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Abstract— The high cost, low yield, and low stability
of nano-materials significantly hinder the application and
development of memristors. To promote the application of
memristors, researchers proposed a variety of memristor
emulators to simulate memristor functions and apply them
in various fields. However these emulators lack nonvolatile
characteristics, limiting their scope of application. This
paper proposes an innovative nonvolatile memristor cir-
cuit based on complementary metal-oxide-semiconductor
(CMOS) technology, expanding the horizons of memristor
emulators. The proposed memristor is fabricated in a re-
configurable array architecture using the standard CMOS
process, allowing the connection between memristors to
be altered by configuring the on-off state of switches. Com-
pared to nano-material memristors, the CMOS nonvolatile
memristor circuit proposed in this paper offers advantages
of low manufacturing cost and easy mass production,
which can promote the application of memristors. The ap-
plication of the reconfigurable array is further studied by
constructing an Echo State Network (ESN) for short-term
load forecasting in the power system.

Index Terms— Memristor, reconfigurable array, echo
state network, power load forecasting

I. INTRODUCTION

W ITH the rise of artificial intelligence era, the ever-
increasing amount of calculations challenges the per-

formance of computer hardware. Traditional computers using
the von Neumann architecture suffer from the von Neumann
bottleneck, which arises from the separation of storage and
computation. To overcome this issue, researchers are exploring
new computing architectures, and one promising solution is
the in-memory computing architecture based on memristors.
Memristors possess nonvolatility, nonlinearity, and scalability,
which make them suitable for various applications including
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neural dynamic systems [1]–[3], neuromorphic systems [4]–
[6], and chaotic oscillation circuits [7]–[9]. Accordingly, the
memristor array, with the characteristics of computing in mem-
ory, has been highly expected by researchers from academia
and industry to break through the von Neumann bottleneck.

In the past decade, research into nano-scale materials with
resistive switching functions has promoted the epoch-making
development of memristors. Notably, these materials encom-
pass a diverse array of innovations, including electrochemical
metallization (ECM) memristors, thermochemical memristors,
chalcogenide memristors, graphene oxide memristors, and
more. These pioneering investigations, grounded in distinct
resistive switching mechanisms, have not only enriched our
understanding but also invigorated the landscape of memristor-
based in-memory computing. However, these memristors con-
tinue to face serious challenges in terms of fabrication. Factors
such as the limitations of miniaturization in the manufacturing
process and the ability to control the uniformity of multiple
devices have constrained their scalability. Additionally, issues
related to the stability of their resistance states and the
reproducibility of their switching characteristics have hindered
their reliability. Furthermore, the compatibility of memristor
materials with standard microelectronics process has con-
strained their integration. The significant gap in memristor
fabrication severely restricts research and broader application
of memristors.

A memristor emulator is an electronic circuit with resistive
switching capabilities and constructed using existing electronic
components. Its primary purpose is to simulate memristor
functions and explore application scenarios based on the
resistive switching mechanism. This is particularly valuable
given the current limitations surrounding the large-scale de-
ployment of physical memristors. The operational principle
of a memristor emulator circuit relies on the assistance of
peripheral circuits to store or release the charge in a capacitor,
effectively simulating the changes in the resistance state of the
memristor. It is crucial to note that this memristor emulator is
not dedicated to simulating the resistive switching mechanism
of a specific material but rather to capturing the universal
characteristics of memristors, namely resistive switching and
non-volatility. The motivation behind this article lies in lever-
aging the existing CMOS process to design a non-volatile
memristor circuit, enabling the study of reconfigurable arrays
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based on devices with resistive switching characteristics and
their applications in neural networks.

Memristors are expected to break through the von Neu-
mann bottleneck due to the parallel computing capabilities of
memristor array units, which utilize the basic voltage-current
relationship to complete parallel computing functions [10].
Over the past decade, there has been rapid development in
research and applications based on memristor array structures.
Kim et al. integrated a memristive crossbar array on top of
a CMOS chip that can store complex binary and multilevel
pixel bitmap images [11]. Hu et al. explored the potential of a
memristor crossbar array that functions as an auto-associative
memory and applied it to brain-state-in-box neural networks.
Their proposed training scheme can alleviate or even eliminate
the effects of noise [12]. Prezioso et al. utilized a metal-oxide
memristor array to perform single-layer perception with the
delta-learning rule and achieved the classification of 3 × 3-
pixel black/white images into three classes successfully [13].
Although various types of neural networks, on-chip learning
algorithms, and application scenarios have been rapidly de-
veloped over the past decade, there is still a drawback that
limits the flexible application of memristor arrays. Once the
circuit structure is fixed after manufacturing, the connection
between the circuit cannot be changed, resulting in a lack
of reconfigurability. It is of great value to develop a re-
configurable memristor array. Therefore, this paper proposes
a reconfigurable array based on CMOS memristor circuit
to facilitate the application of the reconfigurable memristor
arrays.

