first, n-type,

differential pair outputs a sigmoidal current I ′ = Imax [1 + tanh β(V − Vtγ)] /2,

which acts as the source current for the p-type differential pair circuit, which in

turn outputs the current I = I ′ [1 + tanh β(V − Vtγ)] /2. This product of activat-

ing and inactivating characteristics produces the bell-shaped dependence of I0Tγ.
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We can add a constant current Iτγ to I0Tγ to obtain:

IΣγ = Iτγ +
ITγ
4

[
1− tanh2 β(V − Vtγ)

]
, (4.1)

which can be compared with τγ(V ), γ ∈ {m,h}. This result assumes that the

component transitors are operating in their sub-threshold regime for which β =

κ/(2UT ) ≈ 14V−1, UT ≈ 25 mV is the thermal voltage, κ = COx/(COx+CD) ≈ 0.7

and COx (CD) is the capacitance of the oxide (depletion) layer.

The analogue current multiplier circuit works as follows. IΣγ is injected into

one of its inputs, while the other input receives the displacement current ICγ =

CγdVγ/dt through the capacitor Cγ. The output of the current multiplier is

therefore ICγ = I×γ × Iτγ/IΣγ. The current IXγ is drained to ground by a

current mirror, and is equated to the current output by the transconductance

amplifier: Iτγ tanh β(V − Vγ). This sub-circuit determines the rate of change

of the gating variable Vγ. If we substitute Eq. 4.1 into the equality ICγ =

Iτγ × Iτγ tanh β(V − Vγ)/IΣγ, we can write the equation of motion for the gate

variable as:

Cγ
dVγ
dt

=
Iτγ tanh β(V − Vγ)

1 +
ITγ
4Iτγ

[
1− tanh2 β(V − Vtγ)

] . (4.2)

Vγ is equivalent to the membrane voltage delayed by some recovery time equivalent

to τ(V ). This delayed voltage is then fed into a differential pair sigmoidal circuit

(Fig. 4.1(g)), generating the total gate current Iγ:

Iγ =
Igγ
2

[1 + tanh β(Vγ − Vtγ)] . (4.3)

Analogue interpolation of activation curves and gate kinetics

In biological neurons, the width of the kinetics bell-curves and slope of the acti-

vation sigmoids vary, while the corresponding parameter β−1 ≈ 71.4 mV in the

solid-state ion channel equations is fixed by the processing technology. Modelling

biological neurons therefore demands a circuit design that can allow for a variable

slope βγ. To this end, we designed a new circuit composed of multiple differential

pair circuits biased at different voltage thresholds Vtγ,i, and saturation currents
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(f) transconductance amplification and (g) sigmoidal activation/inactivation.

70



Imax,i, i = 1, ..., n. The sum of these currents interpolates the (in)activation ac-

cording to:

Iγ =
n∑
i=1

Igγ,i
2

[1 + tanh β(Vγ − Vtγ,i)] . (4.4)

In our SSN circuit, we therefore replace the static activation circuit (Fig. 4.1(a))

with this interpolation circuit to allow for the modelling of activation curves of

arbitrary shape. Correspondingly, we will replace the static slope parameter β

with the variable slope parameter βγ in our SSN model equations. In a similar

fashion, the width of the voltage-dependent kinetics is made to vary by summing

the currents of n bell-shaped generating circuits biased to peak at threshold volt-

ages Vtγ,i with source currents ITγ,i. A bell-shaped curve of arbitrary width can

be interpolated according to:

IoTγ =
n∑
i=1

ITγ,i
[
1− tanh2 β(V − Vtγ,i)

]
. (4.5)

We also replace the static bell-shaped generating circuit (Fig. 4.1) with the circuit

in Fig. 4.2(c). Another hurdle that these substitutions allow us to overcome is

the fact that in biological neuron models, the ionic current equations take the

gate variables to an exponent: Iα = gαm
phq(Eα − V ), where gα is the maximum

conductance and Eα the ion reversal potential. To a first-order approximation, the

exponents p and q increase the slope of activation curves from 1/δVm → p/δVm and

1/δVh → q/δVh, while shifting the effective voltage thresholds Vtm and Vth higher.

The above circuit modifications suffice in capturing these features of traditional

conductance models in our SSN circuit.

SSN model equations of motion

We may now write the full set of equations of motion of the SSN model with the

slope factor replacements β → βγ and β → βτγ. The rate of change of membrane

voltage is given by the Kirchhoff’s current conservation equation applied to the

electrical equivalent circuit of the neuron membrane (Fig. 4.1(b)). A solid state

neuron incorporating Na+, K+, and leak channels (NaKL) obeys the following
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equations:

C
dV

dt
= (Im − Ih)θ(Im − Ih)− In + IL tanh βL(EL − V ) + αIinj + Idark,

Vm
dt

=
Ĩτm tanh β(V − Vm)

1 + ĨTm
4Ĩτm

[
1− tanh2 βτm(V − Vtm)

] , Im =
Igm
2

[1 + tanh βm(Vm − Vtm)] ,

Vh
dt

=
Ĩτh tanh β(V − Vh)

1 + ĨTh
4Ĩτh

[
1− tanh2 βτh(V − Vth)

] , Ih =
Igh
2

[1 + tanh βh(Vh − Vth)] ,

Vn
dt

=
Ĩτn tanh β(V − Vn)

1 + ĨTn
4Ĩτn

[
1− tanh2 βτn(V − Vtn)

] , In =
Ign
2

[1 + tanh βn(Vn − Vtn)] ,

(4.6)

where θ() is the Heaviside step function. Because the rate of change of the gating

variables in Eq. 4.2 depends on both a capacitance Cγ and a source current Iτγ,

one can define the ratio Ĩτγ = Iτγ/Cγ, for γ ∈ {m,h, n}. This removes a parame-

ter degeneracy during the assimilation procedure, since these two parameters are
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directly correlated in the equations, and has the advantage for VLSI design that

capacitances may be made as small as desired provided that the source currents

are adjusted accordingly. We have included a parameter Idark which accounts for

the leakage current of sub-threshold circuit components when in the OFF state.

This current is far smaller than ionic currents, but will need to be accounted for

in the model. We have also introduced a scaling parameter α which amplifies

the injected current protocol. This is the silicon model equivalent of the neuron

surface area parameter in the biological conductance model.

In summary, we have developed a biomimetic solid-state neuron with 22 inde-

pendent parameters: IgL, Igγ, Ĩτγ, ĨTγ, βL, βγ, βτγ, EL, and Vtγ for γ ∈ {m,h, n},
which may be easily extended through the addition of additional ionic channels

to the neuron membrane circuit. This versatility allows the modelling of the most

complex neurons with solid-state devices. We have performed an ab initio analysis

of the currents of the SSN hardware components, meaning that parameter esti-

mation can be performed using the SSN model equations before configuring the

hardware directly with the estimated parameters.

4.2.2 Electrophysiological protocols

Brain slice preparation.

The electrical response of hippocampal and respiratory neurons to complex current

protocols were recorded in acutely isolated brain slices from male Han Wistar rats.

Respiratory neuron recordings were obtained from postnatal day (P)1 to P3 rats,

while hippocampal neuron recordings were taken from P16-17 rats. Rats were

anaesthetized and decapitated, and the brains were subsequently sectioned in ice-

cold slicing solution (NaCl, 52.5 mM; sucrose, 100 mM; glucose, 25 mM; NaHCO3,

25 mM; KCl, 2.5 mM; CaCl2, 1 mM; MgSO4, 5 mM; NaH2PO4, 1.25 mM; kynurenic

acid, 0.1 mM, and carbogenated using 95% O2/5% CO2). A Campden 7000 smz

tissue slicer (Campden Instruments UK) was used to prepare transverse slices of

350 µm thickness, and rhythmically active transverse slices through the medulla

at 400 µm thickness. Medullary slices contained the pre-Bötzinger complex as well

as the hypoglossal motor nucleus (XII) and rootlets for cell identification. Slices

were then submerged in artificial cerebrospinal fluid (aCSF) containing: NaCl, 124
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mM; glucose, 30 mM; NaHCO3, 25 mM; KCl, 3 mM; CaCl2, 1.5 mM, MgSO4, 1

mM; NaH2PO4, 0.4 mM. The slices were incubated at 30◦ C for 1-5 hours prior to

use.

Current-clamp recordings.

Individual cells were visually indentified using an upright Axioskop 2 (Carl Zeiss)

microscope using differential interference contrast optics. Respiratory neurons

were identified by anatomical location as well as the phase of burst firing with

reference to activity in the XII motor nucleus or rootlet. The submersion chamber

was perfused with the aCSF at 2 ml min−1, and all recordings were performed

at 30±2◦C. Patch pipettes were pulled from standard walled borosilicate glass

(GC150F, Warner Instruments) and filled with an artificial intracellular solution

composed of: potassium gluconate, 130 mM; sodium gluconate, 5 mM; HEPES, 10

mM; CaCL2, 1.5 mM; sodium phosphocreatine, 4 mM; Mg-ATP, 4 mM, Na-GTP,

0.3 mM; pH 7.3. Recordings were performed in the presence of (µM) kynurenate,

3; picrotoxin 0.05; and strychnine, 0.01 to isolate the neuron from synaptic activ-

ity of neighbouring cells in the slice. Signals were obtained using a custom-build

LabView interface through a USB-6363 DAQ card and a MultiClamp 700B am-

plifier. The membrane voltage time series and the injected current protocols were

simultaneously recorded in current-clamp mode at a sampling rate of 100 kHz.

Generating current protocols.

In order to constrain neuron parameters pertaining to spiking activity and sub-

threshold activity, it was important that the current injection protocols contained

both depolarizing and hyperpolarizing segments. Additionally, estimating param-

eters of dynamics which operate over a wide range of time scales demands that

the protocols contain fast- and slow-changing currents. With this in mind, we

designed a set of protocols composed of: (i) positive and negative current steps

of different duration and amplitude, and (ii) chaotic oscillations generated by the

x-variable of the hyperchaotic Bouali dynamical system [197]. The Bouali system
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is described by the following set of equations:

dx

dt
= x(1− y) + ζz,

dy

dt
= ρ(x2 − 1)y,

dz

dt
= γ(1− y)v,

dv

dt
= ηz, (4.7)

and was used with the parameterization (ζ, ρ, γ, η) = (-2, 1, 0.2, 1). Prior to

injecting these protocols into patch-clamped cells, a calibrating current consisting

of positive depolarizing steps was injected to determine the minimum amplitude

required to elicit neuron firing. The injected current protocols were then rescaled

to the appropriate amplitude for an optimal recording.

4.3 Results

4.3.1 Transferring dynamics from HH to SSN

In order to demonstrate that our biomimetic solid-state neuron is capable of reit-

erating the dynamics of biological neurons, we now demonstrate the equivalence of

the NaKL SSN model (Eq. 4.6) and the Hodgkin-Huxley (HH) model (Eq. 2.5) by

predicting the response of the HH neuron with the NaKL SSN model. We begin

with this approach for two principal reasons: firstly, we wish to validate that the

gating variables Vγ of the SSN neuron, which are not accessible to observation

in biological neurons, behave similarly to the gating variables of the neuron that

we’re modelling; secondly, we wish to assess the fidelity of information transfer

between from one NaKL model to another. We began by building an NaKL con-

ductance model configured with model parameters derived from a thalamic relay

neuron [110]. The parameters for this model are listed in Table 4.1. We then

forward-integrated the model in response to a range of current injection protocols

(Fig. 4.3, blue traces) to generate an ensemble of membrane voltage time series

(Fig. 4.3, black traces). The SSN model was then synchronized to the HH mem-

brane voltage data over an assimilation window of length T = 1000 ms (green

trace), giving the parameter estimates listed in Table 4.2. These parameters were

used to complete the SSN model, which was forward-integrated from the end of the
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Parameter ID Value
Cm (uF/cm2) 1
A 0.29
gNaT (mS/cm2) 69
ENa (mV) 41
gK (mS/cm2) 6.9
EK (mV) -100
gLeak (mS/cm2) 0.465
EL (mV) -65
Vtm (mV) -39.92
δVm (mV) 10
δVτm (mV) 23.39
tm (ms) 0.143
εm (ms) 1.099
Vth (mV) -65.37
δVh (mV) -17.65
δVτh (mV) 27.22
th (ms) 0.701
εh (ms) 12.9
Vtn (mV) -34.58
δVh (mV) 22.17
δVτh (mV) 23.58
tn (ms) 1.291
εn (ms) 4.314

Table 4.1: Parameters set in the Hodgkin-Huxley conductance model. These pa-
rameters were obtained from voltage-clamp data from a thalamic relay neuron
[110].

assimilation window (t = T ) onwards (Fig. 4.3, red trace) to generate a prediction

of future membrane voltage for t > T . The estimated state of the neuron at the

end of the assimilation window (xxx(t = T )) provided the initial state for forward

integration. Additionally, the completed model was used to generate predictions

for two novel current protocols (Fig. 4.3(b), (c)), where the initial state of the

neuron was assumed to be the equilibrium resting potential.

We now wish to quantify the quality of the match between our SSN model pre-

diction and the ‘true’ data. Since we are interested in predicting both spike-timings

and sub-threshold behaviour, we use two separate metrics: the so-called spike-

coincidence factor, Γ, and the normalised root mean square deviation (NRMSD).

Roughly speaking, the coincidence factor is a measure of spike-train synchrony
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Ion Parameter ID Lower bound Upper bound Estimated value

NaT Ĩgm (nA pF−1) 0 200 162.75

Ṽtm (V) 0.01 1.8 0.908
βm (V−1) 1 100 8.405

Ĩτm (nA pF−1) 0.1 200 0.6854

Ĩgh (nA pF−1) 0 200 4.638

Ṽth (V) 0.01 1.8 1.143
βh (V−1) 1 100 3.581

Ĩτh (nA pF−1) 0.1 200 0.1482

K Ĩgn (nA pF−1) 0 200 164.18

Ṽtn (V) 0.01 1.8 0.911
βn (V−1) 1 100 8.372

Ĩtn (nA pF−1) 0.1 200 0.6747

L ĨL (nA pF−1) 0 100 0.23105
βL (V−1) 1 100 1
EL (V) 0.001 1.8 0.6194
α 1.00E-04 1000 39.54
β (V−1) 14 14 14
Idark (nA pF−1) -0.05 0.05 0

Table 4.2: Columns 3 and 4 specify the parameter search intervals used in data
assimilation. Column 5 lists the SSN parameters estimated by assimilating the
membrane voltage synthesized by the Hodgkin–Huxley (HH) model. Iinj had units
of nA, and V , Vm, Vh and Vn units of V.
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Figure 4.3: Demonstrating the equivalence of the NaKL SSN model and the
Hodgkin–Huxley model. (a) The SSN model was synchronized to membrane voltage os-
cillations synthesized by the Hodgkin–Huxley model (black line). The Hodgkin–Huxley
time series voltage was assimilated over a 1000-ms-long window (green line) under the
constraints of the current injection protocol (blue line). The membrane voltage was then
predicted from t = 1000 ms onwards by forward integrating the completed SSN model
(red line) in response to the current protocol (blue line). (b), (c) Membrane voltages
predicted by the same SSN model (red line) and HH model (black line) for two novel
current protocols. (d) Expanded detail of the SSN and HH action potentials and a
comparison of NaT and K gating variables in (e) the HH model and (f) the SSN model.
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that estimates the similarity of two or more spike trains. It is computed as:

Γ =
Ncoinc − 〈Ncoinc〉

1
2
(Ndata +Nmodel)

1

N
, (4.8)

where Ndata denotes the number of spikes in the true (HH) time series, Nmodel

denotes the number of spikes in the predicted (SSN) time series. Ncoinc is the

number of spikes between the two spike trains that coincide with precision ∆ = 2

ms. The quantity 〈Ncoinc〉 = 2fNdata is the expected number of coincidences

generated by a Poisson process with the same rate f as the predicted (SSN) spike

train. The normalization factor N = [1 − 2f∆] ensures that 0 ≤ Γ ≤ 1, where

Γ = 1 would correspond to a perfect match. For the data shown in Fig. 4.3, the

spike coincidence factor between the HH and SSN models was calculated to be

97% in Fig. 4.3(a), and 91% in Fig. 4.3(b).

