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 11 

Abstract 12 

This paper proposes a distance-based consensus model for fuzzy preference relations where the 13 

weights of fuzzy preference relations are automatically determined. Two indices, an individual to 14 

group consensus index (ICI) and a group consensus index (GCI), are introduced. An iterative 15 

consensus reaching algorithm is presented and the process terminates until both the ICI and GCI are 16 

controlled within predefined thresholds. The model and algorithm are then extended to handle 17 

multiplicative preference relations. Finally, two examples are illustrated and comparative analyses 18 

demonstrate the effectiveness of the proposed methods. 19 

 20 

Keywords: Group decision-making; consensus; fuzzy preference relations; multiplicative preference 21 

relations; distance. 22 

 23 

 24 

1. Introduction 25 

    Group decision making (GDM) is concerned with deriving a solution from a group of 26 

independent decision-makers’ (DMs’) heterogeneous preferences over a set of alternatives. 27 

Before the final choice is identified, two processes are usually carried out: (1) a consensus 28 

process and (2) a selection process. The first process addresses how to obtain a maximum 29 

degree of consensus or agreement among the DMs over the alternative set, while the 30 

second process handles the derivation of the alternative set based on the DMs’ individual 31 

judgment on alternatives [24].  32 

Numerous approaches have been put forward for consensus measures based on 33 

different types of preference relations, including consensus models for ordinal preference 34 

[14-16,19], linguistic preference relations [3,4,7-10,17,26-28,58], multi-attribute GDM 35 

problems [5,20,21,37,50,59], intuitionistic multiplicative preference relations [29], and 36 

other preference relations [1,24,35,38].  37 

                                                            
* Corresponding author. Tel. +86-25-68514612; fax: +86-25-85427972 
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The consensus reaching process has been widely studied for multiplicative preference 38 

relations (MPRs). Van den Honert [45] proposed a model to represent a consensus-39 

seeking GDM process based on the analytic hierarchy process (AHP) framework, where 40 

group preference intensity judgments are expressed as random variables with associated 41 

probability distributions. Dong et al. [18] developed AHP consensus models by using a 42 

row geometric mean prioritization method. Wu and Xu [48] presented a consistency and 43 

consensus-based model for GDM with MPRs. Gong et al. [22] developed a group 44 

consensus deviation degree optimization model for MPRs that minimizes the weighted 45 

arithmetic mean of individual consistency deviation degrees. Xu [60] put forward a 46 

consensus reaching process for GDM with incomplete MPRs.  47 

For fuzzy preference relations (FPRs), Kacprzyk and Fedrizzi [30] devised a ‘soft’ 48 

measure of consensus. Chiclana et al. [12] furnished a framework for integrating 49 

individual consistency into a consensus model. The paradigm consists of two processes: 50 

an individual consistency control process and a consensus reaching process. Based on this 51 

work, Zhang et al. [67] proposed a set of linear optimization models to address certain 52 

consistency issues on FPRs, such as individual consistency construction, consensus 53 

modeling and management of incomplete fuzzy preference relations. Herrera-Viedma et 54 

al. [23] presented a new consensus model for GDM problems with incomplete fuzzy 55 

preference relations. The key feature is to introduce a feedback mechanism for advising 56 

DMs to change or complete their preferences so that a solution with high consensus and 57 

consistency degrees can be reached. Parreiras et al. [36] proposed a dynamical consensus 58 

scheme based on a nonreciprocal fuzzy preference relation modeling. Wu and Xu [46] 59 

developed a consistency consensus based decision support model for GDM. Recently, Xu 60 

and Cai [62] put forth a number of goal programming and quadratic programming models 61 

to maximize group consensus. The main purpose is to determine importance weights for 62 

FPRs and MPRs. However, as pointed out in Section 2, a significant drawback exists for 63 

their quadratic programming models as the derived weight is always the same for each 64 

expert. Furthermore, for existing consensus models for improving consensus indices, it is 65 

often the case that the final improved preference relations significantly differ from the 66 

DMs’ original judgment information, as testified by examples in [1,3-10,12,17,18,20-67 

23,26-28,46-50,59,60,62,67,68]. It is the authors’ belief that GDM should utilize the DMs’ 68 

opinions on the alternatives to find a solution. If DMs’ opinions are significantly distorted, 69 

the derived solution is likely questionable. In order to obtain a reliable solution, the 70 

decision model should retain the DMs’ opinions as much as possible. To address these 71 

deficiencies, a new consensus measure should be designed to make use of group 72 

judgments. 73 

This paper first puts forward a distance-based consensus model for FPRs to derive each 74 