Electricity loads exhibit fluctuations, and the optimal and
efficient storage of generated power is not always feasible.
Consequently, it becomes imperative to utilize the generated
power at the time of production to satisfy the prevailing de-
mand. This necessity underscores the significance of electricity
load forecasting for power generation entities as it enables
them to estimate the total electricity demand. The need for
load forecasting can be fully demonstrated from the following
aspects. First and foremost, it plays a pivotal role in ensuring
the stability of the electrical grid, benefiting both power
utilities and grid operators. Furthermore, load forecasting aids
in the optimization of generation resource allocation, which
encompasses various sources such as coal, natural gas, wind
and solar power. Lastly, as renewable energy sources like wind
and solar continue to integrate into the grid, load forecasting
becomes indispensable for harmonizing intermittent genera-
tion with fluctuating demand. In this work, we are committed
to addressing this critical need by harnessing the capabilities of
our designed reconfigurable memristor array. This innovation
promises to enhance the accuracy and timeliness of load
forecasting, thereby benefiting power utilities and contributing
to a more efficient and sustainable energy ecosystem.

Power load forecasting is a challenging task due to the
nonlinear and complex nature of load data. Conventional
forecasting techniques [14] often struggle to capture the in-
tricate patterns effectively. The echo state network (ESN)
shows significant promise in addressing such nonlinearity
by leveraging a dynamic reservoir of neurons with random
connections [15]. This reservoir inherently enables the net-

work to capture complex temporal dependencies in the data.
Underpinned by the unique advantages offered by memristor-
based in-memory computing technology, ESNs are particularly
well-suited for implementation on memristor-based hardware
due to their ability to exploit the computational power of
recurrent networks while offering ease of training and low
energy consumption [16]. However, a prevailing challenge
arises in combining ESNs with the memristor array structure.
To facilitate hardware implementation, the modified ESN is
adopted for deployment on the conventional memristor cross-
bars. A serious problem is that the stability of the modified
ESN has not been strictly proven, which may result in un-
stable phenomena when using these modified ESN memristor
arrays [17]. Benefiting from the reconfigurable property of the
designed memristor array in this paper, we can effectively
solve this problem by implementing the classical ESN on
the reconfigurable memristor array while ensuring that the
spectral radius of weight matrix is less than one to maintain
the network stability [18].

Herein, a novel CMOS-based voltage differential current
conveyor transconductance amplifier (VDCCTA) circuit is
proposed. The circuit exhibits the following characteristics:
in the absence of an input voltage signal, the output resistance
of its Z-port tends to infinity, while in the presence of
an input voltage signal, the output resistance of its Z-port
approaches a finite value. This unique characteristic ensures
that the charge stored in the capacitor is not leaked when
the capacitor is connected to the Z-port without an input
voltage signal, thereby creating the nonvolatile characteristics
of the designed memristor. Based on the proposed VDCCTA,
we designed grounded and floating nonvolatile memristor
circuits. These designed memristor circuits have the charac-
teristics of simple structures and flexibility. Their hysteresis
loop characteristics and nonvolatile characteristics have been
verified. Furthermore, using the designed memristor circuit,
we developed a reconfigurable memristor array with size of
64×64, designed and fabricated in the Semiconductor Manu-
facturing International Corporation (SMIC) 0.18µm CMOS
process. By programming the switches turning on and off
in the memristor array, the memristor connection structure
within the array can be configured, making the memristor array
structure more flexible. Finally, a memristive ESN hardware
implementation was performed and applied to the short-term
power load forecasting. By constructing the classical ESN on
the reconfigurable memristor array, the stability of the network
can be ensured by setting the spectral radius of weight matrix
in the proper range [18].

The remaining sections of this article are as follows. Section
II proposes a CMOS VDCCTA circuit and constructs a non-
volatile memristor based on the VDCCTA. The pinched loops
and the nonvolatile characteristics of the designed memristor
are verified in this section. Section III constructs a reconfig-
urable memristor array. In this section the principles of the
reconfigurable array configuration and the measured hardware
results are displayed. Integrated circuit implementation and
verification of the reconfigurable memristor array are depicted
in Section IV. The application of the reconfigurable memris-
tor array on power load forecasting is explained in Section
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Fig. 1. Circuit symbol of VDCCTA and internal structure of the
CMOS based VDCCTA, (a) symbol of the VDCCTA, (b) CMOS circuit
of VDCCTA.

V. Section VI summarizes the gap between the memristor
emulator and the physical memristors, and compares it with
some existing nonvolatile memory devices. Furthermore, the
research direction in the task of power load forecasting is
discussed. Section VII summarizes the whole paper and looks
forward to the future work.

II. VDCCTA BASED NONVOLATILE MEMRISTOR CIRCUIT

A. VDCCTA
The proposed VDCCTA circuit in this work is mainly

composed of three parts: the differential voltage input port,
current conveyor and transconductance amplifier. The circuit
symbol of the VDCCTA is shown in Fig.1(a). The terminal Y1
and Y2 are the differential voltage input port, which are used to
convert the input voltage to current. Output terminals X and Z
transmit current to externally connected passive components.
It should be noted that the terminal Z will be connected with
a capacitor to achieve charge storage and release, which is
essential for the nonvolatility of the memristor circuit. In order
to ensure that the charge stored in the capacitor will not be
released from the Z-terminal when there is no signal input
to the circuit, a bi-directional MOS switch is designed in
the VDCCTA to control the charge of capacitor. The voltage
input terminal S is used to control the conduction and cut-off
of the switch. The input terminal G is used to control the
transconductance of the transconductance amplifier through
the input bias voltage. O+ and O− are two current output
terminals of transconductance amplifier.

