
 

Feature-based motion control for near-repetitive structures

Citation for published version (APA):
Best, de, J. J. T. H. (2011). Feature-based motion control for near-repetitive structures. [Phd Thesis 1 (Research
TU/e / Graduation TU/e), Mechanical Engineering]. Technische Universiteit Eindhoven.
https://doi.org/10.6100/IR716343

DOI:
10.6100/IR716343

Document status and date:
Published: 01/01/2011

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

            • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
            • You may not further distribute the material or use it for any profit-making activity or commercial gain
            • You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 08. Feb. 2024

https://doi.org/10.6100/IR716343
https://doi.org/10.6100/IR716343
https://research.tue.nl/en/publications/fd3a8b92-4076-4578-85c4-52f2b65e4144


Feature-based motion control

for near-repetitive structures

PROEFSCHRIFT

ter verkrijging van de graad van doctor aan de
Technische Universiteit Eindhoven, op gezag van de

rector magnificus, prof.dr.ir. C.J. van Duijn, voor een
commissie aangewezen door het College voor

Promoties in het openbaar te verdedigen
op dinsdag 6 september 2011 om 14.00 uur

door

Jeroen Johannes Theodorus Hendrikus de Best

geboren te Wamel



Dit proefschrift is goedgekeurd door de promotor:

prof.dr.ir. M. Steinbuch

Copromotor:
dr.ir. M.J.G. van de Molengraft

disc

 

 
 

 

 This dissertation has been completed in partial fulfillment of the requirements of
the Dutch Institute of Systems and Control (DISC) for graduate study.

This research was financially supported by the IOP Precision Technology pro-
gram of the Dutch Ministry of Economic Affairs.

A catalogue record is available from the Eindhoven University of Technology
Library.

Feature-based motion control for near-repetitive structures/ by Jeroen J.T.H. de
Best. – Eindhoven : Technische Universiteit Eindhoven, 2011. Proefschrift. –
ISBN: 978-90-386-2560-7

Copyright c© 2011 by J.J.T.H. de Best. All rights reserved.

Typeset by the author with the pdfLATEX documentation system.
Cover design: Ivo van Sluis, www.ivoontwerpt.nl, The Netherlands.
Reproduction: Ipskamp Drukkers B.V., Enschede, The Netherlands.



iii

Summary
Feature-based motion control for near-repetitive structures

In many manufacturing processes, production steps are carried out on repetitive
structures which consist of identical features placed in a repetitive pattern. In the
production of these repetitive structures one or more consecutive steps are carried
out on the features to create the final product. Key to obtaining a high product
quality is to position the tool with respect to each feature of the repetitive struc-
ture with a high accuracy. In current industrial practice, local position sensors
such as motor encoders are used to separately measure the metric position of the
tool and the stage where the repetitive structure is on. Here, the final accuracy
of alignment directly relies on assumptions like thermal stability, infinite machine
frame stiffness and constant pitch between successive features. As the size of these
repetitive structures is growing, often these assumptions are difficult to satisfy in
practice.

The main goal of this thesis is to design control approaches for accurately position-
ing the tool with respect to the features, without the need of the aforementioned
assumptions. In this thesis, visual servoing, i.e., using machine vision data in the
servo loop to control the motion of a system, is used for controlling the relative
position between the tool and the features. By using vision as a measurement
device the relevant dynamics and disturbances are therefore measurable and can
be accounted for in a non-collocated control setting.

In many cases, the pitch between features is subject to small imperfections, e.g.,
due to the finite accuracy of preceding process steps or thermal expansion. There-
fore, the distance between two features is unknown a priori, such that setpoints
can not be constructed a priori. In this thesis, a novel feature-based position mea-
surement is proposed, with the advantage that the feature-based target position
of every feature is known a priori. Motion setpoints can be defined from feature to
feature without knowing the exact absolute metric position of the features before-
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hand. Next to feature-to-feature movements, process steps involving movements
with respect to the features, e.g., engraving or cutting, are implemented to in-
crease the versatility of the movements. Final positioning accuracies of 10 µm are
attained.

For feature-to-feature movements with varying distances between the features a
novel feedforward control strategy is developed based on iterative learning control
(ILC) techniques. In this case, metric setpoints from feature to feature are con-
structed by scaling a nominal setpoint to handle the pitch imperfections. These
scale varying setpoints will be applied during the learning process, while second
order ILC is used to relax the classical ILC boundary of setpoints being the same
every trial. The final position accuracy is within 5 µm, while scale varying set-
points are applied.

The proposed control design approaches are validated in practice on an industrial
application, where the task is to position a tool with respect to discrete semicon-
ductors of a wafer. A visual servoing setup capable of attaining a 1 kHz frame rate
is realized. It consists of an xy-stage on which a wafer is clamped which contains
the discrete semiconductor products. A camera looks down onto the wafer and
is used for position feedback. The time delay of the system is 2.5 ms and the
variation of the position measurement is 0.3 µm (3σ).
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Chapter 1

Introduction

IN this chapter, an introduction is given on high tech motion systems
which manufacture repetitive structures. Increasing demands on both

accuracy and production speeds puts these machines to their limits, which
leads to the problem statement of this work. Current motion control ap-
proaches of these machines are reviewed after which the goal of this thesis
is defined. The research contributions are presented and finally, the outline
of this thesis is given.

1.1 Repetitive structures in high tech motion systems

In many manufacturing processes, production steps are carried out on repetitive
structures consisting of identical features placed in a repetitive pattern. Examples
of repetitive structures can be found in the flat panel display market like the organic
light emitting diode (OLED) displays, see Fig. 1.1(a), and in the semiconductor
industry, where Fig. 1.1(b) and 1.1(c) show diodes and transistors on a wafer,
respectively. In the case of the OLED displays the features are the cups to be filled
with organic compounds. The features on a wafer are the discrete semiconductors
which need to be picked and placed for further processing. In general, the trend
for this high tech motion area is to produce manufacturing systems that tend
to produce 1) more accurate, 2) faster and 3) on larger surfaces. In the printing
industry for example the printing resolution has become better and better through
the years, the number of pages per minute has increased and the media sizes even
include billboard size. In the semiconductor industry the wafer size has gradually
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(a) Organic light emitting
diode (OLED) display.

(b) Diodes. (c) Transistors.

Figure 1.1: Examples of repetitive structures.

increased over time to improve the throughput and to reduce the costs, i.e., a larger
wafer size results in less marginal space on the edges as a percentage of the total
space and can significantly increase the yield per wafer. Moreover, less wafers need
to be swapped. Regarding accuracy, Moore’s law is obeyed, which describes the
long-term trend in the history of manufacturing semiconductors. It states that the
number of transistors that can be placed on a microchip doubles approximately
every two years (Moore, 1965). In the manufacturing of displays, which consist of
a repetitive grid of pixels (picture element), it is observed that there is an increase
in resolution, see Fig. 1.2. At the same time a growing screen size is observed;
whereas in the 1990s typical computer monitor sizes of 14” or 15” were common,
nowadays 30” monitors are on the market. The increasing resolution and size is
also present in the television market, where full high definition (HD) is becoming
the standard and where the record-braking (January 2010) full HD TV size is held
by Panasonic with 152”.

1.2 Problem statement

In the production of these repetitive structures one or more consecutive steps are
carried out on the particular features of the repetitive structure to create the final
product. Such production machines often consist of a tool and a stage or carrier
on which the repetitive structure is to be processed. One of the possibilities for
manufacturing OLED displays is using inkjet printing technology (Sturm et al.,
2000) such that the tool in this case is a print head. For the production of dis-
crete semiconductors a placement machine called a die bonder is used as a tool.
Another tool, called a wire bonder, provides the electrical connection between the
integrated circuit and the external leads of the semiconductor device to obtain the
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Figure 1.2: Display resolution statistics (W3schools.com, 2011).

final microchip. This work focusses on processes with point-to-point motion pro-
files as opposed to the continuous motions where operations are carried out during
the movement. Key to obtaining a high product quality is to position the tool
with respect to each feature of the repetitive structure with a high accuracy. In
current industrial practice local position sensors such as motor encoders are used
to measure the tool position xt and the position of the stage xo separately as shown
in Fig. 1.3. This is referred to as an indirect measurement of xt − xo . Using such
local measurements in a closed-loop control approach leads to a collocated control
design. The final accuracy with which the tool can be positioned with respect to
the features in this case is directly dependent on the following machine properties:
1) geometric accuracy of the mechanical construction, 2) stiffness of the mechan-
ical construction and 3) thermal stability of the machine. Furthermore, the final
accuracy also relies on assumptions with respect to the repetitive structure: 1)
infinitely stiff connection between the supporting stage and the repetitive struc-
ture, 2) constant and known alignment of the repetitive structure with respect to
the actuation axes, 3) infinite stiffness of the repetitive structure, 4) constant and
known pitch between successive features of the repetitive structure and, finally, 5)
thermal stability of the repetitive structure. In practice these assumptions are not
valid when position accuracies of less than 10 µm are to be obtained. The linear
thermal expansion coefficient of steel for example is approximately 15·10−6 1/K.
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xo

xt

z

x

tool

repetitive
structure

stage

frame

Figure 1.3: Conventional indirect measurement loop.

In that case, a temperature increase of only one degree in a machine part with a
typical dimension in the order of one meter, results in a expansion of 15 µm, which
directly shows a significant influence on the attainable position accuracy. There-
fore, in general the machine and the repetitive structure are not ideal, since the
above assumptions are only partially met in practice. This leads to the following
problem statement:

Investigate control design approaches for the relative positioning
of a tool in a non-ideal machine with respect to the features of a

non-ideal repetitive structure.

1.3 Current vision-based control approaches

The problem stated in Section 1.2 has two key ingredients, which are visualized in
Fig. 1.4:

1. non-ideal machine: the system at hand cannot be considered ideal due to
flexibilities, geometric imperfections and thermal expansion. Aligning the
tool with respect to a feature poses the problem that machine imperfections
should be accounted for,

2. non-ideal repetitive structure: an ideal repetitive structure is charac-
terized by a perfectly repetitive pitch between successive features. However,
small pitch imperfections cause the repetitive structure to become a non-
ideal repetitive structure, such that the metric positions of the features are
unknown beforehand. Aligning the tool with respect to a feature in this
case poses the problem that the metric reference is unknown a priori.
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xoz

x

xt

Figure 1.4: Due to, for example, geometric inaccuracies or thermal expansion the
ideal machine (depicted in gray) results in a non-ideal machine (depicted in black),
such that the assumed position of the tool is incorrect, emphasised by the dashed
line. Also, the distance between successive features is not exactly repetitive, such
that a non-ideal repetitive structure is to be considered.

In this work, machine vision (Jain et al., 1995; Sonka et al., 1999; Stegger et al.,
2008) will be used to measure the relative position between the tool and the fea-
tures of the repetitive structure. As opposed to the conventional indirect relative
position measurement of Fig. 1.3, a direct relative position measurement of the
tool relative to the feature can be obtained using vision, see Fig. 1.5. Furthermore,
besides the use of the vision sensor as position measurement device, another ad-
vantage of vision is that quality inspection can be carried out, which however will
not be addressed in this work. Other possible sensors to measure this relative po-
sition are inductive sensors, capacitive sensors, ultrasonic sensors or laser and fiber
optic position sensors. However, some of these sensors require the repetitive struc-
ture to have specific properties such as conductivity. Ultrasonic position sensors

x

camera

Figure 1.5: Visual direct measurement loop.
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are directly dependent on the propagation velocity of the measurement medium,
which might fluctuate as a function of temperature for example. Laser and fiber
optic sensors are restricted due to the reachability of the features, i.e., the beam
cannot reach the edges of all features. Machine vision is not hampered by these
restrictions and is therefore used in this work.
The obtained machine vision data will be used as feedback signal in the control
loop. Using machine vision data in the servo loop to control the motion of a system
dates back to the 1970s (Shirai and Inoue, 1973) and is referred to as visual servo
control (Chaumette and Hutchinson, 2006; Hutchinson et al., 1996) also known
as visual servoing (Hill and Park, 1979), or vision-based robot control. Extensive
reviews on visual servoing can be found in (Kragic and Christensen, 2002; Malis,
2002; Hutchinson et al., 1996; Corke, 2001; Hashimoto, 2003).
Many design choices are known within the field of visual servoing. Therefore, at
this point an overview of the visual servoing taxonomy will be given including 1) di-
rect visual servoing versus indirect visual servoing, 2) image-based visual servoing
versus position-based visual servoing, 3) monocular visual servoing versus binoc-
ular/stereo visual servoing, 4) endpoint open-loop visual servoing versus endpoint
closed-loop visual servoing and 5) eye-in-hand visual servoing versus eye-to-hand
visual servoing. This visual servoing taxonomy is graphically depicted in Fig. 1.6.
Later on in Section 1.4, the design choices regarding this visual servoing taxonomy
are discussed, with the focus on the two issues at the beginning of this section:
non-ideal machine and non-ideal repetitive structure.

Direct and indirect visual servoing

In 1980, Sanderson and Weiss (Sanderson and Weiss, 1980) introduced a taxonomy
of visual servo systems. The first distinction is between direct visual servoing and
indirect visual servoing. In the case of direct visual servoing, the visual controller
directly computes the input to the system. In contrast, indirect visual servoing has
a hierarchical or cascaded control architecture in which the vision system provides
setpoints to low level joint controllers. The indirect visual servoing category is
split up into static look-and-move and dynamic look-and-move.

Static look-and-move consists of a sequence of three independent steps (Weiss
et al., 1987): 1) the system “looks” at the scene and measures the relative position
between the tool and the feature, 2) the difference between its current position
and where it should be is calculated and a trajectory to overcome this difference
is applied to the independently closed-loop positioning system to “move” by this
incremental distance, 3) the system moves to the new position. The first step is,
however, not repeated until the system has completed the motion, i.e., during the
execution of the move command, there is no feedback from the vision system. If
the combined accuracy of the positioning system and vision measurement system
are within the specified accuracy, this sequence needs to be executed only once.
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Visual servoing

Direct

Indirect

Image-based

Position-based

Monocular

Binocular

vs.

vs.

vs.

vs. vs.
Eye-in-hand

Eye-to-hand

Endpoint
open-loop

Endpoint
closed-loop

Figure 1.6: Visual servoing taxonomy.

If not, the sequence of operations is executed repeatedly until the specified accu-
racy is obtained. The static look-and-move approach demonstrates the concept of
vision and system positioning, however it is not a dynamic control system, since
each step is executed independently and in sequence. Therefore, the dynamics of
each operation at each level of the hierarchy do not affect the overall system sta-
bility. Static look-and-move control approaches are found in practice for example
to perform substrate alignment (Sakou et al., 1989; Nian and Tarng, 2005; Kuo
et al., 2008). In many of those applications custom markers or fiducials on the
substrate are searched under collocated control. Once these are found and the
substrate is aligned, motor encoders define the position of the substrate from then
on. With the assumption that the repetitive structure has a known predefined
grid, the position of each feature can be reached by controlling the stage or tool
according to the predefined distances between consecutive features using the on
board motor encoders. With small variations in the distance between successive
features, for example due to thermal expansion or local stretching of the repetitive
structure, this assumption is not satisfied any more, which leads to a bad align-
ment. Therefore, an ideal repetitive structure is assumed in this case.
Other static look-and-move applications apply nominal trajectories based on the
nominal distance between successive features. At the final position an image is
captured of the feature of interest. From this image, the final displacement is cal-
culated, which is translated to the current encoder values and an extra trajectory
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is applied (Kolloor and lalmurugan, 1965; You et al., 1990; Verstegen et al., 2006).
With a single image only a snapshot of the situation is taken. At the capture
moment of the image, vibrations of the tool with respect to the particular feature
can occur for example due to settling behavior or system flexibilities, such that
based on the single image a wrong displacement is calculated.
Referring to the issues at the beginning of this section, the static look-and-move
control approach assumes an ideal machine during the move commands.

In contrast to static look-and-move the dynamic look-and-move control approach
is structured so that the three steps outlined above are executed in parallel. In
this case the dynamic interaction between the levels of the hierarchy becomes
critical. By far, most literature on visual servoing adopt this approach for several
reasons (Espiau et al., 1992; Crétual and Chaumette, 1997; Corke and Hutchinson,
2001; Chaumette and Hutchinson, 2006, 2007). First, many applications already
have an interface for accepting velocity or incremental position commands. This
simplifies the construction of the visual servo system, and also makes the methods
more portable. Second, the relatively low sampling rates available from vision
(typically around 30-60 Hz) makes direct control of a system with complex dy-
namics an extremely challenging control problem. Using internal feedback with
a high sampling rate generally presents the visual controller with idealized axis
dynamics. Third, dynamic look-and-move separates the kinematic singularities of
the mechanism from the visual controller, allowing the machine to be considered
as an ideal motion device (Hutchinson et al., 1996). At this point, the two last
assumptions of the machine being an ideal motion device with idealized axis dy-
namics is discussed in more detail.
Most dynamic look-and-move control approaches are designed to minimize an error
function e(t) given by

e(t) = s(t)− s∗, (1.1)

where s(t) is the image feature vector (most of the time a vector storing the pixel
coordinates of detected points of the object) at time t and s∗ is the (constant)
desired image feature vector. Classically, the output of these visual controllers are
reference velocities v(t) to low level joint controllers. Under the assumption of
rigid body dynamics, the velocities of these joints are related to the velocity of the
features in the field of view by means of the image Jacobian J ,

ṡ(t) = J(s(t), Z(t))v(t). (1.2)

This image Jacobian J = J(s(t), Z(t)) is dependent on the image feature vec-
tor s(t) and the distance from the features to the camera Z(t) (Chaumette and
Hutchinson, 2006). This matrix is also called feature Jacobian (Feddema and
Mitchell, 1989), feature sensitivity matrix (Jang and Bien, 2002) and interaction
matrix (Chaumette et al., 2002). Provided that the joint velocities are tracked
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perfectly a control law can be derived

v(t) = −λĴ†s(t), (1.3)

where Ĵ† is the pseudo inverse of the estimate of the image Jacobian J (see
(Chaumette and Hutchinson, 2006; Espiau et al., 1992; Chaumette and Hutchin-
son, 2006; Malis, 2004; Hosoda and Asada, 1994) for examples) and λ is a positive
scalar. For a constant desired image feature vector, i.e., ṡ∗ = 0 the following error
dynamics can then be derived

ė(t) = −λJ(s(t), Z(t))Ĵ†e(t). (1.4)

To assess the stability of the closed-loop system often Lyapunov analysis is used
where the candidate Lyapunov function is given by 1

2e(t)
T e(t). This leads to the

following condition to ensure global asymptotic stability

J(s(t), Z(t))Ĵ† � 0,∀t. (1.5)

The dynamic look-and-move control approach makes several assumptions. First,
rigid body behavior is assumed in (1.2). Second, in (1.2) the velocity v is assumed
to be the same as the one mentioned in (1.3). However, in practice the velocity
in (1.3) is the applied reference velocity, whereas in (1.2) it is the current velocity,
which in general are not the same due to the limited bandwidths of the low level
velocity controllers. Third, the presence of delay (Vincze, 2000; Papanikolopoulos
et al., 1993) due to image acquisition, data transfer and image processing is not
included. Fourth, as many dynamic look-and-move applications are inherently
multi rate systems, with high sample rates for the low level joint control loops
and low sample rates for the high level vision control loop, the commonly used
stability analysis is therefore discussable. Therefore, referring to the issues at the
beginning of this section, dynamic look-and-move also assumes an ideal machine.
Recognition of time delay and non-rigid body behavior and incorporating of these
effects in the control design where done in (Corke and Good, 1992; Corke, 1995;
Corke and Good, 1996).

Direct visual servoing, as opposed to indirect visual servoing, computes the input
torques to the plant directly (Hutchinson et al., 1996; Malis, 2002). Sometimes it
is confusing whether or not a proposed control design is direct or indirect visual
servoing. In (Gangloff and de Mathelin, 2002, 2003) for example the authors state
that they adopt a direct visual servoing control approach due to the absence of
low-level position controllers. However, the proposed control design still uses a
hierarchical control structure in which low-level velocity controllers are present.
Also, (Kelly et al., 2000) uses a hierarchical control design where joint encoders
are used in conjunction with the image features but claim to have a direct visual
servo control approach.
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For a good tracking performance and disturbance rejection a high bandwidth of
the closed-loop control system is desirable. Franklin (Franklin et al., 1994) sug-
gests that the sample rate of a digital control system must be at least four to
twenty times the desired closed-loop bandwidth. With typical camera sample
rates of around 50 Hz, the maximum bandwidth is therefore limited to approxi-
mately 10 Hz or even lower. In contrast, high-speed (1 kHz sample rate) direct
visual servoing using massive parallel processing is reported in (Ishii et al., 1996;
Ishikawa et al., 1992; Nakabo et al., 2000). The specially developed vision-chip is
used in tracking micro organisms (Ogawa et al., 2005b,a) and in catching a ball
in a high-speed multi-fingered hand (Namiki and Ishikawa, 2003a; Namiki et al.,
2004). In (Komuro et al., 2009) a high-speed real-time vision system by integrat-
ing a CMOS image sensor and a massively parallel image processor is presented.
In (Shimizu and Hirai, 2006) a specially developed CMOS in combination with
a field-programmable gate array (FPGA) is used to obtain a 1 kHz direct visual
servoing scheme capable of controlling a flexible link. However, nowadays standard
commercially available cameras are also capable of reaching 1 kHz.

Image-based and position-based visual servoing

Next to indirect and direct visual servo control, a second distinction made by
Sanderson and Weiss is between image-based visual servoing (IBVS) and position-
based visual servoing (PBVS). In both concepts image features are extracted from
the image. However, in PBVS a pose (position and orientation) estimation is
carried out using these features in conjunction with a geometric model of the object
under consideration and a known camera model (Wilson et al., 1996; Martinet
and Gallice, 1999; Thuilot et al., 2002). The position error taken as the difference
between the reference pose and the estimated pose is used for feedback for the
vision controller. In IBVS the pose estimation is eliminated and control values are
computed on the basis of the image features directly (Weiss et al., 1987; Espiau
et al., 1992; Feddema and Mitchell, 1989; Hashimoto et al., 1991; Hashimoto,
2003).

