1,468 research outputs found

    Algorithms to Detect and Rectify Multiplicative and Ordinal Inconsistencies of Fuzzy Preference Relations

    Get PDF
    The file attached to this record is the author's final peer reviewed version. The Publisher's final version can be found by following the DOI link.Consistency, multiplicative and ordinal, of fuzzy preference relations (FPRs) is investigated. The geometric consistency index (GCI) approximated thresholds are extended to measure the degree of consistency for an FPR. For inconsistent FPRs, two algorithms are devised (1) to find the multiplicative inconsistent elements, and (2) to detect the ordinal inconsistent elements. An integrated algorithm is proposed to improve simultaneously the ordinal and multiplicative consistencies. Some examples, comparative analysis, and simulation experiments are provided to demonstrate the effectiveness of the proposed methods

    Hesitant Fuzzy Linguistic Analytic Hierarchical Process With Prioritization, Consistency Checking, and Inconsistency Repairing

    Get PDF
    Analytic hierarchy process (AHP), as one of the most important methods to tackle multiple criteria decision-making problems, has achieved much success over the past several decades. Given that linguistic expressions are much closer than numerical values or single linguistic terms to a human way of thinking and cognition, this paper investigates the AHP with comparative linguistic expressions. After providing the snapshot of classical AHP and its fuzzy extensions, we propose the framework of hesitant fuzzy linguistic AHP, which shows how to yield a decision for qualitative decision-making problems with complex linguistic expressions. First, the comparative linguistic expressions over criteria or alternatives are transformed into hesitant fuzzy linguistic elements and then the hesitant fuzzy linguistic preference relations (HFLPRs) are constructed. Considering that HFLPRs may be inconsistent, we conduct consistency checking and improving processes after obtaining priorities from the HFLPRs based on a linear programming method. Regarding the consistency-improving process, we develop a new way to establish a perfectly consistent HFLPR. The procedure of the hesitant fuzzy linguistic AHP is given in stepwise. Finally, a numerical example concerning the used-car management in a lemon market is given to illustrate the ef ciency of the proposed hesitant fuzzy linguistic AHP method.This work was supported in part by the National Natural Science Foundation of China under Grant 71771156, in part by the 2019 Sichuan Planning Project of Social Science under Grant SC18A007, in part by the 2019 Soft Science Project of Sichuan Science and Technology Department under Grant 2019JDR0141, and in part by the Project of Innovation at Sichuan University under Grant 2018hhs-43

    A chi-square method for priority derivation in group decision making with incomplete reciprocal preference relations

    Get PDF
    This paper proposes a chi-square method (CSM) to obtain a priority vector for group decision making (GDM) problems where decision-makers’ (DMs’) assessment on alternatives is furnished as incomplete reciprocal preference relations with missing values. Relevant theorems and an iterative algorithm about CSM are proposed. Saaty’s consistency ratio concept is adapted to judge whether an incomplete reciprocal preference relation provided by a DM is of acceptable consistency. If its consistency is unacceptable, an algorithm is proposed to repair it until its consistency ratio reaches a satisfactory threshold. The repairing algorithm aims to rectify an inconsistent incomplete reciprocal preference relation to one with acceptable consistency in addition to preserving the initial preference information as much as possible. Finally, four examples are examined to illustrate the applicability and validity of the proposed method, and comparative analyses are provided to show its advantages over existing approaches

    A Local Adjustment Method to Improve Multiplicative Consistency of Fuzzy Reciprocal Preference Relations

    Get PDF
    The file attached to this record is the author's final peer reviewed version. The Publisher's final version can be found by following the DOI link.Preferences that verify the transitivity property are usually referred to as rational or consistent preferences. Existent methods to improve the consistency of inconsistent fuzzy reciprocal preference relations (FPRs) fail to retain the original preference values because they always derive a new FPR. This article presents a new inconsistency identification and modification (IIM) method to detect and rectify only the most inconsistent elements of an inconsistent FPR. As such, the proposed IIM can be considered a local adjustment method to improve multiplicative consistency (MC) of FPRs. The case of inconsistent FPRs with missing values, i.e., incomplete FPRs, is addressed with the estimation of the missing preferences with a constrained nonlinear optimization model by the application of the IIM method. The implementation process of the proposed algorithms is illustrated with numerical examples. Simulation experiments and comparisons with existent methods are also included to show that the new method requires fewer iterations than existent methods to improve the MC of FPRs and achieves better MC level, while preserving the original preference information as much as possible than the existent methods. Thus, the results presented in this article demonstrate the correctness, effectiveness, and robustness of the proposed method

    On the priority vector associated with a fuzzy preference relation and a multiplicative preference relation.