The second metric that we use to quantify the match between the two time

series is R2 = 1 - NRMSD, where NRMSD is the root mean square deviation be-

tween the data and the prediction, normalized by the amplitude of the membrane

voltage oscillations (1.8V). For the predictions in Fig. 4.3, we find an average value

of R2 = 96.4%. It is evident from Fig. 4.3(c) that the least well-constrained param-

eters are those corresponding to deeply hyperpolarized membrane voltage states.

This demonstrates the importance of including strongly hyperpolarizing currents

during the assimilation window. The weak hyperpolarization in Fig. 4.3(a) fails

to fully constrain the sub-threshold parameters. The estimated threshold voltages

Vtγ are consistent with the relative values of the HH thresholds, and the estimated

Ĩτγ give biologically pausible recovery times: t0,m = UT/Ĩτm = 0.026/0.6854 = 0.03

ms, t0,h = 0.026/0.1482 = 0.17 ms, and t0,n = 0.026/0.6747 = 0.04 ms. We note

that the current injection scaling parameter is estimated to be α = 39.54. This

current re-scaling is necessary to account for the fact that the membrane voltage

has been rescaled from the [-100 mV, +45 mV] range of the biological HH model

to the [0, 1.8 V] range of the SSN neuron. Additionally, this parameter accounts

for the surface area of the biological HH cell, which here is ISA = 2.9× 10−4cm2.

These considerations give α ≈ (12.414/ISA+ 1241.4)/1000 ≈ 44, which is consis-

tent with the estimated value of α = 39.54 (Table 4.2). Finally, let us consider the

dynamics of the optimized SSN model. Fig. 4.3(d) shows that the spike waveforms
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of the SSN model (green trace) and the HH model (black trace) are nearly identical.

The dynamics of the HH gating variables (m, h, and n) are shown in Fig. 4.3(e),

while the SSN counterparts (Vm, Vh, and Vn) are plotted below in Fig. 4.3(f).

These plots indicate that the internal dynamics of the two models share a number

of common features, including the relatively slow kinetics of sodium inactivation,

and the close correlation between the gating variables Vm and Vn (or between m

and h in the HH model).

In summary, we now have a systematic methodology for transferring infor-

mation from biological neurons to our SSN neuron model. We now proceed to

demonstrate this same method for real biological neuron recordings. As mam-

malian neurons are more complex than the NaKL neuron considered above, we

now expand the SSN model to include extra ionic currents.

4.3.2 Constructing a CA1 pyramidal cell model

By expanding the SSN model to include more ionic currents, it becomes possible

to model and predict the dynamics of real biological cells. We constructed a silicon

model of the CA1 neuron which included the ion channels present in high density

in the soma and proximal dendrites (Table 4.3). These included the transient Na+

current (NaT), the delayed-rectifier K+ current (K), and the A-type K+ current

(A). Two non-inactivating currents were also included in the model: the persistent

Na+ current (NaP) and the muscarinic-sensitive K+ current (M) [97, 198]. Al-

though present in CA1 hippocampal cells, we excluded both the low threshold cal-

cium current (CaT) [199, 200] and the hyperpolarisation-activated cation current

(HCN) [201], since the density of these channels is low outside of distal apical den-

drites far from the cell soma. Another current that was omitted from the model is

the after-hyperpolarization K+ (AHP) current that is sometimes observed in CA1

neurons during voltage-clamp experiments [202]. While this small-conductance

current gives a minor contribution to spike-frequency adaptation under current-

clamp conditions, its calcium dependency required its omission. The SSN model

for a CA1 hippocampal neuron was thus expanded to include NaP, A and M cur-

rents in addition to the NaT, K and Leak currents of the smaller model. The

mathematical description of this SSN model consisted of eight coupled differential
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ID Channel Current density CA1 R.N.

NaT Transient Na+ JNaT = gNaTm
3h(ENa − V ) Yes Yes

NaP Persistent Na+ JNaP = gNaPm(ENa − V ) Yes Yes
K Transient depol. activated K+ JK = gKm

4(EK − V ) Yes Yes
A Rapidly inactivating K+ JA = gAm

4h(EK − V ) Yes Yes
AHP Ca2+ activated K+ JAHP = gAHPm(EK − V ) D.D Rare
CaL High threshold Ca2+ JCaL = ρm2JCa D.D Rare
CaT Low threshold Ca2+ JCaT = m2hJCa D.D Rare
HCN Hyperpol.-activated cation JHCN = gHCNh(EHCN − V ) D.D D.D
M Muscarinic-sensitive K+ JM = gMm(EK − V ) Yes No
Leak Leak channels JL = gL(EL − V ) Yes Yes

Table 4.3: Ion currents of CA1 hippocampal cells and respiratory neu-
rons. RN respiratory neuron, D.D distal dendrites. Ion current densities as a
function of ionic conductances gα, α ≡ {NaT, NaP, K, A, AHP, CaL, CaT, HCN,
M, and Leak}; the sodium and potassium reversal potentials, ENa ≈ +45 mV and
EK ≈ −90 mV; the hyperpolarized-activated cation reversal potential EHCN=-43
mV [203] and maximum calcium current JCa. The ionic currents of the solid-state
model Iα = (Im− Ih)θ(Im− Ih) are given by Eq. 4.6. Prevalence of ion channels in
CA1 hippocampal pyramidal neurons and respiratory neurons distinguishing their
presence in soma and in distal dendrites (D.D.).

equations.

Figure 4.4(a) shows the best fit of this model (green line) to the CA1 neuron

data (black line) across a 1000-ms-long assimilation window. The estimated pa-

rameters are listed in Table 4.4 (CA1→ SSN). The SSN model was then completed

with these parameters, and the membrane voltage was predicted from the end of

the assimilation window. The 4000-ms-long prediction (red line) in response to

the current protocol (blue line) is also shown in Fig. 4.4(a). The spike coincidence

factor was 56% and the agreement between predicted and observed oscillations

was R2 = 76%. A portion of the prediction window is expanded and presented in

Fig. 4.4(b), for clarity. The predictive power of the CA1 SSN model was validated

by predicting the membrane voltage in response to a number of similar current

protocols, all of which gave similarly impressive results [81]. Fig. 4.4(c) presents

the behaviour of all of the model state variables at the site of an action potential.
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Figure 4.4: Assimilation and prediction of a CA1 pyramidal neuron. Membrane voltage
oscillations of a pyramidal cell from the rat hippocampal cortex (black line) induced
by the injection of a current protocol (blue line). The current trace shows the actual
injected current, as measured. The CA1 SSN model was synchronized to the experimen-
tal membrane voltage over a T = 1000-ms-long assimilation window (green trace). The
optimum fit produced an estimate of the model parameters shown in Table 4.4. Models
completed by incorporating the optimal parameters were used to predict the membrane
voltage from t ≥ T (red line). (b) Detail of the predicted membrane voltage over a short
interval of the prediction window. (c) Detailed dynamics of the state variables of the
SSN model during an action potential.

As in biological CA1 cells, the spike initiation is due to the fast activation of the

NaT channel (Vm). Repolarization is subsequently initiated by the slower activa-

tion of the K+ current (Vn). The channels with the slowest assigned activation

kinetics were the M-type current (Vr), A-type current (Vo) and NaP current (Vp),

as expected from the biology where these currents are known to be long-lived [204].

These results show that with a sufficiently realistic model, data assimilation can

assign kinetic parameters consistent with the known biological properties of ion

channels.

4.3.3 Constructing a respiratory neuron model

Next, we assimilated and predicted the membrane voltage of a respiratory neuron

(RN) acquired from a slice of the Bötzinger region of the rat brain stem. First,

we constructed a RN SSN model incorporating transient sodium (NaT), persistent
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Ion Parameter ID Lower bound Upper bound RN→SSN CA1→SSN

NaT Ĩgm (nA pF−1) 0 200 5.06291 15.3882

Activation Ṽtm (V) 0.01 1.8 0.60186 0.775011
βm (V−1) 1 100 4.3211 3.65247

Ĩτm (nA pF−1) 0.1 200 0.741963 200

Inactivation Ĩgh (nA pF−1) 0 200 3.87017 14.5214

Ṽth (V) 0.01 1.8 0.537676 0.761754
βh (V−1) 1 100 21.352 3.74198

Ĩτh (nA pF−1) 0.1 200 0.213195 1.90216

K Ĩgn (nA pF−1) 0 200 4.95587 1.05781

Activation Ṽtn (V) 0.01 1.8 1.1707 1.10211
βn (V−1) 1 100 4.95415 12.5939

Ĩτn (nA pF−1) 0.1 200 0.266346 0.48398

NaP Ĩgp (nA pF−1) 0.01 1.8 0.905 0.905

Activation Ṽtp (V) 1 100 50.5 50.5
βp (V−1) 0 200 100 100

Ĩτp (nA pF−1) 0.1 200 0.101315 0.101282

A Ĩgo (nA pF−1) 0 200 3.25713 0.436843

Activation Ṽto (V) 0.01 1.8 0.527758 0.90838
βo (V−1) 1 100 4.79776 8.92825

Ĩτo (nA pF−1) 0.1 200 0.525516 0.110045

Inactivation Ĩgq (nA pF−1) 0 200 3.25878 199.914

Ṽtq (V) 0.01 1.8 0.533867 1.1711
βo (V−1) 1 100 22.552 100

Ĩτq (nA pF−1) 0.1 200 0.209388 0.267222

M Ĩgr (nA pF−1) 0 200 - 99.6646

Activation Ṽtr (V) 0.01 1.8 - 1.17193
βr (V−1) 1 100 - 54.7187

Ĩτr (nA pF−1) 0.1 200 - 0.10128

Leak ĨL (nA pF−1) 0 100 0.010666 0.025847
βL (V−1) 1 100 100 10.8213
EL (V) 0.001 1.8 1.47205 0.233041
α 1.00E-04 1000 3.42752 0.154576
β (V−1) 14 14 14 14

Table 4.4: Parameters extracted from a respiratory neuron (RN→ SSN) and from
a CA1 pyramidal neuron (CA1 → SSN).
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sodium (NaP), delayed-rectifier potassium (K), A-type potassium (A), in addition

to a leakage channel [156, 205]. These ion channels were chosen in accordance with

Table 4.3. The results of assimilating membrane voltage data with this RN SSN

model are presented in Fig. 4.5, where the best fit of the model (green line) to

the experimental membrane voltage data (black line) produced the parameter set

listed in Table 4.4 in the “RN→ SSN” column. The RN SSN model was completed

with this parameter set and predictions of the membrane voltage for t ≥ T were

generated in response to the current protocol (blue line). The predictions show a

high degree of accuracy (Fig. 4.5(a)) comparable to that of the CA1 SSN predic-

tions, with a spike coincidence factor of 76% and an R2 = 92% match between

the predicted and observed times series voltages. A more detailed comparison of

data and prediction is given in Fig. 4.5(b) which presents an expanded segment

of the prediction window. The sub-threshold membrane voltage dynamics for the

RN predictions are much better than for the CA1 SSN model, even though deep

hyperpolarizing step currents are still the greatest source of prediction error. This

could be due to the fact that few hyperpolarizing currents are used in the assim-

ilation window (Fig. 4.5(a)). The accuracy of predictions to an ensemble of 60

different current stimuli further demonstrated the successful transfer of informa-

tion from the respiratory neuron to the RN SSN model [81]. The dynamics of the

gating variables at the site of a single action potential are shown in Fig. 4.5(c). As

in the HH and CA1 examples above, the spike initiates as a result of the activa-

tion of the NaT channel before the slower-activating potassium currents activate,

contributing to repolarization. We therefore find that the RN SSN model accu-

rately represents the membrane voltage dynamics of the respiratory neuron and

the relative activation sequence of its component ion channels.

4.4 Discussion

The results in this chapter demonstrate an effective methodology for building arti-

ficial solid-state neurons that may be used to repair diseased biocircuits in the cen-

tral nervous system. There is a clinical need for biomedical devices incorporating

biofeedback that permits natural control in real-time. For example, the respiratory
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Figure 4.5: Assimilation and prediction of a respiratory neuron. (a) Intracellular record-
ing of a respiratory neuron acquired from a slice of the Bötzinger region of the rat brain
stem (black line). The neuron was stimulated with a current waveform alternating hy-
perchaotic oscillations and current steps (blue line). The RN SSN model was used to
assimilate the experimental membrane voltage over a 1000-ms-long window (green trace)
to estimate the optimum parameters. (a,b) The completed RN SSN model predicts the
membrane voltage (red traces) in quantitative agreement with observations (black traces)
for a very wide range of current waveforms. (c) Detail of the gating variables during an
action potential.
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neuron modelled in this chapter belongs to a network which couples the cardiac

and respiratory rhythms, and is responsible for respiratory sinus arrythmia (RSA).

The loss of RSA due to old age or disease is a strong indicator of cardiovascular

pathology. Solid-state devices embodying synthetic medullary circuits may offer a

much needed therapy for heart failure [53, 54, 206]. The presented method answers

this need by providing an accurate neuromorphic implementation of ion channel

dynamics that can be configured to respond in a quantitatively similar manner

to any given neuron. This approach combines a number of advances. Firstly,

the data assimilation approach used to estimate the parameters of the solid state

neuron requires little-to-no prior knowledge of ion channel kinetics or maximal

conductances; all parameters are estimated in an automated manner, eliminating

the need for subjective fitting criteria. A second advance stems from the fact that

data assimilation configures the entire model simultaneously from a single time se-

ries recording of the membrane voltage. In contrast, previous methods have fitted

models using the sequential fitting of voltage-clamp measurements obtained from

individual families of ion channels [207]. These measurements require pharmaco-

logical manipulation and data must necessarily be pooled from multiple neurons.

As highly nonlinear systems, neurons configured with parameter averages often do

not behave as the ‘average’ of the pooled neurons themselves [72]. Data assim-

ilation of membrane voltage data avoids these challenges entirely. Furthermore,

the assimilation of large datasets allows the fitting method to absorb stochastic

fluctuations of spike timings if the assimilation window is sufficiently large. This

minimizes uncertainty on extracted parameters. The third advance made by this

work is the derivation of a mathematical description of the hardware SSN device,

allowing the use of parameter estimation methods typically reserved for use with

numerical models. Previous approaches used the numerical Hodgkin-Huxley model

as a proxy of the hardware dynamics in the hope that parameters estimated with

the Hodgkin-Huxley model would give correct predictions when programmed in

the hardware [208]. For predictions to be successful, the same system of equations

must be used when both assimilating data and forward integrating completed mod-

els. In this way, it is possible to also predict the time dependence of gate variables

(Figs. 4.4, 4.5).