DM’s individual weight vector, then an aggregation operator is developed to obtain a 75 

collective FPR. An individual to group consensus index (ICI) and a group consensus 76 

index (GCI) are subsequently introduced, followed by an iterative algorithm for 77 
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consensus reaching with a stoppage condition when both ICI and GCI are lower than 78 

predefined thresholds. The model and algorithm are then extended to MPRs.  79 

The remainder of this paper is organized as follows. Section 2 briefly reviews group 80 

consensus models introduced by Xu and Cai [62] for FPRs with comments on their 81 

drawbacks. Section 3 develops a distance-based model to determine DMs’ weights for 82 

GDM with FPRs, and puts forward an algorithm for the consensus reaching process. 83 

Section 4 extends the model and algorithm to solve consensus problems with MPRs. In 84 

Section 5, two illustrative examples are developed and the results are compared with 85 

those obtained with existing approaches. Concluding remarks are furnished in Section 6. 86 

 87 

 88 

2. A review of group consensus based on fuzzy preference relations 89 

For a GDM problem, let 1 2{ , ,..., }nX x x x ( 2n  ) be a finite set of alternatives and 90 

1 2{ , ,..., }mE e e e  ( 2m  ) be a finite set of DMs. In a multi-criteria decision making 91 

problem, a DM ke  often compares each pair of alternatives in X  and provides his/her 92 

preference degree ,ij kp  of alternative ix  over jx  on a 0-1 scale, where ,0 1ij kp  , 93 

, 0.5ij kp   denotes ke ’s indifference between ix  and jx , , 1ij kp 
 
denotes that ix  is 94 

definitely preferred to jx
 
by ke , and 0.5 1ijkp 

 
(or 0 0.5jikp  ) denotes that ix  is 95 

preferred to jx  by ke  with a varying degree of likelihood. All preference values ,ij kp  96 

( , 1,2,...,i j n ) provided by DM ke  are denoted as an FPR ,( )k ij k n nP p  [11,25,31,33,40-97 

44,46,51-57] 98 

       ,0 1ij kp  , , 0.5ii kp  ,  , , 1ij k ji kp p  , , 1,2,...,i j n                                           (1)   99 

In a GDM problem, let 1 2( , ,..., )T
mw w w w  be the unknown weight vector for FPRs 100 

,( )k ij k n nP p  ( 1,2,...,k m ), where 101 

          
1

1
m

k
k

w


 , 0kw  , 1,2,...,k m                                                                           (2) 102 

To obtain a collective judgment for the group, Xu and Cai [62] employed the Weighted 103 

Arithmetic Averaging (WAA) operator: 104 

           ,
1

m

ij k ij k
k

p w p


 ,  , 1,2,...,i j n                                                                       (3) 105 

to aggregate individual FPRs ,( )k ij k n nP p  ( 1,2,...,k m ) into a collective preference 106 

relation ( )ij n nP p  . It can be easily shown that P  satisfies condition (1), and is thus also 107 

an FPR. 108 
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    Clearly, a key issue in applying the WAA operator is to determine the weight vector w . 109 

If an individual FPR kP  is consistent with the collective FPR P , then kP P , i.e., 110 

,ij k ijp p , for all , 1,2,...,i j n . Using (3), we have 111 

                  , ,
1

m

ij k l ij l
l

p w p


 , for all , 1,2,...,i j n                                                               (4) 112 

However, generally speaking, Eq.(4) does not always hold. Let 113 

                , , ,
1

m

ij k ij k l ij l
l

p w p


  ,  for all , 1,2,...,i j n , 1,2,...,k m                               (5) 114 

It follows from (1) that (5) is equivalent to the following: 115 

             , , ,
1

m

ij k ij k l ij l
l

p w p


  ,  for all 1,2,..., 1i n  , 1,...,j i n  , 1, 2,...,k m         (6) 116 

where ,ij k  ( 1,2,..., 1i n  , 1,...,j i n  ; 1, 2,...,k m ) are the absolute deviation 117 

between individual and collective FPRs. To reach a consensus among the group, these 118 

values should be kept as small as possible. Thus, Xu and Cai [62] constructed the 119 

following quadratic programming model: 120 

 (M-1)      min  
2

2
1 , , ,

1 1 1 1 1 1 1

m n n m n n m

ij k ij k l ij l
k i j k i j l

F p w p
      

 
   

 
    121 

              s. t .    
1

1
m

k
k

w


 , 0kw  , 1, 2,...,k m  122 

The solution to this model yields a weight vector for all DMs ke  ( 1,2,...,k m ) and can 123 

be derived as follows [62]: 124 

               
1 1

1
1

(1 )T

T

D e e D p
w D p

e D e

 





                                                                               (7) 125 

where  126 

            , ,1 , ,2 , ,
1 1 1 1 1 1 1 1 1

, ,...,

T
n n m n n m n n m

ij k ij ij k ij ij k ij m
i j k i j k i j k

p p p p p p p
        

 
  
 
   ,  (1,1,...,1)Te   (8) 127 

and 128 

           

2
,1 ,1 ,2 ,1 ,

1 1 1 1 1 1

2
,1 ,2 ,2 ,2 ,

1 1 1 1 1 1

2
,1 , ,2 , ,

1 1 1 1 1 1

...