Monocular and binocular visual servoing

A third classification is the monocular versus binocular or stereo vision. Monoc-
ular vision uses one camera, whereas in stereo vision two cameras are used. The
advantage of stereo vision is that the distance of the features with respect to the
camera can be estimated via triangulation. A disadvantage however is that the
two cameras should be synchronized with a high accuracy in order to perform this
estimation. Another disadvantage is that two images need to be processed, which
is computational more demanding. Finally, two cameras are obviously twice as
expensive as using only one.
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Endpoint open-loop and endpoint closed-loop visual servoing

Endpoint open-loop versus endpoint closed-loop is another classification within
visual servoing. In the considered applications the tool is to be positioned relative
to the features of the repetitive structure. In most cases however the camera is
positioned relative to the features. The position of the tool relative to the feature is
determined indirectly by its known kinematic relationship with the camera. Errors
in this kinematic relationship lead to positioning errors which cannot be observed
by the system. Observing the tool directly makes it possible to sense and correct
for such errors. In general, there is no guarantee on the positioning accuracy of
the system unless both the tool and the feature are observed. To emphasize this
distinction, we refer to systems that only observe the feature as endpoint open-
loop (EOL) systems, and systems that observe both the tool and the feature as
endpoint closed-loop (ECL) systems (Hutchinson et al., 1996).

Eye-in-hand and eye-to-hand visual servoing

A classification regarding the camera configuration is eye-in-hand versus eye-to-
hand. Visual servo control systems typically use one of two camera configurations:
mounted on the tool or fixed in the workspace. The first, also referred to as eye-
in-hand configuration, has the camera mounted on the tool. Often there exists a
known and constant relationship between the pose of the camera and the pose of
the tool. The second configuration, the eye-to-hand configuration, has the camera
mounted in the workspace. The eye-in-hand configuration has a precise sight of
the scene relative to the camera, whereas the eye-to-hand configuration often has
a more global sight which might be less precise.

The presented taxonomy is highly concerned with design choices for visual servo
controllers where either an ideal machine or a non-ideal machine is considered.
The second issue, regarding the non-ideal repetitive structure, will be discussed
in more detail in the remainder of this section. Therefore, consider a repetitive
structure, where the task is to align the tool to an arbitrary feature, the target
feature. As stated earlier, the tendency is that the size of these repetitive structures
is increasing, while at the same time the number of features per unit area is
increasing, see the example below.
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Example: product and feature size

Consider a wafer with a diameter of 200 mm, also referred to as an
8” wafer. The size of a semiconductor diode is approximately 250×250
µm. The number of diodes on a single row can therefore easily reach as
much as 800. The required position accuracy in this type of applications
is typically in the order of 10 µm. Assuming the diodes can be recognized
with pixel accuracy, this means that at least 20000 pixels are needed for
a single row. In order to have the full wafer in the field of view a vision
sensor would be needed of 20000×20000 pixels. With a readout rate of 1
kHz and with typically 255 gray levels (8-bits) per pixel, this would lead
to a data stream of 0.4 TB/s.

This simple example illustrates that in many applications it is impossible to have
the full product in the field of view and process the data stream in time, while
meeting the position accuracy demands. Therefore, for the sake of resolution,
the field of view is restricted to only a small part of the repetitive structure,
i.e., not the whole repetitive structure is in the field of view. Therefore, the
target feature might be outside the field of view. Since the target feature can be
outside the field of view and the pitch between consecutive features may vary due
to manufacturing tolerances or temperature fluctuations, the metric position of
the target feature measured in units of pixels is unknown. As a result a pixel-
based reference cannot be prescribed a priori. In order to still use pixel-based
references there is a strong need for an adaptive pixel-based reference. This can be
done via trajectory generation. Literature concerning online trajectory generation
within visual servoing can be found in (Feddema and Mitchell, 1989; Mezouar
and Chaumette, 2000, 2002; Schramm et al., 2005; Schramm and Morel, 2006).
However, most of these works are concerned with how to plan a trajectory from an
initial pose to its target pose which is known a priori. In our case however, the final
target position is unknown. Therefore, dependent on the current measurements a
new trajectory should be calculated online and applied to the closed-loop control
system, also referred to as online or adaptive trajectory generation (Broquère
et al., 2008; Kröger and Wahl, 2010; Kröger et al., 2006; Haschke et al., 2008;
Zheng et al., 2009). This approach is schematically depicted in Fig. 1.7. It shows
a standard control loop consisting of a plant G and a feedback controller K. The
measured output of the plant is given by y. This measurement together with the
target t, which typically is the feature number to be processed, is directly used
in the online trajectory generator R. The output r of this trajectory generator
is a trajectory leading to the target t. The corresponding units of the signals
are given in Table 1.2. This approach is present in many applications, like for
example the previous mentioned robotic hand trying to catch a ball (Namiki and
Ishikawa, 2003b). Another area is the RoboCup (Kitano et al., 2002; RoboCup,
2010) soccer league (Kalmár-Nagy et al., 2004; Sherback et al., 2006; Kalmár-
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Figure 1.7: Conventional control approach with an online or adaptive trajectory
generator R.

Nagy et al., 2002; Purwin and D’Andrea, 2006). Also in the field of automatic
milking robots (Honderd et al., 1991; Frost et al., 1993; Wittenberg, 1993) the
same strategy is adopted.

In general, the measured output y is corrupted by measurement noise n, see
Fig. 1.7. Therefore, it is expected that the resulting trajectory is affected by
this noise, which might lead to a poor performance. Furthermore, by introduc-
ing a trajectory generator a dual or cascaded control loop is created. For this
cascaded system closed-loop stability should be satisfied. Many trajectory gener-
ators generate second or higher order position profiles in which for example the
maximum acceleration and maximum velocity can be incorporated (Kalmár-Nagy
et al., 2002, 2004; Sherback et al., 2006; Purwin and D’Andrea, 2006). Other
trajectory generators are based on for example splines (Bazaz and Tondu, 1999),
Bezier curves (Hwang et al., 2003) or potential fields (Tsourveloudis et al., 2002).
In general, these trajectory generators are highly non-linear systems, such that
stability of the closed-loop system is hard to prove. Moreover, guarantees about
when to arrive at the target feature is hard to implement, since the distance to be
covered is initially unknown.

A different approach to position the tool with respect to non-ideal repetitive struc-
tures and which is closely related to this work is given in (Brier et al., 2007). It
describes the implementation of a visual position estimation algorithm, using an
FPGA in conjunction with a line-scan sensor positioned at an angle over a part
of a two-dimensional repetitive structure. A Fourier transform is used with direct
interpretation of the phase information at the two fundamental frequencies of the
repetitive structure, i.e., phase correlation in the frequency domain (Kuglin and
Hines, 1975). A condition needed for this approach is that the two fundamental
frequencies do not coincide with each other or with one of their harmonics. The
position is determined by the phase of each frequency, which is accumulated every
2π and added to the measured phase. This means that positions are incremented
when a feature is passed, while in between features an interpolated position is ob-
tained. This basic idea of incrementing and interpolating will be implemented in
this work. A disadvantage however of the approach in (Brier et al., 2007), is that
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the phase obtained from the Fourier analysis only provides an average position
of the features that are locally observed. With the knowledge that the repetitive
structure is not ideal, the peaks in the amplitude of the Fourier transform suffer
from leakage leading to “lobes” instead of sharp “peaks”, which raises the ques-
tion what the real fundamental frequency is. Moreover, if the orientation of the
features deviates the same effect will be present. Therefore, the position of each
specific feature is still unknown.

1.4 Research goal and approach

The goal of this work is to design a control approach for positioning a tool with
respect to the features of a non-ideal repetitive structure using visual servoing,
while a non-ideal machine is considered. Two tasks will be considered in this
work, which are

• positioning the tool with respect to arbitrary features of a non-ideal repeti-
tive structure, and

• positioning the tool from one feature to its neighboring feature of a non-ideal
repetitive structure.

In our research approach visual servoing will be used to align the tool with respect
to the features of the non-ideal repetitive structure. Therefore, in this section
first the visual servoing control design choices will be presented according to the
taxonomy described in Section 1.3. Although many challenges are present in the
field of visual servoing, like the optical design and the applied image processing
techniques, the focus of this work is on the control approach. Second, to deal
with the problem of unknown metric feature positions, we will discuss the use of
position measurements in the novel feature domain, i.e., feature-based positions
will be introduced for positioning the tool with respect to arbitrary features, while
taking into account the pitch imperfections. Finally, for the special task where
the tool is to be positioned from one feature to the neighboring feature a novel
feedforward algorithm will be given based on the well known iterative learning
control technique, which will deal with the pitch imperfections.

The first category of the visual servoing taxonomy is indirect versus direct visual
servoing. As opposed to indirect visual servoing, direct visual servoing makes no
assumptions regarding rigid body behavior, perfect velocity tracking control or
delay. All these machine imperfections are directly present in the plant to be
controlled by the vision controller. Therefore, the direct visual servoing control
strategy considers a non-ideal machine and will be adopted in this work.
The second category of the taxonomy is image-based visual servoing versus position-
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based visual servoing. In this work the features of the repetitive structure will be
used for positioning. As previously stated, a non-ideal repetitive structure will
be considered. This means that due to pitch imperfections there is no geometric
model on beforehand of the target, being the repetitive structure, that can be
used for position reconstruction or pose estimation. Therefore, in this work we
will adopt the image-based visual servoing (IBVS) control strategy. One of the
advantages of the IBVS approach is that it may reduce computational delay since
no pose estimation is needed in this strategy. Another advantage of image-based
control is that there is no need to interpret the image. Keeping the features in
the field of view in IBVS is reported to be more easy as opposed to PBVS (Chesi
et al., 2004). A last advantage with respect to position-based visual control is that
errors due to camera calibration and sensor modeling are eliminated.
The third category of the taxonomy is monocular versus binocular or stereo vision.
The distance from the repetitive structure to the camera is assumed to be constant
in this work, since planar motion will be considered. Therefore, monocular vision
instead of stereo vision will be used throughout the work. Moreover, the use of
more cameras is more expensive, more computational demanding, and puts extra
constraints on the placement of the cameras.
The fourth category distinguishes endpoint open-loop from endpoint closed-loop
visual servoing. Since ECL systems must track the tool as well as the feature,
the implementation of an ECL controller often requires a solution of a more de-
manding vision problem and places field of view constraints on the system that
cannot always be satisfied. Moreover, since both the feature and tool must be
tracked simultaneously, both should be detected, which requires a more elaborate
image processing algorithm, which is likely to be more computational demanding
leading to longer image processing times and performance degradation. Therefore,
in this work, it is assumed that there is a known kinematic relation between the
camera and the tool, such that the problem of positioning a tool with respect to
a feature is transformed into positioning the camera with respect to the feature.
More specifically, we assume the tool is located at the center of the image of the
camera.
The final category of the taxonomy considers eye-in-hand versus eye-to-hand vi-
sual servoing. The latter assumption of a known kinematic relation between the
camera and the tool is easier to realize with an eye-in-hand camera configuration
than the eye-to-hand camera configuration. In the case of the eye-in-hand configu-
ration a stiff connection between the tool and camera is needed which typically are
located near to each other, whereas in the eye-to-hand configuration the distance
between the camera and the tool is much larger, possibly involving flexible machine
elements such that it is harder to assume a known relative position between the
camera and the tool. Moreover, the eye-in-hand camera configuration has a precise
sight of the scene relative to the camera, whereas the eye-to-hand configuration
often has a more global sight which might be less precise. Since in this work we
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Figure 1.8: Feature-based control approach.

assume the tool is located at the center of the image, we have inherently adopted
the eye-in-hand control structure.
The visual servoing control design choices explained above are summarized in Ta-
ble 1.1.

The control approach shown in Fig. 1.7 represents a tracking problem, where
the reference is based on noisy measurements. These references are created by a
highly non-linear trajectory generator. The online implementation of a trajectory
generator as in Fig. 1.7 leads to a cascaded control architecture, for which stability
is difficult to prove due to the non-linear dynamics of the trajectory generator.

In this work we propose a control scheme which is depicted in Fig. 1.8. In this
approach the output of the plant enters the block S which generates a so-called
feature-based position y. This feature-based position takes integer values when the
center of the image is perfectly aligned with the features, and interpolates when
the center of the image is at a position between features. Therefore, the feature-
based position will be expressed in unit of features, denoted by f. The units of the
signals of Fig. 1.8 are given in Table 1.2.

A first observation regarding our approach is that the feature-based position of
each feature is known a priori, whereas the metric or pixel-based position of each
feature in Fig. 1.7 is not due to pitch imperfections. The feature-based position
of the features are namely the feature numbers or labels. For the one-dimensional
case, the first feature takes the feature-based value of 1 f. In between feature one

Table 1.1: Visual servoing choices.

�XDirect visual servoing vs. � Indirect visual servoing

�XImage-based visual servoing vs. � Position-based visual servoing

�XMonocular visual servoing vs. � Binocular visual servoing

�XEndpoint open-loop vs. � Endpoint closed-loop

�XEye-in-hand vs. � Eye-to-hand
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and two the feature-based position takes values on the interval 〈1, 2〉 f. Similarly,
feature ten has feature-based position 10 f and so on. A second observation between
the proposed control approach given in Fig. 1.8 and the one given in Fig. 1.7 is
that in our approach a servo problem is to be solved instead of a tracking problem.
There is no need to implement a trajectory generator. Third, the feature-based
position representation is very intuitive for operators. Aligning the camera with
respect to feature N ∈ Z is translated into controlling the position to feature-based
position N .

The main question of the proposed design approach is how to the design the block
S. This block maps metric positions to feature-based positions. Different pixel-
based pitches between neighboring features all map to a feature-based pitch of
one. As a consequence, the block involves a non-linear mapping between pixel-
based positions and feature-based positions, leading to a non-linear system from
input u to feature-based output y. The non-linear system influences the design
of the controller K in terms of robust stability and performance. In this work a
stability analysis will be presented in order to guarantee closed-loop stability for
a predefined range of metric pitches.

In many applications the motion task is to move from one feature to its neighboring
feature of the repetitive structure. In those cases, the next feature is assumed to be
already in the field of view, which is not the case if the task is to go to an arbitrary
feature of the repetitive structure. As a consequence, the pixel-based distance to
be traveled can be determined a priori, for example via one snapshot. Moreover,
in Fig. 1.7 the trajectory r towards the next feature can be generated once without
online adaptation. This feature-to-feature task can be seen as a repetitive task.
However, the metric distance to be traveled is prone to pitch imperfections, such
that a different trajectory is needed every time the system is to be aligned with
the next feature. Iterative learning control (ILC) (Moore, 1993) is a well known
techniques for handling repetitive tasks. In this work the ILC principle is used,

Table 1.2: Signal units.

Signal Symbol Unit in Fig. 1.7 Unit in Fig. 1.8

Target t [f] n/a (t ≡ r)
Reference r [m] [f]
Error e [m] [f]
Input disturbance d [N] [N]
Measurement noise n [m] [m]
Measured output y [m] [f]
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but in our approach setpoints with different magnitudes are applied during the
learning process such that the tracking performance of different travel distances
related to the pitch imperfections are improved iteratively.

1.5 Research contributions

The goal of this work is to design control approaches for positioning the center of
the camera with respect to the features of a non-ideal repetitive structure using
visual servoing in a non-ideal machine. Two tasks will be considered in this work,
which are 1) positioning with respect to arbitrary features of a non-ideal repetitive
structure, and 2) positioning from one feature to its neighboring feature of a non-
ideal repetitive structure. The contributions of this work are fourfold:

1. The first contribution involves the development of a one-dimensional feature-
based position, that is used for positioning with respect to arbitrary fea-
tures. More specifically, the blocks S and K in Fig. 1.8 will be designed
for a one-dimensional repetitive structure with pitch imperfections. Closed-
loop stability will be proven for the one-dimensional feature-based control
approach.

2. Second, the proposed feature-based control approach for positioning with
respect to arbitrary features of the repetitive structure is extended to a
full two-dimensional case. Again, pitch imperfections will be considered
together with small rotations of the repetitive structure. Different inter-
polations for obtaining inter-feature positions are considered in this case
to improve the performance and simple programmable metric movements
with respect to the features will be implemented without having to trans-
form these metric movements into feature-based movements.

3. The third contribution is related to the feature-to-feature task. The ILC
principle is used, but in our approach setpoints with different magnitudes
are applied during the learning process such that the tracking performance
of different travel distances related to the pitch imperfections are improved
iteratively. Second order ILC will be used in this work to estimate 1) the
part of the error that is independent of the magnitude of the setpoint and 2)
the part of the error that is directly related to the magnitude of the setpoint.

4. Finally, the proposed control approaches will be validated in practice on an
industrial xy-wafer stage.
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1.6 Outline of this thesis

This thesis consists of three research chapters. Each chapter is submitted for
journal publication and is therefore self contained and can be read independently.
Chapter 2 is based on (De Best et al., 2011a) and will present the development of a
one-dimensional feature-based position measurement in the novel feature domain,
which will be used as feedback signal in the servo control loop. The robustness
with respect to pitch imperfections of the repetitive structure will be proven by a
stability analysis. The proposed control design will be validated in practice on an
academic visual servoing setup.
Chapter 3 is based on (De Best et al., 2011b) and will extend the feature domain
to two dimensions. High order interpolation for obtaining inter-feature positions
will be considered next to linear interpolation in order to improve the performance.
Next to movements from one feature to another we will also discuss the implemen-
tation of metric movements with respect to the feature to increase the versatility of
programmable movements. An industrial xy-wafer stage will be used in combina-
tion with a commercially available off-the-shelf camera to experimentally validated
the proposed control approach.
Chapter 4 is based on (De Best et al., 2011c) and will discuss the use of second
order iterative learning control for the specific motion task of positioning the tool
from one feature to its neighboring feature of the repetitive structure. Different
types of disturbances will be considered, identified and compensated where possi-
ble. The xy-wafer stage is again used as a testbed for the proposed control design.
Finally, in Chapter 5 the main conclusions of this work will be given together with
recommendations for future work.
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Chapter 2

One-dimensional feature-based
motion control

THIS chapter focusses on direct dynamic visual servoing at high sam-
pling rates in machines used for the production of products that con-

sist of equal features placed in a repetitive pattern. The word “direct”
means that the system at hand is controlled on the basis of vision only.
More specifically, the motor inputs are driven directly by a vision-based
controller without the intervention of low level joint controllers. The con-
sidered motion task is to position the repetitive structure in order to align
the center of the camera with respect to the features. The vision based con-
troller is designed using classical loop shaping techniques. Robustness with
respect to imperfections of the repetitiveness is investigated. The combi-
nation of fast image processing and a Kalman-filter based predictor results
in a 1 kHz visual servoing setup. The design approach is validated on an
experimental setup.

2.1 Introduction

Many production processes take place on repetitive structures, for example in ink
jet printing technology where droplets are placed in a repetitive pattern, or in pick
and place machines used in the production of discrete semiconductors. In each
of these processes one or more consecutive steps are carried out on the particular
features of the repetitive structure to create the final product. Such production

This chapter is based on: J.J.T.H. de Best, M.J.G. van de Molengraft and M. Steinbuch.
High Speed Visual Motion Control Applied to Products with Repetitive Structures. Accepted for
publication in IEEE Trans. Control Syst. Technol.
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machines often consist of a tool, for example a print head, and a stage or carrier on
which the repetitive structure is to be processed. Key to obtaining a high product
quality is to position the tool with respect to each feature of the repetitive structure
with a high accuracy. In current industrial practice, local position sensors such as
motor encoders are used to measure the tool position xt and the position of the
stage xo separately as shown in Fig. 2.1(a). Often the absolute reference points of
these measurements do not coincide. This is referred to as an indirect measurement
of xt− xo. Using such local measurements in a closed-loop control approach often
leads to a collocated control design. The final accuracy of alignment in this case
is directly dependent on the following machine properties:

• geometric accuracy of the mechanical construction,
• stiffness of the mechanical construction and
• thermal stability of the machine.

Furthermore, the final accuracy of alignment also relies on assumptions with re-
spect to the repetitive structure:

• infinitely stiff connection between the supporting stage and the repetitive
structure,

• constant and known alignment of the repetitive structure with respect to the
actuation axes,

• infinite stiffness of the repetitive structure,
• constant and known pitch between successive features of the repetitive struc-

ture and
• thermal stability of the repetitive structure.

xo

xt

zt

z

x

tool

repetitive
structure

(a) Indirect measurement of
relative position xt − xo.

x

camera

(b) Direct measurement of
relative position x.

Figure 2.1: Direct versus indirect measurement.
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Some of the above issues may result in reproducible errors, especially geometric
imperfections and dynamic flexibilities. These errors usually require expensive me-
chanical measures, with respect to both the machine itself and the repetitive struc-
ture. As an example, a priori unknown pitch variations in the repetitive structure
will limit the attainable accuracy and prevent the use of absolute motion setpoints
in high-accuracy applications. Such limitations due to imperfections can be over-
come by adopting a different design paradigm where a camera is used for a direct
measurement of the relative position between product and tool. In this paradigm
the imperfections of machine and product will be dealt with by non-collocated
feedback control. This work exploits the potential of this approach by construct-
ing a feature-based position measurement on the basis of camera images, such that
motion setpoints can be defined from feature to feature without knowing the exact
absolute position of the features beforehand, while achieving a high positioning
accuracy. Controlling a mechanical system by means of camera measurements is
referred to as visual servoing (Hashimoto, 2003; Hutchinson et al., 1996; Malis,
2002). Kinematic visual control (Chaumette and Hutchinson, 2006; Hashimoto,
2003; Hutchinson et al., 1996) assumes rigid body dynamic behavior and can not
be used in our dynamic, non-collocated control approach. Indirect dynamic visual
control (Corke, 1995; Corke and Good, 1992, 1996; Sequeira Goncalves, 2001; Se-
queira Goncalves and Caldas Pinto, 2003) does account for dynamic effects but
still relies on the presence of collocated position sensors. Therefore, we will adopt
the concept of direct dynamic visual control (Ishii et al., 1996; Ishikawa et al.,
1992; Nakabo et al., 2000) with eye-in-hand camera configuration, where we as-
sume that the tool is located in the center of the image. The main contributions
of this work compared to the above literature are the following:

• feature-based position sensing enabling a direct dynamic visual control
paradigm that is robust against machine imperfections and deviations in the
pitch between successive features of the repetitive structure,

• stability analysis of the controlled system with respect to the allowable de-
viations in the pitch between features of the repetitive structure, and

• validation of the proposed methods on a practical direct visual control setup
using a commercially available and cost-effective camera with a 1 kHz update
rate.