The SSN model presented here is highly versatile, allowing the inclusion of a
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variety of ion channels types, biologically-plausible slopes of activation functions

and gate kinetics. These allow the model to describe both the electrical activ-

ity and internal dynamics of complex mammalian neurons. The hardware models

typically used in the neuromorphic engineering literature are simplified or phe-

nomenological models such as the integrate-and-fire neuron [176, 209], which are

inadequate for generating quantitatively accurate predictions. Our development of

a hyper-realistic neuron model allows for the faithfully transfer of neuronal dynam-

ics from a biological cell to the SSN device. As a potential bioimplantable device,

it is important that the SSN consumes very little power. The SSN respiratory

neuron was found to have an average power consumption of 139 nW when firing

at a rate of 240 Hz, dissipating 579 pJ per spike [81]. This power consumption is

approximately 110 times smaller than the equivalent digital SSN implementation,

making the analog VLSI SSN highly suitable for biomedical applications.

The current-clamp experiments performed in this chapter injected a complex

current protocol in the neuron soma, while recording the response of the somatic

membrane voltage. This experimental design allowed us to consider the neuron

as a single isopotential compartment. From a computational standpoint, a single

compartment model has the benefit of keeping the number of free parameters to

the minimum number required to accurately predict neuron electrical activity. In

biological neurons, however, other aspects of the neuron physiology play impor-

tant roles. For example, dendrites are the predominant locus for afferent synaptic

signals. Ligand-gated channels in the dendrites elicit dendritic spikes upon receipt

of synaptic input which forward-propagate to the soma [210]. Furthermore, action

potentials that initiate in the soma will often backpropagate towards distal den-

drites [211, 212]. While the question of the function of backpropagation remains

unresolved, it has been suggested that it may contribute to synaptic plasticity

[213]. Further SSN compartments could be added to describe the active properties

of dendrites, and these multi-compartment models could be similarly optimized to

accurately predict these phenomena.

In the next chapter, we show that hardware implementations of optimized

neurons can be extremely useful for the modelling of neural networks of interest.

Solid-state neurons offer a route by which neuronal systems can be emulated di-

rectly and in real-time, and are therefore much more suited than simulations to
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the high-resolution parameter sweeps that are often necessary for analysing nonlin-

ear and chaotic dynamics. Traditionally, solid-state neuron circuits have provided

only a qualitative approximation to the exact equations governing simulated neu-

rons, and as such are rarely used for quantitative neuroscientific research [42]. The

novel biomimetic ion channel presented in this chapter allows for the building of

highly predictive hardware neurons whose parameters can be obtained using the

methodology that we have described.
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Chapter 5

Synchronization in inhibitory

neural networks

5.1 Introduction

Synchronized firing activity has been observed in many central nervous systems,

but its underpinning mechanisms and neurobiological function remain a topic of

debate [55, 56]. Synchrony has been observed in various neuronal populations, in-

cluding thalamocortical relay neurons [63], hippocampal pyramidal neurons [64],

and cortical inhibitory interneurons [65]. In these studies, the main mechanisms

proposed for this coherence were excitatory synaptic coupling or electrical cou-

pling mediated by gap junctions [66]. Indeed, inhibitory synaptic connectivity has

classically been considered as a mechanism promoting antisynchronous firing [67,

68]. Recent findings are now challenging this view. In the cerebral cortex and hip-

pocampus, there exist two prevalent sub-types of synchronizing interneurons [214]:

soma-targeting fast-spiking (FS) cells [215, 216], and somatostatin-containing in-

terneurons (SOM) that preferentially target dendrites [216, 217]. Neighboring

SOM–SOM and FS–FS pairs are often coupled through both gap junctions [218]

and GABAergic inhibitory synapses [219]. In the literature, the importance of the

electrical coupling for synchronous network activity has been emphasized [66, 220,

221]. However, recent work has described synchrony in networks of FS and SOM

interneurons with purely inhibitory coupling [69, 70]. These studies have found



that tonically depolarized FS–FS and SOM–SOM pairs connected by bidirectional

inhibitory synapses often fired coherently [70], thus experimentally confirming the

existence of inhibition-driven synchrony that has been previously predicted the-

oretically [76, 222]. While these experiments confirm that coordination of firing

can arise by mutual synaptic inhibition alone, the mechanisms still remain un-

clear. An understanding of the properties of these networks, and their robustness

to near-experimental conditions, is now needed, though it remains extremely dif-

ficult to reveal the dynamical mechanisms of intercircuit coordination by direct

experimentation in vivo or in vitro.

Motivated by these challenges, we used small networks of inhibitory silicon

neurons to show that local networks mimicking the soma-targeting properties ob-

served in fast-spiking interneurons and the dendrite-projecting properties observed

in somatostatin interneurons synchronize through two distinct mechanisms. The

first mechanism corresponds to conduction delays deriving from dendritic-targeting

of SOM synapses. We find that these delays act to boost the number of stable

coherent oscillations in the network. The second mechanism we observe is a de-

pendency on the amplitude of stimulation current applied to the circuit. We find

that synchronous network oscillations are most stable within a particular band

of amplitudes, a result which we identify with the high-frequency entrainment

of FS neurons [223]. We probed the synchronization phase diagrams of all-to-all

inhibitory networks in-silico as a function of inhibition delay, neurotransmitter

kinetics, timings and intensity of stimulation. Delayed inhibition was found to

stabilize synchronization over a broader range of experimental conditions than

high-frequency entrainment.

Computational models have previously been used to test other synchronization

mechanisms such as the interneuron gamma (ING) mechanism [224], the pyramidal

interneuron gamma (PING) mechanism [225, 226], the action of both excitatory

and inhibitory synapses [227, 228] and the modulation of long range inhibition by

local dendritic gap junctions [229, 230]. Mutually inhibitory networks, however,

are highly nonlinear systems that exhibit abrupt transitions between modes of

oscillation in response to the timing and amplitudes of stimuli [76, 231, 232].

Neuromorphic silicon networks allow us to measure these phase transitions in real

time without compromise on model accuracy, size or complexity [41, 233]. A
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further merit of using neuromorphic systems is to demonstrate the robustness of

the large number of stable modes of oscillation which we observe against noise and

network imperfections.

The chapter is organised as follows. First, the methods section describes the

implementation of the silicon neurons and the two types of coupling in the network:

chemical synapses and gap junctions. Next, it describes a method for transforming

multi-neuron spike trains into a set of evolving phase lags between neuron pairs.

This framing allows us to reduce the problem of analysing rhythmic firing pat-

terns to the analysis of fixed points in a phase-lag state space. Results are first

presented for a pair of mutually inhibitory interneurons, before being extended to

larger three- four- and five-cell networks. We then introduce a novel combinatorial

counting method for calculating a priori the number of coherent oscillatory modes

available to an N -neuron all-to-all inhibitory network. The chapter ends with a

discussion of the presented results.

5.2 Methods

5.2.1 Silicon all-to-all inhibitory network

The silicon neurons used in this chapter implemented the Mahowald-Douglas

(MD) SSN model [41]. In this model, the action potential is generated by a

fast-activating transient sodium current (NaT), and repolarization is driven by a

delayed-rectifier potassium current (K) in addition to a leakage current (Leak).

Therefore, the MD model is essentially a translation of the Hodgkin-Huxley model

(Sec. 2.2) to very-large-scale integrated (VLSI) circuit technology. Six of these

neurons were interconnected (Fig. 5.1) with mutually inhibitory VLSI synapses

[234] that injected either a positive or negative postsynaptic current into the

receiving neuron, depending on the user-defined configuration. Individual neu-

rons could be added and removed from the functioning network as desired. The

silicon neurons emulated the dynamics of the membrane voltage V in response

to an external current stimulus Istim which evolved according to the equation:

CV̇ = gNa(ENa − V ) + gK(EK − V ) + gLeak(ELeak − V ) + Istim where ENa and EK

are the sodium and potassium reversal potentials and C is the membrane capaci-
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Figure 5.1: (a) Data acquisition bench used to acquire the dynamics of analogue in-
hibitory networks. DAQ cards (NI6259×2, top left) inject timed currents stimuli into
individual neurons and record the time series data of their membrane voltage. The appli-
cation of stimuli was controlled using a custom-built LabVIEW program. (b) All-to-all
mutually inhibitory network of six silicon neurons connected via 36 synapses. Time de-
pendent current stimuli are injected in the top left DIL port. The same port is used to
measure the time series membrane voltages. The number of neurons in the network was
increased or decreased by setting synaptic conductances to zero.

tance. In the MD model, the gating variables m, h and n of the Hodgkin-Huxley

model are represented in the analogue circuit by currents ι which are either ac-

tivated or inactivated according to: ι(Vτ,x) = ιmax{1 + tanh[(Vτ,x − Vx)/dVx]}/2,

where x = {m,h, n}, Vx is the threshold voltage of each ion gate, and dVx is the

determines the slope of the (in)activation function of the gate. The Vτ,x variables

follow a first order dynamics V̇τ,x = (V − Vτ,x)/τx which describes the recovery of

each gate variable and is characterized by recovery time τx [233].

Two different types of synapse were implemented in the silicon circuit: ‘chemi-

cal’ synapses [234] that model the injection of postsynaptic current in response to

a presynaptic spike, and gap junctions, which directly couple the membrane volt-

ages of the presynaptic and postsynaptic neurons. The chemical synapses were

implemented using a differential pair integrator circuit (Fig. 5.2(a)). The postsy-

naptic current was approximately given by Ipost(t) = gS(t)(Vpost(t) − Vrev) where

Vrev = 7V was the reversal potential, Vpost(t) the membrane voltage of the postsy-

naptic neuron, g the maximum conductance and S(t) was the fraction of docked
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neurotransmitters at time t. The neurotransmitter docking rate was given by:

Ṡ(t) = [S∞(Vpre(t))− S(t)]/τu with S∞(t) = 0.5{1 + tanh[(V − Vth)/dVsyn]}. The

empirical inhibition delay d, decay time τu and synaptic conductance g were con-

trolled through the tuning of three gate voltage parameters: Vth, VW and Vτ in the

circuit. The synaptic conductance could take values in the range 1 µS < g < 3 µS.

The gap junctions were implemented electronically using a differential transcon-

ductance amplifier circuit. The current-voltage transfer characteristics of these

VLSI gap junctions have previously been measured by Zhao and Nogaret [233].

The current varies linearly as Ipost = g′(Vpost(t)−Vpre(t)) near the balance point of

the pre-synaptic and post synaptic membrane potentials. The transconductance

g′ can be tuned in the range 24 µS < g′ < 45 µS using the gate bias VM of a

current source transistor. Away from the balance point, saturation effects reduce

the rate of current injection [233]. The polarity of the injected current could be

changed by swapping the voltage inputs. In this way one could form either an

inhibitory or an excitatory connection between neurons in the circuit. The mini-

mum stimulation current needed to elicit firing in an individual neuron is referred

to as the ‘depolarization threshold’, Ith, and was adjusted to match the range of

synaptic currents by adjusting the leakage current of the neuron membrane. For

the chemical synapses, the current thresholds were Ith = 8 µA (synaptic coupling)

and for gap junctions, Ith = 86 µA. The duration of an action potential was tuned

to W = 1 ms.

5.2.2 Generating phase-lag trajectories

Individual neurons were stimulated by current steps of constant amplitude Istim

generated by the analogue outputs of two DAQ cards (NI PCI6259) and a bank

of six voltage-to-current converters. Custom LabVIEW [235] code was written

to vary the timings of current stimuli in a systematic manner. Throughout this

chapter, we reduce the problem of analysing rhythmic firing patterns to the analysis

of phase lags between neuron pairs. By staggering the onset of stimulation for

individual neurons, we were able to initialise the network in a range of desired

phase-lag states (Fig. 5.3). During an initial transient phase (Fig. 5.3(b), blue),

the phase relationships between the neurons adjust over consecutive cycle periods
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Figure 5.2: VLSI synapses. (a) Inhibitory chemical synapse [234]. Presynaptic action po-
tentials, Vpre, increase the conductance of the presynaptic MOSFET. The drain current
of this MOSFET is modulated by VW which sets the synaptic weight. The Vth MOS-
FET sets the activation threshold of the synapse. The docking time (τd) and undocking
time (τ) of neurotransmitters are modelled by the charge discharge times of capacitor C
through the Vτ MOSFET. τu and τd were tuned with Vτ . The delayed synaptic response
d was tuned with parameters Vth and VW . (b) Inhibitory gap junction [233]. The output
current of this synapse was is a linear function of the difference between the pre- and
post-synaptic membrane voltages Vpre and Vpost, respectively.

of length T . After a period of time, the network phase lags cease to change over

consecutive periods, and the network reaches a steady state (Fig. 5.3(b), right).

The state of the network in cycle period p is defined as the set of phase lags

{∆Φ
(p)
i1 }, i = 2, 3, . . . N , where ∆Φi1 = (ti− t1)/T denotes the phase-lag of neuron

i relative to neuron 1. Prior to each run, the network was prepared in a particular

initial state, and the temporal evolution of these phase lags {∆Φ
(p)
i1 } was measured

over consecutive network cycles p = 1 − 50, to obtain phase-lag trajectories. By

varying the initial delays between the neurons with respect to the reference cell 1,

we can detect all stable oscillatory modes of the network.

For a network of size N , the phase shifts (∆Φ
(p)
21 ,∆Φ

(p)
31 , . . .∆Φ

(p)
N1) were cal-

culated in each oscillation period p = 1 − 50 using a MATLAB [236] programme

which extracted the timings of voltage peaks of neuron i and neuron 1 in each oscil-

lation period. The state trajectories ∆Φ(p) were plotted in an (N -1)-dimensional

(∆Φ) coordinate system. For the visualisation of higher-dimensional state spaces,

the trajectories were plotted orthographically in the Coxeter plane of the (N − 1)-
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Figure 5.3: (a) Schematic of 3-neuron inhibitory network. (b) Stimulating current steps
Istim applied to individual neurons are staggered relative to the onset of stimulation for
neuron 1. The neurons begin firing (vertical black bars) with period T upon injection of
their respective Istim. In each network period, the state of the network is defined by the
phase lag pair ∆ΦΦΦ = (∆Φ21,∆Φ31), where ∆Φi1 = (ti− t1)/T is the phase lag of neuron
i relative to neuron 1. By systematically varying the timing of current stimulation, the
network can be initialized at a different ∆Φ, and the evolution of the phase lags over
consecutive periods can be observed.
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dimensional hypercube (N = 4, 5) using projection matrices:

P̂4N =

(
−
√

2 cos θ4

√
2 sin θ4 1√

2 sin θ4 −
√

2 cos θ4 1

)
, (5.1)

where θ4 = π/12, and

P̂5N =

(
1 cos θ5 0 − cos θ5

0 sin θ5 1 sin θ5

)
, (5.2)

where θ5 = π/4. The state trajectories pertaining to the same stable mode were

regrouped using MATLAB code that calculated the ∆Φ-coordinate of the mode.

5.3 Results

5.3.1 Dynamics of the half-center oscillator

The half-center oscillator (HCO) is a fundamental building block of many cen-

tral pattern generator (CPG) circuits, the rhythmic networks that drive patterned

behaviours in biological systems [237, 238]. The HCO is a widely-used model

for the reciprocal inhibition of clusters of neurons that produce anti-phase spik-

ing or bursting patterns that are typically phase-locked with one-another [239].