...

... ... ... ...

...

n n n n n n

ij ij ij ij ij m
i j i j i j

n n n n n n

ij ij ij ij ij m
i j i j i j

n n n n n n

ij ij m ij ij m ij m
i j i j i j

mp mp p mp p

mp p mp mp p
D

mp p mp p mp

     

     

     



  

  

  
m m

 
 
 
 
 
 
 
 
 
 
 

                        (9) 129 
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    Xu and Cai [62] employed the aforesaid model (Eqs.(7)-(9)) to derive an optimal 130 

weight vector 1 2( , ,..., )T
mw w w w  for the FPRs ,( )k ij k n nP p  ( 1,2,...,k m ). 131 

    Subsequently, by using (3), Xu and Cai [62] obtained a collective FPR P . In addition, 132 

based on Eq. (6) and the optimal weight vector w , Xu and Cai [62] calculated the 133 

deviation (referred to as an individual to group consensus index ICI  in this paper) 134 

between the individual FPR kP  and the collective FPR P  by 135 

              
1 1

, , ,
1 1 1 1 1

2 2
( ) ( , )

( 1) ( 1)

n n n n m

k k ij k ij k l ij l
i j i i j i l

ICI P d P P p w p
n n n n


 

      

   
           (10)           136 

Accordingly, the weighted sum of all the deviations ( , )kd P P ( 1,2,...,k m ) (referred to 137 

as a group consensus index GCI  hereafter) can be defined as 138 

             1
1

( , )
m

k k
k

GCI w d P P


                                                                                     (11) 139 

From Eqs. (10) and (11), one can see that if ( , ) 0kd P P  , then the individual FPR kP  is 140 

consistent with the collective fuzzy preference relation P . If 1 0  , then the group 141 

reaches complete consensus. In addition, Xu and Cai [62] assumed that if 1 1  , then 142 

the group reaches an acceptable level of consensus, where 1  is a pre-specified acceptable 143 

threshold of group consensus. 144 

Xu and Cai [62] then developed algorithms for GDM with FPRs based on the quadratic 145 

programming model (M-1). 146 

 147 

In the following, a further analysis is furnished for the model (M-1). 148 

 149 

Theorem 1. For FPRs ,( )k ij k n nP p   ( 1,2,...,k m ), the optimal solution to (M-1) model 150 

is 151 

              (1/ ,1/ ,....,1 / )Tw m m m                                                                                   (12) 152 

Proof.  From Eqs. (8) and (9), the relationship between p  and D  can be expressed as 153 

follows: 154 

                          
De

p
m

                                                                                                  (13) 155 

Plugging  (13) into (7), one has 156 

         

1 1
1

1

(1 )T

T

D e e D p
w D p

e D e

 





   157 

            
11 1

1

(1 )
Te D De

m
T

D e D De

e D e m

 




   158 

            
1

1

(1 )
Te e
m

T

D e e

e D e m






   159 
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1

1

(1 1)
T

D e e

e D e m






   160 

           

1

1

1

m

m

m

 
 
   
  
 


                                                                                                                   (14) 161 

This result indicates that (M-1) always yields an equal weight of 1 / m  for each DM as 162 

long as there does not exist complete consensus among the group. This theorem also 163 

explains why the numerical examples in [61,62] always give an equal weight of 1 / m  for 164 

all DMs. 165 

    The aforesaid analysis reveals the following limitations for the algorithms in Xu and 166 

Cai [62]: 167 

    (1) Xu and Cai [62] applied the quadratic programming model (M-1) to determine an 168 

optimal weight vector ( ) ( ) ( ) ( )
1 2( , ,..., )t t t t T

mw w w w . Theorem 1 shows that the optimal 169 

weight vector is always ( ) (1/ ,1/ ,...,1/ )t Tw m m m . The implication is that all the 170 

DMs’ fuzzy preference relations play an equal role in the aggregated fuzzy 171 

preference relations. The unexpected constant weight vector resulting from (M-1) 172 

does not serve the original modeling idea of determining the weight vector w  in 173 

the WAA operator [62] and makes this model redundant. 174 

    (2) As per Xu and Cai’s Algorithm 1, if the group does not reach an acceptable level of 175 

consensus, some DMs need to reassess their preferences over the alternatives. As 176 

Xu and Cai [62] pointed out, this trial-and-error process can be time-consuming, or 177 

DMs are unable or unwilling to reevaluate the alternatives. Algorithm 2 is then 178 

developed to address these cases. New FPRs ( 1)t
kP 

 ( 1, 2,...,k m ) are obtained by 179 

the following equation automatically without the DMs’ direct intervention (except 180 

for the parameter  ) at each iteration.: 181 

                 ( 1) ( ) ( )
, , (1 )t t t

ij k ij k ijp p p     , , 1, 2,...,i j n , 1, 2,...,k m , 0 1                  (15) 182 