The rest of the chapter is organized as follows. In Section 2.2 the measurement
principle to create a feature-based position sensor using the repetitive structure
in combination with a camera will be given followed in Section 2.3 by the design
of a model-based predictor that is needed when moving at high velocities and for
speeding up the image processing steps. The image processing algorithm will be
discussed in Section 2.4. The practical setup used for validation of the proposed
algorithm will be described in Section 2.5, the system identification in Section 2.6,
and Section 2.7 will discuss the final integration. The stability analysis in com-
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(a) OLED display: a repeti-
tive structure.

dr

dl

yc(k) yc(k) + 1
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(b) Considered one-dimensional repetitive structure.

Figure 2.2: Repetitive structures.

bination with the controller design will be given in Section 2.8, followed by the
experimental validation in a closed-loop visual servoing control setting. Finally,
conclusions and suggestions for future work will be given.

2.2 Measurement principle

Within this research we focus on machines used for the production of structures
that inherently consist of identical features placed in a repetitive pattern such
as OLED displays, see Fig. 2.2(a). At this point we restrict the focus of the
work to a one-dimensional repetitive structure for ease of explanation. In many
manufacturing machines, production steps are carried out row by row or column
by column, so in practice we need a two-dimensional position measurement. In
our case the second dimension is however restricted by the field of view of the
camera. The focus in this work will be on the feature-based position measurement
along the repetitive structure in order to apply feature-based control. For now we
will consider the features to be circular objects as shown in Fig. 2.2(b), with a
diameter of D pixels. The height and width of the image captured by the camera
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are Ih and Iw pixels, respectively. The repetitiveness is characterized by the pitch
P between the features, which satisfies P −∆P ≤ P ≤ P + ∆P , where P is the
nominal pitch and ∆P is the maximum pitch variation. The number of features
that are completely within the field of view for the presented method must be at
least two, and must be located at different sides of the center of the field of view.
Therefore, the required field of view is determined by the pitch of the repetitive
structure together with the feature size. In the case of a different pitch either
the height of the camera can be adjusted which influences the resolution, or a
differently sized area of pixels can be read out leading to different acquisition and
processing times. Within the image, the horizontal pixel positions dl and dr of
the two features that are located nearest to the opposite sides of the image center
are measured, see Fig. 2.2(b). These features are labeled yc(k) and yc(k) + 1,
with yc(k) ∈ Z, irrespective of the mutual pixel distance. Here, the time step is
indicated by k. The measured position yv that will be used in the closed-loop
visual control setting is now given by

yv(k) = yc(k) + yf (k), (2.1)

with yc being the coarse position, i.e., the integer feature label. The fine position yf
is the linear interpolation between the left and right feature label and is calculated
as

yf (k) =
0.5Iw − dl(k)

dr(k)− dl(k)
≤ 1. (2.2)

The output yv(k) indicates the position of the center of the image in feature units.
So, yv(k) = 1.0 indicates that the feature labeled 1 is exactly in the center of
the image, whereas yv(k) = 0.5 indicates that the center of the image is exactly
between the features with labels 0 and 1. Therefore, we define the feature label,
denoted by f, as a measurement unit. Pitch variations, i.e., P −∆P ≤ dr − dl ≤
P + ∆P , cause this measurement to become piecewise linear, i.e., the gain of the
process varies along the structure. Section 2.8 will discuss this in detail, where the
feature unit f also appears.

2.3 Model-based prediction

Key to obtaining the correct position is determining the value of yc(k) within the
field of view. When, for example, the velocity is one pitch per sample the camera
will record identical images every time step. Based on that information only, the
measurement yv as described in the previous section gives the same value if yc is
not incremented, i.e., we measure a velocity of zero while the structure is moving
with the high velocity of one pitch per sample. If the velocity is increased further
aliasing effects cause the features to appear to move slowly in the wrong direction.
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Figure 2.3: Single mass system. The input is denoted by u. The output, denoted
by y, is the position of the repetitive structure measured by the camera.

To tackle the problem of incrementing the value of yc, a model-based solution will
be applied. More specifically, we will design a stationary Kalman filter (Kalman,
1960), from which the one step ahead prediction will be used to estimate the value
of yc for the next time step. Moreover, next to incrementing the value of yc, the
one step ahead prediction will also be used to estimate where the features will
be located in the field of view in the next time step. Therefore, we will model
the input-output behavior of the motion drive carrying the repetitive structure as
a mass system, see Fig. 2.3. The input of the system u is the force applied to
the mass and the output is the position y. The state space representation of the
discrete time system is given by

x(k + 1) = Ax(k) +B(u(k) + w(k)) (2.3)

y(k) = Cx(k), (2.4)

where x = (y ẏ)T is the state vector containing the position y and the velocity ẏ,
with x(0) = x0, u is the known applied force and w is the process noise, being the
unmodeled forces. The matrices A, B and C are the system, input and output
matrices, respectively. The specific matrices for our model are straightforward, and
expanded, time-delay versions are given in Section 2.6 by (2.18). In this section a
stationary Kalman filter will be given that estimates the output y given the known
input u and the measurement yv given by

yv(k) = Cx(k) + v(k), (2.5)

where v represents the measurement noise. For the process and measurement noise
we assume

E(Bw2BT ) = BBTE(w2) = Qw, E(v2) = Qv, E(wv) = 0, (2.6)

where E(·) is the expected value operator. The Kalman filter consists of a 1)
prediction step

x̂(k + 1|k) = Ax̂(k|k) +Bu(k), (2.7)
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k − 1

k

x̂(k|k − 1) = Ax̂(k − 1|k − 1) +Bu(k − 1)

x̂(k|k) = x̂(k|k− 1) +M(yv(k)−Cx̂(k|k− 1))

x̂(k + 1|k) = Ax̂(k|k) +Bu(k)

k + 1

x̂(k− 1|k− 1) = x̂(k− 1|k− 2) +M . . .

time

Figure 2.4: The Kalman filter consists of a 1) prediction step (normal) given by
(2.7) and a 2) correction step (bold) given by (2.8).

and a 2) ’no steps ahead’ correction step

x̂(k|k) = x̂(k|k − 1) +M(yv(k)− Cx̂(k|k − 1)), (2.8)

where M is the Kalman gain obtained from solving the steady state Riccati equa-
tion. Here, the prediction of the state at time step k + 1 on the basis of measure-
ments up to time step k is denoted by x̂(k + 1|k). The two steps are graphically
depicted in Fig. 2.4. Combined the prediction and correction step lead to

x̂(k+1|k)=A(I−MC)x̂(k|k−1)+Bu(k)+AMyv(k). (2.9)

The one step ahead output prediction uses this one step ahead state prediction
and is given by

ŷ(k + 1|k)=Cx̂(k + 1|k), (2.10)

where, ŷ(k + 1|k) is the estimate of y(k + 1) on the basis of measurements up to
time step k. This prediction is used to get an estimate ŷc of the position of the
repetitive structure in the next time step k + 1:

ŷc(k + 1|k) = bŷ(k + 1|k)c, (2.11)

where b·c is the floor function, which rounds ŷ(k+1|k) to the nearest lower integer.
In the prediction step explained above it is assumed that the pitch P is constant
and equal to the nominal pitch P . If this is not satisfied we cannot associate the
right label to the feature if n∆P > P , where ∆P is the deviation of the nominal
pitch P and n is the number of features that has passed within one time step. In
this work it is assumed that at every time step a position is measured. In the case
the image processing fails to detect the features resulting in an invalid position,
the Kalman filter can also be used to predict the position. This is however not
considered in this work.
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2.4 Fast image processing implementation

Although the focus of this work is on the control approach, this section discusses
the image processing algorithm used for detecting the pixel positions dl and dr,
which in our case comprises straightforward thresholding and calculating the cen-
ter of gravity. Since the features are assumed to be identical, thresholding and
calculating the center of gravity is a low cost primitive image processing technique
that indicates a fixed position of the feature, irrespective of its shape or orien-
tation. If however, features are partially occluded, by for example a dust flake,
an incorrect position is calculated. In those cases, image registration techniques
based on correlation or hough transform could be used which are more computa-
tionally demanding. At this point we will introduce search areas around each of
the features within the field of view with a width and height of Sw and Sh pixels
respectively, such that only one feature is completely present within one search
area as shown in Fig. 2.5. In our case we have chosen Sw = Sh = P . The goal is to
search for only one feature within one search area such that labeling implementa-
tions to distinguish between multiple features in the image processing algorithms,
which cause overhead, can be eliminated. Furthermore, we introduce d̂, which is a
pixel position estimate of the feature that is closest to the image center. By using
a better prediction the search area can be reduced, which in turn again leads to
a smaller computation time of the image processing algorithms. The size of the
search area depends on 1) the feature size D 2) the variation of the feature position

and 3) the quality of the prediction d̂. Naturally, this size should be larger if 1)
the feature size is large, 2) the variation of the feature position is large or 3) the
prediction quality is low. The size of the features and the variation of the position
are characteristics of the machine which cannot be altered. However, the estimate
d̂ can be influenced. The pixel position estimation d̂ can be obtained from the one
step ahead prediction, discussed in the Section 2.3, as follows

d̂(k + 1|k) =





0.5Iw + (1− (ŷ(k + 1|k)− ŷc(k + 1|k))P
if ŷ(k + 1|k)− ŷc(k + 1|k) ≥ 0.5

0.5Iw − (ŷ(k + 1|k)− ŷc(k + 1|k)P
if ŷ(k + 1|k)− ŷc(k + 1|k) < 0.5.

(2.12)

Given this estimate together with the search area, the position of the feature within
the search area is calculated. This is done as follows.

First, the image is thresholded within the search area. Global optimal threshold-
ing is performed using Otsu’s thresholding method (Gonzalez and Woods, 2008),
which determines the optimal threshold level TH. The thresholding is done while
reversing salient intensities as follows

T (i, j, k) =

{
TH − I(i, j, k) if I(i, j, k) ≤ TH

0 if I(i, j, k) > TH.
(2.13)
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Figure 2.5: Measurements of dr and dl using the search areas.

Here, the image data is denoted by I(i, j, k), with indices i ∈ {st, . . . , st + Sh},
j ∈ {sl(k), . . . , sl(k) + Sw} indicating the row and column pixel elements, respec-
tively, and k indicating the time step. The position (st, sl(k)) indicates the top left

corner of the search area, see Fig. 2.5. This position is given by sl(k) = d̂(k)−0.5Sw
and st = 0.5(Ih − Sh). Therefore, we assume that the tx positions of the features
only vary within Sh − D with respect to the center of the image in tx direction.
As a result, we can also measure the tx position within a limited range. This po-
sition can be used in a feedback loop to keep the features within the field of view.
However in the remainder we will focus on the horizontal position measurement.
The resulting thresholded image is given by T (i, j, k).

Secondly, the center of gravity in the ty direction within the search area of the
thresholded image T (i, j, k) is calculated as

d(k) =

st+Sh∑

i=st

sl(k)+Sw∑

j=sl(k)

iT (i, j, k)

st+Sh∑

i=st

sl(k)+Sw∑

j=sl(k)

T (i, j, k)

. (2.14)

If d(k) ≥ 0.5Iw we have found the center of the feature at the right of the center of
the image and we call this distance dr(k) = d(k). From Fig. 2.5 it can be seen that

dr(k) can be slightly different from d̂(k) indicating the estimation error. Next, if
the center of the feature is found at the right of the center of the image, the center



30 Chapter 2 One-dimensional feature-based motion control

camera

light

xy-stage

Figure 2.6: Experimental visual servoing setup.

of another feature is searched for at the left of the image center with an estimate
given by d̂l(k) = dr(k)− P . Conversely, if d(k) was found to satisfy d(k) < 0.5Iw
we have found the left feature with position dl(k) = d(k) and we search for the

right feature with an estimate given by d̂r(k) = dl(k) + P . We end up having two
positions dr(k) and dl(k). These positions are used to determine yf in (2.2), which
together with yc leads to the feature-based position yv of (2.1) that will be used
for feedback.

2.5 Experimental setup

The setup that will be used later on for experimental validation is depicted in
Fig. 2.6. It consists of two stacked linear motors forming an xy-stage. The
data-acquisition is realized using an EtherCAT (Jansen and Buttner, 2004) data-
acquisition system, where DAC, I/O, and ADC modules are installed, respectively,
to drive the current amplifiers of the motors, to enable amplifiers and to measure
the position of the xy-stage on the motor side. Hence, this position is only used
for comparison and is not used in the final control algorithm as such. A Prosilica
GC640M high-performance machine vision camera (Prosilica, 2009) with Gigabit
Ethernet interface (GigE Vision) which supports jumbo frames and is capable of
reaching a frame rate of 197 Hz full frame (near VGA, 659×493) is mounted above
the stage. The GigE interface allows for fast frame rates and long cable lengths.
The captured images are monochrome images with 8 bit intensity values. To obtain
a frame rate of 1 kHz we make use of a region of interest (ROI): we read out only
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a part of the image sensor as large as 80×80 pixels. The GigE network controller
is able to process frame sizes up to 9200 bytes. The frame size is the number of
bytes per packet and the larger the frame size, the less the CPU will be loaded due
to the processing of incoming packets. Since 80×80 pixels results in 6400 bytes
fitting into a single packet, only one packet is needed. This region is centered at
the principal point located near the center of the sensor. The used objective is a
Fuijinon DF6HA-1 lens, specified with a focal length f of 6 mm. According to the
data sheet, the camera has a Micron MT9V403 sensor with a square pixel size p
of 9.9 µm. The camera is calibrated (Heikkila and Silven, 2002) with a calibration
grid, which first shows that distortion is negligible due to the small ROI around
the principal point. Therefore the pinhole camera model, which maps the metric
positions Xi, Yi, Zi of the repetitive structure to the image coordinates ui, vi, can
be applied

ui =
f

pZi
Xi (2.15)

vi =
f

pZi
Yi. (2.16)

The focal length f ′ which is expressed in pixel units, i.e., f ′ = f
p was calibrated

and found to be 623 ± 11 pixels. The height of the camera h was also calibrated
and is 0.1132 m. Therefore one pixel in the image coincides with 181.7 µm ± 3.3
µm on the repetitive structure. With a height h of 0.1132 m between the camera
and the stage and a focal length f ′ of 623 pixels we can calculate the resulting
field of view as

Iwh

f ′
× Ihh

f ′
, (2.17)

which in this case is 14.5× 14.5 mm. The repetitive structure consists of circular
black dots with a diameter of 2 mm and a nominal pitch of 4 mm. The region of
interest is therefore large enough such that at least two features are completely in
the field of view. The exposure time is set to its minimum, which is 10 µs. The illu-
mination is realized using power LEDs and set such that all pixel values are within
the dynamic range, i.e., between 0 and 255, to avoid clipping. The data-acquisition
is integrated in a Linux environment running a 2.6.28.3 preemptible low-latency
kernel and the real-time executable is built using the real-time workshop (RTW)
of Matlab/Simulink.

2.6 System identification

For the horizontal direction frequency response functions (FRFs) are measured.
Two different FRFs are measured: one from the motor input u to the position
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Figure 2.7: Measured FRFs from motor input u to position output y, black: using
motor encoder, gray: using camera (scaled by the pitch of 4 mm for comparison).

output ymot using the motor encoder (collocated control) and one from the motor
input u to the position output ycam using the camera with the position measure-
ment as described in the previous sections (non-collocated control). The pitch was
constant during the measurement and is 4 mm and the sampling frequency was
1 kHz in both cases. In the ideal case, both ymot and ycam would represent a
measurement of the product position y. The result is given in Fig. 2.7, where the
camera measurement is scaled by the pitch for comparison. Different dynamics
are present if the position measurement from the camera is used instead of the
motor encoder. In the case of using the camera as sensor all relevant dynamics
are measured including vibrations caused by the limited stiffness of the frame.
Furthermore, from the phase plot it can be seen that different time delays are
present when using the camera in the feedback loop instead of the motor encoder.
The time delay when using the camera is larger, due to the necessary image ac-
quisition and image processing time. When the camera is used the time delay
is 3.5 ms, where the readout of the sensor according to the data sheet takes 816
µs, the image transport takes 1.1 ms, the image processing takes 60 µs, the data
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acquisition for driving the motors takes 1 ms and finally the zero order hold effect
results in 0.5 ms delay.

At 70 Hz a resonance of the system is observed caused by the finite stiffness of
the camera mounting. For frequencies below 50 Hz the two FRFs are quite similar
and can be modeled by a single mass system as depicted in Fig. 2.3. This model
is used in the one step ahead prediction as explained in Section 2.3 . The time
delay is incorporated in the discrete time model of (2.3) and (2.4) by adding three

additional states x =
(
y(k − 3) y(k − 2) y(k − 1) y(k) ẏ(k)

)T
to model a 3

ms delay. The zero-order hold (ZOH) effect introduces another 0.5 ms delay, which
in total leads to the 3.5 ms delay present in the system. The system, input and
output matrices A, B and C, are given as follows

A =




0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 1 T
0 0 0 0 1



, B =




0
0
0

0.5T 2/m
T/m



,

C =
(
1 0 0 0 0

)
,

(2.18)

where m is the dimensionless mass (including all motor and amplifier gains) of
the system and T = 0.001 s is the sampling time. The value of m is estimated
to 0.184. For that the measured FRFs are approximated by a single mass system
G(jω) = − 1

mω2 . The values of G(jω) and ω are known, so m can therefore be
estimated for low frequencies.

2.7 Integration

The integration of all blocks within the control scheme is depicted in Fig. 2.8. The
steady-state Kalman filter is designed using the matrices A, B and C given in the
previous section together with

Qw = BBTE(w2) = BBT qw, Qv = E(v2) = qr, (2.19)

with qr the variance of the measurement noise v. This variance is determined
by measuring the position while the system is at a standstill. The noise of this
measurement has a variance of qr = 2.8 · 10−8 f2, with f being the unit features
as explained in Section 2.2. The value qw, which is the variance of the unmodeled
input w, is used as a tuning variable such that the innovation signal, defined as
yv(k)− ŷ(k|k− 1), is minimized. The optimal value for the variance of w is found
to be 0.07 V. Note that the unit of u and w are given here in volts. The output
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+ ŷc(k + 1|k)
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d̂(k)
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Figure 2.8: Control scheme. The controller K controls the system. The image I
captured by the system is processed in the image processing block IP, resulting
in the feature-based position yv. The Kalman filter KF is used to estimate which
features will be in the field of view in the next time sample (ŷc(k+1|k)) and where

they will be located d̂(k + 1|k).

voltage of the controller is applied to a current amplifier which generates a current
through the motor leading to a force. In Fig. 2.8 the controller K is connected
to the system with input u and image output I. This image is processed in the
image processing block IP using the estimates ŷc(k) and d̂(k). These estimates
are the previous outputs of the Kalman filter KF. The Kalman filter is used only
for 1) incrementing the value of yc(k) and 2) estimating the position of the feature
closest to the image center in the next time step. The filtered position output of
the Kalman filter ŷ(k|k) is not used for feedback since in that case the dynamics of
the Kalman filter would attribute to the dynamics to be controlled, i.e., by using
ŷ(k|k) for feedback, the plant as seen by the controller is the series connection of
the system and the Kalman filter, see Fig. 2.8. Therefore, based on the Kalman
filter tuning, a different plant is observed by the controller. In our case, we use
the output yv of the system as feedback, such that the dynamics of the Kalman
filter do not have to be considered in the controller design.

2.8 Stability analysis

When going from one feature to the next, a different pitch dr − dl 6= P is consid-
ered after each transition in (2.2). This results in a switching gain of the system.
In this section the switching behavior will be modeled. Furthermore, a stability
analysis will be given that can be carried out to ensure stability of the closed-loop
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R(z)

G(z)

ũu

I(z)

∫
1
Pi

y

Figure 2.9: Representation of switched system G(z). The input to the system u is
mapped to the metric velocity ũ by the block R(z). In the block I(z), this metric
velocity is converted to its feature-based velocity according to the momentary pitch
Pi. After integration the feature-based position y is obtained.

system if a single controller is used to control the switching system.

We model the switching behavior of the system G(z) = R(z)I(z) as given in
Fig. 2.9. The first system R(z) relates the applied forces to metric velocities
measured in m/s. The gain 1

Pi
converts these metric velocities into feature-based

velocities measured in f/s according to the momentary pitch Pi between features.
After integration the output of the system G(z) is the position in the feature
domain. The system R(z), containing for example the flexibilities of the system,
can be written in state space as

xR(k + 1) = ARxR(k) +BRu(k), (2.20a)

ũ(k) = CRxR(k) +DRu(k), (2.20b)

with xR representing the system states for modeling the flexibilities. This system
is connected in series with the integrator I(z), that models the rigid body behavior.
Therefore, the output ũ(k) of R(z), being the metric velocity measured in m/s, is
an input to the integrator I(z), which can be written in state space as

xI(k + 1) = AIxI(k) +BI,iũ(k), (2.21a)

y(k) = CIxI(k), (2.21b)

with AI = 1, BI,i = T
Pi

and CI = 1, with T the sampling time of 0.001 s and Pi ∈
P. The set P is defined as P = {Pi|P −∆P ≤ Pi ≤ P +∆P}, with P the nominal
pitch. The value ∆P can be related directly to the deviations of the spacing
between successive features. By defining the state xG(k)=(xR(k)T xI(k)T )T the
series connection form the total nominal system G(z) and is given by

xG(k + 1) = AG,ixG(k) +BG,iu(k), (2.22a)

y(k) = CGxG(k), (2.22b)
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with

AG,i =

(
AR 0

BI,iCR AI

)
, BG,i =

(
BR

BI,iDR

)
, (2.23)

CG =
(
0 CI

)
, DG = 0. (2.24)

The above system can switch in time, caused by the non-constant inter spacing
between features, i.e., dr − dl 6= P . The switching results in a different gain of
the above system, which is modeled by a switching BI,i matrix. It is chosen to
have a switching BI,i matrix since in that case the feature position is continuous,
whereas the feature velocity is not. For the switching plant G mentioned above a
nominal controller K is designed based on the matrix BI,i containing the value T

P
.