The dynamics available to the HCO have been studied from both biological and

nonlinear dynamics standpoints, however understanding the transitions between

possible HCO dynamics as a function of network parameters often requires brute-

force parameter sweeps of computational models [240, 241]. For these reasons, the

HCO is an ideal system for initiating a study of the emergence of synchronization

through inhibition using a real-time hardware CPG. Here, we examine the onset

of synchronization in a mutually inhibitory neuron pair (Fig. 5.4) as a function

of synaptic kinetics (d, τu) and current stimulation (Istim) applied to all of the

neurons in the network, generating an d − Istim phase diagram for the emergence

of phasic synchronous modes of oscillation.

We began by setting the inhibition delay to the minimum configurable value

of d < 150 µs). As Istim is increased from the depolarization threshold cur-
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Figure 5.4: Synchronization of a pair of mutually inhibitory neurons. (a) Fast-
spiking soma-projecting (FS) and somatostatin dendrite-projecting (SOM) interneurons.
Synapses located on dendrites act to delay the inhibition of the postsynaptic neuron by
0− 800 µs. (b) Inhibitory postsynaptic current (red line) elicited by an action potential
in the presynaptic neuron (black line) applied to a VLSI synapse. Synaptic kinetics: in-
hibition delay d, neurotransmitter docking time τd, undocking time τu, and spike width
W . (c) Periodic action potentials of mutually inhibitory neurons below, at, and above
the synchronization current, Is. τu = 1.5 ms.

rent (Ith = 8 µA), three distinct modes of synchronized oscillations are observed

(Fig. 5.4(c)). The first mode is antiphasic synchronization. In this mode, the

two neurons are phase-locked, but oscillate out-of-phase. At a higher value of

Istim = 14 µA, the network suddenly switches modes and displays phasic synchro-

nization where the two neurons lock in phase, firing simultaneously. We term the

value of Istim at which this occurs the synchronization current Is. For Istim > Is,

the synaptic inhibition becomes small relative to the stimulation current that each

neuron receives, and as such the neurons gradually begin to decouple. As the stim-

ulation increases, this loose coupling regime is characterized by N : 1 harmonic

phase locking [242]. In this regime, the two oscillators undergo an integer number

(N) of oscillation cycles before firing in synchrony again. Harmonic locking is

found in many biological systems, including during coupling between cardiovascu-

lar rhythms, breathing, and blood pressure [243, 244].

We found that below a critical value of d, changing the synaptic inhibition delay

had no effect on the synchronization current IS = 14 µA. For longer values of d >

150 µs, Is broadens to become a window of width [IL, IH] (Fig. 5.5(a)). The window
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Figure 5.5: Dependence of the half-center oscillator pair on synaptic kinetics and stim-
ulation. (a) Frequency-current dependence of a VLSI neuron (square symbols) and
frequency-current dependence of phase-locked oscillations (red line). Their intercept
gives the frequency (fs) and current (Is) of synchronized oscillations. Three domains of
oscillatory modes at d = 0.2W are observed (yellow, green, and red vertical bands). (b)
Phase diagram of synchronization in the d− Istim plane where delay d is normalised by
the spike width W . Two distinct mechanisms underlie synchronization in local inhibitory
networks: changes in current stimulation amplitude and an increase in inhibition delay.
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widens as a function of d, and the lower bound saturates at the depolarization

threshold IL = Ith = 8 µA for d > 300 µS. Above this value of d, the window

continues to diverge with increasing in IH, further stabilising the synchronous

oscillatory mode. These results are in agreement with recent experimental work

by Wang et al. who probed the synchronization of biological neuronal networks

in the entorhinal cortex [245]. They found that while inhibitory coupling led to

anti-phase oscillations in the case of no delays, it led to near-synchrony for delays

of > 10% of the network period. In summary, the upper and lower bounds of

the Is interval [IL, IH] carve out three domains in the d − Istim phase diagram of

Fig. 5.5(b), corresponding to antiphasic (yellow), phasic (green), and loose coupling

(red) regimes. This phase diagram demonstrates how phasic synchronization in

the HCO may be induced either by delaying the onset of synaptic inhibition, or

alternatively by applying an appropriate stimulation current sufficiently close to

the synchronization value Is. The effect of delayed synaptic inhibition is to allow

each neuron in the pair sufficient time to depolarize prior to being inhibited by the

other. We now extend these results by probing the network dynamics of a 3-cell

inhibitory CPG network.

5.3.2 3-cell mutually inhibitory network

Studies of 3-cell CPGs in the context of biology have consistently discovered highly

nonlinear and multistable dynamics [246–249]. These dynamics are known to make

the oscillatory modes of the system highly sensitive to incoming stimuli generated

by ‘command neurons’ designed to switch between specific motor pattern of the

CPG [250–252]. By configuring a 3-cell CPG network of silicon neurons, we now

extend the results of the previous section to analyse this dependence on the timing

of external stimuli. The state of the network in a given cycle period was defined

by the set of phase lags ∆Φ, where ∆Φi1 denotes the lag of neuron i relative to

neuron 1, i = 2, 3, . . . N as described in Sec. 5.2. By preparing the network in a

particular initial state, and measuring the temporal evolution of these phase lags

{∆Φ
(p)
i1 } over consecutive network cycles p = 1−50, state trajectories of the system

were obtained. Fig. 5.6(a) shows the phase-lag map of these trajectories for a

mutually inhibitory 3-neuron network with d = 300 µs inhibition delay. Each state
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trajectory emanates from a distinct initial phase-lag ∆Φ
(1)
i1 , and converges to one of

six attracting points in the phase space, labelled with circular, square and diamond

symbols. The symbol type corresponds to the sub-division of the attractors into

three categories according to the duration of their inter-spike intervals (ISI): T/3,

T/2, and T , where T is the period of the network cycle (Fig. 5.6). Two of the six

attractors (circle symbols) correspond to modes of oscillation in which the three

neurons fire in clockwise and anti-clockwise sequences 1→ 2→ 3 and 1→ 3→ 2.

The ISI for these attractors is T/3, since the cycle period is shared between the

three neuron spikes (Fig. 5.6(b), top). Three of the six attractors (square symbols)

correspond to partially-synchronized modes of oscillation in which two of the three

neurons fire in-phase (Fig. 5.6(b), middle). These correspond to the sequences

1 → {2, 3} and its permutations, where {i, j} denotes the synchronized firing

of neurons i and j. For these modes, ISI = T/2. The final attractor (diamond

symbol) corresponds to the fully-synchronized mode of oscillation in which all three

neurons fire in-phase with ISI=T . (Fig. 5.6(b), bottom). The phase lag map in

Fig. 5.6(a) shows that the corresponding basins of attraction of the modes become

smaller as the oscillations become more coherent. While the basins of attraction

for the anti-phase modes (black and red) span most of the phase space, the basin

for the fully-coherent mode (yellow) attracts only a few trajectories. The structure

of the phase space is therefore consistent with observations of HCO which suggest

that synchronized oscillatory modes are stable over a smaller range of network

conditions, and are correspondingly more sensitive to external perturbation.

In the case of the HCO, we found the synchronous mode of oscillation to be

highly-dependent on inhibition delay and Istim. We wished to confirm whether

these findings could be generalized to larger networks. First, we tested for delay-

dependence in the the 3-cell network by reducing d from 300 µs to d = 0 µs for

all connections in the CPG. The phase lag map for this configuration is shown in

Fig. 5.6(c). The partially- and fully-synchronized attractors are no longer present

in the phase space, leaving only the attractors corresponding to anti-phase modes

of oscillation. For completeness, the synapses were then reconfigured to behave

as non-delayed excitatory synapses. The phase portrait in Fig. 5.6 shows that

this networks hosts a single fully-synchronized attractor. This is in agreement

with theoretical work suggesting that all-to-all excitatory coupling is conducive to
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Figure 5.6: Phase lag portraits for 3-neuron inhibitory networks. (a) Experimental phase
portrait of a three-cell network with neurons coupled via mutually inhibitory synapses.
Anti-phasic travelling wave attractors (circle symbols), partially synchronized attractors
(square symbols) and phasic, fully-synchronized attractor (diamond symbol) are the six
observed stable oscillatory modes of the network. State trajectories (full lines) emanate
from a grid of initial states ∆Φ evenly distributed over the phase space. Reciprocal
inhibition across the network was homogeneous gij = gji = 2 µS for i, j = 1, 2, 3. (b)
Transient neuron oscillations showing convergence towards (top) the antiphasic attractor
(ISI=T/3), (middle) the partially synchronized attractor (ISI=T/2), and (bottom) the
phasic attractor (ISI=T ). (c) Phase portrait of a 3-cell network interconnected with
mutually inhibitory gap junctions showing antiphasic attractors only (circle symbols)
gij = gji = 45 µS. (d) Excitatory gap junction synapses result in a single attracting
mode that corresponds to full synchronization (diamond symbol). Parameters: (a,b)

Istim = 25 µA, T = 18 ms, g
(s)
ij = 2 µS, τu = τd = 1.5 ms, d = 300 µs; (c,d) Istim = 50

µA, Ith = 86 µA.
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Figure 5.7: Current-dependence of the fully synchronized attractor. Phase-lag maps
for the 3-neuron and 4-neuron inhibitory networks were measured in the vicinity of the
coherent attractor (yellow basin) at increasing levels of current stimulation: Istim = 20
µA, 30 µA and 44 µA. Grey, purple and blue trajectories correspond to nearby basins of
partially synchronized oscillations, while red and black trajectories correspond to those
of antiphasic oscillations. The volume of the coherent basin passes through a maximum
at Is ≈ 30 µA. Parameters: d = 350 µA, τu = 1.5 ms.

network synchrony [253]. Next, we examined the dependence of the synchronous

mode on current stimulation. Fig. 5.7 (top) shows the phase portrait in the vicinity

of the fully-synchronous attractor for the 3-cell network as Istim was varied between

20 µA and 44 µA. The area of the coherent basin of attraction passes through a

maximum at Is ≈ 30 µA. We also find that these findings hold for 4-cell inhibitory

CPGs whose three-dimensional phase space in the vicinity of the coherent attractor

is shown in Fig. 5.7 (bottom), demonstrating that synchrony is most stable close to

values of Istim = Is. These observations generalize the d− Istim phase diagram for

the HCO to larger networks, and show how synchronization in inhibitory networks

can be achieved either through increases in inhibition delay or through carefully-

tuned current stimulation.

In this section, we have considered oscillatory CPG modes that can be distin-
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guished by the sequential firing of neurons in the network. In the following section,

we demonstrate a combinatorial method for calculating the number of modes avail-

able to all-to-all inhibitory networks of arbitrary size. We then validate the method

by generating phase-lag maps for three-cell, four-cell, and five-cell networks, and

comparing our combinatorial calculations with the number of observed attractors

in the phase space of each CPG.

5.3.3 Combinatorial counting of firing patterns

Information processing in the nervous system requires coordinated activity across

populations of neurons, but the code by which populations of cells interact to

perform computation is still largely unknown [254–256]. Recent advancements

in neural engineering have enabled the simultaneous time series recording of large

numbers of neurons, and there is now a corresponding need for new methods to an-

alyze complex patterns across multiple simultaneous spike trains [257, 258]. Most

current methods analyse firing patterns in terms of precise time delays between

successive spikes [259–261]. Here, we describe a novel method for analyzing se-

quential firing patterns in networks of arbitrary size that is based on the relative

firing order of the constituent neurons. Sequences are highly important for neural

processing. Examples include sequential recruitment of different brain areas during

a task, as well as spike sequences in models of pattern recognition [262]. Relative

time order of firing events, in contrast to the precise time intervals between them,

is important for a number of phenomena such as time-scaling and noise filtering

[263–265]. Although we apply our method to individual spikes, the approach is

general and could be applied to burst firing in a network cells, or even to EEG or

ECG events.

We begin by recalling that in the networks analysed previously the N neurons

discharge within a period that contains M inter-spike intervals (ISI) of duration

T/M . These ISIs separate the N spikes into M discharge events. For example, in

the fully synchronous mode there is a single discharge event (M = 1) in which all

N neurons fire simultaneously. This event is said to have cardinality of k1 = N .

Here, the cardinality of each of the M discharge events refers to the number of

simultaneous neuron firings in that event. In contrast, for a travelling-wave mode
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1 → 2 → ... → N there are M = N discharge events, each of which contains a

single discharge, possessing cardinalities of k1 = k2 = ... = kM = 1. In general,

every oscillatory mode is characterised by 1 ≤ M ≤ N discharge events with

cardinalities of k1 ≥ k2, ..., kM ≥ 0, which satisfy the rule:

M∑
i=1

ki = N. (5.3)

Let’s take an example. In a four-neuron inhibitory network there exists a fully-

synchronous attractor in which all four neurons fire in-phase, giving

{ki} = (k1, k2, k3, k4) = (4, 0, 0, 0). (5.4)

In this mode, there is a single ISI (M = 1). Other modes exists in which neurons

fire over M = 2 ISIs, and they can be distributed as (3, 1, 0, 0) or (2, 2, 0, 0). Calcu-

lating the possible permutations of spike arrangements within these two attractor

types gives us 4+3=7 distinct partially-coherent modes. For modes distributing

over M = 3 ISIs, event cardinalities are (2, 1, 1, 0), giving 12 partially coherent

attractors of this kind. Finally, for the travelling-wave modes (M = 4) that dis-

tribute as ki = (1, 1, 1, 1), we have an additional 6 modes, giving a total of 26

attractors.

Now we generalise this calculation to find the capacity of inhibitory networks of

arbitrary size. Recalling that the list {ki} denotes the occupancy of each discharge

event, we now define a dual list {nj}, j = 1, ..., N , that tabulates the number of

events with each possible cardinality. An oscillatory period therefore can be said

to contain n1 single-spike events, n2 two-spike events, ..., and nN N -spike events.

This dual list satisfies the sum rule:

N∑
j=1

nj = M. (5.5)

Next, we note that spike groupings can be rearranged in a number of ways over the
M inter-spike intervals which all realize the same dual list {nj} = (n1, ...nN). We
call each of these rearranged spike groupings a different ‘waveform’ in which spike
groupings appear in a particular sequence. The total number of attractors that a
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network may host is given by the number of possible waveforms multiplied by the
number of possible rearrangements of spikes within a waveform. The number of
possible waveforms that may be constructed from a given spectrum {nj} of spike
groupings is given by:

WM
N (n1, ...nN ) =

(
M

n1

)
×
(
M − n1
n2

)
×
(
M − n1 − n2

n3

)
× ...×

(
M − n1 − ...− nN−1

nN

)
=

M !

M !(M − n1)!
× (M − n1)!

n2!(M − n1 − n2)!
× ...× (M − n1 − ...− nN−1)!

nN !(M − n1 − n2 − ...− nN )!

=
M !

n1!n2!...nN !(M −M)!

=
M !

n1!n2!...nN !
.

The number of waveforms is therefore given by the multinomial coefficient:

WM
N (n1, ...nN) =

(
M

n1, ..., nN

)
. (5.6)

We now consider the number of possible ways that individual firings can be ar-
ranged within any given waveform. For a given cardinality list {ki} = (k1, ..., kM),
there are AMN (k1, ...kM) ways of distributing N neuronal firings over the M ISIs.
This is the number of ways of distributing k1 spikes out of N in the first ISI, k2

spikes out of N − k1 in the second ISI, ..., and kM spikes in the M th ISI. It is
calculated as follows:

AMN (k1, ...kM ) =

(
N

k1

)
×
(
N − k1
k2

)
×
(
N − k1 − k2

k3

)
× ...×

(
N − k1 − ...− kM−1

kM

)
=

N !

k1!(N − k1)!
× (N − k1)!

k2!(N − k1 − k2)!
× ...× (N − k1 − ...− kM−1)!

kM !(N − k1 − k2 − ...− kM )!