          It is apparent that the revised FPRs ( 1)t
kP  ( 1, 2,...,k m ) are different from the 183 

original ones kP  ( 1, 2,...,k m ), all elements ( 1)
,
t

ij kp   (except for diagonal elements 184 

( 1)
,
t

ii kp  , which are always equal to 0.5) are modified. These changes inevitably 185 

distort the DMs’ original judgment as reflected in their fuzzy preference values 186 

(This distortion is illustrated in the example in Xu and Cai [62]). In addition, for the 187 

key parameter   in Eq.(15)), no guideline is furnished by Xu and Cai [62] about 188 

how to set its value except for its range [0,1]. 189 

    (3) Xu and Cai [62] employed Eq.(11) to measure the overall deviation, which is then 190 

used to measure the group consensus degree. Without explicitly considering 191 
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individual deviations, this treatment may lead to undesirable situations. For 192 

instance, if some DMs’ deviations (determined by Eq.(10)) are negligible, say 193 

( , ) 0kd P P   ( 1, 2,...,k l , l m ), but remaining DMs’ deviations are very high as  194 

reflected in large values of ( , )kd P P ( 1,...,k l m  ). In this case, as long as the 195 

weighted sum of all the deviations ( , )kd P P  is small enough such that 1 1  , Xu 196 

and Cai [62] still considered the group reaches an acceptable consensus. However, 197 

those large deviation variables ( , )kd P P  ( 1,...,k l m  ) indicate that some DMs 198 

1,...,l me e  still hold preferences far away from the group consensus. Therefore, it is 199 

reasonable to impose a threshold for individual deviations as well. 200 

 201 

    To address the aforesaid deficiencies, new models and algorithms will be developed 202 

below for reaching acceptable levels of consensus in GDM with FPRs. 203 

 204 

3. Distance-based group consensus models for fuzzy preference relations 205 

To reach a group consensus, the approach in Xu and Cai’s [62] adjusts FPRs kP  to 206 

make them as close to the collective FPR P  as possible. Instead of modifying decision 207 

input, the proposed method takes a different angle and examines decision output. It is 208 

highly likely that individual FPRs are largely dispersed if their weights are not considered. 209 

Therefore, the weighs should be incorporated into each FPR. In order to achieve 210 

maximum consensus, the weighted FPRs should come closer to each other. This is the 211 

basic principle for generating an aggregated decision result. Built upon this idea, a 212 

distance-based least-square aggregation optimization model is proposed to integrate 213 

different DMs’ decision input. 214 

    The general modeling idea is to minimize the sum of the squared distance from one 215 

decision input to another, thereby achieving maximum agreement. Define the squared 216 

distance between each pair of individual FPRs ( , )k lP P  as  217 

         
 2

2 2( , ) ( )k k l l k k l ld w P w P w P w P 
 

218 

                                2
, ,

1 1

( )
n n

k ij k l ij l
i j

w p w p
 

                                                                  (16) 219 

    Based on this definition, the following optimization model is constructed to minimize 220 

the sum of squared distances between all pairs of weighted fuzzy preference judgments: 221 

  (M-2)    min  
2

1 , ,
1 1, 1 1

( )
m m n n

k ij k l ij l
k l l k i j

J w p w p
    

                                                           (17) 222 

             s. t .    
1

1
m

l
l

w



                                                                                            

    (18)        223 

                      0lw  , 1,2,...,l m                                                                                (19)  224 
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 225 

Theorem 2. Model (M-2) is equivalent to (M-3) below in a matrix form 226 

     (M-3)      min    1
TJ w Gw                                                                                         (20) 227 

                s. t .         1Te w                                                                                               (21) 228 

                               0w                                                                                                  (22) 229 

where 1 2( , ,..., )T
mw w w w , (1,1,...,1)Te  ,  230 

2
,1 ,1 ,2 ,1 ,

1 1 1 1 1 1

2
,2 ,1 ,2 ,2 ,

1 1 1 1 1 1

, ,1 , ,2
1 1

( 1) ...

( 1) ...
( ) 2

... ... ... ...

n n n n n n

ij ij ij ij ij m
i j i j i j

n n n n n n

ij ij ij ij ij m
i j i j i jkl m m

n n

ij m ij ij m ij
i j

m p p p p p

p p m p p p
G g

p p p p

     

     

 

 
   

 
 

      

 

  

  

 2
,

1 1 1 1

... ( 1)
n n n n

ij m
i j i j

m p
   

 
 
 
 
 
 
 
 
        

 

 (23) 231 

Proof.  232 

                