The CMOS based implementation of VDCCTA is depicted
in Fig.1(b). This CMOS VDCCTA is composed by differential
voltage input(M1−M8), current conveyor(M11−M14), analog
switch(M15−M18), transconductance amplifier(M19−M26),
and biasing circuit(M9,M10). The following expressions can
be obtained according to the schematic shown in Fig.1(b).

VX = VY 1 − VY 2

IZ =

{
IX if S is on
0 if S is off

IO+ = −IO− = gmVX

(1)

where gm is the gain of transconductance amplifier. All of the
transistors in Fig.1(b) are working in the saturation region.

B. VDCCTA based memristor circuit
The memristor circuits with grounded structure and floating

structure are designed using the proposed VDCCTA circuit.
Firstly, let us consider the grounded type memristor circuit

as shown in Fig.2(a). It contains only one capacitor (C), two
resistors (R1 and R2) and the proposed VDCCTA. The double
input single output switch K is used to control the form of
incremental and decremental changes of the memconductance.
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Fig. 2. (a) Grounded type memristor constructed by the VDCCTA, (b)
floating type memristor constructed by the VDCCTA.

From the terminal equation of the VDCCTA, we can get
the relationship between input voltage Vi and current Ii of the
memristor emulator in Fig.2(a) as

Vi = (Ii ± Io)R1 = (Ii ±K(VDD − VG + |VTP |)Vi)R1.
(2)

The positive and negative of the current Io in (2) depends on
the terminal of the switch K. When the switch selects the O+

terminal, the current Io takes a positive sign, and when the
switch selects the O− terminal, the current Io takes a negative
sign. Owing to the connection of the terminal G and terminal
Z to the capacitor, the transconductance control voltage VG
can be expressed as

VG = VC =
1

C

∫
Vi
R2

dt =
1

R2C
Qi. (3)

Substituting (3) into (2) we can get

Vi = (Ii ±K(VDD −
1

R2C
Qi + |VTP |)Vi)R1. (4)

Therefore, the memconductance of the proposed circuit is
found as

W =
Ii
Vi

=
1

R1
±K(

1

R2C
Qi − VDD − |VTP |). (5)

where the positive sign is achieved by selecting the O+ feed-
back to the input terminal, corresponding to the incremental
memconductance memristor, and the negative is achieved by
selecting the O− feedback to the input terminal, corresponding
to the decremental memconductance memristor.

The floating type memristor circuit is composed by only one
resistor (R), one capacitor (C), and the proposed VDCCTA as
shown in Fig.2(b). According to the terminal characteristics
of the VDCCTA we can get the output current of the O+ and
O− terminals as

Io+ = −Io− = K(VDD − VG + |VTP |)(V1 − V2) (6)

where V1 and V2 are the differential input voltage of the
memristor circuit.

Similarly to (3), the expression of VG can be written as

VG = VC =
1

C

∫
izdt =

1

C

∫
V1 − V2
R

dt =
1

RC
Qi. (7)

Noting that the gate current of MOS transistor is almost zero,
we can get Ii = Io+ = −Io−.
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Therefore, the memconductance of the floating type mem-
ristor circuit can be expressed as

W =
Ii

V1 − V2
= K(VDD + |VTP | −

1

RC
Qi). (8)

C. Simulation of the proposed memristor

To verify the function of the proposed VDCCTA based
memristor circuits in Fig.2, simulations are performed by using
Virtuoso Analog Design Environment in Cadence software.
Throughout simulations, SMIC 0.18-µm CMOS process is
used and supply voltages are chosen as VDD = −VSS = 1V .
The capacitance value of the capacitor is selected as 1nF. The
dimensions of transistors are marked in Fig.1. The selection
of the 0.18-µm CMOS process, while not representative of
the cutting-edge nano-scale process nodes, merits elucidation
within the context of our research. It is important to point
out that this process was chosen as a foundational platform
to illustrate the viability and efficacy of our memristor circuit
prototype. It is important to underscore that the adoption of a
process featuring smaller feature sizes can potentially give rise
to non-ideal effects that can impact circuit performance. To
assuage this concern, a meticulous and exacting examination
of transistor parameters, involving precise calculations and
rigorous adjustments must be carried out to safeguard the
integrity and functionality of the underlying circuit typologies.
The memristive characteristics have been verified by applying
a 1V sinusoidal input signal to the presented memristor
circuits. Figs.3 (a) and (b) show the frequency dependent
hysteresis loops for the grounded and floating memristor
circuits. The correctness of the designed grounded and floating
memristor can be demonstrated by Fig.3 in which the lobe
areas of the hysteresis loops decrease with the increase of the
frequency [19].
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Fig. 3. Frequency dependent pinched hysteresis loops of the memristor
for the (a) grounded memristor circuit, (b) floating memristor circuit.