=
N !

k1!k2!...kM !(N −N)!

=
N !

k1!k2!...kM !
.

The number of possible arrangements of spikes within any given waveform is there-

fore given by the multinomial coefficient:

AMN (k1, ...kN) =

(
N

k1, ..., kM

)
. (5.7)

The total number of attractors is obtained by multiplying the number of waveforms
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by the number of trajectories per waveform, and summing over the partition of

integer N . This partition corresponds to the decreasing list k1 ≥ k2 ≥ ... ≥ km

which satisfies the condition k1 + ...+km = N . For example, the partition (k ` N)

of the integer N = 5 is shown in Table 5.1. The product WM
N × AMN includes

M cyclically invariant trajectories: firing as 1 → 2 → 3 → 4 or 4 → 1 →
2 → 3 correspond to the same attractor. The number of cyclically independent

trajectories is thus obtained by dividing this product by M . We can now write

the total capacity C of a given network as:

TN =
∑
k`N

1

M

(
M

n1, ..., nN

)
︸ ︷︷ ︸
wMN =WM

N /M

(
N

k1, ..., kM

)
︸ ︷︷ ︸

AMN

. (5.8)

Each element of the summation corresponds to a different partition (k ` N) of

the integer N , where M is the number of positive integers in each partition (see

Table 5.2 for an example of this calculation). As we saw in the previous section, the

capacity of a network is highly-dependent on synaptic inhibition delay. For small

enough d < 150 µs, neurons in the network are only able to discharge sequentially,

and the network is unable to host partially- or fully-synchronized oscillations. This

implies that the number of discharge events is equal to the number of neurons

(M = N), and that k1 = k2 = · · · = kN = 1. This is a special case of Eq. 5.8,

giving

LN =
∑
k`N

(
N − 1

n1, ..., nN

)(
N

k1, ..., kM

)
=
N !

N
= (N − 1)!. (5.9)

This is well-known as the capacity of a class of dynamical systems called winner-

less competition networks [231]. These networks dynamically encode stimuli in

the form of deterministic trajectories corresponding to the sequential activity of

neurons in the network. In this section, we have demonstrated that the inclusion

of inhibition delay in all-to-all inhibitory networks can significantly boost network

capacity.
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k1 k2 k3 k4 k5

1 1 1 1 1
2 1 1 1 0
2 2 1 0 0
3 1 1 0 0
3 2 0 0 0
4 1 0 0 0
5 0 0 0 0

Table 5.1: Integer partition for N = 5. The integer partition of n lists all ways of
writing n as a sum of positive integers. Each row gives one of the seven partitions.
Two sums that differ only in the order of their summands are considered the same
partition.

5.3.4 Emergence of synchronization

Having derived the methodology for calculating the capacity of networks of arbi-

trary size, we now compare calculated values with experimental observations. Us-

ing Eq. 5.8, we calculate that the maximum capacity increases as T3 = 6, T4 = 26,

T5 = 150, T6 = 1082. The minimum capacity, allowing sequential discharges only,

is LN = (N − 1)!, and increases as L3 = 2, L4 = 6, T5 = 12, T6 = 120. These

calculations are experimentally verified in Fig. 5.8, which shows that the capacity

of an N -neuron all-to-all inhibitory network lies between LN and TN , depending

on the synaptic inhibition delay d. For longer inhibition delays (d = 400 µs),

partially- and fully-coherent oscillations are stable, and the networks host modes

ranging from fully-synchronous (Fig. 5.8: (a) diamond, (b) triangle, (c) hexagon)

to purely sequential (Fig. 5.8(a-c) circles). For example, the four-neuron phase-

lag map in Fig. 5.8(b) hosts six sequential attractors (circle symbols) with one

spike per inter-spike interval, giving discharge event occupancies (1,1,1,1), twelve

partially-synchronous attractors (square symbols) with discharge event occupan-

cies (2,1,1,0), 4 + 3 partially synchronized attractors (diamond symbols) with

(3,1,0,0) and (2,2,0,0) occupancies, respectively, and the fully-coherent attractor

(triangle symbol) with the occupancy (4,0,0,0). For clarity, the predicted capac-

ity of the four-neuron network is calculated explicitly in Table 5.2. Fig. 5.8(d-f)

shows that intermediate synaptic inhibition delay (d = 250 µs) destabilises the
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M ISI k1 k2 k3 k4 n1 n2 n3 n4 wMN {n} AMN {k} wMN × AMN
4 T/4 1 1 1 1 4 0 0 0 1/4 24 6
3 T/3 2 1 1 0 2 1 0 0 1 12 12
2 T/2 3 1 0 0 1 0 1 0 1 4 4
2 T/2 2 2 0 0 0 2 0 0 1/2 6 3
1 T/1 4 0 0 0 0 0 0 1 1 1 1

Total = 26

Table 5.2: Calculation of the number of attractors for an all-to-all inhibitory net-
work with 4 neurons using the combinatorial method. The third column displays
all possible partitions of the integer N = 4. Each row in the table has a corre-
sponding M , where M is the number of positive integers in the partition.

fully coherent mode in all sizes of network (N = 3, 4, 5). In the four-cell network,

the partially-coherent attractors (ISI=T/2) have also vanished, while those with

ISI=T/3 (square symbols) and ISI=T/4 (circle symbols) remain. Note that the

basins of attraction of the remaining partially-coherent modes exhibit a reduced

size (Fig. 5.8(d,f)). When synaptic inhibition delay is further reduced to d = 100

µs, only the sequential attractors remain (Fig. 5.8(g-i)).

Figure 5.9 shows how network capacity scales with the size of the network. For

small inhibition delay, (d = 100 µs), the experimentally-observed capacities scale

exactly as predicted from LN (Eq. 5.9). At the longest inhibiton delays, (d = 400

µs), the maximum number of attractors is observed to increase according to the

sequence TN calculated by Eq. 5.8. At intermediate values of d, we observe that the

networks host sequential oscillations in addition to a reduced number of partially-

synchronised oscillations. The capacity of these networks therefore lies somewhere

between LN and TN as expected. We can conclude from these observations that

the capacity of all-to-all inhibitory networks can be boosted by a factor of TN/LN

when synaptic inhibition is delayed.

5.4 Discussion

The results presented in this chapter suggest that inhibitory networks may synchro-

nize via two distinct mechanisms that exploit the particular anatomical properties

of fast-spiking interneurons and the inhibition delay introduced by dendrite pro-
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Orthographic projection
of alternating and partially
synchronized fixed points

The number of type of attractor
should be complete and clearly
distinguishable

t = 1msud = 400μs

t = 1msud = 100μs

t = 1msud = 250μs

(a) (b) (c)
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3N 4N 5N

Figure 5.8: Emergence of synchronization in small inhibitory networks. Phase lag maps
of the three, four and five-neuron networks measured at increasing values of inhibition
delay (a–c) d = 400 µs, (d-f) d = 250 µs and (g-i) d = 100 µs. Both the decay
time of the postsynaptic current: τu = 1.5 ms and the inhibition peak current: −13.8
µA were kept constant. The (N -1)-dimensional phase space (straight lines) and the
state trajectories within it (full lines) were projected orthographically into the Coxeter
plane. State trajectories converge towards fixed-point attractors classified according to
the duration of their ISIs: T/N (black lines, circle attractors), T/(N − 1) (blue lines,
square attractors), T/(N − 2) (orange lines, diamond attractors), T/(N-3) (green lines,
triangular attractors), T/(N − 4) (purple lines, hexagonal attractor). The total number
of attractors observed at inhibitory delay d = 400/250/100 µs is 6/3/2 (N = 3), 26/17/6
(N = 4), 142/107/24 (N = 5), 1053/688/120 (N = 6).
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Figure 5.9: Scaling of network capacity with network size. The total number of attractors
observed in the three-neuron to six-neuron networks at increasing values of the inhibition
delay: d = 100 µs (green diamonds), 250 µs (blue triangles), 400 µs (red dots). At
intermediate values of inhibition delay (250 µs), the network capacity lies between the
upper theoretical boundary TN (solid line) and the lower boundary LN (dashed line).
Inset are orthographic projections of predicted point attractors which are distinguished
by the number of ISIs per cycle: ISI=T/N (black dots), T/(N−1) (blue dots), T/(N−2)
(orange dots), T/(N − 3) (green dots), T/(N − 4) (purple dots).
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jecting synapses in somatostatin cells. Dendrite-projecting somatostatin interneu-

rons introduce conduction delays of the order of 0-800 µs by projecting synapses

onto the 200-700 µm-long dendrites of the mammalian cortex [71]. Transmis-

sion line delays of this magnitude postpone the onset of inhibition sufficiently to

stabilize the coherent oscillations of inhibitory neurons (Fig. 5.8(a-c)). The neur-

physiological properties of somatostatin neurons could thus induce robust network

synchronization which is only weakly dependent on shared excitatory stimula-

tion and postsynaptic kinetics. In contrast to somatostatin neurons, the wiring

of somatostatin neurons introduces delays which are too short to warrant auto-

matic synchronization. Instead stomatostatin neurons may achieve synchroniza-

tion through high-frequency entrainment. This corresponds to the current-induced

synchronization which we observe at small inhibition delay.

The all-to-all networks used in this study are homogenous in all synaptic con-

nections, and so the oscillatory modes display permutation symmetries. For ex-

ample, within partially coherent states, the neurons which oscillate in phase may

distribute differently across the network. A subset of L neurons (L < N) may os-

cillate in phase at different locations of the network. Two partially coherent states

with identical L-number differ through the permutations of neuron firing order.

The equivalence of these states is demonstrated by the six-fold symmetry of phase

maps of the 4-neuron network (Fig. 5.8(b)). Changing synaptic conductances to

introduce network heterogeneity has the effect of varying the sizes of basins of at-

traction of particular modes [76], breaking the phase space symmetry. This would

correspond to the loss of partially coherent modes, and the reduction in total net-

work capacity. Introducing a range of inhibition delays or mixing gap junctions

with chemical synapses would similarly increase the volume of some basins to the

detriment of others, potentially bringing total network capacity down below the

theoretical minimum LN .

Full synchronization in our network corresponds to the coherent attractor

whose basin occupies a very small volume of phase space for all network sizes

(triangle symbol, Fig. 5.8). As a result, this state of synchronization is the least

robust of all possible modes with respect to noise and network heterogeneity. In

contrast, the majority of the phase space volume is occupied by partially-coherent

attractor basins of larger volume. Accordingly, these oscillatory modes are far
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more stable than the fully-coherent state (Fig. 5.8(a–c)), and therefore far more

likely to support synchronized neural activity in real biological circuits. We showed

that the introduction of delayed inhibition boosted the capacity of inhibitory net-

works by a factor of TN/LN . It was subsequently shown by Nogaret and King

[266] that one can approximate this maximum capacity using the Stirling trans-

form as TN ∼ (N − 1)!/(ln 2)N . We can therefore say that the majority of the

phase space is filled with partially coherent attractors whose proportion increases

rapidly according to (ln 2)−N as the network size increases, demonstrating network

capacities far exceeding that of both winnerless competition networks (∼ (N−1)!)

[231] and Hopfield networks (∼ 0.14N) [267].

In summary, this study leads us to conclude that local cortical and hippocam-

pal microcircuits may have adapted to exploit the robustness of synchronization

by delayed inhibition versus the tunability of synchronization by fast-spiking in-

terneurons. We have demonstrated that mutual synaptic inhibition alone is suffi-

cient for the emergence of synchronization, but only in the presence of adequate

inhibition delay. These results are in agreement with experimental observations of

synchronization in GABAergic interneuron networks [69, 70].

Although we report the results of experiments on spiking inhibitory networks,

many of the same ideas may be extended to networks of bursting neurons. Indeed,

many important functional circuits in the nervous system rely on the phasic and

anti-phasic synchrony of bursting between network components [73]. Robust meth-

ods for the design of artificial networks with specific desired attractor modes in

both numerical and hardware neuron models therefore have a wide range of poten-

tial applications. In the final results chapter, we demonstrate a novel optimization

method for estimating the parameters of networks of bursting inhibitory neurons

such that the network hosts the desired oscillatory modes. As a proof-of-principle,

we apply the approach to the problem of designing a four-cell network generating

the precise sequence of heart chamber contractions observed in mammalian ECG

recordings.
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Chapter 6

Designing functional inhibitory

networks

6.1 Introduction

Central pattern generators (CPGs) are networks that generate rhythmic patterns

in which the component neurons burst with fixed phasic relationships [73, 74].

Studies of living CPGs have demonstrated that these networks (i) are composed

of fundamental building blocks based on mutual inhibition [268, 269]; (ii) are typ-

ically composed of neurons that undergo sequential activation, displaying what is

known as winnerless competition dynamics [231]. More recently, hardware CPGs

have been developed for various biomedical applications. An example in the field

of neuroprosthetics is the demonstration by Sharma et al. of an artificial CPG

emulating spinal cord CPG function that allowed the restoration of hand move-

ment in a quadriplegic patient [270]. The participant was able to initiate, sustain,

and switch between rhythmic and discrete finger movements of their own volition

[271]. Another example comes from Nogaret et al., who recently used an analogue

CPG device to reinstate respiratory sinus arrythmia (RSA) in rats, a natural form

of coupling in which heart rate synchronizes to respiration [54, 206]. They drove

RSA chronically in a conscious rat with induced heart failure, and found an im-

provement in cardiac function superior to that seen with monotonic cardiac pacing

of traditional pacemaker devices [206].



In this context, there is a growing need for robust methods for designing ar-

tificial CPG networks that output desired phase-locked patterns. In a functional

pattern-generating network, the phasic timing of the constituent neurons must

be precisely tuned. The sequential bursting of neurons in these networks de-

pends sensitively on the intrinsic dynamics of the component neurons themselves

as well as on the strengths and time-dependent properties of the synapses which

connect them [76]. This nonlinear dependence makes estimating all parameters

of a network model a formidable problem [272]. In previous chapters, nonlinear

optimization was used to estimate the parameters of single-neuron models (Chap-

ters 3, 4), but such methods quickly become intractable when optimizing large

networks of complex neurons [273, 274]. Recent work by Armstrong et al. at-

tempted to estimate the parameters of a three-neuron network using nonlinear

optimization, simultaneously fitting the full network model to membrane voltage

time series traces of the three constituent neurons [272]. During twin experiments,

it was observed that the cost function surface for this problem was riddled with lo-

cal minima, a finding which highlights the challenging nature of high-dimensional

nonlinear optimization [116].

In this chapter, we propose a solution to this challenge. We describe a novel

optimization method that allows all neurons in a CPG network to be optimized in-

dividually by first reducing them to their individual phase resetting curves (PRCs)

[78]. PRCs tabulate the extent to which a received synaptic input advances or de-

lays the next firing (or bursting) time in an oscillating neuron as a function of

where in the firing (bursting) cycle the input is received [79]. We show that the

problem of designing a CPG with specific phase-lags between the neurons can be

reduced to a problem concerning the properties of the individual neuron PRCs.

Each oscillator in the network may then be optimized individually and sequentially

such that each displays its required PRC. This method enables the estimation of

all neuron and synapse parameters of the network while avoiding the challenges as-

sociated with searching the high-dimensional parameter space of a whole-network

model. We apply our approach to the problem of estimating synaptic conductances

for a four-cell CPG designed to match the sequence of heart chamber contractions

in an ECG recording.