2
1 , ,

1 1, 1 1

( )
m m n n

k ij k l ij l
k l l k i j

J w p w p
    

     233 

                2 2 2 2
, , , ,

1 1, 1 1 1 1, 1 1

2
m m n n m m n n

k ij k l ij l k l ij k ij l
k l l k i j k l l k i j

w p w p w w p p
         

         234 

               2 2
, , ,

1 1 1 1 1, 1 1

2( 1) ( 2 )
m n n m m n n

ij k k ij k ij l k l
k i j k l l k i j

m p w p p w w
       

 
    

 
                              (24) 235 

As for 1J  represented by (20), we have 236 

                1
TJ w Gw  237 

                     
1 1

m m

kl k l
k l

g w w
 

   238 

                     2

1 1 1,

m m m

kk k kl k l
k k l l k

g w g w w
   

                                                                          (25) 239 

Comparing (24) and (25), we obtain (23). 240 

 241 

 242 

Theorem 3. For the model (M-3), if for any , ,i j k  and l , there exists at least one 243 

inequality , ,ij k ij lp p , then matrix G  determined by (23) is positive definite and, hence, 244 

non-singular and invertible. 245 

Proof.   Obviously, 1 0TJ w Gw  . Now, we prove that 1 0J   if there exists at least one 246 

inequality , ,ij k ij lp p . 247 
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    Assume that there exists a weight vector w , for all , ,i j k  and l , such that 1 0J  . Then,  248 

       , ,k ij k l ij lw p w p , and , ,k ji k l ji lw p w p  249 

thus, by Eq.(1), one can obtain  250 

       , , ,

, , ,

1

1
ij l ji l ij lk

l ij k ji k ij k

p p pw

w p p p


  


 251 

yielding 252 

        , ,ij k ij lp p , for all , ,i j k  and l  253 

This contradicts with the assumption that there exists at least one inequality ijk ijlp p . 254 

Therefore, 1 0J   and the symmetry of matrix G  and the definition of positive 255 

definiteness confirm that G  is positive definite, and, hence, nonsingular and invertible, 256 

i.e., 1G  exists. This completes the proof of Theorem 3. 257 

 258 

Remark 1. Theorem 3 shows that G is positive definite as long as not all FPRs are 259 

identical. If all DMs’ pairwise comparison judgments are the same, a complete consensus 260 

is reached and the optimal weight vector to (M-3) is obtained as (1/ ,1/ ,...,1 / )Tm m m . In 261 

reality, this complete consensus rarely happens. If it does happen, the consensus building 262 

process automatically terminates. In the following, the general case of non-identical FPRs 263 

is considered, and it is always assumed that there exits at least one inequality , ,ij k ij lp p . 264 

 265 

Let   be the feasible set of (M-3). The following result can be established. 266 

Lemma 1. The convex set   of (M-3) is closed, and (M-3) is a convex quadratic 267 

program. 268 

Proof. According to the definition of convex set [2], obviously,   is a closed convex set. 269 

As G is positive definite, 1J  is strictly convex. Since the constraints of (M-3) are linear, 270 

(M-3) is a convex quadratic programming. The proof of Lemma 1 is thus completed. 271 

 272 

    To solve (M-3), the following Lagrangian function is constructed by ignoring the non-273 

negativity constraint (22): 274 

             ( , ) 2 ( 1)T TL w w Gw e w                                                                                (26) 275 

where   is the Lagrangian multiplier. Let / 0L w    and / 0L    , then 276 

                    0Gw e                                                                                                   (27) 277 

                     1Te w                                                                                                         (28) 278 

By Theorem 3, matrix G  is invertible. Thus, solutions to (27) and (28) are given as 279 

                   
1

*
1T

G e
w

e G e



                                                                                                   (29) 280 

                   *
1

1
Te G e

                                                                                                  (30) 281 
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 282 

Lemma 2 [32]. Let ( )ij m mF f   be an m m  symmetric matrix such that 0ijf   for i j  283 

and 0iif  . Then, 1 [0]m mF 
  (i.e., 1F   is a nonnegative matrix) if and only if F  is 284 

positive definite. 285 

 286 

Theorem 4. For model (M-3), if for any , ,i j k  and l , there exists at least one inequality 287 

, ,ij k ij lp p , then 1 (0)m mG
 , i.e., 1G  is a nonnegative matrix. 288 

Proof. According to Theorem 3, G  is a positive definite matrix such that 0klg   ( k l ) 289 

and 0kkg  . By Lemma 2, it follows that 1 (0)m mG
 , i.e., 1G  is a nonnegative matrix. 290 

    As per Theorems 3 and 4, G  is a positive definite and non-singular matrix, and 1G  is 291 

nonnegative. Therefore, * 0w  , implying that the weight vector (29) satisfies the non-292 

negativity constraint (22). 293 

  294 

Section 2 comments on the limitations of Xu and Cai’s methods. To address these 295 

issues, an improved method is put forward and its key features are depicted as follows: (1) 296 