This controller is given in state space representation as

xK(k + 1) = AKxK(k) +BKe(k) (2.25a)

u(k) = CKxK(k) +DKe(k), (2.25b)

with xK is the state of the controller. Since the time of switching is assumed to
be unknown the question we want to answer is whether the (arbitrary) switching
system G controlled by the single controller K is stable given a pitch deviation ∆P .
By defining the error e(k) as e(k) = r(k) − y(k) and x(k) = (xG(k)T xK(k)T )T ,
substitution leads to the following closed-loop system

x(k + 1) = Acl,ix(k) +Bcl,ir(k), (2.26a)

y(k) = Cclx(k), (2.26b)

with

Acl,i =

(
AG,i −BG,iDKCG BG,iCK

−BKCG AK

)
, (2.27)

Bcl,i =

(
BG,iDK

BK

)
, (2.28)

Ccl =
(
CG 0

)
. (2.29)

The above system is described by a linear differential inclusion (LDI) (Boyd et al.,
1994). For two values of Pi, say P1 and P2, the stability of the system under arbi-
trary switching can be checked by solving the following linear matrix inequalities
(LMIs) (Boyd et al., 1994),

E −ATcl,1EAcl,1 � 0 (2.30)

E −ATcl,2EAcl,2 � 0 (2.31)

E � 0, (2.32)
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with the variable E to be solved. However, in this case the stability is only checked
for two fixed values of Pi. For any value Pi in between P −∆P and P + ∆P we
proceed as follows. Define Acl,min containing Pi = P −∆P as

Acl,min =

(
AG,min −BG,minDKCG BG,minCK

−BKCG AK

)
. (2.33)

Furthermore define Acl,max containing Pi = P + ∆P as

Acl,max =

(
AG,max −BG,maxDKCG BG,maxCK

−BKCG AK

)
. (2.34)

With these matrices we can write any matrix Acl,i as the convex combination of
Acl,min and Acl,max given by

Acl,i = α1Acl,min + α2Acl,max, (2.35)

where α1 > 0, α2 > 0 and α1 + α2 = 1. Using this definition we can search for a
common quadratic Lyapunov function V (x(k)) = xT (k)Ex(k), with E = ET � 0
such that V (x(k))− V (x(k + 1)) > 0,∀x(k + 1) = Acl,ix(k) or equivalently

xT (k)(E −ATcl,iEAcl,i)x(k) � 0. (2.36)

Since the inequality has to hold for every x it is sufficient to check

E − (α1Acl,min + α2Acl,max)TE(α1Acl,min + α2Acl,max) � 0, (2.37)

where we substituted (2.35). This can be solved by checking

E −ATcl,minEAcl,min � 0, (2.38)

E −ATcl,maxEAcl,max � 0, (2.39)

since α1 and α2 are always positive. The proof is given in Appendix A. Therefore,
we can conclude that if the systems with P −∆P and P + ∆P are simultaneously
stable, the arbitrary switching system is stable for any value Pi within the bound
given by P −∆P ≤ Pi ≤ P + ∆P .
In our case we investigate the stability for pitch deviations of up to 1 mm with
respect to the nominal pitch of 4 mm. The system under consideration is modeled
with I(z) defined by (2.21) with

AI = 1, BI,i =
T

Pi
, CI = 1, (2.40)
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and with R(z) defined in (2.20) with

AR=




5.4 −3.1 2.0 −0.7 0.3 −0.1 0 0 0
4 0 0 0 0 0 0 0 0
0 2 0 0 0 0 0 0 0
0 0 2 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0
0 0 0 0 0.5 0 0 0 0
0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1 0




(2.41)

BR =
(
0.1 0 0 0 0 0 0 0 0

)T
, (2.42)

CR = 1 · 10−3 · (0 0 5 − 8 9 1 − 18 15 − 4) , (2.43)

DR = 0. (2.44)

These matrices are determined by fitting a transfer function on the measured
frequency response. From the obtained model the integrator I is extracted leading
to the system R. This system is converted into a state space model leading to the
matrices above. The result of the modeling is given in Fig. 2.10, where for BI,i
the value T

P
was used. The controller for this system (2.25) consists of a lead filter

to create a phase lead with the zero of the lead filter at 7.5 Hz and the pole at 120
Hz. A second order low-pass at 100 Hz with a damping of 0.6 is added such that
high frequencies are not amplified. The discrete time controller is given by

AK =




1.67 −1.04 0.44
1 0 0
0 0.50 0


 , BK =

(
64 0 0

)T
, (2.45)

CK =
(
26.86 −9.09 −31.54

)
, DK = 0. (2.46)

The open-loop is given in Fig. 2.11. The achieved closed-loop bandwidth is 20 Hz.
Given the matrices, Acl,min and Acl,max can be calculated. The LMIs can be solved
efficiently using commercially available software (Gahinet et al., 1994). The LMIs
were solved and a feasible solution was found, from which it can be concluded
that the closed-loop arbitrary switching system is stable. Stated otherwise, the
controlled system is robust against pitch deviations within 1 mm.

In practice a number of additional straightforward constraints should be satisfied,
which are related to the pitch deviations in combination with the search area
width. First, as mentioned before, there always have to be at least two features
within the field of view. This constraint can be formulated as

2(P + ∆P ) +D < Iw. (2.47)
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Figure 2.10: Measured FRF from motor input u to position output y using the
camera (gray) and the corresponding model (black).

The second obvious constraint that should hold is that features do not overlap

P > 2∆P +D. (2.48)

For the width of the search region Sw two more constraints are imposed

Sw > D + 2n∆P, (2.49)

Sw < P − n∆P, (2.50)

where n is the number of features that has passed the field of view within one
sample. The first constraint states that there is always one complete feature within
the search area, whereas the second one states that there may be only one feature
within the search region. If the velocity is so high that more than one feature has
passed within one sample the number n gets larger than one, hence smaller pitch
deviations can be allowed.
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Figure 2.11: Open-loop in y direction.

Remark: The above stability result could also be used to prove stability with
respect to lens distortions. This makes the tedious task of camera calibration
(Tsai, 1987; Zhang, 2000) superfluous. It is known from literature that image-
based visual servoing is more robust against lens distortions than position-based
visual servoing (Hutchinson et al., 1996). Our analysis can also be applied for
radial lens distortions. When a feature is traveling at a constant velocity, radial
lens distortions cause the feature to move at different velocities near the edges
of the image than near the center of the image. The velocities can be higher or
lower, dependent on whether a pincushion or barrel distortion is present. For that
case, we can state that if a feature is near the edge of the image the gain of the
system is larger or smaller than the gain near the center of the image. This gain
varies during the movement of the feature. Therefore, the same type of analysis
can be carried out where the value ∆P depends on the distortion coefficients that
describe the radial distortion.
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2.9 Results

First, the proposed non-collocated visual servoing solution is compared to the
classical collocated solution. Two experiments have been conducted for that, one
with collocated feedback using the motor encoder and one with non-collocated
feedback using the camera. The non-collocated controller of the previous section
is used which has a bandwidth of 20 Hz, see Fig. 2.11. The collocated controller is
tuned with a bandwidth of 40 Hz, which is twice as high as in the non-collocated
case. In both experiments a repetitive structure is placed on the stage, such
that a feature is exactly centered in the field of view of the camera. The control
task in both experiments is to simply keep the feature centered in the field of
view. The setpoint is therefore zero. During the experiments a disturbance F
is applied for one second, see Fig. 2.12. This disturbance might originate for
example from other moving parts of the production machine. As a consequence
of this disturbance and due to the finite mechanical frame stiffness the camera
will move with respect to the feature. Hence, the feature will not be exactly in
the center of the field of view any more. Contrary to the collocated case, in the
non-collocated case this displacement, denoted by xc in Fig. 2.12, can be measured
and compensated for using feedback control. The results of the two experiments
are given in Fig. 2.13. The measured motor encoder xm is given on the left hand
side. The camera measurement xc is given on the right hand side. The black lines
show these measurements under collocated control, whereas the gray lines show
the measurements under non-collocated control. Under collocated control, the
position error at the motor side is small. However, the performance at the camera

z

x

z

x

z

x

z

x

Undeformed Deformed
F = 0

xm xm

xc

F > 0

Figure 2.12: The disturbance F results in a relative movement of the camera with
respect to the stage, which cannot be observed by the motor encoder. Contrary,
this displacement can be observed by the camera.
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Figure 2.13: Motor error and camera error measured during collocated (black)
and non-collocated feedback (gray).

side, which is our performance variable of interest, shows an error of up to 0.48
mm. There is even a steady state error of 0.1 mm. The performance at the camera
side is much better under non-collocated control with maximum error values of 80
µm, which is a factor six better than in the collocated case. Also the steady state
error is reduced significantly to less than 10 µm. The cumulative power spectrum
(CPS) of the error signals measured by the camera, which are given in Fig. 2.14,
also shows a significant error decrease in the case of non-collocated control.

Next, two non-collocated experiments have been carried out with a constant pitch
of 4 mm. Throughout the remainder of this section the measurement unit will be
features and is denoted by f. In the first experiment a reference with a constant
velocity of 25 f/s is applied with the final position at feature 10 f, which is well
outside the field of view. In the second experiment the reference to be tracked is
a sine wave with an amplitude of 4 f and a frequency of 2 Hz. The outputs yv(k)
are given in the top figures of Fig. 2.15 and Fig. 2.16. During these experiments a
one step ahead prediction of the output yv is calculated as ŷ(k + 1|k), i.e., using
the prediction given in Section 2.3. In the lower figures of Fig. 2.15 and Fig. 2.16
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Figure 2.14: Cumulative power spectrum of the error measured by the camera
under collocated control (black) and under non-collocated control (gray) .

this estimate is compared to the measured value of yv(k + 1) and this prediction
error is depicted in gray. In Fig. 2.15 we see that during the movement there
is an offset in the prediction error. Also a sinusoidal prediction error is present
in Fig. 2.16. These errors are probably caused by the friction present in the
system. This can be explained by the fact that the innovation signal of Fig. 2.15 is
slightly negative. Hence, the prediction is ahead of the actual position, due to the
unmodeled friction. This friction is not incorporated in the model of the Kalman
filter, therefore leading to a prediction error. Still, in both figures it can be seen
that the prediction error is smaller than 0.005 f. Using the pitch of 4 mm, the
metric prediction error can be calculated and is therefore at most 20 µm. The
quality of the position measurement is characterized by a 3σ of 3

√
qr = 0.0005 f

or 2 µm, with σ the standard deviation.
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Figure 2.15: Prediction results for ramp reference, black: yv, gray: innovation
signal yv(k + 1)− ŷ(k + 1|k).
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Figure 2.16: Prediction results for sine reference, black: yv, gray: innovation
signal yv(k + 1)− ŷ(k + 1|k).
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Table 2.1: Pitches of non repetitive structure.

Number [-] Pitch [m] Measured pitch (mean) [m]

1 0.00376 0.00377
2 0.00359 0.00359
3 0.00470 0.00469
4 0.00377 0.00378
5 0.00366 0.00366
6 0.00436 0.00435
7 0.00411 0.00411
8 0.00347 0.00347
9 0.00388 0.00389
10 0.00472 0.00472

To show the robustness against pitch imperfections of the closed-loop system a
structure is placed on the stage with a non-constant pitch. The pitch between suc-
cessive features varies between 3 mm and 5 mm. The pitches are given in Table 2.1.
The experiment with the ramp reference is performed again with this structure.
The pitch that was measured during the experiment is given in Fig. 2.17. As can
be seen from this figure, the pitches coincide with the ones given in Table 2.1.
Furthermore, during the experiment the position error is measured and is given
in Fig. 2.18. In this figure the vertical dotted lines indicate when a new feature
is at the center of the field of view. Every time a new feature passes the center
of the field of view the system switches and obtains a new gain as was explained
in the previous section. The switching behavior can be recognized by the small
transients in the error after each switching point. When larger pitch imperfections
are present, obviously these transients tend to increase leading to a larger position
error. However from this figure, we observe that a stable closed-loop system is
obtained as was expected.
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Figure 2.17: Non repetitive pitches.
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Figure 2.18: Error measured in features.
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2.10 Conclusions

In this chapter a direct dynamic visual servoing setup has been created that con-
trols a motion system with 1 kHz visual feedback, without the intervention of
low level joint controllers. Different dynamics have been observed when using the
motor encoder or measurements of the camera. By using the camera all the rel-
evant dynamics between the camera and the features of the repetitive structure
have been measured. The control design accounts for these dynamics. Secondly,
an algorithm has been developed that uses the repetitive structure to create a
feature-based position measurement with a measurement accuracy of 2 µm and
capable of sampling at 1 kHz in combination with velocities up to 0.2 m/s. The
sampling rate of 1 kHz has been realized by reading out only a part of the vision
sensor to reduce the data flow. In the image processing steps a Kalman filter
based prediction is used to further reduce the amount of data to be analyzed. The
advantage of the proposed method is that feature-based positions can be used in-
stead of metric positions that will drift due to the cumulative sum of the deviations
of the pitches. A stability analysis via LMIs and writing the system as a linear
differential inclusion shows that the closed-loop system is robustly stable for pitch
deviations of the repetitive structure up to 1 mm.

Future work will concentrate on expanding the feature-based position to a full
two-dimensional feature-based position including possible structure rotations and
developing appropriate feature-based control algorithms. Furthermore, the inte-
gration of metric movements of the tool with respect to each feature in combination
with feature-to-feature movements based on the presented feature-based control
approach will be investigated.
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Chapter 3

Two-dimensional feature-based
motion control

THIS chapter focuses on the motion control for machines used for the
production of products that inherently consist of equal features placed

in a repetitive pattern. In many cases the repetitiveness of these struc-
tures is prone to imperfections, for example due to thermal expansion, such
that the distance between successive features deviates. As a consequence
the metric positions of the features of such near-repetitive structures are
unknown a priori such that setpoints can not be created a priori. The
considered motion task in this chapter is to position a tool relative to the
features of a near-repetitive structure with an accuracy of <10 µm. In-
stead of metric positions we will use novel two-dimensional feature-based
positions obtained from a camera capturing images at 1 kHz for feedback,
resulting in a direct visual servoing control approach. The robustness with
respect to imperfections in the repetitiveness is investigated and the design
is validated on an experimental setup.

This chapter is based on: J.J.T.H. de Best, M.J.G. van de Molengraft and M. Steinbuch.
Planar Feature-Based Motion Control for Near-Repetitive Structures. Submitted for journal
publication.



3.1 Introduction

Many production processes take place on repetitive structures. In each of these
processes one or more consecutive steps are carried out on the particular features
of the repetitive structure to create the final product. Such production machines
often consist of a tool and a stage or carrier on which the repetitive structure
is to be processed. The considered control task is therefore to position the tool
relative to the features of the repetitive structure. In current industrial practice,
local position sensors such as motor encoders are used to measure the position
of the tool and the stage separately. Often the absolute reference points of these
measurements do not coincide, such that the final accuracy of the alignment of the
tool directly relies on properties such as thermal stability, mechanical stiffness and
assumptions on the pitch between successive features of the repetitive structure.
Any falsification of these assumptions results in a poor alignment.
In (De Best et al., 2009, 2011a) a new control design paradigm was introduced
to cope with this problem. Instead of the aforementioned collocated metric posi-
tion measurements, feature-based position measurements on the basis of camera
images in combination with non-collocated visual feedback is used, also referred
to as visual servo control (Chaumette and Hutchinson, 2006; Hutchinson et al.,
1996). As such, motion setpoints can be defined from feature to feature without
knowing the exact absolute metric position of the features beforehand, while still
achieving a high positioning accuracy. The proposed method was restricted to the
one-dimensional case. In practical applications the repetitive structure in general
will contain a two-dimensional grid pattern, like for example the repetitive struc-
ture depicted in Fig. 3.1(a), which shows diodes on a wafer. Therefore, in this
chapter the feature domain is extended towards two dimensions. Furthermore,
in (De Best et al., 2009) the feature-based position is constructed by piecewise
linear interpolation between successive features. When passing a feature, a differ-
ent pitch between the current features is considered. Due to the piecewise linear
interpolation the feature-based position is continuous when passing a feature but
the feature-based velocity is not and switches instantaneously. As a result, unde-
sired transient responses are observed. In this chapter, higher order interpolation
will be implemented to reduce these undesired transient responses. The intro-
duction of feature-based positions results in a straightforward setpoint creation
from one feature to another target feature, referred to as feature-to-feature move-
ments, without having to know the absolute metric position of the target feature.
However, besides these feature-to-feature movements, many production processes
require metric movements of the tool with respect to the feature, like for example
engraving text on each feature. These movements are referred to as relative feature
movements. Typical movements in such applications are therefore constructed by
repeatedly alternating between 1) feature-to-feature movements from the current
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feature to the target feature and 2) metric relative feature movements with respect
to the target feature. These relative feature movements will be implemented in the
feature-based control approach, so the contributions of this chapter are fourfold:
1) the feature-based position measurement is extended towards two dimensions,
2) the piecewise linear interpolation is extended to higher order interpolation to
reduce the transient responses when passing features, 3) next to feature-to-feature
movements, relative feature movements are implemented, to increase the versatil-
ity of programmable movements and 4) a stability analysis is presented to prove
robust stability of the closed-loop system.
The rest of the chapter is organized as follows. In Section 3.2 the notation with
respect to the repetitive structure and the different coordinate representations will
be presented. Section 3.3 will first introduce two-dimensional feature-based posi-
tions, followed by higher order feature interpolation. At the end of Section 3.3 the
implementation of relative feature movements will be discussed. The experimental
setup that will be used for validation will be given in Section 3.5. The control
design and stability analysis will be given in Section 3.6. Finally, conclusions will
be given.

3.2 Notation

Throughout this chapter we will use a repetitive structure that consists of equal
features ordered in a near-rectangular repetitive pattern. A practical example is
depicted in Fig. 3.1(a) which shows diodes on a wafer. A schematic representa-
tion of such a repetitive structure is given in Fig. 3.1(b) where the features are
circular black dots on a white background. The image captured by the camera,
denoted as I, has a height Ih and width Iw pixels and captures only a part of the
repetitive structure. The features have a diameter of D pixels and are placed in
a rectangular repetitive pattern. The nominal pitch between features is P pixels
both in horizontal and vertical direction. In this work pitch imperfections will
be considered, which can occur for example due to inaccurate preceding process
steps, local stretching of the structure when flexible plastic or metal foil is used as
product carrier or thermal expansion of the structure. The pitch imperfection is
denoted by ∆P , with 0 < ∆P � P , such that each pitch P satisfies

P −∆P ≤ P ≤ P + ∆P. (3.1)

More specifically, once a feature is found, the other features are expected in the
shaded areas in Fig. 3.1(b). The position and size of the shaded area are related
to the nominal pitch P and the pitch imperfection ∆P . We will allow and take
into account these pitch imperfections such that precision requirements of the
repetitiveness of the pattern can be less strict, while at the same time being able
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Figure 3.1: A part of a two-dimensional repetitive structure.

to position accurately with respect to the features.
Throughout this chapter two different coordinate representations will be used,
which are metric pixel coordinates and feature coordinates. A point p within the
image that is expressed in pixel coordinates is represented as pp. Similarly, pf

represents the point p in feature coordinates. In the remainder of this chapter
subscripts given in Table 3.1 will be used. Using this notation we denote the pixel

coordinates of the center of the top left feature for example as pp
tl

=
(
xptl yptl

)T
.

Similar notations are used for the top right feature pp
tr

, the bottom left feature pp
bl

and the bottom right feature pp
br

. The point of interest, which initially is taken as
the center of the image sensor, is denoted by pi.

Table 3.1: Subscript definitions.
Subscript Definition

l left
r right
t top
b bottom
i interest



3.3 Feature-based positions 53

3.3 Feature-based positions

This section will first introduce the feature domain. Next, the detailed steps in
obtaining feature-based postions in the feature domain will be discussed, which
are the feature detection, bilinear feature interpolation and the high order feature
interpolation. Finally, relative feature movements will be presented by combining
the metric domain with the feature domain.

3.3.1 The feature domain

Since we assume the tool is located at the center of the image, the control task is
to position the center of the image with respect to the target feature. The target
feature however might by outside the field of view, since for resolution purposes
only a small part of the repetitive structure is observed. Due to a priori unknown
pitch imperfections, the absolute position of the target feature in the pixel or met-
ric domain is therefore not known on beforehand. Hence, metric setpoint creation
cannot be done offline. To solve this problem, we introduce position measurements
in the feature domain. The advantage of feature-based positions over metric posi-
tions is that the positions of each feature in the feature domain are known a priori,
such that there is no need for online trajectory generation. Therefore, instead of
using metric position measurements, novel feature-based position measurements
will be used for feedback, see Fig. 3.2. The system captures images I of the scene,
which together with the pixel coordinates of the point of interest pp

i
are fed into

the image processing block IP that gives a two-dimensional feature-based posi-
tion pf

i
. At this point, we take the point of interest as the center of the image

pp
i

= ( Ih2
Iw
2 )T , since this point is to be positioned with respect to the features.

The feature-based position pf
i

is compared to the feature-based reference rfi and
fed to a controller K that generates the input u to the system.

pf
i

IP

I
K

u

−
rfi

+
System

pp
i

G

Figure 3.2: Feature-based control approach.
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Figure 3.3: Feature-based positions. The frame indicates the field of view.

The two-dimensional measurement principle of the feature-based positions will be
explained using Fig. 3.3. The figure shows a part of a near-repetitive structure
that is captured by the camera. The pitches between neighboring features are
such that they satisfy (3.1) in both directions. For the proposed measurement
method it is required that four features will be completely within the field of view,
such that they enclose the point of interest pi indicated by the cross, see Fig. 3.3.
Each feature is assigned an integer feature-based position, irrespective of their
mutual pixel distance, i.e., feature-based positions are determined by counting

features starting from the top left corner of the image. So, pf
tl

=
(
xftl yftl

)T ∈
Z2 is the feature-based position of the top left feature which in this example is(
1 1

)T
. The feature-based positions of successive features can be obtained by

simply incrementing the values of xftl and/or yftl.
Since the goal is to position the center of the image with respect to the target
feature, we want to express the inter-feature position of the center of the image,
here denoted by the point of interest pi, in the feature-based coordinates. More

specifically, we want to find pf
i

=
(
xfi yfi

)T ∈ R2. To obtain a unique feature-

based position we required the positions xfi and yfi increase monotonic between

xftl ≤ x
f
i ≤ xftl + 1, (3.2)

yftl ≤ y
f
i ≤ yftl + 1. (3.3)
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Therefore, the idea of (De Best et al., 2009) is extended towards two dimensions
as follows. If the point of interest is perfectly aligned with one of the features, its
position is the integer two-dimensional feature-based position. In between features
we use an interpolation as is indicated by the gray dashed grid lines in Fig. 3.3.
Here, the horizontal and vertical grid lines indicate lines of equal x and y feature-
based positions, respectively. More specifically, they connect equal fractions of the
horizontal and vertical lines between the features. The feature-based position of

the point of interest in Fig. 3.3 is given by pf
i

=
(
1 5
8 1 3

4

)T
.