This chapter is organised as follows. The first section presents the background
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and methods required to arrive at the results, beginning with a description of

the network model used throughout this chapter. We simulate the full dynamics

available to the model CPG system, and present them using the same phase-lag

mapping technique used in the previous chapter. In these simulated phase por-

traits, the phase-locked modes of the network correspond to fixed-point attractors.

This is followed by a detailed overview of the concept of a phase resetting curve. In

the next section, we justify our claim that the question of network phase-lags can

be reduced to the properties of individual PRCs by showing that the PRCs alone

contain all the information necessary to predict the full network dynamics. We

do this by reproducing the simulated phase portraits with a model-free algorithm

that takes in user-defined initial phase-lags and uses the network PRCs to predict

firing times in subsequent cycles. We then turn to the main question of network

design. We begin with an explanation of how the shape of the individual neuron

PRCs determines the character of phase-locked network modes, and derive the set

of criteria that neuron PRCs must fulfill for the network dynamics to be stable.

We then describe the optimization-based method that we use to generate individ-

ual neurons with required PRCs, which we use in the final section to construct a

four-cell CPG. Finally, we conclude with possible directions for future work.

6.2 Methods

6.2.1 Model system

In this chapter, we consider networks of identical neurons coupled by inhibitory

chemical synapses. The neurons are described by an extended Morris-Lecar (ML)

model that includes a Ca2+-dependent K+ current that allows them to be param-

eterized in a bursting regime [275]. While the method we describe is applicable

to both spiking and bursting CPGs, in this chapter we use bursting neurons, as

this constitutes the more difficult of the two cases. In isolation, each individual

neuron displays periodic bursting with period T0 in response to a fixed stimulation

current (Fig. 6.1(a)). The membrane voltages obey the current balance equation:

Cm
dV

dt
= −ICa − IK − IKCa − IL − Isyn + Istim, (6.1)
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where Cm = 20 µF/cm2 is the neuron membrane capacitance and Istim = 45

µA/cm2 is the injected current. The leak current IL = gL(V − EL) has a con-

ductance gL = 2.0 mS/cm2; EL = −60 mV. The spike-generating Ca2+ and K+

voltage-dependent ionic currents (ICa and IK) are of the Hodgkin-Huxley type. The

transient calcium current is given by ICa = gCam(V − ECa), where the activation

variable m is assumed to respond instantaneously to changes in membrane volt-

age and has a steady-state response given by m∞ = 0.5[1 + tanh((V + 1.2)/18)];

gCa = 4.0 mS/cm2, ECa = 120 mV. The delayed rectifier current is given by

IK = gKn(V − EK), where the activation variable obeys the first-order kinetics:

dn/dt = ψ(0.5[1 + tanh((V − 12)/17.4)] − n)/τn; τn = 1/ cosh((V − 12)/34.8);

ψ = 0.23, gK = 8.0 mS/cm2, EK = −84 mV. For bursting dynamics, we include

IKCa = gKCaz(V − EK), where z = Ca/[Ca + 1] and Ca is the intracellular cal-

cium concentration which obeys dCa/dt = ε(−µICa − Ca); ε = 0.001, µ = 0.02,

gKCa = 0.25 mS/cm2. The synaptic currents are given by

Isyn = gsyns(V − Esyn), (6.2)

where gsyn is the maximal synaptic conductance and Esyn = −75 mV is the

synaptic reversal potential (Fig. 6.1(b)). The gating variable s represents the

fraction of docked synaptic neurotransmitters and obeys the first-order kinetics

ds/dt = αF (Vpre)(1 − s) − s/τsyn, where α = 6.25 ms−1, τsyn = 100 ms, and

F (Vpre) is a sigmoid function of the presynaptic membrane voltage F (Vpre) =

1/(1 + exp(−(Vpre − θsyn)/2)). The threshold parameter θsyn is the value that the

presynaptic membrane voltage must exceed for neurotransmitter release to occur.

Setting θsyn = 0 mV ensures that postsynaptic inhibition occurs only when the

presynaptic cell spikes [276].

6.2.2 Network configuration and dynamics

Mutual synaptic inhibition in CPG circuits leads to stable patterns of oscillation

in which the neurons phase-lock one another, bursting sequentially with fixed pha-

sic relationships. When designing artificial CPG networks we are interested in

tailoring the precise timings of these bursts relative to one another, correspond-
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Figure 6.1: (a) Membrane voltage
(black) evolution for an individual ML
neuron injected with tonic stimulation
current Istim = 45 µA/cm2. The neu-
ron displays bursting dynamics with pe-
riod T0. (b) Each spike from the presy-
naptic neuron (black) elicits neurotrans-
mitter binding to receptors in the post-
synaptic neuron, inducing an inhibitory
postsynaptic current Isyn that acts on
the postsynaptic neuron according to
Eq. 6.1. The blue trace corresponds to
the synaptic gating variable s(t).

ing, for example, to specific gaits or the timings of heart chamber contractions.

We first demonstrate these phase-locked dynamics by interconnecting three iden-

tical ML neurons with reciprocally inhibitory synapses (Fig. 6.2(a)). We simulate

the network (Eqs. 6.1, 6.2) and plot the membrane voltage of the three intercon-

nected cells over thirteen cycle periods (Fig. 6.2(b)), with the raster plot traces

representing neuronal spike times.

This network initially stabilises in a steady-state mode labeled A, in which the

bursting of N1 is followed by N2, which is followed by N3. In this stable mode the

bursting of N2 and N3 are delayed relative to that of N1 by ∆Φ = 1
3
T1 and ∆Φ =

2
3
T1, respectively. We refer to these delays as phase lags. The network will maintain

this stable mode unless it receives additional input. ‘Multistable’ CPG circuits

can simultaneously support several stable modes, and transient perturbations may

induce a transition from one stable pattern of behavior to another. We demonstrate

this property by allowing the network to stabilize and applying a brief current pulse

to neuron N2 (Fig. 6.2(b)). This perturbation switches the network to a second

stable mode, labeled B, in which the neurons fire in a different order.

In order to simplify the circuit analysis, following the approach of Chapter 5,

we visualize the full network dynamics in a two-dimensional phase lag map, recall-

ing the notation of the previous chapter. First, we explicitly define the phase lag

∆Φi1 for each neuron i as the time delay in burst initiation relative to that of the
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Figure 6.2: (a) Bursting Morris-Lecar neurons were interconnected with mutually in-
hibitory synapses, gsyn = 10 µS/cm2. (b) The network initially converged towards a
phase-locked mode (N1→N2→N3) labeled A. The application of a brief depolarizing
current pulse to neuron N2 switches the circuit to a second phase-locked mode, labeled
B, in which the neurons burst in a different order. Both modes of activity are stable
solutions of the network dynamics with a cycle period of T = T1.

reference neuron N1, normalised by the bursting period T1 (see Fig. 6.2(a)). Let

the onset of bursting in N1 define the start of a new cycle. The state of the system

in any given cycle may be defined as the the phase lag pair ∆ΦΦΦ = (∆Φ21,∆Φ31).

We can initialize the network in a particular phase lag state by staggering the on-

set of stimulation Istim for each cell. The phase lags in successive cycles can then

be measured as the system tends towards a stable mode of oscillation and this set

of evolving lags can be plotted as a trajectory in a 2D (∆Φ21,∆Φ31) coordinate

system. Fig. 6.3(a) shows the phase portrait of trajectories for a reciprocally-

coupled network with homogeneous synaptic strengths gsyn = 1 µS/cm2, where

each trajectory emanates from a different initialization of ∆ΦΦΦ. The state trajecto-

ries converge towards five attracting fixed points (or attractors) in the phase map,

each corresponding to a different stable mode of oscillation. Each attractor has a

color-coded ‘basin of attraction’, the set of initial phase lags for which the network

arrives in the corresponding stable mode. Fig. 6.3(b) shows the phase lag map for

a ring network, similar to the reciprocal CPG, but with the conductances of the

counterclockwise synapses set to gsyn = 0 µS/cm2. This CPG is still multistable,

but a smaller range of dynamics is observed, with only two attractors present.

By simulating the model equations and generating these phase lag maps, the

full dynamics of the networks have been visualized. In the first part of the results
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attractors, leaving only two attractors at (∆Φ21,∆Φ31) = (1

3 ,
2
3), and (2

3 ,
1
3).

section, we will show how the PRC of the constituent ML neurons contains all the

information needed to fully reproduce these phase portraits, thus justifying our

later reduction of network phase-lags to PRC properties. Before we do this, we

first describe the process that we use to generate the PRC for a single ML neuron.

6.2.3 Generation of PRCs

In this section, we describe the process of generating a PRC, which is illustrated

schematically in Fig. 6.4(a). In short, a single-oscillator PRC encodes the transient

effect of synaptic inhibition on the cycle period of a running oscillator. Specifically,

we wish to determine the effect of synaptic inhibition on a bursting ML neuron.

To this end, two bursting ML neurons are connected as shown, with a presynaptic

neuron N2 inhibiting a postsynaptic neuron N1. Initially, N1 is stimulated with
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Istim = 45 µA/cm2 and exhibits intrinsic bursting with a cycle period T0. This

constitutes our running oscillator. Subsequently, N2 is momentarily stimulated

such that it produces a single burst that arrives at some phase ϕ ∈ [0, 1] into the

bursting cycle of N1. The synaptic inhibition from N2 then acts to peturb N1,

temporarily lengthening or shortening its cycle period by some time ∆T , causing

its next burst to occur later or earlier than it otherwise would have. We denote

the transiently adjusted period in which this perturbation is received as T1. By

expressing this delay as a fraction of the typical cycle period T0, and repeating

this process for multiple phases ϕ, the phase resetting curve f(ϕ) = (T1(ϕ) −
T0)/T0 of the neuron can be plotted. Fig. 6.4(b) shows the PRC calculated for the

Morris-Lecar neuron at increasing synaptic strengths gsyn. The PRC for a given

neuron is dependent both on the strength of the synaptic input and on the intrinsic

properties of the neuron. To give a concrete example of how the PRC is computed

for the Morris-Lecar neuron, Fig. 6.4(c) shows membrane potential time series used

to calculate a single point of the PRC for synaptic strength gsyn = 20 µS/cm2. To

begin with, N1 (red line) undergoes bursting with cycle period T0 = 2282.6 ms,

until it is briefly inhibited by N2, which initiates bursting when N1 is at a phase

of ϕ = 0.762. If N1 had not received synaptic inhibition (gsyn = 0 µS/cm2), then

it would have continued to burst uninterrupted (grey dashed line) with period

T0. Instead, the inhibition delays the onset of the next burst by ∆T = 176.05ms.

We calculate the phase resetting for this system to be f(ϕ = 0.762) = ∆T/T0 =

7.71× 10−2. Computing the phase response for a range of values ϕ ∈ [0, 1] results

in a phase resetting curve (Fig. 6.4(b)).

6.3 Results

6.3.1 PRCs predict network dynamics

It has recently been demonstrated that the existence of synchronous modes of a

network can be predicted by an analysis of the PRCs of the constituent neurons

[277]. In this section, we justify our later use of PRC properties to estimate

neuron and synapse parameters by demonstrating that the PRCs of the constituent

neurons contain sufficient information to predict both the stable and transient
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than it otherwise would have (grey bar), depending on when it occurs. The change ∆T
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is received. (b) Example phase resetting curves f(ϕ) for an ML neuron at increasing
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network dynamics shown in Fig. 6.3(a). We do this by successfully predicting the

entire phase portrait solely using the neuron PRCs. We briefly describe the model-

free iterative algorithm [222] that we use to extract information from the PRC,

and show that it can successfully predict the full dynamics of our CPG network.

The only inputs to the algorithm are the PRCs of the component neurons, the

initial phase lags ∆Φ = (∆Φ21,∆Φ31) of the neurons, and the intrinsic bursting

period of each neuron. The iterator begins by determining which neuron(s) will

burst next (i.e. whichever oscillator has the shortest time remaining before reach-

ing a phase of one). Any oscillators that do not burst at this moment have their

phases incremented by the (normalised) time to this bursting event. Next, any

phase resetting that occurs as a result of the bursting neuron is subtracted from

these phases. Then, the phase of the bursting oscillator is reset to zero. This

completes one iteration of the algorithm. Once the program has iterated over

NB = 1000 bursting events, we can calculate the associated phase lags in each

cycle period and plot these evolving phase lags as a trajectory on a return map.

By initialising this algorithm with a host of different initial neuron phases ∆Φ, we

can probe the entire phase space of the network, as before (see Sec. 6.2.1). This

PRC-generated phase lag map is shown in Fig. 6.5, and it shows a remarkable

likeness to the observed network dynamics (Fig. 6.3a). This is strong evidence

in favour of our hypothesis that the PRC may be used to effectively analyse the

behaviour of CPG networks.

6.3.2 Stable modes correspond to specific PRC properties

In the previous section, we demonstrated that the PRC contains sufficient infor-

mation to predict the dynamics of a given network. In this section, we derive

the necessary criteria that the individual PRCs must fulfil for a network to display

stable oscillatory modes. We simplify our analysis by considering a ring network of

N identical oscillators with intrinsic period T0 in which each neuron is inhibited by

the preceding neuron in the ring, as in Fig. 6.3(b). In any phase-locked oscillatory

mode, by definition, the relative phases of the oscillators have ceased to change

(Fig. 6.2b). This is only possible if the cycle period of all neurons in the network

are equal after the phase resetting effects of synaptic inhibition are taken into ac-
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Figure 6.5: (a) PRC-generated phase lag map for the reciprocal network. Just as in the
observed network phase-lag map, there are five stable FPs at (∆Φ21,∆Φ31) = (0.5, 0.5),
(0, 0.5), (0.5, 0), (0.33, 0.66), and (0.66, 0.33). In addition to correctly predicting the
attractor locations, the PRC-generated map displays a strikingly similar trajectory flow
globally. (b) Enlarged area of the PRC-generated phase lag map corresponding to a
saddle point and its environment. (c) Enlarged area of the same saddle point in the
observed network phase lag map. Note the slight repositioning of the saddle point.
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count [222]. In this ring circuit, each neuron receives synaptic inhibition from the

preceding neuron only once per cycle. Therefore, if each neuron i receives synaptic

inhibition from the preceding neuron at a phase ϕi ∈ {ϕ1, ϕ2, . . . ϕN}, then the

new ‘entrained’ cycle period of all neurons in the network must be equal to

T1 = T0[1 + fi(ϕi)] (6.3)

in the stable phase-locked mode. In our system, all (identical) cells have the same

intrinsic period T0, and so Eq. 6.3 is equivalent to:

f1(ϕ1) = f2(ϕ2) = ... = fn(ϕn) = ... = fN(ϕN). (6.4)

This is our first existence criterion for phase-locked modes. In other words, all

neurons must have equal values of fi(ϕi) in order to posess the same entrained

period after phase resetting. It is important to note that the N values of ϕi need

not be equal. The second existence criterion for phase-locked modes is the trivial

fact that, since an oscillator must be in phase with itself, the sum of all the phase

differences around the ring must add up to the common entrained period (or some

integer multiple thereof). Our second existence criterion for a phase-locked mode

is therefore:
N∑
i=1

ϕi = m[1 + fn(ϕn)], (6.5)

for some integer m ∈ [0, N ]. Recall that our aim is to design an N -cell ring net-

work that converges to a specific stable rhythmic pattern. This is equivalent to

the insistence that each neuron i in the ring be phase-locked with its preceding

neuron such that it receives synaptic input at some desired phase ϕ. The above

criteria inform us that: (1) each oscillator i must possess a PRC which passes

through a specific (ϕi, fi(ϕi)) coordinate, and that (2) all fi(ϕi) must be equal.