The proposed method entertains both group consensus and individual consensus degrees 297 

as opposed to Xu and Cai’s methods where only the group consensus degree (see Eq.(11)) 298 

is considered. The purpose is to handle cases where the group consensus degree is 299 

satisfactory, but some individual consensus degrees significantly differ from the group 300 

consensus. This is accomplished by setting a separate threshold 1  for the individual 301 

consensus degree 1( , )kd P P   in addition to a group consensus level 1 .  (2) The 302 

proposed method modifies only each DM’s fuzzy preference values that differs the most 303 

from the corresponding group preference at each iteration. The conception aims to retain 304 

DMs’ original preference information. But in Xu and Cai’s methods, when the group does 305 

not reach an acceptable level of consensus, the adjustment process (by returning the 306 

original FPRs to DMs to reevaluate) often results in significantly different FPRs than the 307 

original judgments. (3) In contrast to Xu and Cai’s methods that always yield the same 308 

weight vector for all DMs, the proposed method is able to obtain an optimal weight vector 309 

defined by Eq. (29).  310 

The improved consensus process for GDM problems is detailed in Algorithm 1. 311 

 312 

Algorithm 1. 313 

Input: ,( )k ij k n nP p  ( 1,2,...,k m ), the maximum number of iterations *t , the thresholds 314 

1 , 1  for individual and group consensus indices, respectively. 315 

Output: Improved FPRs kP
 
( 1,2,...,k m ), the iteration step t , individual consensus 316 

index ( )kICI P ( 1,2,...,k m ) and group consensus degree GCI . 317 
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Step 1. Let 0t  , (0)
k kP P ( 1,2,...,k m ). 318 

Step 2. Apply the quadratic program (M-3) to determine the optimal weight vector 319 
( ) ( ) ( ) ( )

1 2( , ,..., )t t t t T
mw w w w  as per Eq. (29) for ( ) ( )

,( )t t
k ij k n nP p 

 
( 1,2,...,k m ). 320 

Step 3. Utilize the WAA operator Eq. (3) to aggregate individual FPRs ( ) ( )
,( )t t

k ij k n nP p 321 

( 1, 2,...,k m ) into a collective FPR ( ) ( )( )t t
ij n nP p  . 322 

Step 4. Calculate individual consensus indices ( ) ( ) ( )( ) ( , )t t t
k kICI P d P P  ( 1,2,...,k m )  323 

and the group consensus index 1( )t  using Eqs.(10) and (11), respectively. If 324 

1 1( )t    and ( )
1( )t

kICI P   (for all 1,2,...,k m ) or *t t , go to Step 6. 325 

Otherwise, find the FPR ( )t
kP  such that ( )

1( )t
kICI P  . Go to Step 5. 326 

Step 5. Find the position of the elements ( )
,

t
i j kd
 

 for DM ke  such that ( )
1( )t

kICI P  , where 327 

( ) ( ) ( )
, ,

,
maxt t t

i j k ij k ij
i j

d p p
 

  , modify DM ke ’s FPR. Let ( 1) ( 1)
,( )t t

k ij k n nP p 
 , where 328 

                   
( )

( 1)
, ( )

,

, ,

,

t
ijt

ij k t
ij k

p if i i j j
p

p otherwise

 
   


   

  
                                                                       (31) 329 

             and 1t t  . Then, go to Step 2. 330 

Step 6. Let ( )t
k kP P . Output the modified FPRs kP  ( 1,2,...,k m ), the individual 331 

consensus index ( )( )t
kICI P ( 1,2,...,k m ), the group consensus index GCI , and 332 

the number of iterations t . 333 

 334 

Remark 2. Generally, for the two thresholds 1  and 1 , it is sensible to set 1 1  . 335 

Otherwise, if 1 1  , and 1 1( )kICI P    , it follows that 1
1

( )
m

k k
k

GCI w ICI P


   336 

1 1 1
1

m

k
k

w   


  . By setting 1 1  , the individual to group consensus index ( ( )kICI P ) 337 

is allowed to be somewhat larger than the group consensus index ( GCI ), giving each 338 

expert room for deviating from the group judgment. Furthermore, the two thresholds 1  339 

and 1  in the algorithm have to be carefully chosen to avoid an excessive number of 340 

iterations. A survey of the literature showed that these parameters are often subjectively 341 

determined by the experts in the group or by a super expert [26]. While there is no 342 

specific rule to determine the threshold values, they can generally be specified by a trial-343 

and-error process. If the decision problem is urgent and has to be resolved expeditiously, 344 

less restrictive values can be adopted, otherwise, more restrictive values can be introduced. 345 

The two thresholds thus provide a flexible choice for the group to control the decision 346 

process. Once these thresholds are specified, Step 4 furnishes the condition for the expert 347 

to adjust his/her opinion as reflected in his/her fuzzy preference relation (i.e., when 348 
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his/her ICI exceeds the specified threshold) and Step 5 gives a specific scheme to make 349 

the adjustment. After the expert opinion ( )t
kP  is modified, the quadratic program (M-3) is 350 

reapplied to determine a new optimal weight vector with this updated information. By 351 

iteratively updating the expert opinion and weights, the consensus level is gradually 352 

increased. 353 

Remark 3. Wu and Xu [46] adopted Eq. (10) to measure the group consensus assuming 354 

that a consensus is reached if all DMs’ preference relations are sufficiently close to the 355 

group preference (deviations are smaller than a given threshold). As commented in 356 