To obtain the correct feature-based position it is essential to determine which
features are in the field of view. A problem arises when the repetitive structure
moves with a velocity larger than one pitch per sample. In that case it is desired to
track which features are in the field of view. A steady state Kalman filter (Kalman,
1960) will be used for that, from which only a one step ahead prediction will be
used to predict 1) which features will be in the field of view and 2) where these
features will be located in the field of view. The first point assures that the
feature-based position is incremented when new features enter the field of view,
whereas the second point will generate the initial pixel position estimate p̂p of the
feature closest to the point of interest, which is used in the feature detection, see
Section 3.3.2.
In the next sections the consecutive steps needed for obtaining the feature-based
position will be explained in more detail, which involve 1) feature detection, 2)
bilinear feature interpolation and 3) higher order feature interpolation.

3.3.2 Feature detection

This section will describe the first step towards obtaining a feature-based position,
which is the accurate detection of the pixel coordinates of the four features that
enclose the point of interest. These coordinates will be used in the second step as
described in the next section, which involves the bilinear feature interpolation.

Initially, assume that a pixel position estimate p̂p =
(
x̂p ŷp

)T
generated by the

Kalman filter is available of the feature that is expected to be closest to the point
of interest. In Fig. 3.4 the bottom right feature is closest to the point of interest.
The pixel position estimate of this feature is given by the gray cross.
A rectangular search area is defined around the estimate p̂p, with a width of Sw
pixels and a height of Sh pixels. The search area should be such that it completely
confines a single feature. The size of the search area is directly dependent on 1)
the feature size, 2) the feature position variation (pitch imperfections) and 3) the
quality of the estimate p̂p. With the introduction of the search area it is possible
to search for a single feature within the search area, such that labeling imple-
mentations to distinguish between multiple features, which cause a computational
overhead, can be eliminated in the image processing steps. Stated otherwise, we
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Figure 3.4: Feature detection. Around the initial pixel position estimate p̂p a
search area is defined in which the feature is detected and its position pp is mea-
sured. The other features can be found similarly.

can speed up the image processing by using a priori knowledge about the repeti-
tiveness of the structure.
In our case, we determine the pixel position of the center of the feature p

p
by first

thresholding the search region followed by a center of gravity calculation (Van As-
sen et al., 2002). For more complex feature shapes more elaborated image pro-
cessing techniques can be applied such as hough transforms or template matching.
From Fig. 3.4 it can be seen that the measured pp can be different from p̂p indi-
cating the estimation error. In this case the bottom right feature is found, i.e.,
pp = pp

br
, since it is located at the bottom right of the point of interest. The pixel

position of the three remaining features can be estimated as follows

p̂p
bl

= pp
br
−
(
0 P

)T
, (3.4)

p̂p
tr

= pp
br
−
(
P 0

)T
, (3.5)

p̂p
tl

= pp
br
−
(
P P

)T
. (3.6)

Similar to finding the pixel coordinates of the feature pp
br

, search areas can be
defined around these estimates and the pixel coordinates of the remaining features
pp
bl

, pp
tr

and pp
tl

can be calculated. During these operations it is important to check
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Figure 3.5: Bilinear feature interpolation.

that the four features are enclosing the point of interest, i.e.,

pp
i
∈
{∑

l∈L
αlp

p
l

∣∣∣∣∣∀αl ∈ R, αl ≥ 0,
∑

l

αl = 1

}
, (3.7)

with L = {tl, tr, bl, br}. At the end of this step the pixel positions pp
tl

, pp
tr

, pp
bl

and pp
br

are known. These coordinates will be used in the second step, the bilinear
feature interpolation.

3.3.3 Bilinear feature interpolation

This section will describe the second step for obtaining the feature-based position,
which is the bilinear feature interpolation. The bilinear feature interpolation will
use the detected pixel coordinates of the four features that enclose the point of
interest as explained in the previous section. The bilinear feature interpolation
will be extended in the next section leading to second order feature interpolation.
The bilinear feature interpolation is based on the similar idea as in (De Best
et al., 2009) and will be explained using Fig. 3.3 and 3.5. In Fig. 3.5 two lines

intersect the point of interest. The vertical line connects the point pp
t

=
(
xpt ypt

)T

with the point pp
b

=
(
xpb ypb

)T
, whereas the horizontal line connects the point

pp
l

=
(
xpl ypl

)T
with the point pp

r
=
(
xpr ypr

)T
. This horizontal line is constructed
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such that

A=
xpl − x

p
tl

xpbl − x
p
tl

=
ypl − y

p
tl

ypbl − y
p
tl

=
xpr − xptr
xpbr − x

p
tr

=
ypr − yptr
ypbr − y

p
tr

. (3.8)

In the case of Fig. 3.5, the value of A is 5
8 . For the vertical line the same reasoning

holds. It connects equal B fractions of the top and bottom line, so

B=
xpt − xptl
xptr − xptl

=
ypt − yptl
yptr − yptl

=
xpb − x

p
bl

xpbr − x
p
bl

=
ypb − y

p
bl

ypbr − y
p
bl

. (3.9)

The value for B in Fig. 3.5 is 3
4 . Moreover, it can be shown (see Appendix B) that

A =
xpi − xpt
xpb − x

p
t

=
ypi − ypt
ypb − y

p
t

, B =
xpi − xpl
xpr − xpl

=
ypi − ypl
ypr − ypl

, (3.10)

such that the values of A and B can be expressed as a function of the four pixel
coordinates of the enclosing features pp

tl
, pp

tr
, pp

bl
, pp

br
and the pixel coordinates of

the point of interest pp
i
. The analytic expressions for A and B are not given here

due to space limitations. The two-dimensional feature-based position can now be
written as

xfi = xftl +A, yfi = yftl +B, (3.11)

with A ∈ R, 0 ≤ A ≤ 1, B ∈ R and 0 ≤ B ≤ 1.

3.3.4 Second order feature interpolation

In this section the third step in obtaining the feature-based position measurement
will be explained which involves a second order interpolation. When positioning
the camera from one feature to another, the point of interest will leave the current
area spanned by the four features and enter the next area spanned by four dif-
ferent features, which we refer to as feature frame transitions in the remainder of
this work. Due to pitch imperfections the mutual distances between the features
can be different after feature frame transitions. Using the bilinear interpolation
of (3.11) the feature-based position is continuous during feature frame transitions,
however the feature-based velocity is not and switches instantaneously. These
switching velocities cannot be tracked by the controller and will result in transient
position responses whenever feature frame transitions occur. These responses are
comparable to the responses obtained when first order trajectories are applied to
a closed-loop system. In the remainder of this section, the switching behavior will
be explained in more detail and second order functions will be incorporated in the
feature interpolation such as to prevent the feature-based velocity from switching
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Figure 3.6: The features in the image are moving to the left with a velocity of
P pixels/s. The feature-based velocity switches when the yfi ≥ 4. This can be
seen in the image by the interpolated grid lines that are closer to each other, when
yfi ≥ 4.

and therefore to reduce the undesired transient position responses.

To explain the switching feature-based velocity, Fig. 3.6 will be used, where the

current feature-based position is pf
i

=
(
2 5
8 3 3

4

)T
. Suppose the repetitive structure

is moving with a constant pixel velocity vp =
(
0 −P

)T
pixels/s. As a result the

feature-based position in the y direction is increasing. If yfi < 4, the pitch in y

direction is P = P and therefore the feature-based velocity in ẏfi is 1 f/s. However if

yfi ≥ 4, the pitch is P = 0.7P such that the feature-based velocity instantaneously
becomes 1

0.7 f/s. By introducing a different feature-based position measurement
as

xfi = xftl + g(A), yfi = yftl + h(B), (3.12)

we can design the functions g and h such that the feature-based velocity does not
switch but changes smoothly. In the remainder we will focus on the design of the
function h, while the design of g can be done in a similar way. The following
constraints can be constructed for designing the function h

h(0) = 0, h(1) = 1,
dh(0)

dB
=
P

P
,
dh(1)

dB
=
P

P
, (3.13)
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where P is the momentary pitch, i.e., the length of the horizontal grid line inter-
secting the point of interest, which is P if yfi < 4 and 0.7P in the case yfi ≥ 4.
The first two constraints imply that the feature-based position is continuous across
feature frame transitions and is composed of two integer values when the point of
interest pi is aligned with a feature. The second two constraints imply that the
feature-based velocity is constant, i.e., does not switch, across the feature frame
transitions. Fig. 3.7 shows an example of the function h(B) for the cases where
P = P and P = 0.7P . It can be seen that if P = P the function is simply
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Figure 3.7: Second order interpolation.

h(B) = B. If P = 0.7P the function h(B) satisfies the aforementioned conditions.
In this case the function h(B) is a piecewise quadratic function (see Appendix C,
i.e.,

h(B)=





(
2− 2P

P

)
B2+ P

P
B if B < 0.5,(

−2+ 2P
P

)
B2+

(
4− 3P

P

)
B−1+ P

P
if B ≥ 0.5.

(3.14)

In the choice of the function h(B) a trade-off is made. The function h(B) in this
case is chosen to have a non switching velocity when features are passed, so as to
reduce the transient response caused by this switching. If for example higher order
functions would be designed, even the feature-based acceleration and jerk can be



3.4 Relative feature movements 61

made continuous. However, one should take into account that this interpolation

has a high influence on the gain of the system, i.e., larger values of dh(B)
dB lead to a

higher momentary gain of the system and vice versa. As a result the control design
needs to cope with high gain variation to prevent potential stability problems as
will be explained in Section 3.6.

3.4 Relative feature movements

In the production of repetitive structures, the tool is typically moved from one
feature to the next feature, where at every feature a processing step is executed.
This processing step can for example be a pick and place action or jetting droplets
using ink jet printing technology. For these processing steps it is sufficient to move
from one feature to the next, i.e., no additional movements of the tool with re-
spect to the feature have to be carried out. In processing steps, like for example
engraving or cutting, additional movements of the tool are necessary before go-
ing to the next feature. This section will discuss how, next to feature-to-feature
movements, these so-called relative feature movements can be incorporated in the
feature-based control design approach.
From an operators point of view it would be preferable to design 1) a reference

rfi (t) for performing feature-to-feature movements expressed in the feature domain
and 2) a reference rpi for performing additional movements of the tool with respect
to the feature expressed in the metric domain. Feature-based position measure-
ments were introduced in order to handle feature-to-feature movements. Previ-
ously, the point of interest was taken static as the image center, pp

i
=
(
Ih
2

Iw
2

)T
.

By prescribing the metric position of the point of interest in time however, i.e.,
rpi (t) = pp

i
(t), we can induce relative feature movements. Hence, with the tool

still assumed to be in the image center, the relative movement of the feature with
respect to the tool is obtained.
An example of such a setpoint is given in Fig. 3.8. During the first 0.2 seconds
a diagonal feature-based movement is performed from feature zero to feature one.
After arriving at this feature, the relative feature movement will be carried out
from t = 0.2 s to t = 1 s. When this movement is completed, the next feature-
to-feature movement will be carried out. By repeating this sequence, the tool is
moved along the features and each feature is processed.
The final control scheme is now given in Fig. 3.9. The feature-based reference rfi
is applied to the closed-loop system. The controller K is connected to the system.
The input of the system u are the applied forces, whereas the output of the system
are the captured images I. These images together with the metric reference rpi for
relative feature movements are processed in the image processing block IP which
performs the feature detection and the feature interpolation. The output of this
block gives the feature-based position pf

i
that is used for feedback.
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Figure 3.10: Industrial application: an xy-wafer stage.

3.5 Experimental setup

The considered industrial application is an xy-wafer stage and is depicted in
Fig. 3.10. On the stage a wafer is clamped which contains the small (250×250 µm)
discrete semiconductor products, the so-called dies. A frame is mounted above the
stage which supports a Prosilica GC640M high-performance machine vision cam-
era (Prosilica, 2009) with Gigabit Ethernet interface (GigE Vision). The camera
generates 8 bits monochrome images and is capable of reaching a frame rate of 197
Hz full frame (near VGA, 659×493). To increase the frame rate of the camera to
1 kHz and to reduce the amount of data transport from the camera only a part
of the sensor is read out as large as 90×90 pixels. The camera supports jumbo
frames of up to 9200 bytes, such that the entire image fits into a single packet.
This reduces the CPU load due to less incoming data packets. The magnification
of the MC1.00X lens (Opto Engineering, 2010) is one. The pixel size of the camera
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Figure 3.11: Close-up of the xy-wafer stage.

is 9.9 µm such that the field of view is approximately 0.9×0.9 mm which is large
enough to view nine dies in a three by three formation. To further reduce the
delay and to minimize image blur the exposure time is set as small as 60 µs. With
a single power LED in combination with a half mirror placed under an angle of
45◦ with respect to the lens coaxial illumination is realized, see Fig. 3.11. Light
from the power LED is deflected towards the wafer by the half mirror. The light
is then reflected by the semiconductor products, and travels back through the half
mirror again and the lens forming the image on the image sensor of the camera.
A typical image of a part of the wafer is given in Fig. 3.1(a).

A particular production process to obtain the final product is the picking and
placement and wire bonding of each individual semiconductor. Therefore, the tool
is to be positioned accurately with respect to each semiconductor. As mentioned,
we assume the tool is positioned at the center of the image sensor, such that the
problem at hand is transformed into controlling the xy-wafer stage such that the
semiconductor is accurately positioned with respect to the center of the image,
where the camera is used as position sensor instead of the on board motor en-
coders. The feature-based position as explained previously is used for feedback.
The camera is connected to a PC running a 2.6.28.3 low-latency Linux kernel
on which the necessary image processing is done and the control law K is calcu-
lated. The real-time executable is built using the real-time workshop (RTW) of
Matlab/Simulink. Furthermore, the data-acquisition is realized using an Ether-
CAT (Jansen and Buttner, 2004) data-acquisition system, where DAC, I/O, and
encoder modules are installed to drive the current amplifiers of the motors, to en-
able the amplifiers and to measure the position of the xy-wafer stage at the motor
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side via the on board motor encoders. Hence, this motor encoder position is only
used for evaluation purpose and is not used in the final control algorithm as such.

3.6 Control design and stability analysis

In this section first the design of the controller K will be presented. Due to the
introduction of feature-based positions, the gain of the plant varies dependent on
the momentary pitch between successive features. Therefore, a stability analysis
will be given for investigating the closed-loop stability while robustness against
pitch imperfections is guaranteed.
The transfer from input u to the feature-based position output pf

i
is denoted by

G, see also Fig. 3.9. For this transfer a frequency response function (FRF) has
been measured with a repetitive structure with a pitch of P = P from which the
diagonal terms are given in gray in Fig. 3.12. During the FRF measurement, the
rotation of the repetitive structure with respect to the camera was assumed to be
zero. Furthermore, the principle directions of the actuation system are assumed
to coincide with the principle axes of the camera such that the off-diagonal terms
are zero, i.e., no coupling is present between the two principle directions. For
low frequencies the diagonal terms can be approximated by double integrators
or mass systems. However, for high frequencies the diagonal terms show several
resonances and anti-resonances which are due to the flexibilities of the system.
These flexibilities are caused for example by cable slab, the finite stiffness of the
frame that is supporting the camera, and the finite stiffness of the xy-wafer stage
itself. For the nominal plant described as above a nominal diagonal controller K =
diag(Kx,Ky) is designed. The controllers Kx and Ky are designed in continuous
time and then discretized. The controllers are built by the series connection of a
gain, an integral action, a lead filter, a notch and a second order low-pass filter,
see Fig 3.13. The values of the controller tuning are given in Table 3.2. The
bandwidth of both control loops is 20 Hz, as can be seen from the open-loop FRFs
shown in Fig. 3.14.

In the remainder of this section the stability of the closed-loop system will be
investigated. More specifically, it is investigated if the closed-loop system with the
diagonal controller, designed on the basis of the nominal plant, is robustly stable
against pitch imperfections, i.e., in cases that P 6= P .
If the repetitive structure moves with a pixel velocity vp then the pixel velocity of
each feature is the same, i.e.,

ṗp
tl

= ṗp
tr

= ṗp
bl

= ṗp
br

= vp. (3.15)

As a result of this movement a feature-based velocity ṗf
i

will be induced. The
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Table 3.2: Controller tuning parameters.

Kx Ky Unit

k 57.7 62.1 -
fi 5 5 Hz
fz 5 5 Hz
fp 160 160 Hz
fnz 78 33 Hz
βnz 0.06 0.02 -
fnp 78 37 Hz
βnp 0.14 0.12 -
flp 250 250 Hz
βlp 0.6 0.6 -
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Figure 3.14: Open-loop in x (black) and y (gray) direction.
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same feature-based velocity would occur if we virtually move the pixel position of
the point of interest in the opposite direction

ṗp
i

= −vp, (3.16)

while the pixel positions of the features are kept static. The relation between the
pixel velocity vp and the feature-based velocity ṗf

i
can be written as

ṗf
i

= Jṗp
i

= −Jvp, (3.17)

with J ∈ R2×2 being the Jacobian defined as

J=
dpf
i

dppi
=



dxf

i

dxp
i

dxf
i

dypi
dyfi
dxp

i

dyfi
dypi


=

(
dg
dA

dA
dxp

i

dg
dA

dA
dypi

dh
dB

dB
dxp

i

dh
dB

dB
dypi

)
, (3.18)

where the product rule is used. When the repetitive structure has a nominal pitch
P = P in both directions, and the repetitive structure is perfectly aligned with
the camera coordinate system, the Jacobian J simply reduces to

J =

( 1
P

0

0 1
P

)
. (3.19)

However, in the presence of pitch imperfections, the value of J depends on the pixel
coordinates of the four features enclosing the point of interest. Hence, they depend
on the momentary pitch P between successive features. Therefore, the Jacobian
J becomes a non-linear mapping from vp to ṗf

i
. At this point it is investigated

how the Jacobian varies as a function of the pitch imperfection. Therefore, we
write the pitch imperfection as a fraction of the nominal pitch, so ∆P = αP ,
with 0 ≤ α < 0.25. The upper bound for α indicates the validity of the bilinear
feature-based interpolation. This is shown in Fig. 3.15. In this figure the pitch
imperfection ∆P = 0.25P . It can be seen that three features are forming a straight
line. If the imperfections are allowed to be larger, than the four features do not
span a convex set any more.
For each value of α we can find the maximum and minimum values of J over all
possible feature position configurations satisfying the bounds as defined in (3.1).
In this case the maximum and minimum values of the elements of the Jacobian J
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are found to satisfy (see Appendix D) analytic functions of α that are given by

jd =
1

P

(
0.125

0.25− α + 0.5

)((
2
√

10− 4
)
α+ 1

)
, (3.20)

j
d

=
1

P
(1− 2α)

((
4− 2

√
10
)
α+ 1

)
, (3.21)

jod =
1

P

(
0.125

0.25− α − 0.5

)((
2
√

10− 4
)
α+ 1

)
, (3.22)

j
od

=
1

P

(
− 0.125

0.25− α + 0.5

)((
4− 2

√
10
)
α+ 1

)
. (3.23)

This result is graphically shown in Fig. 3.16. In this figure the four elements of
the Jacobian J are shown. On the horizontal axis the value of α is given, whereas
on the vertical axis the possible values are indicated by the gray shaded areas. As
can be seen in this figure an increase of α leads to a larger set of possible values
of J . Using this figure, one can determine what possible values of the Jacobian
can be present given a specific pitch imperfection. The nominal pitch P between
consecutive features is 27 pixels. It can also be seen that if α = 0, i.e., no pitch
imperfections, the Jacobian satisfies (3.19).
For proving stability of the closed-loop system we try to write our system as a
linear differential inclusion (LDI) (Boyd et al., 1994). In obtaining such an LDI
we first show that at a specific value of α an arbitrary Jacobian can be written as
the convex combination of all possible minimum and maximum value combinations
of the Jacobian. The number of possible combinations is the number of elements of
the Jacobian squared, so 42 = 16. Therefore an arbitrary Jacobian can be written
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Figure 3.16: The values of the Jacobian J as a function of α.

as

J ∈
{

16∑

m=1

βmJm

∣∣∣∣∣Jm ∈ J ,∀βm ∈ R, βm ≥ 0,

16∑

m=1

βm = 1

}
, (3.24)

with

J={J1, J2, . . . , J16} (3.25)

=

{(
j11 j12
j21 j22

) ∣∣∣j11, j22 ∈ {jd, jd}, j12, j21 ∈ {jod, jod}
}
. (3.26)

To prove stability of the closed-loop system the system G(z) is written as the
multiplication of R(z) and an integrator I(z). The system R(z) maps the inputs
to the system u to the pixel velocity of the features vp. In I(z), these pixel velocities
vp are mapped to the feature-based velocities ṗf

i
by the Jacobian J , which after

integration lead to the feature-based position pf
i
. The subsystems R(z) and I(z)
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are given by

R :

{
xR(k + 1) = ARxR(k) +BRu(k),

vp(k) = CRxR(k) +DRu(k),
(3.27)

I :





xI(k + 1) = xI(k)− JTvp(k),

= xI(k) + T ṗf
i
(k),

pf
i
(k) = xI(k),

(3.28)

with T the sample time of the system. The total system G is therefore

G :

{
xG(k + 1) = AGxG(k) +BGuk,

pf
i
(k) = CGxG(k),

(3.29)

with xG =
(
xTR xTI

)T
and

AG =

(
AR 0

−JTCR I

)
, BG =

(
BR

−JTDR

)
, CG =

(
0 I

)
.

By defining the feature-based error as e = rfi −pfi , with rfi being the feature-based
position reference, the closed-loop system can be calculated as

x(k + 1) = Aclx(k) +Bclr
f
i (k), (3.30)

pf
i
(k) = Cclx(k), (3.31)

with x =
(
xTG xTK

)T
and

Acl =

(
AG −BGDKCG BGCK
−BKCG AK

)
, Bcl =

(
BGDK

BK

)
, Ccl =

(
CG 0

)
.