We can then use this insight to perform N sequential parameter estimations, each

one optimizing the parameters of a single neuron to produce an oscillator with the

desired PRC characteristics. By analysing the network in terms of individual cells

in this way, we are able to avoid difficulties associated with estimating param-

eters of an entire network simultaneously. Before demonstrating this sequential
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approach in Sec. 6.3.4, however, we first demonstrate the nonlinear optimization

procedure used for each individual estimation.

6.3.3 Parameter estimation for phase response curves

We have shown that in order to build inhibitory networks with desired rhyth-

mic behaviours, it suffices to optimize individual neuron models such that they

each possess the required PRC characteristics. Assuming that we know what the

required PRC properties are, we can design artificial target data, Vdata(t), that

resembles the membrane voltage of a neuron with the required response, ∆T , to

a synaptic current Isyn(t) received at phase ϕ. Since the PRC is a function of

both the synaptic strength and the neuron parameters, gsyn (Fig. 6.4(b)), the op-

timization problem can then be stated as follows: given a numerical model of the

neuron and a parameter gsyn that scales the received synaptic current Ĩsyn(t), find

the set of parameters that most closely reproduces the artificial target data, where

Ĩsyn(t) = Isyn(t)/gsyn denotes the unscaled synaptic current (Eq. 6.2). We then

use an optimization-based parameter estimation method to fit our neuron model

to the target data. Just like in previous chapters, we use nonlinear optimization

software IPOPT, which seeks to minimize a least-squares mismatch between the

membrane voltage V (t) of a neuron model and the target data Vdata(t) by adjust-

ing the model neuron parameters ppp and the weight gsyn of the received synaptic

current. The mismatch is represented by the following cost function:

C(x(0),p, gsyn) =
1

2

N∑
i=0

(Vdata(ti)− V (ti,x(0),p, gsyn))2, (6.6)

for discrete time points ti = iT/N, i = 0 . . . N across the assimilation window of

duration T . This cost function is minimized subject to the neuron model equations

of motion (Eq. 6.1), which are held as constraints on the optimization procedure.

Note that the unscaled synaptic current Ĩsyn(t) provided to IPOPT replaces the

complex current protocol of previous chapters. When the minimization has been

performed, the adjusted set of K neuron parameters p = [p0, p1, ..., pK ] and the

synaptic weight parameter gsyn should correspond to a neuron-synapse pair which

matches the target data, producing a completed neuron model which possesses the
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desired PRC.

Ultimately, we wish to use parameter estimation to obtain neuron and synapse

parameters for novel phase-locked modes. However, we first tested the ability

of this method to correctly obtain the set of known parameters for the system

shown in Fig. 6.4(c). In these time series, N1 was inhibited by N2 at a phase of

ϕ = 0.762 with a synaptic strength gsyn = 20 µS/cm2. To simulate the situation in

which the parameters are unknown, we generated artificial target data by taking

the unperturbed N1 membrane voltage trace (dashed line) and extending the first

full cycle period by ∆T = 176.05 ms to mimic the phase resetting effect of the

synaptic inhibition Isyn(t). This target data is shown in Fig. 6.6 (black trace),

where the interpolated data of duration ∆T used to tune the phase response f(ϕ)

is highlighted in red. To reiterate, this is the target data that we would generate if

we wished to optimize a neuron model with a phase response f(0.762) = 7.71×10−2

(Fig. 6.4(c)). We aim to confirm that the estimation procedure can estimate all

neuron parameters in addition to the synaptic weight that would have generated

such a phase response.

Figure 6.6 shows the best fit of the model (green line) to the artificial target

data (black line) across a 8000-ms-long assimilation window. Note that the esti-

mated membrane voltage displays hyperpolarization coincident with the onset of

synaptic inhibition, as expected. The parameters extracted during the optimiza-

tion procedure are listed in Table 6.1. All neuron parameters are estimated to a

high level of accuracy, and a correct value of synaptic strength gsyn is obtained.

This experiment validates our method of artificially constructing membrane volt-

age data to estimate neuron and synapse parameters corresponding to a desired

phase response. It should be noted that since the PRC is a function of both neuron

parameters and synaptic strength, the neuron parameters could be fixed during

the minimization procedure, leaving gsyn as the only adjustable parameter. This

has the benefit of reducing the estimation to a single-parameter optimization prob-

lem. In the following section, we demonstrate the practical use of this method for

estimating synaptic parameters in a ring network of ML neurons.
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Figure 6.6: Assimilation of artificial ML target data. Membrane voltage oscillations
(black trace) of a ML neuron were extended with linear interpolation (red highlight)
of duration ∆T to mimic the phase resetting induced by (unscaled) synaptic inhibition
Ĩsyn(t) (blue trace) received at phase ϕ. The optimization seeks to estimate the param-
eters giving rise to such a phase response by adjusting model parameters and a synaptic
weight gsyn that scales the magnitude of Ĩsyn(t). The model was synchronized to the
target membrane voltage over a T = 8000-ms-long assimilation window (green trace).
The optimum fit produced an estimate of the model parameters shown in Table 6.1.
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Parameter ID Lower bound Upper bound True Estimate
Cm (µF/cm2) 20 20 20.0 20.0
gCa (mS/cm2) 0 20 4.0 3.97
gK (mS/cm2) 0 20 8.0 8.00
gKCa (mS/cm2) 0 20 0.25 0.236
gL (mS/cm2) 0 20 2.0 1.98
ECa (mV) 100 200 120.0 122.7
EK (mV) -100 -50 -84.0 -84.2
EL (mV) -100 -50 -60.0 -59.3
ψ 0.1 1 0.23 0.229
ε (×10−4) 1 100 10.0 9.82
µ 0.01 0.1 0.02 0.020
gsyn (µS/cm2) 0 100 20.0 21.7

Table 6.1: Parameters extracted from artificial target data for the ML neuron
compared with their true values (Sec. 6.2.1).

6.3.4 Application to ECG recordings

We now demonstrate how this approach can be used to design functional networks

by successfully fitting the phases of a four-cell ring CPG to particular features of

an ECG time series recording obtained from an anaesthetised dog. We build the

CPG using four of the ML neurons previously described (Sec. 6.2.1, Eq. 6.1) and

seek to find synaptic parameters that give rise to neuron dephasings matching the

relative phase lags of four target ECG features. In the optimizations performed in

this section, we therefore only allow the synaptic parameter gsyn to vary, holding

all other neuron parameters fixed.

The obtained ECG recording is shown in Fig. 6.7(a). The four target fea-

tures repeat every cycle, and we label each one in a consecutive cycle, for clarity.

The features that we are interested in are: the start (Pi) and end (Pf ) of the

P wave, corresponding to atrial depolarization (black and orange dashed lines,

respectively); the peak of the QRS complex (green line, Qp), corresponding to

ventricular depolarization; and, finally, the peak of the T wave (blue line, Tp),

representing ventricular repolarization. We first determine the relative phases of

the target features and choose to identify each of the four with the onset of burst-

ing in a different ML neuron. Deciding which of the four neurons will burst in
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Figure 6.7: (a) Stable ECG recording obtained from an anaesthetised dog. We attempt
to match four target features: the start (Pi) and end (Pf ) of the P wave, corresponding
to atrial depolarization; the peak of the QRS complex (Qp), corresponding to ventricular
depolarization; and the peak of the T wave (Tp), representing ventricular repolarization.
(b) Stable four-phase rhythm of the ‘completed’ CPG. The onset of bursting in the four
cells aligns exactly with the onset of the four target features of the ECG recording.

time with each target feature is an arbitrary choice. We choose to take Pi ≡ N1

as the zero-phase reference and calculate the phase lags of the three other features

relative to our reference to be:

∆ΦPf ,Pi = ∆Φ41 = 0.137 (6.7)

∆ΦQp,Pi = ∆Φ31 = 0.296 (6.8)

∆ΦTp,Pi = ∆Φ21 = 0.614. (6.9)

We begin by assuming that N4 inhibits N1 with a synaptic strength g4→1
syn = 1

µS/cm2. The choice of this first synaptic strength is arbitrary, as the remaining
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synaptic parameters will be estimated relative to it. Next, we note that in de-

sired network mode, N1 receives perturbations from N4 at a phase ϕ = 0.137

(Eq. 6.7). Having already generated the PRC of the ML neuron for gsyn = 1

µS/cm2 (Fig. 6.4), we can see that the phase response of this cell is f1(ϕ1 =

0.137) = −0.00321. We then note that in the desired stable mode, N2 would

receive perturbations from N1 at a phase of ϕ2 = (1 − 0.614) = 0.386 (Eq. 6.9).

We must therefore ensure that the synaptic weight g1→2
syn results in a phase re-

sponse for N2 of f2(0.386) = −0.00321, in order to satisfy the second criterion

Eq. 6.4; namely, that all of the neurons must have equal values of fi(ϕi). In order

to estimate g1→2
syn , we use the target data shown in Fig. 6.6(b), tuning the delay

∆T and adjusting the onset of synaptic inhibition to a phase of ϕ2 = 0.386. We

then minimize the cost function (Eq. 6.6) to obtain an estimated synaptic weight

g1→2
syn = 4.94 µS/cm2. Continuing this process around the ring, ensuring Eq. 6.4

is satisfied for each neuron, we obtain estimates for all remaining synapses, thus

completing our CPG network model. The estimated parameters for the synaptic

weights are listed in Table 6.2.

By forward-integrating the model completed with the estimated synaptic pa-

rameters, we can see whether the network predicts the ECG rhythm as desired.

Fig. 6.7(b) shows that the network exhibits stable bursting precisely aligned with

the ECG targets. It is important to note that while the phase-locked mode es-

timated here is clearly dynamically stable, the criteria in Eqs. 6.3 and 6.4 only

guarantee the existence of such a mode. It is possible that such an estimation

procedure would result in the existence of a mode which is unstable to dynamical

perturbations and noise. Future work should address this issue by deriving further

stability criteria that may be used when generating target data.

6.4 Discussion

Biological CPGs exhibit rhythic behaviour with precise phasic delays between

the onset of activity in each constituent neuron. The ability to design artificial

CPGs for integration with biological nervous systems requires robust methods for

estimating parameters giving rise to this rhythmic behaviour. We have demon-
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Parameter Value (µS/cm2)

g1→2
syn 4.94
g2→3

syn 7.53
g3→4

syn 2.80
g4→1

syn 1.00

Table 6.2: Synapse parameters for the four-cell identical neuron CPG estimated
using the PRC-based optimization method. Forward integrating the completed
network model with these parameters gives rise to a phase-locked mode that pre-
cisely matches the sequence of heart chamber contractions as recorded in the ECG
data.

strated that by reducing the network dynamics to the phase resetting curves of

its constituent neurons, one can estimate network parameters individually and

sequentially, avoiding the prohibitive computational costs associated with the op-

timization of whole-network models [272]. By fitting a network rhythm to four

target features of an ECG recording, we have demonstrated how this method can

be used for the development of functional CPGs with desired phasic timings.

In this chapter, we have used parameter estimation to extract parameters of

numerical conductance model neurons. This approach could be extended to con-

struct hardware CPGs by configuring the parameters of a solid state neuron model

instead. Hardware CPGs have recently been developed for biomedical applications,

including for the modulation of respiratory sinus arrhythmia in rats [53, 206]. This

CPG was inspired by the biological network that couples heartbeat and respiration

in the mammalian brainstem, however the solid state neurons in the network rep-

resented the simple Hodgkin-Huxley model [54]. The component neurons of this

biological CPG are well-known, and as such, membrane voltage data could easily

be acquired from these respiratory cells [105]. Although the methods of Chapter 4

could be used to replicate the full dynamics of the individual neurons in-silico, the

completed solid-state models would need to be coupled using appropriate synaptic

parameters to replicate the respiratory CPG in full detail. We propose that the

method presented here could be used to construct the full solid-state network that

gives rise to the necessary phasic rhythms.
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The estimation method developed in this chapter makes use of existence cri-

teria to predict the steady state modes supported by the network. These criteria

determine whether or not PRCs of a certain shape give rise to phase-locked dy-

namics, but give no indication whether or not these modes will be stable [222].

Dror et al. [278] established a criterion for determining the local stability of a

steady-state mode of a ring network based on PRCs by deriving local stability re-

sults. They use an iterative algorithm, similar to the one used in Sec. 6.2.2, which

they describe as a nonlinear discrete time map that defines the values of phase dif-

ferences in the following cycle in terms of their values in the present cycle. They

use the Stable Manifold Theorem [279], which relates the stability of the nonlin-

ear map to that of its local linear approximation, and show that mode stability

depends on the eigenvalues of the Jacobian matrix of the map itself [278]. Using

these results, they calculate that large positive or negative PRC slopes generally

decrease stability, while slopes in the range (0,1) usually increase stability. In

practise, when designing CPGs, it suffices to test post-hoc whether the estimated

parameter sets result in stable or unstable network modes. However, the work

presented in this chapter could be extended to take additional stability criteria of

the PRCs into account during the estimation process. This would correspond to

further constraints on the construction of the artificial target data used to estimate

synaptic parameters. The target data used in this chapter helps to construct a

PRC which passes through a single (ϕ,f(ϕ)) point. Since these stability criteria

relate to PRC slopes, the target data would need to constraint at least two points

on the PRC. By using a longer assimilation window encompassing two separate

synaptic perturbations in consecutive cycles, these more complex stability criteria

could be incorporated.

In summary, the work in this chapter paves the way for a hardware imple-

mentation of artificial networks designed for integration with biological nervous

systems. The CPG networks considered in this work were composed of identical

ML neurons. Future work may seek to relax this assumption, which could enable

the building of networks composed of different neuron types, further expanding the

range of dynamics of artificial CPG designs. By combining this approach with the

methods described in Chapter 4, robust hardware CPG networks can be designed.
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Chapter 7

Conclusions and Outlook

7.1 Conclusions

In this thesis, we have used constrained nonlinear optimization and neuromor-

phic engineering to address several outstanding questions relating to parameter

estimation and neurophysiology. We began by studying the problem of multi-

valued parameter solutions in the optimization of conductance-based neuron mod-

els, demonstrating that sub-optimal solutions can be distinguished from optimal

parameter sets under appropriate external stimulation. We then analysed the to-

pography of the cost function in nonlinear inverse problems, and quantified the

effect of experimental and model error on local and global minima in the search

space. Our results contrast with and complement earlier work which describes the

difficulties associated with finding a single global minimum when estimating the

parameters of biological systems [33, 136]. We describe the conditions under which

these degeneracies can be broken and prescribe a novel method for improving con-

vergence towards the optimal solution. We then applied this estimation framework

to the optimization of neuromorphic hardware. By synchronizing solid state neu-

ron models to recorded membrane voltage oscillations of hippocampal and respi-

ratory neurons, we constructed silicon neurons that replicated the exact response

of their biological counterparts. Previous attempts to build solid state neurons

have managed to reproduce a number of qualitative features of membrane voltage

dynamics such as bursting [280] and spike-frequency adaptation [46], but could



not replicate the behaviour of individual cells in complete detail. In contrast, the

novel neuromorphic ion channel design presented here allows our devices to quan-

titatively predict membrane oscillations to an unprecedented degree of accuracy

[81]. These results pave the way towards the high-fidelity replication of synthetic

neuromorphic circuits. We demonstrated the utility of these circuits for investigat-

ing open questions in the field of neuroscience by constructing mutually inhibitory

networks to probe the mechanisms underlying recently observed inhibition-driven

synchrony. We arrived at two complimentary mechanisms - synaptic inhibition

delay, and high-frequency entrainment - that are consistent with experimental

observations [70], by performing high-resolution parameter sweeps in real-time.