Remark 2, this treatment is equivalent to setting 1 1  , and, hence, can be viewed as a 357 

special case of the proposed method. On the other hand, Xu and Cai [62] employed Eq. 358 

(11) to gauge the consensus level. As long as the weighted sum of group consensus 359 

indices for all DMs is less than a given consensus threshold  , the consensus level is 360 

deemed acceptable without considering the individual to group consensus index defined 361 

by Eq. (10). This method may treat the consensus level of a group decision situation as 362 

acceptable where the majority of the DMs possess fairly close judgments to the group’s, 363 

but a small number of DMs significantly differ from the group preference judgment. By 364 

considering both Eqs. (10) and (11), the proposed method extends the relevant research 365 

reported by Wu and Xu [46] and Xu and Cai [62]. In this research, the WAA operator is 366 

adopted to aggregate ICIs to GCI as the weights of individual FPRs are determined by the 367 

model M-2. On the other hand, an ordered weighted averaging (OWA) [63] operator 368 

proves to be an effective way to aggregate ICIs to a GCI. If an OWA operator is used here, 369 

the aggregated values have to be ordered and Eq. (3) has to be updated by using an OWA 370 

operator to aggregate individual preference relations into a group one. To this end, the 371 

parameterized attitude-OWA operator proposed by Palomares et al.[35] can be potentially 372 

applied to the proposed consensus models in this article. In addition, t-norms such as 373 

minimum t-norm, product t-norm, Łukasiewicz t-norm are also possible ways to 374 

aggregate the arguments. If minimum and maximum t-norm operations are employed to 375 

carry out the aggregation process, a key challenge is how to handle the consequent loss of 376 

information.  377 

Remark 4. This algorithm automatically updates the experts’ preference values in order 378 

to reach a group consensus. This treatment helps to relieve the experts from the burden of 379 

constantly adjusting their judgments. On the other hand, if the experts are willing to 380 

reevaluate their preferences, the algorithm can serve as an invaluable aid to the expert in 381 

identifying which preferences values to change so that the highest degree of consensus 382 

can be reached expeditiously.  383 

4. Group consensus models for multiplicative preference relations 384 

If DM ke  compares each pair of alternatives in X  and provides his/her preference 385 

degree ,ij ka  of ix  over jx  on a 1-9 scale, where ,1/ 9 9ij ka  , , 1ij ka   denotes 'ke s386 
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indifference between ix  and jx , , 9ij ka 
 
denotes that ix  is definitely preferred to jx , 387 

and ,1 9ij ka 
 
(or ,1 / 9 1ji ka  ) denotes that ix  is preferred to jx  to a varying degree. 388 

All preference values ,ij ka  ( , 1,2,...,i j n ) provided by DM ke  constitute a multiplicative 389 

preference relation (MPR) ,( )k ij k n nA a  , if [39] 390 

                0ijka  , 1iika  , 1ijk jika a  ,     , 1,2,...,i j n                                            (32)  391 

Let 1 2( , ,..., )T
nv v v v  be the implied weight vector of MPRs ,( )k ij k n nA a   ( 1,2,...,k m ), 392 

where 0kv  , 1, 2,...,k m , and 
1

1
m

kk
v


 . To obtain a collective opinion, Xu and Cai 393 

[62] adopted the Weighted Geometric Average (WGA) operator: 394 

               ,
1

( ) k

m
v

ij ij k
k

a a


 ,   , 1, 2,...,i j n                                                                    (33) 395 

to aggregate individual MPRs ,( )k ij k n nA a   ( 1,2,...,k m ) into a collective preference 396 

relation ( )ij n nA a  . It is easy to verify that A  satisfies (32), and is thus an MPR as well. 397 

    If an individual MPR kA  is perfectly consistent with the collective MPR A , then 398 

kA A ,  i.e., ,ij k ija a , for all , 1,2,...,i j n . Using (33), we have 399 

             , ,
1

( ) l

m
v

ij k ij l
l

a a


 , for all , 1,2,...,i j n                                                                (34) 400 

    If  Eq. (34) holds for all 1,2,...,k m , then the group reaches a complete consensus. In 401 

this case, by taking natural logarithms on both sides of Eq. (34), Xu and Cai [62] 402 

transformed it into the following form: 403 

           , , ,
11

lg lg ( ) lgl

m m
v

ij k ij l l ij l
ll

a a v a


  ,        for all , 1,2,...,i j n                               (35) 404 

    However, generally speaking, Eq. (35) does not always hold. Define the absolute 405 

deviation variables as 406 

                , , ,
1

lg lg
m

ij k ij k l ij l
l

f a v a


  ,  for all , 1,2,...,i j n , 1, 2,...,k m                     (36) 407 

According to Eq. (32) , it is only necessary to check the upper diagonal deviations: 408 

