143 research outputs found

    A survey of an introduction to fault diagnosis algorithms

    Get PDF
    This report surveys the field of diagnosis and introduces some of the key algorithms and heuristics currently in use. Fault diagnosis is an important and a rapidly growing discipline. This is important in the design of self-repairable computers because the present diagnosis resolution of its fault-tolerant computer is limited to a functional unit or processor. Better resolution is necessary before failed units can become partially reuseable. The approach that holds the greatest promise is that of resident microdiagnostics; however, that presupposes a microprogrammable architecture for the computer being self-diagnosed. The presentation is tutorial and contains examples. An extensive bibliography of some 220 entries is included

    A deductive technique for diagnosis of bridging faults

    Full text link

    Patching circuit design based on reserved CLBs

    Get PDF

    Real Time Fault Detection and Diagnostics Using FPGA-Based Architecture

    Get PDF
    Errors within circuits caused by radiation continue to be an important concern to developers. A new methodology of real time fault detection and diagnostics utilizing FPGA based architectures while under radiation were investigated in this research. The contributions of this research are focused on three areas; a full test platform to evaluate a circuit while under irradiation, an algorithm to detect and diagnose fault locations within a circuit, and finally to characterize Triple Design Triple Modular Redundancy (TDTMR), a new form of TMR. Five different test setups, injected fault test, gamma radiation test, thermal radiation test, optical laser test, and optical flash test, were used to assess the effectiveness of these three research goals. The testing platform was constructed with two FPGA boards, the Device Under Test (DUT) and the controller board, to generate and evaluate specific vector sets sent to the DUT. The testing platform combines a myriad of testing and measuring equipment and work hours onto one small reprogrammable and reusable FPGA. This device was able to be used in multiple test setups. The controlling logic can be interchanged to test multiple circuit designs under various forms of radiation. The detection and diagnostic algorithm was designed to determine fault locations in real time. The algorithm used for diagnosing the fault location uses inverse deductive elimination. By using test generation tools, fault lists were developed. The fault lists were used to narrow \ the possible fault locations within the circuit. The algorithm is able to detect single stuck at faults based on these lists. The algorithm can also detect multiple output errors but not able to diagnose multiple stuck at faults in real time

    Pattern generation and fault detection in digital circuits using a microprocessor

    Get PDF
    The main object of this Professional Project was to establish a microcomputer based system which could detect faults in digital circuits. Hardware and software for the Motorola 6800 microcomputer system was fully developed. Node level diagnostic programs were then used to pump known Bit Patterns into digital circuits and responses recorded via Pseudorandom binary sequence generator using CRC code. This method also known as Signature Analysis was then applied to detect faults successfully in Universal Asynchronous Receiver Transmitter or UART Circuits

    New Fault Detection, Mitigation and Injection Strategies for Current and Forthcoming Challenges of HW Embedded Designs

