330 research outputs found

    Monolithic circuit test standards

    Get PDF
    Monolithic circuit test standards and methods for line certificatio

    Feature-based motion control for near-repetitive structures

    Get PDF
    In many manufacturing processes, production steps are carried out on repetitive structures which consist of identical features placed in a repetitive pattern. In the production of these repetitive structures one or more consecutive steps are carried out on the features to create the final product. Key to obtaining a high product quality is to position the tool with respect to each feature of the repetitive structure with a high accuracy. In current industrial practice, local position sensors such as motor encoders are used to separately measure the metric position of the tool and the stage where the repetitive structure is on. Here, the final accuracy of alignment directly relies on assumptions like thermal stability, infinite machine frame stiffness and constant pitch between successive features. As the size of these repetitive structures is growing, often these assumptions are difficult to satisfy in practice. The main goal of this thesis is to design control approaches for accurately positioning the tool with respect to the features, without the need of the aforementioned assumptions. In this thesis, visual servoing, i.e., using machine vision data in the servo loop to control the motion of a system, is used for controlling the relative position between the tool and the features. By using vision as a measurement device the relevant dynamics and disturbances are therefore measurable and can be accounted for in a non-collocated control setting. In many cases, the pitch between features is subject to small imperfections, e.g., due to the finite accuracy of preceding process steps or thermal expansion. Therefore, the distance between two features is unknown a priori, such that setpoints can not be constructed a priori. In this thesis, a novel feature-based position measurement is proposed, with the advantage that the feature-based target position of every feature is known a priori. Motion setpoints can be defined from feature to feature without knowing the exact absolute metric position of the features beforehand. Next to feature-to-feature movements, process steps involving movements with respect to the features, e.g., engraving or cutting, are implemented to increase the versatility of the movements. Final positioning accuracies of 10 µm are attained. For feature-to-feature movements with varying distances between the features a novel feedforward control strategy is developed based on iterative learning control (ILC) techniques. In this case, metric setpoints from feature to feature are constructed by scaling a nominal setpoint to handle the pitch imperfections. These scale varying setpoints will be applied during the learning process, while second order ILC is used to relax the classical ILC boundary of setpoints being the same every trial. The final position accuracy is within 5 µm, while scale varying setpoints are applied. The proposed control design approaches are validated in practice on an industrial application, where the task is to position a tool with respect to discrete semiconductors of a wafer. A visual servoing setup capable of attaining a 1 kHz frame rate is realized. It consists of an xy-stage on which a wafer is clamped which contains the discrete semiconductor products. A camera looks down onto the wafer and is used for position feedback. The time delay of the system is 2.5 ms and the variation of the position measurement is 0.3 µm (3s)

    Deformable Beamsplitters: Enhancing Perception with Wide Field of View, Varifocal Augmented Reality Displays

    Get PDF
    An augmented reality head-mounted display with full environmental awareness could present data in new ways and provide a new type of experience, allowing seamless transitions between real life and virtual content. However, creating a light-weight, optical see-through display providing both focus support and wide field of view remains a challenge. This dissertation describes a new dynamic optical element, the deformable beamsplitter, and its applications for wide field of view, varifocal, augmented reality displays. Deformable beamsplitters combine a traditional deformable membrane mirror and a beamsplitter into a single element, allowing reflected light to be manipulated by the deforming membrane mirror, while transmitted light remains unchanged. This research enables both single element optical design and correct focus while maintaining a wide field of view, as demonstrated by the description and analysis of two prototype hardware display systems which incorporate deformable beamsplitters. As a user changes the depth of their gaze when looking through these displays, the focus of virtual content can quickly be altered to match the real world by simply modulating air pressure in a chamber behind the deformable beamsplitter; thus ameliorating vergence–accommodation conflict. Two user studies verify the display prototypes’ capabilities and show the potential of the display in enhancing human performance at quickly perceiving visual stimuli. This work shows that near-eye displays built with deformable beamsplitters allow for simple optical designs that enable wide field of view and comfortable viewing experiences with the potential to enhance user perception.Doctor of Philosoph