To demonstrate the functional correctness while considering
the impact of device variation, the process corner simula-
tions are conducted. Fig.4 illustrates the pinched hysteresis
loops under various processing corners, encompassing Typical-
Typical (TT), Fast-Fast (FF) and Slow-Slow (SS) scenarios.
Notably, it is evident that the proposed memristor maintains its
operation even though there is slight variation in its hysteresis
loop. It is worth noting that in the FF process corner, a
higher current flows, whereas in the SS process corner, a lower
current is observed.
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Fig. 4. Processing corner for pinched hysteresis loop of (a) grounded
memristor under 10 kHz sinusoidal voltage input, (b) floating memristor
under 10 kHz sinusoidal voltage input.

The nonvolatile characteristic of the proposed memristor
emulator circuit is verified by considering a train of pluses
at the input of the circuit. Voltage pulses with amplitude 0.5V,
having the same pulse width of 10µs and time period of
20µs have been applied at the input. Figs.5(a) and (b) show
the results of the memconductance for both of the grounded
incremental and decremental memristors and Figs.5(c) and
(d) show the results of the memconductance for both of
the floating incremental and decremental memristors. The
nonvolatility of the memristor was assessed by applying a
pulse signal to one port of the memristor emulator circuit
and carefully examining the resulting output current. It is
worth noting that in some conventional memristor emulators
incapable of achieving nonvolatility, their resistance state tends
to disappear during the off state of the pulse train. This
phenomenon is typically attributed to charge leakage in the
capacitor component when power is turned off. As illustrated
by the simulation results depicted in Fig.5, we can observe that
the resistance state remains stable during the off state of the
voltage pulse. This critical observation serves as compelling
evidence supporting the nonvolatile behavior of the designed
memristor emulator.
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It should be pointed out that after long-term operation,
memristor circuit may have some performance degradation
phenomena, such as shorter retention time of the resistance
value, changes in the range of resistance values and changes
in the nonlinear characteristics of the memristor circuit. These
non-ideal variations are mainly affected by the inevitable
CMOS device aging problems in electronic systems.

Table I provides the comparison of performances between
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TABLE I
COMPARISON OF THE PROPOSED MEMRISTOR EMULATOR WITH

REPORTED WORKS

Ref. Components Technology
Node

Transistor
Count

Power
Consumption nonvolatile

[20] DDCC 0.35µm 50 74.5mW no
[21] CCTA 0.25µm 30 7.5mW no
[22] Subtractor 0.25µm 12 4.51mW no
[23] CCII-OTA 0.18µm 23 9.567mW no

This work VDCCTA 0.18µm 26 1.16mW yes

the proposed memristor circuit and the reported typical
CMOS-based memristor circuits. Based on the same or similar
process, the circuit we designed uses fewer transistors, and
also has significant reduction in power consumption. Com-
pared with the CCII-OTA based memristor circuit, which uses
same process and has 23 transistors, the power consumption
of our VDCCTA memristor only accounts for 12.12% of that
circuit.

III. MEMRISTIVE RECONFIGURABLE ARRAY

Reconfigurable hardware platforms have gained significant
attention in the integrated circuit industry due to their inherent
flexibility, allowing for customization to meet specific needs.
This paper presents a reconfigurable memristor array designed
using the proposed nonvolatile memristor circuit, as shown in
Fig.6(a). The array comprises Configurable Analogue Blocks
(CABs), Current Switch Boxes (ISBs), and Voltage Switch
Boxes (VSBs). The output current of each CAB can be
reconfigured to different units by programming ISBs, while
the VSB is responsible for configuring the input voltage of
CAB from different input ports through switch programming.
Therefore, configuring the circuit primitives with the analog
switch boxes makes it possible to obtain different input-output
connection topologies of the memristor array with ease. As the
smallest unit of the reconfigurable array, the CAB unit plays
an important role. In Fig.6(b), the block diagram illustrates the
CAB, featuring two input ports and two output ports. Accord-
ing to Kirchhoff’s law, each CAB efficiently converts the input
port voltages into corresponding output currents by utilizing
the internal memristors. The internal connection structure is
visually depicted in Fig.6(c). In Fig.6(c), the memristors are
denoted by G11 . . . G22. VLi1 and VLi2 represent the i-th row
input voltage and ICj1, ICj2 represent the j-th column output
current of the CAB. In each CAB, eight control switches are
divided into row control switches and column control switches,
labeled as KR1 . . .KR4 and KC1 . . .KC4, respectively. The
corresponding control voltages of the switches are denoted as
SR1 . . . SR4 and SC1 . . . SC4.