To assess the stability of this closed-loop system we note that the system can now
be written as an LDI (Boyd et al., 1994). That is,

Acl ∈
{

16∑

m=1

βmAcl,m

∣∣∣∣∣βm ∈ R, Acl,m ∈ Acl,
16∑

m=1

βm = 1

}
, (3.32)

where the set Acl is the set of closed-loop matrices evaluated for every Jacobian
J ∈ J . Using this definition we can search for a common quadratic Lyapunov
function V (x) = xTEx with E=ET �0 such that V (x(k))−V (x(k+1))>0,∀x(k+
1) = Acl,ix(k) or similarly by simultaneously checking the following linear matrix
inequalities (LMIs)

E −ATcl,iEAcl,i � 0, i ∈ {1, . . . , 16} (3.33)

E � 0. (3.34)
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Figure 3.17: Bisection algorithm used to determine maximum value of α.

For a given value of α however the possible values of the Jacobian will not all be
on the extreme boundaries as indicated by the black lines in Fig. 3.16. Therefore
the conditions for stability given above are sufficient but conservative. Given
the closed-loop system it can be investigated up to which value of α the closed-
loop system is stable using a bisection algorithm as depicted in Fig. 3.17. The
LMIs (3.33) through (3.34) can be solved efficiently using commercially available
software (Gahinet et al., 1994). The found value of α = 0.095. Therefore, we can
concluded that the closed-loop system is guaranteed stable for pitches that satisfy

0.905P ≤ P ≤ 1.095P . (3.35)

Note that this is an a posteriori stability analysis. The considered imperfections in
this work are within this boundary. If however the imperfections are outside this
boundary, a redesign of the controller K is necessary to be robustly stable against
the pitch imperfections.



3.7 Results 73

3.7 Results

The use of the proposed feature-based position measurement is validated in prac-
tice on the experimental setup to demonstrate the effectiveness. Therefore, two
experiments have been carried out. In the first experiment the improvement of
using second order interpolation will be showed. The control task during the exper-
iment is to move the wafer in one direction with a constant feature-based velocity
of 36.8 f/s (approximately 0.01 m/s) while pitch imperfections are present. The
feature-based velocity obtained from numerical differentiation of the feature-based
position is given in Fig. 3.18. The vertical dashed lines indicate when a feature is
passed, such that a different pitch is considered. It can be seen that the feature-
based velocity switches when using the feature-based position of (3.11), especially
around t = 8.18 s and t = 8.21 s. This instantaneous switching feature-based
velocity is not present when the second order interpolation (3.12) is used. The
power spectrum of the feature-based velocity is shown in Fig. 3.19. It shows that
around 36.8 Hz the power content is increased. This is expected since this fre-
quency corresponds to the applied reference velocity of 36.8 f/s. Furthermore, the
power content for frequencies up to approximately 200 Hz is reduced. For frequen-
cies above 200 Hz, there is approximately no difference. The feature-based error
is given in Fig. 3.20. Using the second order interpolation the error is reduced by
approximately 40 %.
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Figure 3.18: Switching feature-based velocity. In gray the feature-based position
as defined in (3.11) is used for feedback whereas in black (3.12) was used.
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Figure 3.19: Power spectrum of the feature-based velocity. In gray the feature-
based position as defined in (3.11) is used for feedback whereas in black (3.12)
was used.
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Figure 3.20: Feature-based error. In gray the feature-based position as defined in
(3.11) is used for feedback whereas in black (3.12) was used.
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Figure 3.21: Measured feature-based error e.

In the second experiment the reference given in Fig. 3.8 is applied to the closed-loop
system, such that the wafer is moved diagonally over the semiconductors, while
at each semiconductor the contour is tracked. Since the reference is repetitive in
time, the controllers Kx and Ky are expanded with a standard add-on repetitive
controller (Hara et al., 1988) to improve the performance. The final positioning
error is shown in Fig. 3.21. After a small learning transient the final feature-based
error is less than 0.05 f. The nominal pitch between the semiconductors is 27
pixels, which with a pixel size of 9.9 µm is 267 µm. In Fig. 3.21 we indicated the
metric position error of ±10 µm.

3.8 Conclusions

In this chapter a novel feature-based motion control approach is presented, which
uses two-dimensional feature-based positions for feedback. The advantage of us-
ing these feature-based positions is that online trajectory generation has become
redundant in case the metric target position is unknown a priori due to the pitch
imperfections between successive features. A stability analysis proves robust stabil-
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ity of the closed-loop system while pitch imperfections up to approximately 10%
are considered. A second order feature interpolation is implemented to reduce
transient responses caused by instantaneously switching feature-based velocities.
Experimental validation showed that this leads to an error reduction of 40%. Next
to feature-to-feature movements, relative feature movements have been incorpo-
rated in the feature-based control approach; operators can easily specify how the
tool is to be aligned with respect to the feature as a function of time. During
experiments full two-dimensional feature-to-feature movements as well as relative
feature movements are applied resulting in position errors less than 10 µm.
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Chapter 4

Iterative learning control for
scale varying setpoints

ITERATIVE Learning Control (ILC) is a control technique for systems
subject to repetitive setpoints or disturbances. However in many applica-

tions the setpoint is not strictly repetitive, and the learning process should
start all over from the beginning if the setpoint changes. In this chap-
ter point-to-point movements with different magnitudes will be considered
which are constructed by scaling a nominal setpoint. Second order ILC
with an adaptive low-pass filter in the trial domain is used to accurately
track these scale varying setpoints under the influence of disturbances that
are either 1) repetitive or 2) experience the same scaling as the setpoint.
Experiments have been carried out to validate the proposed method.

4.1 Introduction

In many manufacturing processes, production steps are carried out on repetitive
structures consisting of identical features placed in a repetitive pattern. Exam-
ples of repetitive structures are given in Fig. 4.1(a) and Fig. 4.1(b). In many

This chapter is based on: J.J.T.H. de Best, M.J.G. van de Molengraft and M. Steinbuch.
Second Order Iterative Learning Control for Scale Varying Setpoints. Submitted for journal
publication.



(a) Organic LED (OLED) display. (b) Diodes on a wafer.

Figure 4.1: Examples of repetitive structures.

of these production steps the tool is to be aligned with respect to a feature of
the repetitive structure, perform its task and move towards the next feature via
a point-to-point setpoint. Most conventional control approaches use a feedback
controller for plant stabilization and disturbance rejection in combination with a
feedforward controller according to a predefined structure (e.g. mass, damping
and coulomb friction) to increase the overall performance. However, there are
limitations using feedback and fixed-structured feedforward control. For example,
the closed-loop bandwidth can be limited by system dynamics resulting in a lim-
ited disturbance rejection, while the fixed-structure feedforward control may not
be sufficiently rich to capture the disturbances at hand (Moore, 1993; Reichardt,
2010; Van der Meulen et al., 2008). For systems that have to track a predefined
setpoint over and over again a well known control technique for achieving a con-
vergent feedforward signal called iterative learning control (Moore, 1993) (ILC)
can be applied. ILC is a control technique that reduces the tracking error along
a trajectory that is traced repeatedly by the iterative refinement of a feedforward
signal. Good surveys of recent ILC research can be found in (Moore, 2008; Bristow
et al., 2006; Ahn et al., 2007; Moore et al., 2006).
One constraint within ILC is that the setpoint needs to be strictly repetitive for
every trial. In practice, however, the distance between consecutive features of
the considered repetitive structures may vary due to temperature changes, stretch
and manufacturing tolerances of previous processing steps. Hence, the setpoint
to move from one feature to the next is not strictly repetitive but varies due to
these pitch variations. Applying ILC for varying setpoints is one of the challenges
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in current ILC research. The control problem that will be treated here is how to
design ILC for point-to-point movements with varying travel distances in practice.
Several methods have been developed to use the knowledge from previous ILC
trials to construct the feedforward signals for new, different setpoints.
In (Rotariu et al., 2003) time-frequency adaptive ILC is proposed, in which a feed-
forward signal is learned for one specific setpoint and zeros are inserted in the
feedforward signal for setpoints with longer zero acceleration length. In (Rotariu
et al., 2008) a piecewise ILC is presented, in which a time-varying robustness Q
filter with adaptive cutoff frequency is used. In both of these works different set-
points are generated using a constant velocity phase with variable length. More
general trajectories are considered in (Heertjes and Van de Molengraft, 2009) in
which a finite impulse response (FIR) mapping strategy is proposed based on
converged learning forces obtained with learning control at a specific acceleration
set-point profile. Besides FIR, a multi-table approach is also considered. In (Hoel-
zle et al., 2010) basis tasks are learned a priori and allows the reference trajectory
to be arbitrarily chosen, provided it is comprised of the defined basis tasks. Di-
rect Learning Control (DLC) (Xu, 1997) and Recursive Direct Learning Control
(RDLC) (Xu et al., 2002) are developed to generate the desired control signal for a
new setpoint using several pre-stored setpoints and control signals. The methods
presented in (Heertjes and Van de Molengraft, 2009; Hoelzle et al., 2010; Xu, 1997;
Xu et al., 2002) all need the converged feedforward signals learned from one or
several specific setpoints or basis tasks to construct the new control input for a
different setpoint or task. In this work, we will present a second order ILC algo-
rithm in which scale varying setpoints are applied during the learning process and
for which the tracking error will be reduced iteratively, i.e., the process of learning
signals a priori is not necessary in our approach.
High order ILC was studied in (Bien and Huh, 1989; Chen et al., 1997; Huh, 1997;
Chen et al., 1992, 1998; Kim et al., 2003; Moore and Chen, 2002; Norrlöf, 2000).
It is shown that high order ILC is useful to increase the convergence speed (Bien
and Huh, 1989; Chen et al., 1992; Kim et al., 2003), reject disturbances that sat-
isfy an a priori relation from one trial to the next (Moore and Chen, 2002) and
has robustness in the presence of external disturbances (Kim et al., 2003). In this
work second order ILC will be used to iteratively identify different classes of dis-
turbances which are used for updating the feedforward signal.
This work focuses on accurate tracking of point-to-point setpoints with different
displacement magnitudes which are constructed by scaling a nominal setpoint to
the desired travel distance. Iterative learning control is used to update the feed-
forward signal while during iterations different scale varying setpoints are applied.
We analyze the convergence of the tracking error for situations with disturbances
and without disturbances. In this work it is assumed that these disturbances are
1) repetitive every trial and/or 2) experience the same scaling as the setpoint. A
second order ILC strategy will be used to identify these two types of disturbances
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and compensate for them during iterations. The contributions of this work are
1) the design of a second order ILC strategy to accurately track scale varying
setpoints in which during the learning process these scale varying setpoints are
applied and 2) which will be implemented in practice on an industrial setup to
show the effectiveness.
The rest of the work is organized as follows. In Section 4.2 the standard ILC
method is extended by implementing scaling only, leading to normalized ILC. To
further improve the performance, second order ILC will be derived in Section 4.4.
In Section 4.5 results of experiments will be given where the different methods will
be compared. Section 4.6 will present the conclusions.

4.2 Standard ILC and normalized ILC

In this section we will briefly discuss the ILC working principle, see also (Merry
et al., 2008; Steinbuch and van de Molengraft, 2000). To explain ILC, the block
scheme of the control loop given in Fig. 4.2 is used, where the controller is denoted
by K(z) and the plant is denoted by G(z), which are both assumed to be discrete
and linear time invariant (LTI). A schematic representation of the plant that is
considered in this work is given in Fig. 4.3. For now we take the gain Tk =
1 and assume the pitch between successive feature is perfectly repetitive. The

G(z)

Q(z)

K(z)

L(z)

e∗k f∗
k+1

ykrk

f∗
k

Tk
r

T−1
k Tk

ek fk

w−1

Figure 4.2: (Normalized) iterative learning control scheme.
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Figure 4.3: Schematic representation of the plant. A near-repetitive structure,
e.g., a wafer with discrete semiconductors as given in Fig. 4.1(b), is mounted on
an actuated stage with an input force denoted by f . The goal is to position the
tool with respect to the features of the near-repetitive structure. In this work the
relative position measurement between the tool and the features y is measured by
means of a camera and is used for feedback.

time shift operator in Fig. 4.2 is denoted by z, i.e., z−1x(t) = x(t − 1), here
t represents the sample number. The trial shift operator is denoted by w, i.e.,
w−1xk(t) = xk−1(t), where k represents the trial number, (Moore and Chen, 2002;
Norrlöf, 2000). The repetitive setpoint is given by r(t), with t ∈ [0, N ], whereas
the output at trial k is denoted by yk(t). During trail k the feedforward signal
fk(t) is applied and the error ek(t) is measured. In an off-line operation, the
error signal is filtered with the filter L(z), called the learning filter and added to
the feedforward fk(t). This learning filter is chosen as an approximation of the
inverse of the process sensitivity Sp(z) and can be designed, for instance, using the
zero-phase error tracking controller (ZPETC) algorithm (Tomizuka, 1987). This
algorithm cancels all the closed-loop poles and cancelable closed-loop zeros. For
uncancelable zeros, which include the non-minimum phase zeros, it cancels the
phase shift and compensates the gain introduced by them. After filtering the error
through L(z), the robustness filter Q(z) is applied to the sum of the filtered error
and the feedforward signal fk(t), which results in the feedforward signal fk+1(t)
that is applied in the next trial k+1. The offline updating of the feedforward signal
is graphically depicted in the dashed box in Fig. 4.2, whereas mathematically it is
written as

fk+1(t) = Q(z)(fk(t) + L(z)ek(t)). (4.1)

The tracking error e in trial k + 1 can be written as

ek+1(t) = S(z)r(t)− Sp(z)fk+1(t), (4.2)
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where S(z) = 1/(1+G(z)K(z)) is the sensitivity and Sp(z) = G(z)/(1+G(z)K(z))
is the process sensitivity. Substitution of the update law (4.1) into (4.2) leads to

ek+1(t) = S(z)r(t)−Q(z)Sp(z)(fk(t) + L(z)ek(t)). (4.3)

Similar to (4.2) we use the fact that Sp(z)fk(t) = S(z)r(t)− ek(t) and substitute
this into (4.3) such that the error at trial k+ 1 becomes a function of the error in
the previous trial k:

ek+1(t) = Q(z)(1− L(z)Sp(z))ek(t) + (1−Q(z))S(z)r(t). (4.4)

The above system is called an linear iterative system for which convergence is
obtained when (see (Norrlöf, 2000))

‖Q(ejω)(1− L(ejω)Sp(e
jω))‖∞ < 1, ∀ω ∈ [−π, π], (4.5)

is satisfied.

As opposed to the repetitive setpoint considered in standard ILC, point-to-point
setpoints with varying travel distances will be considered in this work since small
variations are present in the distance between successive features. An example of
a nominal second order setpoint is given in gray in Fig. 4.4. In general, two ways
of setpoint generation for different magnitudes are

1. keep the periods and magnitudes for the acceleration and deceleration phase
fixed while enlarging the constant velocity time (Rotariu et al., 2003). An
example of such a stretched second order setpoint is given in Fig. 4.4 by
the dashed line.

2. keep all periods fixed, but scale the magnitude of the acceleration, velocity
and position (Xu, 1997; Xu et al., 2002). The black line in Fig. 4.4 presents
the scaled setpoint.

In this work we handle setpoint variation using the second type and scale a nomi-
nal setpoint r by a gain Tk, which results in a setpoint rk that is used in the trial
k, i.e., rk(t) = Tkr(t). The value of Tk is assumed to be bounded by Tk ∈ [T , T ],
where T ∈ R+ is the lower bound and T ∈ R+ is the upper bound of the gain,
which are directly related to the pitch variation present in the repetitive structure.
The scaling factor Tk with which the nominal setpoint is scaled, can be determined
a priori by taking a snapshot of the scene. The center of the camera is initially
located above the center of a feature, while the next neighboring target feature
is already in the field of view. From this, the distance between the features can
be determined and the scaling factor can be determined. We use this second type
such that the time to reach each target is the same. Moreover, the switching times
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ṙ
[m

/
s]

0.98 1 1.02 1.04 1.06 1.08
0
1
2
3
4

x 10
−4

Time [s]

r
[m

]

Figure 4.4: Setpoint generation for different magnitudes: nominal setpoint (gray),
stretched setpoint (dashed), scaled setpoint (black).

for the acceleration in this case remain the same, such that we can exploit the use
of scaling.
As standard ILC can only cope with a repetitive setpoint, the error will not con-
verge if during iterations these scale varying setpoints rk are applied. To handle
scale varying setpoints, we proceed as follows. Standard ILC can be extended by
incorporating the gain Tk before and after the ILC update block as depicted in
Fig. 4.2, which will be referred to as normalized ILC (NILC) in the remainder of
this work. The learning update uses the normalized error e∗k(t) = T−1k ek(t) to
construct a normalized feedforward signal f∗k+1(t) as shown in the dashed area in
Fig. 4.2, whereas the applied feedforward signal is given by fk(t) = Tkf

∗
k (t). The

same analysis to prove convergence can be carried out as above and shows that the
error is convergent if (4.5) is satisfied. However, in case disturbances are present
in the system, normalized ILC is likely to fail due to the fact that disturbances
will not scale in general.
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Figure 4.5: Industrial application: an xy-wafer stage.

4.3 Existence of disturbances

The underlying assumption of normalized ILC is that the error scales with the
same gain as the setpoint in every trial. In practice, however the error is also in-
fluenced by the presence of disturbances, such that this assumption does not hold,
see also (Merry et al., 2005). In this work, three different types of disturbances
will be considered:

I disturbances that experience the same scaling as the setpoints, i.e.,
dk(t) = Tkd(t). Viscous damping in a mechanical motion system is an
example of such a disturbance. Moreover, the reference itself can be seen
as one.

II disturbances that are repetitive every trial, i.e., dk+1(t) = dk(t) = . . . =
d(t). These kind of disturbances are for example caused by an amplifier
offset, gravity forces or dry friction.

III disturbances that are of a random nature such as sensor noise.

The existence of disturbances is investigated in practice by using the industrial
application depicted in Fig. 4.5. The setup consists of an xy-stage on which a
wafer with discrete semiconductors (see Fig. 4.1(b)) is mounted. The stage is ac-
tuated by current controlled linear motors. For feedback the metric position of
the discrete semiconductors is measured at a rate of 1 kHz by means of a camera
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Figure 4.6: Measured errors for different gains, gray: T1 = 0.9, black: T2 = 0.95,
dotted black: T3 = 1, bold: T4 = 1.05, dashed black: T5 = 1.1.

which is mounted above the stage, leading to a non-collocated direct visual servo-
ing control problem. A single-input single-output (SISO) controller is tuned using
classical loopshaping techniques (Franklin et al., 1994) such that the closed-loop
system has a bandwidth of 20 Hz, see also Section 4.5.
Next, five experiments are conducted, in which each time the nominal setpoint of
Fig. 4.4 is scaled by a different gain Tk and applied to the closed-loop control sys-
tem without feedforward, while measuring the resulting position error. The gains
Tk that are used in the experiments are T1 = 0.9, T2 = 0.95, T3 = 1, T4 = 1.05 and
T5 = 1.1. The corresponding errors are given in Fig. 4.6. A first observation is that
the five measured errors have a similar shape, but each with different amplitude.
From scaling, the errors are expected to satisfy

ei(t)

Ti
=
ej(t)

Tj
, i, j ∈ {1, . . . , 5}. (4.6)
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Figure 4.7: Differences between measured error e2(t) and approximations by
scaling and by combination of e1(t) and e3(t), gray: e2(t) − T2
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difference between measured error e2(t) and approximation by combination of e1(t)
and e3(t) given in (4.11).

Using this, the error e2(t) for example can be estimated from e1(t), e3(t), e4(t)
and e5(t) as

T2
Ti
ei(t), i ∈ {1, 3, 4, 5}. (4.7)

The differences of the measured error e2(t) and these estimated errors are given in
Fig. 4.7. It can be seen that the differences are not exactly zero, since disturbances

of type II and III are present. Considering these types of disturbances, a much

more accurate estimate of e2(t) can be computed by taking combinations of errors.
This is explained using Fig. 4.8 where, without feedforward fk(t) = 0 and without
noise nk(t) = 0, the errors are given by

ei(t) = Tig(t)+ h(t), i ∈ {1, . . . , 5}, (4.8)
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Figure 4.8: Feedback control structure with a repetitive input disturbance d.

with

g(t) = S(z)r(t), h(t) = −Spd(t). (4.9)

Note that g(t) originates from a type I disturbance which is the reference r(t)

in this case. The signal h(t) originates from a type II disturbance, being the
repetitive disturbance d(t). From two measurements, for example e1(t) and e3(t),
we can estimate g(t) and h(t) by

g̃(t) =
e3(t)− e1(t)

T3 − T1
, h̃(t) =

T3e1(t)− T1e3(t)

T3 − T1
. (4.10)

Using this, e2(t) can now be estimated more accurately as

T2g̃(t) + h̃(t) =
T3 − T2
T3 − T1

e1(t) +
T2 − T1
T3 − T1

e3(t). (4.11)

The difference of the measured error e2(t) and this estimate is also given in Fig. 4.7
in bold. It can be seen that it is much more accurate than the scaled errors. The
accuracy of this estimate is less than 1 µm, whereas others are as large as 10
µm. Similar results are obtained when this estimate is constructed with other
combinations of errors. In the remainder of this work this idea will be extended
to ILC by learning the signals g(t) and h(t), which will lead to second order ILC.