    Get PDF
    We propose two straightforward methods for deriving the priority vector associated with a fuzzy preference relation. Then, using transformations between multiplicative preference relations and fuzzy preference relations, we study the relationships between the priority vectors associated with these two types of preference relations.pairwise comparison matrix; fuzzy preference relation; priority vector

    Multiplicative Consistency Ascertaining, Inconsistency Repairing, and Weights Derivation of Hesitant Multiplicative Preference Relations

    Get PDF
    The file attached to this record is the author's final peer reviewed version. The Publisher's final version can be found by following the DOI link.This article investigates multiplicative consistency ascertaining, inconsistency repairing, and weights derivation for hesitant multiplicative preference relations (HMPRs). First, the completely multiplicative consistency and weakly multiplicative consistency of HMPRs are defined. Based on them, 0-1 mixed programming models and simple algebraic operations are proposed to ascertain the multiplicative consistency of HMPRs. Then, some goal programming models are developed to generate the weights from consistent HMPRs and to revise inconsistent HMPRs. An integrated procedure to manage the multiplicative consistencies of HMPRs is designed. The proposed methods are also extended to accommodate incomplete HMPRs, and to estimate missing values. Finally, some numerical examples, a comparative analysis with existent approaches, and a simulation analysis are included to illustrate the practicality and effectiveness of the developed models

    Distance-based consensus models for fuzzy and multiplicative 3 preference relations

    Get PDF
    This paper proposes a distance-based consensus model for fuzzy preference relations where the weights of fuzzy preference relations are automatically determined. Two indices, an individual to group consensus index (ICI) and a group consensus index (GCI), are introduced. An iterative consensus reaching algorithm is presented and the process terminates until both the ICI and GCI are controlled within predefined thresholds. The model and algorithm are then extended to handle multiplicative preference relations. Finally, two examples are illustrated and comparative analyses demonstrate the effectiveness of the proposed methods

    Approaches to improving consistency of interval fuzzy preference relations

    Get PDF
    This article introduces a consistency index for measuring the consistency level of an interval fuzzy preference relation (IFPR). An approach is then proposed to construct an additive consistent IFPR from a given inconsistent IFPR. By using a weighted averaging method combining the original IFPR and the constructed consistent IFPR, a formula is put forward to repair an inconsistent IFPR to generate an IFPR with acceptable consistency. An iterative algorithm is subsequently developed to rectify an inconsistent IFPR and derive one with acceptable consistency and weak transitivity. The proposed approaches can not only improve consistency of IFPRs but also preserve the initial interval uncertainty information as much as possible. Numerical examples are presented to illustrate how to apply the proposed approaches

    A fuzzy approach to construction project risk assessment

    Get PDF
    The increasing complexity and dynamism of construction projects have imposed substantial uncertainties and subjectivities in the risk analysis process. Most of the real-world risk analysis problems contain a mixture of quantitative and qualitative data; therefore quantitative risk assessment techniques are inadequate for prioritizing risks. This article presents a risk assessment methodology based on the Fuzzy Sets Theory, which is an effective tool to deal with subjective judgement, and on the Analytic Hierarchy Process (AHP), which is used to structure a large number of risks. The proposed methodology incorporates knowledge and experience acquired from many experts, since they carry out the risks identification and their structuring, and also the subjective judgements of the parameters which are considered to assess the overall risk factor: risk impact, risk probability and risk discrimination. All of these factors are expressed by qualitative scales which are defined by trapezoidal fuzzy numbers to capture the vagueness in the linguistic variables. The most notable differences with other fuzzy risk assessment methods are the use of an algorithm to handle the inconsistencies in the fuzzy preference relation when pair-wise comparison judgements are necessary, and the use of trapezoidal fuzzy numbers until the defuzzification step. An illustrative example on risk assessment of a rehabilitation project of a building is used to demonstrate the proposed methodology
    • …
    corecore