IV. HARDWARE IMPLEMENTATION OF THE PROPOSED
RECONFIGURABLE ARRAY

In the previous section, we discussed the proposed non-
volatile VDCCTA memristor and the reconfigurable memristor
array. To enable the practical fabrication of the reconfigurable
array using the proposed VDCCTA memristor, we designed
the layout based on the SMIC 0.18µm standard CMOS pro-
cess. As shown in Fig.7(a), the proposed reconfigurable mem-
ristor array layout includes the memristor array and blocks
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Fig. 6. (a) Block diagram of the proposed reconfigurable memristor
array, (b) configurable analog block in the array, (c) internal connection
of the configurable analog block.

for control switches. Although the manufacturing process of
CMOS is relatively controllable compared to physical mem-
ristors, the memristor emulators utilizing CMOS technology
are also facing with the issue of device variability. This
variability arises from the influence of manufacturing pro-
cesses, material imperfections, and environmental variations.
The incongruity among memristor emulators can detrimen-
tally affect the precision and reliability of application in the
task of power load forecasting. To address the challenges of
variability among memristor emulators, the layout design is
very important to ensure its performance, yield and reliability.
In order to deal with this problem in our layout design, we
adopt some common key layout techniques such as centroid
layouts, interdigitated layouts, guard rings. The overall chip
area is 4.851mm×4.853mm, with the reconfigurable memris-
tor’s area being 3.828mm×1.765mm. Due to the limited chip
area, the reconfigurable array we fabricated contains 64×64
memristors. The fabricated chip packaged on Printed Circuit
Board (PCB) of the proposed reconfigurable memristor array
is shown in Fig.7(b).

(a) (b)

Fig. 7. Layout and packaged chip of the reconfigurable memristor array.

To test the functionality of the fabricated memristor array,
we systematically evaluated each individual memristor by
subjecting it to a sinusoidal voltage input to measure the
hysteresis loop. Figs.8(a) to (c) display the hysteresis loops
in V-I plane obtained from the memristor located in the 23rd
row and 42nd column (for the convenience of demonstration,
we randomly select one of the cases for explanation) by
setting the frequency of voltage source as 1kHz, 1.5kHz and
5kHz. The results are consistent with our previous simulations,
as illustrated in the figure. Specifically, the memristor can
effectively generate a hysteresis loop that passes through the
origin of the V-I plane under a periodic voltage source, and the
lobe area of the hysteresis loop correspondingly decreases with
increasing input frequency. Notably, while we only describe
one example here, similar results have been obtained for all
tested memristors in the array. To verify the functionality of
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the fabricated memristor, we tested the hysteresis loop of each
memristor in the array. Subsequently, we utilized a pulse signal
with an amplitude of 1V, a width of 1ms, and a period of 2ms
as the excitation input to facilitate subsequent verification of
the nonvolatility. The output current of the memristor reflected
an increase in the conductance value under the positive pulse,
while a decrease in the conductance was obtained under the
pulse signal with an amplitude of -1V, width of 1ms, and
period of 2ms. Fig.8(d) illustrates the conductance variation
process of the memristor under the positive and negative
pulses.

Fig.8(d) indicates that the memristor has a conductance of
about 0.084mS to 16.15mS and the transconductance ratio
Gmax/Gmin=192. This suggests that the designed memris-
tor has a wide range of conductance values. Additionally,
we observe that the memristor conductance reduction occurs
approximately twice as fast as the conductance increase. As
shown in the figure, it takes roughly 252 pulses to increase
the conductance from its initial value to the maximum con-
ductance, whereas it takes only about 60 pulses to reduce the
maximum conductance to its original state.

V. APPLICATION OF THE RECONFIGURABLE MEMRISTOR
ARRAY ON POWER LOAD FORECASTING

A. Framework of reconfigurable array based ESN

To leverage the measured characteristics of the memristor,
we have applied the proposed reconfigurable memristor array
to the ESN for the purpose of short-term power load fore-
casting. The ESN structure is composed of an input layer, a
reservoir (hidden layer), and an output layer. The relationship
between the input and output of the network can be described
by

y(t) =Woutu(t) =Woutf(Wresu(t− 1) +Winx(t)) (9)

where x(t), u(t) and y(t) are the input, reservoir state, and
output of the network at time t. Win,Wres and Wout are the
synaptic matrix representing the connection from the input
neuron to the reservoir, the self-connection in the reservoir and
the connection from the reservoir to the output, respectively.
The function f(·) denotes the activation function of the net-
work. Compared with the recurrent neural networks, the most
significant feature of ESN is that the input weight matrix Win

and the reservoir weight matrix Wres are randomly generated
and fixed, and only the output matrix Wout needs to be trained.

Updating only the weight matrix of the output layer with
the traditional ESN training method overcomes issues of
local minimum and reduces training complexity. However,

random neural connections in the reservoir can hinder ESN
hardware design. We propose to use reconfigurable memristor
arrays selectively connecting working memristors to match
task requirements, making it highly suitable for implementing
sparse matrices with random connection characteristics.r.
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Fig. 9. Hardware experimental flow chart, (a) the overall workflow, (b)
mapping scheme of a CAB.

Fig.9(a) shows the process of the hardware experiment in
the application of ESN. Firstly, the input weight matrix and the
reservoir weight matrix of the ESN are randomly generated,
and the output weight matrix of the ESN is trained offline by
the ridge regression algorithm [24].

Then, the state of the reconfigurable switches is obtained
based on the reservoir weight matrix. According to the weight
matrix, the reconfigurable switch is turned on where there is
synaptic connection, and the switch is turned off where there
is no synaptic connection.