4.4 Second order ILC

In this section first the principle of second order ILC (SOILC) will be explained.
Then it will be analyzed under which conditions the proposed SOILC approach is
convergent and what the influence of sensor noise and applying similar setpoints
is. Finally, improvements will be presented by adding an adaptive low-pass filter
in the trial domain for SOILC.
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4.4.1 Principle of SOILC

Consider the control scheme in Fig. 4.8 at this moment without sensor noise nk = 0,
where the goal is to design a feedforward signal fk+1(t) in such a way that the
error ek+1(t) in trial k + 1 is zero. Assume we have two trials k − 1 and k, for
which the errors of these two trials can be written as

ek−1(t) = Tk−1g(t) + h(t)− Sp(z)fk−1(t), (4.12)

ek(t) = Tkg(t) + h(t)− Sp(z)fk(t). (4.13)

After these two trials, the repetitive terms g(t) and h(t) can be estimated similar
to (4.10):

g̃(t) =
ek−1(t)− ek(t)

Tk−1 − Tk
+
Sp(z)(fk−1(t)− fk(t))

Tk−1 − Tk
, (4.14)

h̃(t) =
Tk−1ek(t)− Tkek−1(t)

Tk−1 − Tk
+

Sp(z)(Tk−1fk(t)− Tkfk−1(t))

Tk−1 − Tk
. (4.15)

Assume the feedforward signal for trial k + 1 is fk+1(t), then the error for trial
k + 1 can be estimated as

ek+1(t)=Tk+1g̃(t) + h̃(t)− Spfk+1(t)

=(1− α)ek−1(t) + αek(t) + Sp(z)
(
(1− α)fk−1(t) + αfk(t)

)
− Spfk+1(t),

(4.16)

with α defined as

α =
Tk−1 − Tk+1

Tk−1 − Tk
, Tk−1 6= Tk. (4.17)

Since we want to design a feedforward signal fk+1(t) in such a way that ek+1(t) = 0,
from (4.16) we solve fk+1:

fk+1(t)=(1− α)fk−1(t) + αfk(t) +
1

Sp(z)

(
(1− α)ek−1(t) + αek(t)

)
. (4.18)

As in standard ILC, the inverse of the process sensitivity Sp(z) is approximated
by L(z) and a robustness filter Q(z) can be added (see Section 4.2), leading to the
second order update law

fk+1(t)=Q(z)
(

(1− α)fk−1(t) + αfk(t) + L(z)
(
(1− α)ek−1(t) + αek(t)

))
.

(4.19)
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Update law (4.19) can be used for the situation where type I and II disturbances
are present in the system. However at this point, three questions remain to be
answered: 1) is the new linear iterative system convergent, 2) what happens in

case Tk = Tk−1 and 3) how does SOILC deal with type III disturbances?

4.4.2 Analysis of SOILC

In this section the SOILC approach is analyzed with respect to the three previous
mentioned questions.

1. Convergence
From equation (4.12) and (4.13), we obtain

Sp(z)fk−1(t) = Tk−1g(t) + h(t)− ek−1(t), (4.20)

Sp(z)fk(t) = Tkg(t) + h(t)− ek(t). (4.21)

In (4.16) substitute fk+1(t) by (4.19)

ek+1(t)=(1−Q(z)L(z)Sp(z))
(
(1− α)ek−1(t) + αek(t)

)

+ (1−Q(z))Sp(z)
(
(1− α)fk−1(t) + αfk(t)

)
.

and together with (4.20) and (4.21), we obtain

ek+1(t)=Q(z)(1− L(z)Sp(z))
(
αek(t) + (1− α)ek−1(t)

)

+ (1−Q(z))(Tk+1g(t) + h(t)). (4.22)

To analyze the convergence of error, the system is constructed as a linear iterative
system. From (4.22) it can be seen that ek+1(t) is related to ek(t) and ek−1(t).

We define xk(t) =
(
ek(t) ek−1(t)

)T
and uk(t) = Tk+1g(t) + h(t) such that

xk+1(t) = A(z)xk(t) +B(z)uk(t). (4.23)

with

A(z) =

(
a1(z) a2(z)

1 0

)
, B(z) =

(
1−Q(z)

0

)
, (4.24)

where a1(z) = Q(z)(1 − L(z)Sp(z))α and a2(z) = Q(z)(1 − L(z)Sp(z))(1 − α).
Convergence of this linear iterative system is assessed in the frequency domain
using the work of (Norrlöf, 2000). Transforming the linear iterative system to the
frequency domain leads to

Xk+1(ω) = A(ejω)Xk(ω) +B(ejω)Uk(ω), (4.25)
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where the signals xk(t) and uk(t) are transformed to the frequency domain using

X(ω) =

∞∑

l=0

x(l)e−jωl. (4.26)

Convergence is now obtained if

ρ = sup
ω∈[0,π]

ρ(A(ejω)) < 1. (4.27)

with ρ(A(ejω)) denoting the spectral radius of A(ejω) defined as

ρ(A(ejω)) = max
i={1,2}

|λi(A(ejω))|. (4.28)

The eigenvalues of the matrix A(ejω) are given by

λ1,2(ejω) =
a1(ejω)±

√
a1(ejω)2 + 4a2(ejω)

2
. (4.29)

Therefore, convergence of the linear iterative system (4.23) is guaranteed if the
condition ∥∥∥a1(ejω)±

√
a1(ejω)2 + 4a2(ejω)

2

∥∥∥
∞
< 1, ∀ω (4.30)

is satisfied. Since the phase of L(ejω)Sp(e
jω) is zero for all frequencies and Q(ejω)

is a zero-phase low-pass filter, a1(ejω) and a2(ejω) are real-valued, ∀ω. It will
be shown that there is a trade-off between the designed Q(z) and L(z) filter and
the maximum allowable values of α which guarantee convergence. In Fig. 4.9 the
gray area indicates the allowable values of α for different values of ‖Q(ejω)(1 −
L(ejω)Sp(e

jω))‖∞. From this figure we have the following observations:

• for convergence, ‖Q(ejω)(1− L(ejω)Sp(e
jω))‖∞ ≤ 1 is necessary,

• if ‖Q(ejω)(1 − L(ejω)Sp(e
jω))‖∞ = 1, then 0 ≤ α ≤ 2. However, from the

definition of α, it is possible that α is negative depending on the values of
the gains, and

• the smaller the value of ‖Q(ejω)(1−L(ejω)Sp(e
jω))‖∞, the larger the range

of possible values of α.

Note that the presented convergence analysis is conservative, since it is expected
that the error in the next trial is always smaller than the current error, irrespective
of the applied gain with which the setpoint is scaled. If the setpoint in the next
trial is obtained by scaling with a larger gain than the current setpoint, the error
in the next trial is also expected to be larger than the current error. As a result
it is harder to always obtain a smaller error in the next trial than the error in the
current trial.
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Figure 4.9: Computed α values based on ‖Q(ejω)(1−L(ejω)Sp(e
jω))‖∞ that make

the system convergent.

2. Perfect pitch
If in the previous two trials, the gains Tk and Tk−1 are the same, by definition,
the value of α becomes infinity. Hence, if ‖Q(ejω)(1−L(ejω)Sp(e

jω))‖∞ > 0, then
convergence can not be guaranteed. This is caused by the fact that we can not
estimate g(t) and h(t) after two trials with the same setpoint. Improvements for
this case will be discussed in the next Section.

3. Type III disturbances

If Tk−1 is close to Tk then type III disturbances highly affect the estimations

of g(t) and h(t). This is explained as follows. By considering sensor noise nk in
Fig. 4.8 the errors ek−1(t) and ek(t) can be written as

ek−1(t)=Tk−1g(t)+h(t)−Sp(z)fk−1(t)−S(z)nk−1(t), (4.31)

ek(t)=Tkg(t)+h(t)−Sp(z)fk(t)−S(z)nk(t). (4.32)
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Substitution of (4.31) and (4.32) into (4.14) and (4.15) leads to

g̃(t) = g(t)− S(z)
nk−1(t)− nk(t)

Tk−1 − Tk︸ ︷︷ ︸
estimation error

, (4.33)

h̃(t) = h(t)− S(z)
Tk−1nk(t)− Tknk−1(t)

Tk−1 − Tk︸ ︷︷ ︸
estimation error

. (4.34)

Therefore, if Tk is close to Tk−1, there will be large estimation errors, since the noise
terms are amplified. In this work, we will deal with this sensor noise by iteratively
estimating g(t) and h(t) such that these noise terms will not be amplified. This is
done by introducing an adaptive low-pass filter in the trial domain on the estimates
of g(t) and h(t).

4.4.3 Improving SOILC

In this section, we will improve the principle of SOILC with respect to 1) sensor
noise and 2) for cases in which Tk = Tk−1. By introducing an adaptive low-
pass filter in the trial domain, SOILC is first made less sensitive to sensor noise.
Incorporating sensor noise nk(t) in the previous analysis leads to the update law,

fk+1(t) =Q(z)
(

(1− α)fk−1(t) + αfk(t)+

L(z)
(
(1− α)ek−1(t) + αek(t)+

S(z)(1− α)nk−1(t)+S(z)αnk(t)
))
.

(4.35)

If the previous two gains, Tk and Tk−1 are close to each other, the absolute value
of α can be large. Hence, the sensor noise is amplified by a large gain and becomes
part of the next feedforward signal fk+1(t), which is not desired and may cause a
large error.

In the trial domain, the random type III disturbances, like sensor noise, are

changing from trial to trial, while the repetitive type II disturbances remain the
same. Therefore, the sensor noise can be seen as a high-frequency signal in the trial
domain, while the repetitive disturbances can be seen as a low-frequency signal in
the trial domain. This implies that we can use a low-pass filter in the trial domain
to reject the sensor noise. We use SOILC with an adaptive low-pass filter in the
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trial domain to smoothen out the sensor noise. In this way, the estimations of g(t)
and h(t) are obtained iteratively and filtered, and are then used in the generation
of the new feedforward signal fk+1(t). Define the terms g(t) and h(t) as the true
values and g̃k(t) and h̃k(t) to represent the corresponding estimations after trial
k:

g̃k(t) =
ek−1(t)− ek(t)

Tk−1 − Tk
+ Sp(z)

fk−1(t)− fk(t)

Tk−1 − Tk
, (4.36)

h̃k(t) =
Tk−1ek(t)−Tkek−1(t)

Tk−1−Tk
+ Sp(z)

Tk−1fk(t)−Tkfk−1(t)

Tk−1−Tk
. (4.37)

The first order adaptive low-pass filters in the trial domain are chosen as

ĝk+1(t) = (1− γk)ĝk(t) + γkg̃k(t), (4.38)

ĥk+1(t) = (1− γk)ĥk(t) + γkh̃k(t), (4.39)

where ĝk+1(t) and ĥk+1(t) are the low-pass filtered outputs of the estimations,
which are going to be used in the update law. The value of γk can be tuned to
give a weighting on how much the current estimates of g(t) and h(t) are used for
the construction of the new feedforward signal. Using the trial shift operator w,
these low-pass filters can also be written as

ĝk(t) =
γk

w − (1− γk)
g̃k(t), (4.40)

ĥk(t) =
γk

w − (1− γk)
h̃k(t). (4.41)

For stability of these low-pass filters, it is required that 0 ≤ γk ≤ 1. To prevent
sensor noise amplification when Tk ≈ Tk−1, we choose γk as

γk = β|Tk−1 − Tk|, (4.42)

where now the scalar β should satisfy

0 ≤ β ≤ 1

T − T . (4.43)

By choosing γk = β|Tk−1 − Tk| we cancel out the denominator (Tk−1 − Tk) in
(4.33) and (4.34), so only βS(z)(nk−1−nk) and βS(z)(Tk−1nk−Tknk−1) are con-
sidered in the estimations of g and h. A trade-off is present in this case between
convergence speed and sensitivity to random disturbances, as is also discussed in
(Bristow, 2008). A larger value of β results in faster convergence but results in a
system that is more sensitive to noise, whereas a lower value of β leads to a slower
convergence but results in a system that is less sensitive to noise.
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In case Tk−1 = Tk, the value of γk becomes zero. As a result the estimates ĝk+1(t)

and ĥk+1(t) are not updated and equal the previous ones ĝk(t) and ĥk(t) such that
no learning is performed. For the cases where Tk−1 = Tk and learning is to be
performed in trial k + 1 with Tk+1 = Tk two options are considered.

• First, in case Tk−1 = Tk a standard ILC update could be applied for trial
k+ 1, which updates the feedforward signal and decreases the next tracking
error. The update law is in that case given by fk+1(t) = Q(z)(fk(t) +

L(z)ek(t)). A disadvantage however is that the estimates ĝ and ĥ are not
updated while standard ILC is applied. Whenever future gain values differ
from Tk such that SOILC can be applied again, the error might increase
significantly, since old and possibly non-converged values of ĝk+1 and ĥk+1

are used.
• Second, in order to keep learning and update ĝk+1 and ĥk+1 while Tk+1 = Tk

we propose the following. Instead of using information of the previous two
trials k and k−1 to update ĝk+1 and ĥk+1 in SOILC, we use the information
of the previous trial k and trial k−p, where p ≥ 1 is the smallest number for
which Tk−p 6= Tk to update ĝ and ĥ. Therefore the update can be written
as

ĝk+1(t) = (1− γk)ĝk(t) + γkg̃k(t), (4.44)

ĥk+1(t) = (1− γk)ĥk(t) + γkh̃k(t), (4.45)

with now γk = β|Tk−p − Tk| and

g̃k(t) =
ek−p(t)− ek(t)

Tk−p − Tk
+ Sp(z)

fk−p(t)− fk(t)

Tk−p − Tk
, (4.46)

h̃k(t) =
Tk−pek(t)− Tkek−p(t)

Tk−p − Tk
+ Sp(z)

Tk−pfk(t)− Tkfk−p(t)
Tk−p − Tk

. (4.47)

As an example consider the gains depicted in Fig. 4.10. The gains are dif-
ferent for each iteration except for iteration five to eight where the gains are
the same. Hence for k = 6, 7 and 8 the value Tk−1 − Tk = 0. Therefore for
iteration k = 6, 7 and 8, the values of p in (4.46) and (4.47) are 2, 3 and 4,
respectively. For iteration k = 2, 3, 4, 5, 9 and 10 the value Tk−1 − Tk 6= 0.
Therefore the value of p in (4.46) and (4.47) is taken as one, such that it
results in its original form of (4.36) and (4.37).

The error in trial k + 1 can now be estimated as

ek+1(t) = Tk+1ĝk+1(t) + ĥk+1(t)− Spfk+1(t). (4.48)

Since the goal is to design a feedforward signal fk+1(t) such that ek+1(t) = 0, we
derive the new update law:

fk+1(t) = L(z)(Tk+1ĝk+1(t) + ĥk+1(t)). (4.49)
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Figure 4.10: Example of possible gains. The gains in iteration 5 to 8 are the same,
while others are different each trial.

By successive substitution we can write ĝk+1 as

ĝk+1(t)=(1− γk)ĝk(t) + γk
ek−1(t)− ek(t)

Tk−1 − Tk
+

γk
Tk−1ĝk−1(t) + ĥk−1(t)− Tkĝk(t)− ĥk(t)

Tk−1 − Tk
.

With the definition of γk this leads to

ĝk+1(t)=(1− β|Tk−1 − Tk|)ĝk(t) + β · sign(Tk−1 − Tk)×
(ek−1(t)− ek(t) + Tk−1ĝk−1(t) + ĥk−1(t)− Tkĝk(t)− ĥk(t)). (4.50)

Similarly,

ĥk+1(t)=(1− β|Tk−1 − Tk|)ĥk(t) + β · sign(Tk−1 − Tk)×
(Tk−1ek(t)− Tkek−1(t) + Tk−1(Tkĝk(t) + ĥk(t))−
Tk(Tk−1ĝk−1(t) + ĥk−1(t))). (4.51)
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Figure 4.11: Second order ILC with low-pass filters in the trial domain.

To filter out the high frequency components in the measured error, we still use
a zero-phase low-pass filter Q(z) as the robustness filter after the updated es-

timations ĝk+1(t) and ĥk+1(t). Therefore, the first order low-pass filters in the
trial domain (4.38) and (4.39) now also include the low-pass filtering in frequency
domain, i.e., the new filters now are

ĝk+1(t) =Q(z)
(

(1− γk)ĝk(t) + γkg̃k(t)
)
, (4.52)

ĥk+1(t) =Q(z)
(

(1− γk)ĥk(t) + γkh̃k(t)
)
. (4.53)

Fig. 4.11 shows the block diagram of the second order ILC with low-pass filters.

4.5 Results

In this section the performance of 1) standard ILC, 2) normalized ILC (NILC), 3)
second order ILC (SOILC) and 4) SOILC with an adaptive low-pass filter in the
trial domain for scale varying setpoints will be compared.
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The proposed methods are validated on an industrial application, being a xy-wafer
stage, where the task is to move from one discrete semiconductor to the next, see
Fig. 4.5. The frequency response function (FRF) from the input of the motor to
the metric position output measured by the camera is given in Fig. 4.12. The
plant is modeled by a mass-damper system with delay. The obtained model, with
as input the applied voltage to the current amplifier and with output the metric
position obtained from the camera, given by

G(z)=1×10−7 · 1.34z2+5.14z+1.23

z4−1.85z3+0.85z2
, (4.54)

is also shown in Fig. 4.12 by its FRF and shows a good match until approximately
60 Hz. As a consequence a mismatch between the measured process sensitivity and
its model is expected after 60 Hz. Therefore the Q filter gets a cutoff frequency of
50 Hz. A feedback controller K(z) is tuned which consists of a lead filter with a
zero at 6 Hz and a pole at 100 Hz and a second order low-pass filter with a cutoff
frequency of 250 Hz and a damping of 0.6. Finally, a notch is added at 80 Hz. The
discrete controller is given by

K(z)=1×104 · 3.3z5−2.3z4−7.8z3+11z2−3.5z−0.82

z5−2.4z4+2.4z3−1.2z2+0.38z−0.070
. (4.55)
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Figure 4.12: Measurement frequency response function and the corresponding fit
of the plant: measurement data (gray), fitted model (dashed black).
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Figure 4.13: Open-loop response of xy-wafer stage.

This leads to an open-loop frequency response as shown in Fig. 4.13. From this
figure it can be seen that the obtained cross-over frequency, is 20 Hz.

The number of iterations that will be performed is 30. For the sake of comparison,
the arbitrary gains are chosen the same for the four methods. During experiments,
the lower bound for Tk will be T = 0.75, whereas the upper bound for Tk will be
T = 1.25 such that Tk ∈ [0.75, 1.25]. Fig. 4.14 shows the applied gains. The pro-
posed methods are applied on the xy-wafer stage with the value of β chosen as 1
in this case, such that 0 ≤ β ≤ 1

T−T = 2 is satisfied. The maximum errors for

each iteration are given in Fig. 4.15. Since standard ILC does not incorporate the
scaling of the setpoint it is expected that the final error oscillates depending on the
applied gains, which also shows in Fig. 4.15. Normalized ILC does incorporate the
scaling of the setpoint, however it is based on the absence of type II disturbances.
Dry friction is one of the major disturbances present in the experimental setup. It
can be seen that if two successive gains are quite different the error of normalized
ILC increases, which is caused by the inappropriate scaling of the error; the error
due to the dry friction is also scaled, which in practice remains approximately the
same. Second order ILC without low-pass filters in the trial domain suffers from



4.5 Results 99

0 10 20 30
0.7

0.8

0.9

1

1.1

1.2

1.3

Iteration [-]

T k
[-
]

Figure 4.14: Gains applied during iterations on the xy-wafer stage.

the fact that α will become large if Tk−1 − Tk is small, resulting in an increase
of the errors due to sensor noise amplification. This is the case for iteration 16,
where the feedforward update (4.19) is dependent on iterations 14 and 15, which
are close to each other, see Fig. 4.14. The same reasoning holds for iteration 23.
The most satisfactory results are obtained using second order ILC with an adaptive
low-pass filter in the trial domain. After eleven iterations the error is converged
to maximum errors of less than 5 µm, while different setpoints are applied during
the learning process.

The proposed solution in case Tk−1 = Tk in second order ILC with adaptive low-
pass filtering in the trial domain is investigated next. During the iterations the
applied gains in this case are the same as in Fig. 4.14, except that the gains of
iterations eleven through twenty are kept the same in this case and equal to the
gain of iteration eleven. Furthermore, the value of β is taken as 0.5, such that
learning is slower. If β = 1 we saw in the previous results that the error and
therefore also the estimates ĝ and ĥ already converged within eleven iterations.
The effect that we want to visualize here is that learning is still present even
when the gain values of two successive iterations are the same. The results are
given in Fig. 4.16. The gray hatched area indicates that the gains are the same
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Figure 4.15: Maximum absolute error in meters for different methods on xy-wafer
stage, dashed gray: standard ILC, dashed black: NILC, gray: SOILC, bold:
SOILC with an adaptive low-pass filter in the trial domain.

for these iterations. A first observation is that the error converges slower. This
was expected due to the lower value of β. Second, the error converges even when
the gains of iterations eleven through twenty are the same. Furthermore, after
iteration twenty, when the gains deviate again, learning is still present as can be
seen by the further reduction of the error. This result shows that the proposed
solution in the case where two successive gains are the same is effective.
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Figure 4.16: Maximum absolute error in meters for different methods on xy-wafer
stage, bold: SOILC with an adaptive low-pass filter in the trial domain with
β = 0.5. The gain values of iteration eleven through twenty (depicted by the
hatched area) are the same but learning is still present.

4.6 Conclusions

Three methods, NILC, SOILC and SOILC with an adaptive low-pass filter in the
trial domain have been investigated in this work to handle scale varying setpoints
in iterative learning control. Experiments with an industrial setup are carried out
to validate these methods. NILC achieves a good performance when there is no
disturbance at all. SOILC is sensitive to non-repetitive noise when the previous
applied setpoints are almost the same. SOILC with an adaptive low-pass filter in
the trial domain can handle the situation when both repetitive disturbances and
non-repetitive noise exist and achieves a good performance. After convergence the
error is reduced to less than 5 µm for an industrial xy-wafer stage application.
The investigated methods consider disturbances that experience the same scaling
as the setpoint, and trial independent repetitive disturbances. Another class of
disturbances known in practice are position dependent disturbances, e.g., cogging.
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This kind of disturbances cannot be handled in the presented work, since scaling
cannot be applied. Incorporating these kinds of disturbances in the proposed
method will therefore be subject for future research.
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Chapter 5

Conclusions and
recommendations

IN this chapter, the main conclusions of this work are given. Further-
more, recommendations for future work on motion control for near-

repetitive structures are given.

5.1 Conclusions

The problem statement of this work was to investigate control design approaches
for the relative positioning of a tool with respect to a feature of a near-repetitive
structure. Regarding this problem statement the conclusions of this work are as
follows.

Visual servoing enables a direct relative position measurement of the tool with
respect to the features of the repetitive structure, in contrast with an indirect
relative position measurement with on board motor encoders which depends on
machine properties such as geometric accuracy, stiffness of the machine frame and
thermal expansion. Therefore, using this direct relative position measurement,
the dynamics of interest can be accounted for in the control design. Moreover,
disturbances that are unobservable to on board motor encoders are measured and
accounted for in a closed-loop direct visual servoing control approach.