    Full text link
    Tesis por compendio[EN] Relevance of electronics towards safety of common devices has only been growing, as an ever growing stake of the functionality is assigned to them. But of course, this comes along the constant need for higher performances to fulfill such functionality requirements, while keeping power and budget low. In this scenario, industry is struggling to provide a technology which meets all the performance, power and price specifications, at the cost of an increased vulnerability to several types of known faults or the appearance of new ones. To provide a solution for the new and growing faults in the systems, designers have been using traditional techniques from safety-critical applications, which offer in general suboptimal results. In fact, modern embedded architectures offer the possibility of optimizing the dependability properties by enabling the interaction of hardware, firmware and software levels in the process. However, that point is not yet successfully achieved. Advances in every level towards that direction are much needed if flexible, robust, resilient and cost effective fault tolerance is desired. The work presented here focuses on the hardware level, with the background consideration of a potential integration into a holistic approach. The efforts in this thesis have focused several issues: (i) to introduce additional fault models as required for adequate representativity of physical effects blooming in modern manufacturing technologies, (ii) to provide tools and methods to efficiently inject both the proposed models and classical ones, (iii) to analyze the optimum method for assessing the robustness of the systems by using extensive fault injection and later correlation with higher level layers in an effort to cut development time and cost, (iv) to provide new detection methodologies to cope with challenges modeled by proposed fault models, (v) to propose mitigation strategies focused towards tackling such new threat scenarios and (vi) to devise an automated methodology for the deployment of many fault tolerance mechanisms in a systematic robust way. The outcomes of the thesis constitute a suite of tools and methods to help the designer of critical systems in his task to develop robust, validated, and on-time designs tailored to his application.[ES] La relevancia que la electrónica adquiere en la seguridad de los productos ha crecido inexorablemente, puesto que cada vez ésta copa una mayor influencia en la funcionalidad de los mismos. Pero, por supuesto, este hecho viene acompañado de una necesidad constante de mayores prestaciones para cumplir con los requerimientos funcionales, al tiempo que se mantienen los costes y el consumo en unos niveles reducidos. En este escenario, la industria está realizando esfuerzos para proveer una tecnología que cumpla con todas las especificaciones de potencia, consumo y precio, a costa de un incremento en la vulnerabilidad a múltiples tipos de fallos conocidos o la introducción de nuevos. Para ofrecer una solución a los fallos nuevos y crecientes en los sistemas, los diseñadores han recurrido a técnicas tradicionalmente asociadas a sistemas críticos para la seguridad, que ofrecen en general resultados sub-óptimos. De hecho, las arquitecturas empotradas modernas ofrecen la posibilidad de optimizar las propiedades de confiabilidad al habilitar la interacción de los niveles de hardware, firmware y software en el proceso. No obstante, ese punto no está resulto todavía. Se necesitan avances en todos los niveles en la mencionada dirección para poder alcanzar los objetivos de una tolerancia a fallos flexible, robusta, resiliente y a bajo coste. El trabajo presentado aquí se centra en el nivel de hardware, con la consideración de fondo de una potencial integración en una estrategia holística. Los esfuerzos de esta tesis se han centrado en los siguientes aspectos: (i) la introducción de modelos de fallo adicionales requeridos para la representación adecuada de efectos físicos surgentes en las tecnologías de manufactura actuales, (ii) la provisión de herramientas y métodos para la inyección eficiente de los modelos propuestos y de los clásicos, (iii) el análisis del método óptimo para estudiar la robustez de sistemas mediante el uso de inyección de fallos extensiva, y la posterior correlación con capas de más alto nivel en un esfuerzo por recortar el tiempo y coste de desarrollo, (iv) la provisión de nuevos métodos de detección para cubrir los retos planteados por los modelos de fallo propuestos, (v) la propuesta de estrategias de mitigación enfocadas hacia el tratamiento de dichos escenarios de amenaza y (vi) la introducción de una metodología automatizada de despliegue de diversos mecanismos de tolerancia a fallos de forma robusta y sistemática. Los resultados de la presente tesis constituyen un conjunto de herramientas y métodos para ayudar al diseñador de sistemas críticos en su tarea de desarrollo de diseños robustos, validados y en tiempo adaptados a su aplicación.[CA] La rellevància que l'electrònica adquireix en la seguretat dels productes ha crescut inexorablement, puix cada volta més aquesta abasta una major influència en la funcionalitat dels mateixos. Però, per descomptat, aquest fet ve acompanyat d'un constant necessitat de majors prestacions per acomplir els requeriments funcionals, mentre es mantenen els costos i consums en uns nivells reduïts. Donat aquest escenari, la indústria està fent esforços per proveir una tecnologia que complisca amb totes les especificacions de potència, consum i preu, tot a costa d'un increment en la vulnerabilitat a diversos tipus de fallades conegudes, i a la introducció de nous tipus. Per oferir una solució a les noves i creixents fallades als sistemes, els dissenyadors han recorregut a tècniques tradicionalment associades a sistemes crítics per a la seguretat, que en general oferixen resultats sub-òptims. De fet, les arquitectures empotrades modernes oferixen la possibilitat d'optimitzar les propietats de confiabilitat en habilitar la interacció dels nivells de hardware, firmware i software en el procés. Tot i això eixe punt no està resolt encara. Es necessiten avanços a tots els nivells en l'esmentada direcció per poder assolir els objectius d'una tolerància a fallades flexible, robusta, resilient i a baix cost. El treball ací presentat se centra en el nivell de hardware, amb la consideració de fons d'una potencial integració en una estratègia holística. Els esforços d'esta tesi s'han centrat en els següents aspectes: (i) la introducció de models de fallada addicionals requerits per a la representació adequada d'efectes físics que apareixen en les tecnologies de fabricació actuals, (ii) la provisió de ferramentes i mètodes per a la injecció eficient del models proposats i dels clàssics, (iii) l'anàlisi del mètode òptim per estudiar la robustesa de sistemes mitjançant l'ús d'injecció de fallades extensiva, i la posterior correlació amb capes de més alt nivell en un esforç per retallar el temps i cost de desenvolupament, (iv) la provisió de nous mètodes de detecció per cobrir els reptes plantejats pels models de fallades proposats, (v) la proposta d'estratègies de mitigació enfocades cap al tractament dels esmentats escenaris d'amenaça i (vi) la introducció d'una metodologia automatitzada de desplegament de diversos mecanismes de tolerància a fallades de forma robusta i sistemàtica. Els resultats de la present tesi constitueixen un conjunt de ferramentes i mètodes per ajudar el dissenyador de sistemes crítics en la seua tasca de desenvolupament de dissenys robustos, validats i a temps adaptats a la seua aplicació.Espinosa García, J. (2016). New Fault Detection, Mitigation and Injection Strategies for Current and Forthcoming Challenges of HW Embedded Designs [Tesis doctoral no publicada]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/73146TESISCompendi

    Evaluation of backtracing based diagnosis algorithms

    Get PDF
    With the growing size and complexity of modern circuits, more algorithms are being developed nowadays for efficient fault diagnosis. Backtracing based diagnosis algorithms are effect-cause approaches that start from the failing outputs of the circuit and try to diagnose fault locations by backtracing lines toward the circuit inputs. In this thesis, general functionality was extracted between backtracing based diagnosis algorithms and implemented as an extension to an existing diagnosis framework. Furthermore, a simple graphical user interface was developed for the extended framework. The extended framework aims at facilitating the implementation and evaluation of different backtracing based diagnosis algorithms. In order to demonstrate its powerfulness, two modern backtracing based diagnosis algorithms were implemented on top of the extended framework. A number of diagnosis experiments on benchmark circuits was carried out in order to evaluate the two implemented algorithms. The experimental tools used and the results obtained are presented
    corecore