    Viewpoint dependent imaging : an interactive stereoscopic display

    Get PDF
    Thesis (M.S.V.S.)--Massachusetts Institute of Technology, Dept. of Architecture, 1982.MICROFICHE COPY AVAILABLE IN ARCHIVES AND ROTCH.Bibliography: leaves 71-76.by Scott Stevens Fisher.M.S.V.S

    Quantitative analysis of defects in silicon. Silicon sheet growth development for the large are silicon sheet task of the low-cost solar array project

    Get PDF
    One hundred and seventy four silicon sheet samples were analyzed for twin boundary density, dislocation pit density, and grain boundary length. Procedures were developed for the quantitative analysis of the twin boundary and dislocation pit densities using a QTM-720 Quantitative Image Analyzing system. The QTM-720 system was upgraded with the addition of a PDP 11/03 mini-computer with dual floppy disc drive, a digital equipment writer high speed printer, and a field-image feature interface module. Three versions of a computer program that controls the data acquisition and analysis on the QTM-720 were written. Procedures for the chemical polishing and etching were also developed

    Bio-Inspired Multi-Spectral and Polarization Imaging Sensors for Image-Guided Surgery

    Get PDF
    Image-guided surgery (IGS) can enhance cancer treatment by decreasing, and ideally eliminating, positive tumor margins and iatrogenic damage to healthy tissue. Current state-of-the-art near-infrared fluorescence imaging systems are bulky, costly, lack sensitivity under surgical illumination, and lack co-registration accuracy between multimodal images. As a result, an overwhelming majority of physicians still rely on their unaided eyes and palpation as the primary sensing modalities to distinguish cancerous from healthy tissue. In my thesis, I have addressed these challenges in IGC by mimicking the visual systems of several animals to construct low power, compact and highly sensitive multi-spectral and color-polarization sensors. I have realized single-chip multi-spectral imagers with 1000-fold higher sensitivity and 7-fold better spatial co-registration accuracy compared to clinical imaging systems in current use by monolithically integrating spectral tapetal and polarization filters with an array of vertically stacked photodetectors. These imaging sensors yield the unique capabilities of imaging simultaneously color, polarization, and multiple fluorophores for near-infrared fluorescence imaging. Preclinical and clinical data demonstrate seamless integration of this technologies in the surgical work flow while providing surgeons with real-time information on the location of cancerous tissue and sentinel lymph nodes, respectively. Due to its low cost, the bio-inspired sensors will provide resource-limited hospitals with much-needed technology to enable more accurate value-based health care

    Event-based neuromorphic stereo vision

    Full text link

    Fabrication and measurement of graphene devices

    Get PDF
    Graphene, an allotrope of carbon, has been prepared by mechanical exfoliation and Chemical Vapour Deposition. The graphene so produced has been micro manipulated using polymer membranes and optical microscopy and so placed on silicon wafer. In addition, individual graphene fragments were micro manipulated and placed on pre-prepared hexagonal boron nitride flakes to aid in the fabrication of devices for testing. Graphene devices were prepared by sequential lithography, metalisation and plasma treatment to make field effect multi terminal Hall bar test pieces. The Hall bar geometry test pieces were examined at a variety of magnetic field strengths between 11 Tesla and zero magnetic field. By careful control of the gate voltage, temperature the I-V characteristics of the Hall bar test pieces were measured. Analysis of the I-V characteristics as a function of gate voltage and magnetic field strength was undertaken to determine the location of Dirac cones. Simple analysis of resistance change with gate voltage and magnetic field strength resulted in identification of the first parts of the Hofstadter energy spectrum. To help fabricate multilayer mesas of graphene and hexagonal boron nitride a micromanipulator workstation and simple UV microscope were constructed

    Validazione di un dispositivo indossabile basato sulla realta aumentata per il riposizionamento del mascellare superiore