In case of near-repetitive structures the exact metric position of a feature with
respect to the tool cannot be predicted. As a consequence, it is impossible to
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generate a metric setpoint trajectory for a feature-to-feature motion offline. The
introduction of feature-based control has solved this problem. As a result of the
proposed feature-based measurement the gain of the controlled system will vary
with the momentary pitch. The proposed a posteriori stability analysis can as-
sess stability of the closed-loop system for bounded pitch variations. The use of
piecewise second order interpolation in the feature domain offers a higher position-
ing accuracy as compared to the bilinear interpolation, due to the elimination of
transient responses at the feature frame transitions.

Common tasks in the production of repetitive structures consist of a global feature-
to-feature movement followed by a local relative feature movements. The feature-
based motion control approach is designed such that both feature-to-feature move-
ments and relative feature movements can be carried out by combining the feature
domain with the metric domain. Operators can intuitively program to which fea-
ture to go to and what metric movements have to be carried out with respect to
that specific feature. The combination of feature-to-feature movements and rela-
tive feature movements has been validated on an industrial applications in which
discrete semiconductors on a wafer are positioned with respect to the camera with
accuracies of less than 10 µm.

For feature-to-feature movements ILC techniques are investigated in this work.
Standard ILC can only be used in cases where the applied setpoint is strictly
repetitive for every trial. In this work however the distance between successive
features is prone to pitch variations, such that standard ILC cannot be used.
The introduction of second order ILC handles this constraint and shows that the
tracking error for scale varying setpoints is reduced iteratively, while different
setpoints are applied during the learning process. The error in this work is assumed
to be consisting of 1) scale varying disturbances, 2) repetitive disturbances and
3) measurement noise. The presented method is experimentally validated on the
industrial wafer stage application and shows that it successfully compensates for
the first two classes of disturbances resulting in errors of less than 5 µm.

An experimental visual servoing setup was created using a commercially available
off-the-shelf camera on top of an industrial xy-wafer stage. The setup is capable
of running at a frame rate of 1 kHz with a delay of 2.5 ms. The high frame rate
is obtained by reading out only a part of the sensor. The delay is reduced, by 1)
adapting the image size to match the possible interface transfer rate, 2) using a
priori knowledge about the repetitive structure such as the nominal pitch between
features and the size and shape of the features, 3) online predicting the pixel
positions of the features and iv) illuminating the substrate with power LEDs to
reduce the exposure time of the camera.
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5.2 Recommendations

The introduction of feature-based positions directly results in non-linear system
behavior, since pitch variations cause the system gain to vary. In this work a
stability analysis is carried out to prove robustness with respect to this matter.
To even further increase the stability margins of the closed-loop system, it is
recommended to investigate the use of feedback linearization or gain scheduling
techniques, to compensate for the gain variation in the controller. At the moment
the pixel positions of the features are known, the momentary gain of the system is
known and can be incorporated by its inverse in the controller to obtain a nominal
open-loop.

Next to bilinear feature interpolation, in this work we applied second order feature
interpolation to successfully reduce transient responses at feature frame transi-
tions. The proposed method is however not restricted to second order interpola-
tion. High order interpolation can be used to generate continuous feature-based
accelerations or even feature-based jerks at the feature frame transitions. The
design choices for these higher order interpolations directly affect the gain of the
system. On the one hand the feature-based position can be made more smooth
across feature frame transitions, however at the same time due to the varying gain
of the system the stability should be considered. Therefore, it is recommended
to investigate the trade-off between smoothen the feature-based position and the
robust stability of the closed-loop system.

The presented feature-based control is able to deal with pitch imperfections be-
tween successive features, i.e., variations in the positions of the features. Rotation
imperfections of each feature are not considered. By detecting the orientation of
the feature next to its position, and by assuming all features are identical, the
complete contour of each feature can be calculated and used for relative feature
movements. Therefore, it is recommended to investigate the incorporation of the
orientation of the individual features next to the position in the feature-based
control approach.

The proposed second order ILC approach for scale varying setpoints compensates
for disturbances that experience the same scaling as the setpoint, and trial inde-
pendent repetitive disturbances. Another class of disturbances known in practice
are position dependent disturbances, e.g., cogging. These kind of disturbances are
not incorporated in the presented ILC techniques, since scaling cannot be applied.
Incorporating these kinds of disturbances in the proposed methods is therefore
recommended, where the problem is to identify position dependent disturbances
and non-position dependent disturbances during iterations.
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By using second order ILC we are able to estimate disturbances 1) which experi-
ence the same scaling as the setpoint and 2) which are repetitive every trial. Higher
order ILC can be introduced to even detect other disturbance classes which are
directly related to the gain of the applied reference. An example of such a dis-
turbance can be air resistance. This disturbance is typically dependent on the
quadratic velocity, i.e., dk(t) = (Tkd(t))2. By using third order ILC, next to the
repetitive and scale varying disturbances even these disturbances can be identified
and compensated.

For systems with multiple inputs and outputs it is recommended to investigate if
the presented second order ILC approach is also applicable. In that case not only
does the reference scale but also has a varying input direction, which should be
taken into account.

One assumption that remains in the second order ILC approach is that the initial
state of the system should be equal for every iteration. Repetitive control is not
restricted by this constraint. Therefore, a natural research question for future
work is if the proposed second order ILC approach can be extended towards a
high order repetitive control architecture, in which scale varying setpoints can be
applied in a more continuous manner, without having to reinitialize the system at
the beginning of every iteration.

In this work visual servoing is used for positioning the features of the repetitive
structure with respect to the tool. The focus of this work was on the measurement
concept and control design where the attainable bandwidth was limited by the
flexibilities of the system in this case. For systems with higher eigenfrequencies,
the attainable bandwidth might eventually be hampered by the delay of the sys-
tem, which in this case is 2.5 ms. In those cases, the delay should be reduced. It
is then recommended to investigate the availability of high speed vision sensors.
Moreover, the interfacing between the camera and image processing unit for the
image transfer is a bottleneck. A processing unit directly next to the image sen-
sor such as field-programmable gate arrays (FPGA) can significantly reduce the
delay of the image transfer. Moreover, the parallel processing capabilities enables
possibilities for faster image processing.
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Appendix A

Stability proof

In this section we prove that if the inequalities (2.38) and (2.39) are satisfied, the
arbitrary switching closed-loop system is stable.
Using the Schur complement, (2.38) can be written as

(
E ATcl,minE

EAcl,min E

)
� 0. (A.1)

Since α1 > 0 we are allowed to write

(
α1E α1A

T
cl,minE

α1EAcl,min α1E

)
� 0. (A.2)

The same transformation can be applied to (2.39)

(
α2E α2A

T
cl,maxE

α2EAcl,max α2E

)
� 0. (A.3)

Summing up the two inequalities above results in

(
E (α1A

T
cl,min+α2A

T
cl,max)E

E(α1Acl,min+α2Acl,max) E

)
� 0, (A.4)

which is the same as (2.37) using the Schur complement.
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Appendix B

Bilinear interpolation
equivalence

Let A and B be defined as in (3.8) and (3.9). Then the following holds

xpi − xpt
xpb − x

p
t

=
ypi − ypt
ypb − y

p
t

= A, (B.1)

xpi − xpl
xpr − xpl

=
ypi − ypl
ypr − ypl

= B. (B.2)

From (3.8) and (3.9) xpl , y
p
l , xpr , y

p
r , xpt , y

p
t , xpb and ypb can be written as

xpl = xptl +A(xpbl − x
p
tl), (B.3)

ypl = yptl +A(ypbl − y
p
tl), (B.4)

xpr = xptr +A(xpbr − x
p
tr), (B.5)

ypr = yptr +A(ypbr − y
p
tr), (B.6)

xpt = xptl +B(xptr − xptl), (B.7)

ypt = yptl +B(yptr − yptl), (B.8)

xpb = xpbl +B(xpbr − x
p
bl), (B.9)

ypb = ypbl +B(ypbr − y
p
bl). (B.10)

The horizontal line connecting pp
l

with pp
r

can be written as

y = ahx+ bh, (B.11)
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with coefficients ah and bh

ah =
ypl − ypr
xpl − x

p
r
, (B.12)

bh =
yprx

p
l − y

p
l x

p
r

xl − xpr
. (B.13)

Similarly, the vertical line can be written as

y = avx+ bv, (B.14)

with

av =
ypt − ypb
xpt − xpb

, (B.15)

bv =
ypbx

p
t − ypt xpb
xpt − xpb

. (B.16)

The intersection of the horizontal line and the vertical line is given by pp
i
. There-

fore, the coordinates of the point of interest can be obtained by equating (B.11)
and (B.14) followed by solving for x. Substituting the solution of x in (B.11) gives
the corresponding y solution. They are given by

xpi =AB (xptl + xpbr − x
p
tr − xpbl) +

A (xpbl − x
p
tl) +B (xptr − xptl) + xptl. (B.17)

ypi =AB (yptl + ypbr − y
p
tr − ypbl) +

A (ypbl − y
p
tl) +B (yptr − yptl) + yptl, (B.18)

These solutions together with (B.3) through (B.10) can be substituted into (B.1)
and (B.2) which lead to equality.
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Appendix C

Second order interpolation

This section explains how the function h(B) is designed. Note that g(A) is designed
in the similar way. We choose the function h(B) as a piecewise quadratic function

h(B) :

{
h1(B) = a12B

2 + a11B + a10 if B < 0.5,
h2(B) = a22B

2 + a21B + a20 if B ≥ 0.5.
(C.1)

The constraints as mentioned in Section 3.3.4 are written as

h1(0) = 0, h2(1) = 1,
dh1(0)

dB
=
P

P
,
dh2(1)

dB
=
P

P
. (C.2)

Two additional constraints are added to have the function h(B) continuous accross
B = 0.5 in both position and velocity

h1(0.5B) = h2(0.5B),
dh1(0.5B)

dB
=
dh2(0.5B)

dB
. (C.3)

These constraints can be written as




0 0 1 0 0 0
0 1 0 0 0 0
0 0 0 1 1 1
0 0 0 2 1 0

0.25 0.5 1 −0.25 −0.5 −1
1 1 0 −1 −1 0







a12
a11
a10
a22
a21
a20




=




0
P
P
1
P
P
0
0



, (C.4)
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such that the parameters a12, a11, a10, a22, a21 and a20 can be found through




a12
a11
a10
a22
a21
a20




=




0 0 1 0 0 0
0 1 0 0 0 0
0 0 0 1 1 1
0 0 0 2 1 0

0.25 0.5 1 −0.25 −0.5 −1
1 1 0 −1 −1 0




−1


0
P
P
1
P
P
0
0



. (C.5)

The final formula for h(B) is then given by

h(B)=





(
2− 2P

P

)
B2+ P

P
B if B < 0.5,(

−2+ 2P
P

)
B2+

(
4− 3P

P

)
B−1+ P

P
if B ≥ 0.5.

(C.6)
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Appendix D

Minimum and maximum
Jacobian values

In this section we show how to calculate the minimum and maximum values of the
Jacobian given in (3.18). The feature-based position pf

i
=
(
xfi yfi

)T
is given by

xfi = xftl + g(A(xpi , y
p
i )), (D.1)

yfi = yftl + h(B(xpi , y
p
i )). (D.2)

Therefore, by using the product rule we can rewrite the Jacobian of (3.18) as

J =




dxfi
dg

dg

dA

dA

dxpi

dxfi
dg

dg

dA

dA

dypi
dyfi
dh

dh

dB

dB

dxpi

dyfi
dh

dh

dB

dB

dypi


 (D.3)

=

(
dg
dA 0
0 dh

dB

)( dA
dxp

i

dA
dypi

dB
dxp

i

dB
dypi

)
. (D.4)

For each part of (D.4) we will determine the minimum and maximum values as a
function of α, starting with the first part. The functions g(A) and h(B) are given
by

g(A)=





(
2− 2P

P

)
A2+ P

P
A if A < 0.5,(

−2+ 2P
P

)
A2+

(
4− 3P

P

)
A−1+ P

P
if A ≥ 0.5.

(D.5)
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h(B)=





(
2− 2P

P

)
B2+ P

P
B if B < 0.5,(

−2+ 2P
P

)
B2+

(
4− 3P

P

)
B−1+ P

P
if B ≥ 0.5.

(D.6)

The derivatives with respect to A and B can be written as

dg

dA
=





(
4− 4P

P

)
A+ P

P
if A < 0.5,(

−4 + 4P
P

)
A+

(
4− 3P

P

)
if A ≥ 0.5.

(D.7)

dh

dB
=





(
4− 4P

P

)
B + P

P
if B < 0.5,(

−4 + 4P
P

)
B +

(
4− 3P

P

)
if B ≥ 0.5.

(D.8)

Dependent on the momentary pitch P , the values of dg
dA and dh

dB vary. If ∆P

is αP , then the largest momentary pitch P is given by
√

(P + 2αP )2 + (2αP )2.

Similarly, if ∆P is αP , then the smallest momentary pitch P is given by P −2αP .
Now for different values of α we search for the maximum and minimum values of
dg
dA and dh

dB on the interval 0 ≤ A ≤ 1 and 0 ≤ B ≤ 1. Therefore, we can find the

minimum and maximum values of dg
dA and dh

dB , which are graphically depicted in

Fig. D.1. The function corresponding to the maximum values of both dg
dA and dh

dB

is given by (2
√

10− 4)α+ 1, whereas the function corresponding to the minimum
values of both dg

dA and dh
dB is given by (4− 2

√
10)α+ 1.

The minimum and maximum values of the second part of (D.4) are determined as
follows. As explained in Section 3.3.3, the values of A and B can be determined
analytically using (3.8), (3.9) and (3.10). Note that the values of A and B are
dependent on 1) the coordinates of the four enclosing features and 2) the coordi-
nates of the point of interest. For the second part of the Jacobian in (D.4), we
have to derive A and B with respect to the coordinates of the point of interest.
These derivatives are dependent on the positions of the four enclosing features,
which as a result of the pitch imperfections can lie with a predefined range subject
to (3.1). For different positions of the four enclosing features, different derivatives
will appear. We have investigated all possible combinations of configuration of the
four enclosing features. For each value of α and for each of those combinations the
minimum and maximum values were determined. These are graphically depicted
in Fig. D.2. The multiplication of the Fig. D.1 and Fig. D.2 leads to the result
given in Fig. 3.16.
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Figure D.1: First part of the Jacobian given in (D.4).
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Figure D.2: Second part of the Jacobian given in (D.4).
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Samenvatting

In veel fabricageprocessen worden productiestappen uitgevoerd op repeterende
structuren. Deze structuren bestaan uit identieke producten die geplaatst zijn
in een repeterend patroon. Bij ieder van deze producten zijn één of meerdere pro-
ductiestappen nodig om het uiteindelijke product te verkrijgen. Voor een hoge
productkwaliteit is het noodzakelijk om het bewerkingsgereedschap met een hoge
nauwkeurigheid ten opzichte van de individuele producten te positioneren. In de
huidige industrie worden vaak lokale positiesensoren zoals encoders gebruikt om
afzonderlijk de positie van het gereedschap en de tafel waarop de repeterende
structuur zich bevindt te meten. De haalbare nauwkeurigheid is in dat geval di-
rect afhankelijk van de thermische stabiliteit van de machine, de stijfheid van het
machineframe en de variatie in de onderlinge afstand tussen de producten van de
repeterende structuur. De ontwerpeisen van deze eigenschappen dreigen onhaal-
baar streng te worden door de tendens naar grotere repeterende structuren.

Het doel van dit proefschrift is het ontwerpen van regeltechnische methoden om het
gereedschap nauwkeurig te kunnen positioneren ten opzichte van de producten van
de repeterende structuur, zonder dat overmatig strenge eisen nodig zijn ten aanzien
van thermische stabiliteit, stijfheid van het machineframe en de gelijkmatigheid
van de repeterende structuren. In dit proefschrift wordt een camera gebruikt in de
regellus om de relatieve positie tussen het gereedschap en de producten te meten
en te regelen. Dit wordt ook wel visual servoing genoemd. Door een camera
te gebruiken als meetinstrument kunnen de relevante dynamica en bijbehorende
verstoringen gemeten en gecompenseerd worden in een gesloten-lus regelkring op
de plaats waar de positioneernauwkeurigheid gewenst is.

Vaak is de onderlinge afstand tussen twee opeenvolgende producten van de repe-
terende structuur niet perfect constant, bijvoorbeeld door thermische uitzetting
van de repeterende structuur of door de eindige nauwkeurigheid van voorgaande
productiestappen. Als gevolg hiervan varieert de afstand tussen twee producten,



zodat vooraf geen referentietrajecten ontworpen kunnen worden. In dit proef-
schrift wordt een nieuwe product-gebaseerde positiemeting gebruik die de positie
uitgeeft in producteenheden. Aangezien de product-gebaseerde posities van iedere
product vooraf bekend zijn, kunnen referentietrajecten daarom vooraf ontworpen
worden zonder kennis van de exacte metrische positie. Naast bewegingen van pro-
duct naar product zijn ook kleine metrische bewegingen van het gereedschap ten
opzicht van het product mogelijk, zoals bijvoorbeeld bij graveren. De regeltech-
nische methoden zijn in de praktijk gevalideerd op een industriële machine. Een
visual servoing opstelling is gerealiseerd met een beeldverwerkingssnelheid van 1
kHz. Deze opstelling bestaat uit een xy-tafel waarop een wafer is geklemd die de
discrete semiconductors bevat die samen een repeterende structuur vormen. De
taak is om het gereedschap relatief te positioneren ten opzichte van de discrete se-
miconductors van de wafer. Een camera die is gericht op de repeterende structuur
van de wafer wordt gebruikt voor de positie-terugkoppeling. De tijdsvertraging
van het systeem is 2.5 ms en de variatie van de positiemeting is 0.3 µm, (3σ). De
uiteindelijke behaalde nauwkeurigheden voor de industriële machine zijn ± 10 µm,
hetgeen de prestaties van de traditioneel geregelde machine aanzienlijk verbetert.

Voor bewegingen van product naar product met varierende onderlinge afstand tus-
sen de producten is een nieuwe voorwaartssturing ontworpen gebaseerd op iteratief
lerende regeltechnieken (ILC). Om met de variërende afstand tussen de produc-
ten om te kunnen gaan, worden de referentietrajecten van product naar product
ontworpen door een nominaal metrisch referentietraject te schalen. Tijdens het
leerproces worden deze geschaalde trajecten toegepast en wordt er tweede-orde
ILC gebruikt om de variërende trajecten met een hoge nauwkeurigheid te vol-
gen. De uiteindelijke behaalde nauwkeurigheden op de industriële machine zijn
± 5 µm voor verschillende geschaalde referentietrajecten, hetgeen een significante
verbetering van de prestatie betekent.
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Een proefschrift komt niet alleen tot stand door degene wiens naam je op de kaft
vindt. Veel mensen hebben mij op wat voor manier dan ook geholpen om mijn
proefschrift tot dit resultaat te brengen. Daarom wil ik graag, onder het genot
van een colaatje, van de gelegenheid gebruik maken om tegen iedereen te zeggen:
bedankt! In het bijzonder wil ik een aantal mensen noemen.

Maarten, tijdens mijn afstuderen kwam je naar me toe en vroeg me om nog vier jaar
te blijven. Je enthousiastmerende karakter en enorme drive hadden al een halve
ja bewerkstelligd. Met het bijbehorende leuke onderwerp was daarom de keus al
snel helder. Bedankt voor het vertrouwen en de kans die je me hebt gegeven,
zodat ik uiteindelijk sta waar ik nu sta. Voor de dagelijkse begeleiding wil ik
graag mijn co-promotor René van de Molengraft bedanken. Jouw kritische blik,
’helicopterview’, maar ook versimpelingen hebben bijgedragen aan de kwaliteit
van dit proefschrift. Naast het werken aan mijn onderzoek zorgden jouw diverse
onderwijstaken waaraan ik mee mocht werken voor een zeer welkome afwisseling.

Alle mensen van DCT wil ik bedanken voor de geweldige sfeer waarvan ik heb
mogen genieten tijdens de uitjes, koffiepauzes en conferenties. Graag wil ik speciaal
mijn kamergenoten die ik heb ’versleten’ bedanken: Cesar, Gert, Erik, Tim en in
het bijzonder Roel en Rob! Verder wil ik ook mijn afstudeerders Rob, Erik en
Lancheng bedanken voor hun bijdrage aan dit proefschrift. ’s Ochtends koffie
drinken met Harrie, Rob, Pieter, Sjef, Peter en Hennie zorgde elke dag weer voor
een leuke start met een enorme diversiteit aan gespreksstof. Bedankt daarvoor!

Het Tech United RoboCup team mag ook zeker niet ontbreken in mijn lijstje. Ups
en downs hebben we met elkaar gedeeld. Elk toernooi, elke dinsdagavond, elke
keer hebben we veel plezier gehad en hebben we samen mooie prestaties behaald
onder soms onmenselijke omstandigheden met bijbehorende emoties, maar met
altijd één heel duidelijk doel voor ogen: wij worden de beste. Ik kijk terug op een
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schitterende tijd en een geweldige ervaring met het mooiste team waarin ik ooit
heb mogen deelnemen. Bedankt!

Pap en mam, ondanks het feit dat het af en toe toch maar moeilijk was om te
begrijpen waar ik nou precies mee bezig was, was jullie steun en interesse er niet
minder om. Bedankt daarvoor! En dan is er nog mijn grote bruur. Je zorgzaam-
heid en interesse hebben mij enorm geholpen, evenals de vele telefoontjes waarbij
ik alle vragen op je af kon vuren. Bruur, bedankt wah!

Tenslotte wil ik mijn geweldige gezinnetje bedanken. Hein, zo klein als je nu bent,
zo veel steun heb je pappa al gegeven. Bij een guitige glimp van jou wist ik meteen
dat ik thuis was en kwam het werk later wel weer. Tanja, ik ben in de wolken van
jou, maar gelukkig heb je me tegelijkertijd ook met beide benen aan de grond
gehouden. Zonder jouw onvoorwaardelijke steun en liefde was dit proefschrift er
nooit gekomen. Schatten, ik hou van jullie!

Jeroen de Best
Juli, 2011
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