Next, the reservoir weight values are mapped onto the
reconfigurable memristor array, where the weight value is
represented by the conductance value of the memristor. It is
difficult to represent the negative value of synaptic weights
by one memristor, because the actual conductance value is
positive. In general, two memristors are used to represent the
true synaptic weight with the difference of their conductance
values. The minimum unit of the reconfigurable array designed
in this paper is 2×2 memristors, which facilitates the use
of conductance of two memristors to represent the positive
and negative of synaptic weights. Fig.9(b) demonstrated a
programming process of an arbitrarily CAB. In this process,
the left column memristors are mapped with the synaptic
weights of the reservoir, and the right column memristors are
not connected into the network.

Memristors exhibit a unique and inherently nonlinear rela-
tionship between the applied voltage and the resulting cur-
rent, presenting challenges when mapping neural network
weights to resistance values. Researchers have been actively
exploring solutions to this challenge, including calibration,
compensation algorithms, and specialized training strategies,
as evident in studies [25]–[27]. In this work, we address
the issue of nonlinearity by adopting an approach inspired
by the methodology discussed in [13]. This method involves
initializing memristors within the middle of their conductance
range, resulting in a relatively linear voltage-conductance re-
lationship. After measuring the conductance variation range of
the memristor circuit, we selected the 2∼14 mS interval with a
favorable linearity to represent the synaptic weights. While this
approach may introduce some reduction in accuracy, it offers
the advantage of being more straightforward to implement in
the task of power load forecasting. The synaptic weights of
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the reservoir are divided into two parts: W+
res and W−

res. The
synaptic weight Wres is mapped by the following equation

Gp/n =
|W+/−

res |
max(|W+/−

res |)
(Gmax −Gmin) +Gmin (10)

where Gp/n is the conductance value corresponding to the
weight value of W+

res or W−
res. counting.

Finally, the reservoir states are collected by the micro-
controller and the calculation of the output is performed to
obtain the predicted output.

B. Experimental demonstration

We apply memristive reconfigurable array to perform power
load forecasting and validate the functionality of our designed
circuit. Power load forecasting based on neural networks can
be achieved through univariate model [28] and multivariate
model [29]. The univariate model is only established based
on the historical power load data, while the multivariate
model is related to multiple factors such as temperature,
sunlight and humidity. In this research, we mainly focus on
implementing the univariate ESN to extract intricate patterns
from historical data. Consequently, we utilize a single input
neuron and a single output neuron in the implementation. For
instance, considering a network with 32 reservoir neurons, the
synaptic weight matrices denoted as Win, Wres and Wout have
dimensions of 1×32, 32×32 and 32×1, respectively.

In this study, we utilize the historical power load data from
the EUNITE competition [14]. This dataset comprises power
load measurements taken a 30-minute intervals throughout the
years 1997 and 1998 in eastern Slovakia. Our analysis focuses
on the historical data from the year 1997, which consists of
a total of 17520 data points. This data serves as our training
set for the task at hand: predicting the power load for the
corresponding time period in 1998. Specifically, we engage
in short-term load forecasting, aiming to predict the power
load one hour ahead, based on the historical information. To
prepare the data for our forecasting model, we first normalize
the data points to voltage values within the region of [-1V,1V].
Subsequently, these normalized data are transmitted from the
host system to the MCU through a communication interface.
Within the MCU, each data point undergoes precise voltage
conversion under the controlled guidance of the MCU. These
converted voltages are then systematically directed into the
input port of the reconfigurable array. surrounding equation.

The hardware experiment results measured by an oscillo-
scope is depicted in Fig.10. The parameters are configured
as follows: spectral radius ρ=0.5, learning rate λ=0.001 and
reservoir size R=32. For the selection of each parameter, we
conducted a series of 50 independent experiments, diligently
exploring the parameter space. Subsequently, we selected a
representative parameter setting based on performance, as-
sessed through the mean square error (MSE). The corre-
sponding MSE variations with respect to these parameters are
depicted in Fig.11.:

(c)(b)(a)

Fig. 10. (a) Hardware experiment of the short-term power load fore-
casting, (b) oscilloscope captured results of the hardware experiment,
(c) control board of the reconfigurable array.
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Fig. 11. Mean square errors with respect to parameter (a) R varying
in region [5,32] fixed ρ=0.5 and λ=0.001, (b) ρ varying in region [0.1,1]
fixedR=32 and λ=0.001, (c) λ varying in region [0.001,0.01] fixedR=32
and ρ=0.5, in 50 independent experiments.

C. Performance analysis and comparison
Circuit noise phenomena have a significant impact on the

electronic systems. Sometimes, the designed circuits may
function undesirably under the influence of circuit noise. In the
ESN electronic system designed in this work, the noise is also
inevitable. Fig.12(a) shows the states of the first 10 reservoirs
in the ESN with 32 reservoirs affected by circuit noise within
2ms. Under the influence of noise of different strengths, the
states of the reservoirs may deviate from the ideal value, thus
affecting the accuracy of the network operation. Fig.12(b)
explores the impact of different noise strengths on the MSE
of the network to reflect the effects of noise intensity on the
accuracy of the circuit. The MSE loss in the figure is calculated
by

MES loss = 10log10(m/m̃) (11)

where m and m̃ are the ideal MSE without effects of noise
and the actual MSE under noise, respectively. It can be seen
from the figure that as the intensity increases, the accuracy of
the network drops sharply. When the noise intensity is greater
than 5%, the m̃ is around ten times that of m, indicating that
the network can no longer complete the prediction accurately.