    Get PDF
    Aim: We present a newly designed, localiser-free, head-mounted system featuring augmented reality (AR) as an aid to maxillofacial bone surgery, and assess the potential utility of the device by conducting a feasibility study and validation. Also, we implement a novel and ergonomic strategy designed to present AR information to the operating surgeon (hPnP). Methods: The head-mounted wearable system was developed as a stand- alone, video-based, see-through device in which the visual features were adapted to facilitate maxillofacial bone surgery. The system is designed to exhibit virtual planning overlaying the details of a real patient. We implemented a method allowing performance of waferless, AR-assisted maxillary repositioning. In vitro testing was conducted on a physical replica of a human skull. Surgical accuracy was measured. The outcomes were compared with those expected to be achievable in a three-dimensional environment. Data were derived using three levels of surgical planning, of increasing complexity, and for nine different operators with varying levels of surgical skill. Results: The mean linear error was 1.70±0.51mm. The axial errors were 0.89±0.54mm on the sagittal axis, 0.60±0.20mm on the frontal axis, and 1.06±0.40mm on the craniocaudal axis. Mean angular errors were also computed. Pitch: 3.13°±1.89°; Roll: 1.99°±0.95°; Yaw: 3.25°±2.26°. No significant difference in terms of error was noticed among operators, despite variations in surgical experience. Feedback from surgeons was acceptable; all tests were completed within 15 min and the tool was considered to be both comfortable and usable in practice. Conclusion: Our device appears to be accurate when used to assist in waferless maxillary repositioning. Our results suggest that the method can potentially be extended for use with many surgical procedures on the facial skeleton. Further, it would be appropriate to proceed to in vivo testing to assess surgical accuracy under real clinical conditions.Obiettivo: Presentare un nuovo sistema indossabile, privo di sistema di tracciamento esterno, che utilizzi la realtà aumentata come ausilio alla chirurgia ossea maxillo-facciale. Abbiamo validato il dispositivo. Inoltre, abbiamo implementato un nuovo metodo per presentare le informazioni aumentate al chirurgo (hPnP). Metodi: Le caratteristiche di visualizzazione del sistema, basato sul paradigma video see-through, sono state sviluppate specificamente per la chirurgia ossea maxillo-facciale. Il dispositivo è progettato per mostrare la pianificazione virtuale della chirurgia sovrapponendola all’anatomia del paziente. Abbiamo implementato un metodo che consente una tecnica senza splint, basata sulla realtà aumentata, per il riposizionamento del mascellare superiore. Il test in vitro è stato condotto su una replica di un cranio umano. La precisione chirurgica è stata misurata confrontando i risultati reali con quelli attesi. Il test è stato condotto utilizzando tre pianificazioni chirurgiche di crescente complessità, per nove operatori con diversi livelli di abilità chirurgica. Risultati: L'errore lineare medio è stato di 1,70±0,51mm. Gli errori assiali erano: 0,89±0,54mm sull'asse sagittale, 0,60±0,20mm sull'asse frontale, e 1,06±0,40mm sull'asse craniocaudale. Anche gli errori angolari medi sono stati calcolati. Beccheggio: 3.13°±1,89°; Rollio: 1,99°±0,95°; Imbardata: 3.25°±2,26°. Nessuna differenza significativa in termini di errore è stata rilevata tra gli operatori. Il feedback dei chirurghi è stato soddisfacente; tutti i test sono stati completati entro 15 minuti e lo strumento è stato considerato comodo e utilizzabile nella pratica. Conclusione: Il nostro dispositivo sembra essersi dimostrato preciso se utilizzato per eseguire il riposizionamento del mascellare superiore senza splint. I nostri risultati suggeriscono che il metodo può potenzialmente essere esteso ad altre procedure chirurgiche sullo scheletro facciale. Inoltre, appare utile procedere ai test in vivo per valutare la precisione chirurgica in condizioni cliniche reali
    corecore