These brute-force approaches are necessary for highly nonlinear systems, and the

computational time associated with software simulations can be prohibitive [76].

When designing functional network models, this nonlinearity makes estimating

synaptic parameters a challenge. We presented a novel estimation methodology

that involves reducing neurons in inhibitory networks to their respective phase

response curves, and avoids the well-known problem of cost function minima when

optimizing an entire network model [272].

7.2 Future work

Throughout this thesis, we have been optimizing the parameters of conductance

models composed of a single isopotential compartment. Although we find that

these models are sufficient for predicting the dynamics of hippocampal and respi-

ratory neurons, there may be many classes of neurons for which a single compart-

ment model is insufficient. For example, in vivo, dendrites are the predominant

receiving sites for synaptic signals. Incoming stimulation can activate dendritic

calcium channels, eliciting spikes that forward propagate to the soma [210]. One

natural extension of the work presented here would be to expand the conductance

model to describe the active properties of dendritic compartments. Such mod-

els could have a closer correspondence with the underlying biophysical properties

of neurons and could even embed molecular signaling pathway models which are

important for studying synaptic plasticity and long-term potentiation of synap-
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tic strengths [281]. Neuromorphic circuitry describing calcium AHP channels has

been previously described [81], and could be combined with a dendritic leak cur-

rent to mimic cell behaviour. By expanding the models in this way, additional

complex dynamics that are missing from our implementation could be realized

in-silico. Working with multi-compartmental models would certainly make the

inference problem more challenging, with an increasing number of free parame-

ters required to describe the larger system. Regardless, we suggest that the novel

methodology proposed in the Chapter 3 could be utilised to improve convergence

during optimization.

In Chapter 4, we characterised individual respiratory neurons on a neuromor-

phic chip using data assimilation. We noted that this achievement has relevance for

bioelectronic medicine, which requires low power implants that adapt and respond

to physiological feedback in real time and in an identical way to real neurons. The

next step for this technology would be to characterise the multiple neurons that

constitute the respiratory brain stem network [105]. These optimized respiratory

neurons could then be coupled together using neuromorphic synapses [181], with

the ultimate aim of interfacing functional silicon networks with biological nervous

systems as a novel therapy for chronic biocircuit disease. Synthetic central pattern

generator hardware has already shown promise in the case of cardiac pacemaking.

Pacing with silicon neurons was recently found to increase cardiac output in rats

with left ventricular dysfunction [206] by reinstating respiratory sinus arrhythmia,

the loss of which is a strong prognostic indicator of cardiovascular pathology. By

substituting the neurons in these devices with silicon networks embodying brain-

stem respiratory dynamics, it is hoped that these adaptive pacemakers would pro-

vide naturalistic cardiac pacing superior to the monotonic pacemaking of current

cardiac pacemakers [53].
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[64] G Buzsáki et al. “Oscillatory and intermittent synchrony in the hippocam-

pus: relevance to memory trace formation”. In: Temporal coding in the brain.

Springer, 1994, pp. 145–172.

146



[65] Mario Galarreta and Shaul Hestrin. “Spike transmission and synchrony

detection in networks of GABAergic interneurons”. In: Science 292.5525

(2001), pp. 2295–2299.

[66] Roger D Traub et al. “Gap junctions between interneuron dendrites can en-

hance synchrony of gamma oscillations in distributed networks”. In: Journal

of Neuroscience 21.23 (2001), pp. 9478–9486.

[67] Nicolas Brunel and Xiao-Jing Wang. “What determines the frequency of

fast network oscillations with irregular neural discharges? I. Synaptic dy-

namics and excitation-inhibition balance”. In: Journal of neurophysiology

90.1 (2003), pp. 415–430.

[68] Bidesh K Bera, Dibakar Ghosh, and Tanmoy Banerjee. “Imperfect traveling

chimera states induced by local synaptic gradient coupling”. In: Physical

Review E 94.1 (2016), p. 012215.

[69] Jay R Gibson, Michael Beierlein, and Barry W Connors. “Functional prop-

erties of electrical synapses between inhibitory interneurons of neocortical

layer 4”. In: Journal of neurophysiology (2005).

[70] Hang Hu, Yunyong Ma, and Ariel Agmon. “Submillisecond firing synchrony

between different subtypes of cortical interneurons connected chemically

but not electrically”. In: Journal of Neuroscience 31.9 (2011), pp. 3351–

3361.

[71] Yunyong Ma et al. “Distinct subtypes of somatostatin-containing neocorti-

cal interneurons revealed in transgenic mice”. In: Journal of Neuroscience

26.19 (2006), pp. 5069–5082.

[72] Eve Marder and Adam L Taylor. “Multiple models to capture the variability

in biological neurons and networks”. In: Nature neuroscience 14.2 (2011),

pp. 133–138.

[73] Eve Marder and Dirk Bucher. “Central pattern generators and the control

of rhythmic movements”. In: Current biology 11.23 (2001), R986–R996.

[74] Ronald M Harris-Warrick. “General principles of rhythmogenesis in cen-

tral pattern generator networks”. In: Progress in brain research. Vol. 187.

Elsevier, 2010, pp. 213–222.

147



[75] Eve Marder et al. “Invertebrate central pattern generation moves along”.

In: Current Biology 15.17 (2005), R685–R699.

[76] Jeremy Wojcik et al. “Key bifurcations of bursting polyrhythms in 3-cell

central pattern generators”. In: PloS one 9.4 (2014).

[77] THELMA L Williams et al. “Forcing of coupled nonlinear oscillators: stud-

ies of intersegmental coordination in the lamprey locomotor central pattern

generator”. In: Journal of neurophysiology 64.3 (1990), pp. 862–871.

[78] Roberto F Galán, G Bard Ermentrout, and Nathaniel N Urban. “Effi-

cient estimation of phase-resetting curves in real neurons and its signifi-

cance for neural-network modeling”. In: Physical review letters 94.15 (2005),

p. 158101.

[79] Carmen C Canavier. “Phase response curve”. In: Scholarpedia 1.12 (2006),

p. 1332.

[80] Ashok S Chauhan, Joseph D Taylor, and Alain Nogaret. “Dual mechanism

for the emergence of synchronization in inhibitory neural networks”. In:

Scientific reports 8.1 (2018), pp. 1–9.

[81] Kamal Abu-Hassan et al. “Optimal solid state neurons”. In: Nature com-

munications 10.1 (2019), pp. 1–13.

[82] B. Hille. Ionic Channels of Excitable Membranes. Sinauer Associates, 1984.

isbn: 9780878933228. url: https://books.google.co.uk/books?id=

AU9RAAAAMAAJ.

[83] Dale Purves et al. “Neuroscience. 4th”. In: Sunderland, Mass.: Sinauer. xvii

857 (2008), p. 944.

[84] John Rubenstein and Pasko Rakic. Patterning and Cell Type Specification

in the Developing CNS and PNS: Comprehensive Developmental Neuro-

science. Vol. 1. Academic Press, 2013.

[85] David C Gadsby. “Ion channels versus ion pumps: the principal difference,

in principle”. In: Nature reviews Molecular cell biology 10.5 (2009), pp. 344–

352.

148

https://books.google.co.uk/books?id=AU9RAAAAMAAJ
https://books.google.co.uk/books?id=AU9RAAAAMAAJ


[86] R Goldshlegger et al. “The effect of membrane potential on the mammalian

sodium-potassium pump reconstituted into phospholipid vesicles.” In: The

Journal of Physiology 387.1 (1987), pp. 331–355.

[87] James S Trimmer and Kenneth J Rhodes. “Localization of voltage-gated ion

channels in mammalian brain”. In: Annu. Rev. Physiol. 66 (2004), pp. 477–

519.

[88] David J Schulz, Jean-Marc Goaillard, and Eve Marder. “Variable channel

expression in identified single and electrically coupled neurons in different

animals”. In: Nature neuroscience 9.3 (2006), pp. 356–362.

[89] Cengiz Günay, Jeremy R Edgerton, and Dieter Jaeger. “Channel density

distributions explain spiking variability in the globus pallidus: a combined

physiology and computer simulation database approach”. In: Journal of

Neuroscience 28.30 (2008), pp. 7476–7491.

[90] Michael C Vanier and James M Bower. “A comparative survey of automated

parameter-search methods for compartmental neural models”. In: Journal

of computational neuroscience 7.2 (1999), pp. 149–171.

[91] Clay M Armstrong and Bertil Hille. “Voltage-gated ion channels and elec-

trical excitability”. In: Neuron 20.3 (1998), pp. 371–380.

[92] Walther Nernst. “Die elektromotorische wirksamkeit der jonen”. In: Zeitschrift

für physikalische Chemie 4.1 (1889), pp. 129–181.

[93] Walther Nernst. Experimental and theoretical applications of thermodynam-

ics to chemistry. C. Scribner’s sons, 1907.

[94] Martin Pospischil et al. “Minimal Hodgkin–Huxley type models for different

classes of cortical and thalamic neurons”. In: Biological cybernetics 99.4-5

(2008), pp. 427–441.

[95] Eric B Hendrickson, Jeremy R Edgerton, and Dieter Jaeger. “The use of

automated parameter searches to improve ion channel kinetics for neural

modeling”. In: Journal of computational neuroscience 31.2 (2011), pp. 329–

346.

149



[96] Alon Korngreen and Bert Sakmann. “Voltage-gated K+ channels in layer 5

neocortical pyramidal neurones from young rats: subtypes and gradients”.

In: The Journal of physiology 525.3 (2000), pp. 621–639.

[97] Roger D Traub et al. “A model of a CA3 hippocampal pyramidal neuron

incorporating voltage-clamp data on intrinsic conductances”. In: Journal of

neurophysiology 66.2 (1991), pp. 635–650.

[98] David A McCormick et al. “Comparative electrophysiology of pyramidal

and sparsely spiny stellate neurons of the neocortex”. In: Journal of neu-

rophysiology 54.4 (1985), pp. 782–806.

[99] ER Kandel and WA Spencer. “Electrophysiology of hippocampal neurons:

II. After-potentials and repetitive firing”. In: Journal of Neurophysiology

24.3 (1961), pp. 243–259.

[100] Jorge Golowasch et al. “Failure of averaging in the construction of a conductance-

based neuron model”. In: Journal of neurophysiology 87.2 (2002), pp. 1129–

1131.

[101] Ryota Kobayashi, Yasuhiro Tsubo, and Shigeru Shinomoto. “Made-to-order

spiking neuron model equipped with a multi-timescale adaptive threshold”.

In: Frontiers in computational neuroscience 3 (2009), p. 9.

[102] Peter Dayan, Laurence F Abbott, et al. “Theoretical neuroscience: com-

putational and mathematical modeling of neural systems”. In: Journal of

Cognitive Neuroscience 15.1 (2003), pp. 154–155.

[103] Shimon Marom and LF Abbott. “Modeling state-dependent inactivation of

membrane currents”. In: Biophysical journal 67.2 (1994), pp. 515–520.

[104] Johan F Storm. “Action potential repolarization and a fast after-hyperpolarization

in rat hippocampal pyramidal cells.” In: The Journal of physiology 385.1

(1987), pp. 733–759.

[105] Davi JA Moraes, Daniel B Zoccal, and Benedito H Machado. “Medullary

respiratory network drives sympathetic overactivity and hypertension in

rats submitted to chronic intermittent hypoxia”. In: Hypertension 60.6

(2012), pp. 1374–1380.

150



[106] Eugen M. Izhikevich. Dynamical systems in neuroscience: the geometry of

excitability and bursting. MIT University Press, 2007.

[107] Christine Grienberger and Arthur Konnerth. “Imaging calcium in neurons”.

In: Neuron 73.5 (2012), pp. 862–885.

[108] JR Huguenard. “Low-threshold calcium currents in central nervous system

neurons”. In: Annual review of physiology 58.1 (1996), pp. 329–348.

[109] Kerry L Zbicz and Forrest F Weight. “Transient voltage and calcium-

dependent outward currents in hippocampal CA3 pyramidal neurons”. In:

Journal of neurophysiology 53.4 (1985), pp. 1038–1058.

[110] David A McCormick and John R Huguenard. “A model of the electro-

physiological properties of thalamocortical relay neurons”. In: Journal of

neurophysiology 68.4 (1992), pp. 1384–1400.

[111] John Rinzel and G Bard Ermentrout. “Analysis of neural excitability and

oscillations”. In: Methods in neuronal modeling 2 (1998), pp. 251–292.

[112] G Bard Ermentrout and David H Terman. Mathematical foundations of

neuroscience. Vol. 35. Springer Science & Business Media, 2010.

[113] Erik De Schutter. Computational modeling methods for neuroscientists. The

MIT Press, 2010.

[114] Asaf Gal et al. “Dynamics of excitability over extended timescales in cul-

tured cortical neurons”. In: Journal of Neuroscience 30.48 (2010), pp. 16332–

16342.

[115] F Bouttier and P Courtier. “Data assimilation concepts and methods March

1999”. In: Meteorological training course lecture series. ECMWF 718 (2002),

p. 59.

[116] Henry Abarbanel. Predicting the future: completing models of observed com-

plex systems. Springer, 2013.

[117] Sebastian Reich and Colin Cotter. Probabilistic forecasting and Bayesian

data assimilation. Cambridge University Press, 2015.

151



[118] Thomas Deneux et al. “Accurate spike estimation from noisy calcium sig-

nals for ultrafast three-dimensional imaging of large neuronal population

in-vivo”. In: Nature Communications 7 (2016), p. 12190.

[119] Agus Hartoyo et al. “Parameter estimation and identifiability in a neu-

ral population model for electro-cortical activity”. In: PLoS Computational

Biology 15 (2019), e1006694.

[120] Quentin JM Huys, Misha B Ahrens, and Liam Paninski. “Efficient estima-

tion of detailed single-neuron models”. In: Journal of neurophysiology 96.2

(2006), pp. 872–890.

[121] Agoston E Eiben, James E Smith, et al. Introduction to evolutionary com-

puting. Springer, 2003.

[122] M. Pospischil et al. “Minimal Hodgkin-Huxley type models for different

classes of cortical and thalamic neurons”. In: Biol. Cybern. 99 (2008), p. 427.

[123] Louis M Pecora and Thomas L Carroll. “Synchronization in chaotic sys-

tems”. In: Physical review letters 64.8 (1990), p. 821.

[124] Lorenz T Biegler and Victor M Zavala. “Large-scale nonlinear programming

using IPOPT: An integrating framework for enterprise-wide dynamic op-

timization”. In: Computers & Chemical Engineering 33.3 (2009), pp. 575–

582.

[125] Philip E Gill, Walter Murray, and Michael A Saunders. “SNOPT: An SQP

algorithm for large-scale constrained optimization”. In: SIAM review 47.1

(2005), pp. 99–131.

[126] Stephen Boyd, Stephen P Boyd, and Lieven Vandenberghe. Convex opti-

mization. Cambridge university press, 2004.

[127] Christian Darken and John Moody. “Towards faster stochastic gradient

search”. In: Advances in neural information processing systems. 1992, pp. 1009–

1016.

[128] Henry DI Abarbanel et al. “Dynamical state and parameter estimation”. In:

SIAM Journal on Applied Dynamical Systems 8.4 (2009), pp. 1341–1381.

152
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