In the hardware network comprising various reservoir con-
figurations, we present a tabulated overview of chip areas in

TABLE II
HARDWARE AREA AND POWER CONSUMPTION WITH RESPECT TO

DIFFERENT RESERVOIR SIZES

Reservoir size
/MSE

Used chip area
(mm2)

Power consumption
(mW)

8/2.9×10−3 0.0256 18.56
16/2.7×10−3 0.0512 37.12
24/2.4×10−3 0.0768 55.68
32/2.3×10−3 0.1024 74.24



8 IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, VOL. XX, NO. XX, XXXX

Fig. 12. Noise influence on the neural network, (a) collected the first
ten reservoir states within 2ms under different strength of noise, (b) MSE
with respect to the strength of noise.

use alongside their corresponding power consumption values,
as detailed in Table II. The reported area measure pertains
to the utilized portions within the chip layout of the network,
while the power consumption data is derived from comprehen-
sive EDA reports. It is noteworthy that power consumption is
primarily influenced by the supply, especially in the context of
maintaining the functionality of the memristor circuit. Through
meticulous voltage supply adjustments, we have the capac-
ity to effectively minimize circuit power consumption while
concurrently ensuring the robust operation of the memristor
circuit.
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Fig. 13. Performance comparison with CPU and GPU based ESN, (a)
MSE variation with different reservoir size, (b) training time consumption
with different reservoir size.

Fig.13 presents a performance comparison between the
reconfigurable memristor array-based ESN and the traditional
Central Processing Unit (CPU) and Graphics Processing Unit
(GPU) based ESN. The evaluation considers variations in MSE
and training time consumption with respect to the reservoir
size. The experimental environment is based on Python 3.8
programming language, using PyTorch 1.11 and CUDA 11.7
for CPU and GPU computing. The hardware setup consisted
of an Intel CPU (Core i7-10700k), which served as the CPU
computing platform, and an NVIDIA GeForce RTX3080 for
GPU acceleration. The results depicted in the figure reveal that
the CPU-based approach achieves superior accuracy. In con-
trast, the GPU-based method is constrained by its architectural
separation of storage and computation, resulting in limitations
in training time and accuracy performance. The proposed
method can achieve comparable accuracy with the CPU-based
approach while significantly reducing training time, thanks to
its in-memory computing architecture.

In recent years, researchers have introduced a variety of
short-term load forecasting algorithms for the power system.
The majority of these algorithms rely on either CPU or GPU

TABLE III
COMPARISON OF PROPOSED METHOD WITH SOFTWARE-BASED

METHODS

method MAPE(%) method MAPE(%)
SVM-GA [30] 1.93 FOAGRNN [31] 1.25
RBFNN [32] 3.35 LSTM [33] 2.31
SOFNN [34] 1.607 DTW-GRU [35] 1.01

this work (software) 1.16 this work (hardware) 1.85

processing. To assess the accuracy of our work in comparison
to these software-based algorithms, we employ the Mean
Absolute Percentage Error (MAPE).

Table III display the MAPE values generated through dif-
ferent methods. Notably, our approach, which employs ESN,
achieves a low MAPE, signifying superior accuracy. While the
precision of the method relying on reconfigurable memristor
array has slightly decreased, it still maintains higher accuracy
compared to that of literature [30], [32], [33].

VI. DISCUSSION

The fundamental purpose of our circuit design is not aimed
at the specific resistive switching mechanisms of any par-
ticular nano-material but is instead dedicated to manifesting
the typical characteristics inherent to non-volatile memristors:
resistive switching and the enduring maintenance of resistance
values post power-off. From the results of circuit simulation
and physical measurement, we can see that the memristor
circuit we designed perfectly realizes the resistive switching
function and the non-volatile function. While it is undeniable
that there is a big difference between our memristor circuit and
the real memristor device, its robust suitability within applica-
tions grounded in resistive switching mechanisms is also unde-
niable. Remarkably, our design capitalizes on the standardized
CMOS process, engendering seamless compatibility with the
existing tapestry of CMOS-based circuits. This compatibility
bestows a litany of advantages: good interoperability between
circuits, good design tool support, and low cost. However,
the design of CMOS-based memristor circuits is not easy to
implement. It requires designers to repeatedly verify according
to the design principles to achieve the best performance. It
also faces complex circuit structures, low design automation,
and challenges in digital-analog mixed signal integrity. There-
fore, the design of CMOS-based memristor circuits is also a
promising and challenging topic

The memristor circuit designed in this work, employing a
capacitor to simulate physical memristor behaviors, exhibits
nonvolatile characteristic. In comparison to the other types
of nonvolatile memory devices such as flash memory and
phase change memory (PCM), the capacitor-based memristor
circuit relies on CMOS capacitors designed for long-term
reliability, theoretically offering an infinite number of write
and erase cycles [36]. In contrast, flash memory has limited
endurance, often in the thousands to tens of thousands of
cycles, while PCM falls within the moderate endurance range,
albeit with improvement over time [37]. In terms of read and
write speed, the memristor circuit design similar to dynamic
random-access memory grants it faster operation, making
it advantageous for speed-sensitive applications [38]. Lastly,
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considering cost factors, fabricating the CMOS process based
memristor circuit can be cost-effective, leveraging existing
infrastructure. Flash memory benefits from economies of scale
and a mature manufacturing process, resulting in lower costs
[39]. In contrast, PCM’s manufacturing can be complex and
expensive, especially in advanced materials [40].

In the practical realm of load forecasting, the data privacy
and security are essential considerations in the selection of
implementation methods. In our presented work, we introduce
a prototype of a power load forecasting system built upon a
reconfigurable memristor array. Notably, this paper predom-
inantly focuses on a localized deployment approach, where
the selected load data and the neural network are utilized
without reliance on network communication. Consequently,
the paper does not delve into an extensive examination of
topics pertaining to data security. However, we recognize the
significance of this dimension and its critical relevance in real
world applications. As part of our ongoing research, we intend
to explore the integration of chaotic data encryption methods
into practical power load forecasting scenarios. This endeavor
aims to culminate in the development of a comprehensive and
pragmatic memristor reconfigurable array-based power load
forecasting system that addresses not only forecasting accuracy
but also the indispensable aspect of data security.

VII. CONCLUSION AND OUTLOOK

In some current research on memristor emulators, the charge
cannot be stored in the capacitor for an extended period,
thus impeding their nonvolatility. To address this issue, this
paper proposes a CMOS-based VDCCTA circuit, enabling the
construction of a nonvolatile memristor circuit. Theoretically,
when no input signal is present, the terminal connected to the
capacitor exhibits an infinitely large output resistance, result-
ing in an infinite discharge time constant for the capacitor. This
theoretical behavior guarantees that memristor can maintain its
resistance state indefinitely. In practical terms, the memristor
resistance state can be maintained for a quite long period of
time, influenced by the finite cut-off resistance of the MOS
transistor. Using the proposed VDCCTA circuit, this work
constructs grounded and floating memristors and verifies their
validity through the observation of pinched hysteresis loops
in V-I plane under variable frequency sinusoidal signals. The
nonvolatility of the memristor is verified through pulse voltage
input. Based on the designed memristor, a reconfigurable array
is constructed, allowing for the modification of memristor
connection relationships through switch programming. The re-
configurable array is fabricated using SMIC’s standard CMOS
process, and its effectiveness is confirmed through circuit
testing. Finally, we apply the fabricated reconfigurable array in
the power load forecasting task. In the future, our work will
focus on exploring more applications of the reconfigurable
array. Using reconfigurable memristor arrays to reconstruct
and adjust the weight position to realize the memristor array-
based multi-task learning, without the need for remapping
memristor resistance values, is a potential application scenario.

In practical applications, physical memristors are subject to
various variations, such as cycle-to-cycle, device-to-device, or

long-term drift. These variations arise from factors like mate-
rial imperfections, manufacturing processes, and temperature
effects, and they significantly impact the performances of the
memristive circuits. Similarly, memristor emulators can also
encounter these variations. For example, differences in resistor
values, capacitor characteristics or transistor properties can
introduce cycle-to-cycle variances in the emulator’s behavior.
Likewise, variations in component tolerances, manufacturing
processes, or component aging can lead to the device-to-
device variances. Furthermore, the emulator’s behavior may
drift over time due to aging effects, temperature fluctuations,
and other environmental factors. In our current work, our
primary focus was on designing a memristor emulator to
realize the nonvolatile functionality. While it is important
to address emulator variances, the specific way to solve the
variations in memristor emulator has not been discussed in
depth in this work. However, it is worth noting that, before the
chip’s manufacturing phase, we implemented matching design
and protection design for the layout, which help mitigate
some of the variations encountered during manufacturing. In
our future research endeavors, we are committed to exploring
technical solutions to address memristor emulator comprehen-
sively. These solutions may include temperature compensation
techniques, redundancy circuit design, real-time monitoring
and compensation circuits, among others. By doing so, we aim
to contribute to the development of more robust and reliable
memristor emulators that can find practical applications in a
wide range of fields.

In the face of the scalability challenges of the memristor cir-
cuit, we adopted a design philosophy that prioritizes simplicity
and efficiency. Our circuit architecture is inherently modular,
allowing for straightforward replication and integration into
larger systems. This modularity is conducive to the scaling
of memristor emulator circuits. However, constrained by the
chosen CMOS process feature size, achieving higher scala-
bility in the designed circuit scheme presents challenges. In
our forthcoming research endeavors, we intend to address this
issue by exploring scalable design approaches for memristor
circuits, focusing on the reduction of transistor usage and
the selection of transistors with smaller feature sizes. Our
feature work will also extend into the realm of larger-scale
memristor emulator circuit chips. Specifically, we aim to
apply our research to advanced applications, including but
not limited to assisting power grid management in large-scale
power systems.
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