         , , ,
1

lg lg
m

ij k ij k l ij l
l

f a v a


  ,  for all 1,2,..., 1i n  , 1,...,j i n  , 1, 2,...,k m    (37) 409 

It is understandable that these absolute deviations should be kept as small as possible. 410 

Similar to model (M-1), Xu and Cai [62] constructed the following quadratic program: 411 

 (M-4)      min  
2

2
2 , , ,

1 1 1 1 1 1 1

lg lg
m n n m n n m

ij k ij k l ij l
k i j k i j l

J f a v a
      

 
   

 
    412 

                 s. t .    
1

1
m

l
l

v


 , 0lv  , 1,2,...,l m  413 
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Solving the model yields the DMs’ optimal weight vector 1 2( , ,..., )T
mv v v v  [62]: 414 

               
1 1

1
1

(1 )T

T

Q e e Q
v Q

e Q e

 
 





                                                                                (38) 415 

where  416 

           , ,1 , ,2 , ,
1 1 1 1 1 1 1 1 1

lg lg , lg lg ,..., lg lg

T
n n m n n m n n m

ij k ij ij k ij ij k ij m
i j k i j k i j k

a a a a a a
        

 
  
 
   ,   417 

           (1,1,...,1)Te                                                                                                          (39) 418 

and 419 

   

2
,1 ,1 ,2 ,1 ,

1 1 1 1 1 1

2
,1 ,2 ,2 ,2 ,

1 1 1 1 1 1

,1 , ,2
1 1

(lg ) lg lg ... lg lg

lg ln (lg ) ... lg lg

... ... ... ...

lg lg lg lg

n n n n n n

ij ij ij ij ij m
i j i j i j

n n n n n n

ij ij ij ij ij m
i j i j i j

n n

ij ij m ij ij
i j

m a m a a m a a

m a a m a m a a
Q

m a a m a a

     

     

 



  

  

 2
, ,

1 1 1 1

... (lg )
n n n n

m ij m
i j i j m m

m a
    

 
 
 
 
 
 
 
 
 
 
 

 

      (40)           420 

    By plugging the optimal weight vector into Eq. (33), Xu and Cai [62] obtained a 421 

collective MPR A . Subsequently, Xu and Cai [62] calculated the sum of absolute 422 

deviations (here referred to as the individual to group consensus index ICI ) between the 423 

individual MPR kA  and the collective MPR A  by 424 

           
1 1

, , ,
1 1 1 1 1

2 2
( ) ( , ) lg lg

( 1) ( 1)

n n n n n

k k ij k ij k l ij l
i j i i j i l

ICI A d A A f a v a
n n n n

 

      

   
        (41)                      425 

    Accordingly, the weighted sum of deviations ( , )kd A A  ( 1,2,...,k m ) (hereafter, 426 

referred to as the group consensus index GCI ) is defined as 427 

             2
1

( , )
m

k k
k

GCI v d A A


                                                                                      (42) 428 

    From Eqs. (41) and (42), it is apparent that if ( , ) 0kd A A  , the individual MPR kA  is 429 

perfectly consistent with the collective MPR A . If 2 0  , the group reaches a complete 430 

consensus. Once again, Xu and Cai [62] assumed that, for a pre-defined threshold 2 , if 431 

2 2  , the group is deemed to reach an acceptable level of consensus. If 2 2  , the 432 

same idea to that of Algorithms 1 and 2 in Xu and Cai [62]  is utilized to improve the 433 

group consensus. 434 

    Similar to the case of FPRs in Theorem 1, the following result is established for MPRs. 435 

 436 
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Theorem 5. For MPRs ( )k ijk n nA a  ( 1,2,...,k m ), if for any ,i j  and k , there exists at 437 

least one inequality , ,
1

lg lg
m

ij k l ij l
l

a v a


  , then the optimal solution to (M-4) is 438 

            (1/ ,1/ ,....,1 / )Tv m m m                                                                                       (43) 439 

Proof. The proof is similar to that of Theorem 1 and, hence, is omitted. 440 

 441 

As per Proposition 2.1 in [25], an MPR can be transformed into an FPR by the 442 

following formula : 443 

               1
92 (1 log )ij ijp a                                                                                          (44) 444 

    Analogous to model (M-2), a squared weighted distance between a pair of individual 445 

MPRs ( , )k lA A  can be defined as  446 

     
 2

2 21 1
9 92 2( , ) ( (1 log ) (1 log ))k k l l k k l ld v A v A v A v A     

 
447 

                            2

9 , 9 ,
1 1

1
(1 log ) (1 log )

4

n n

k ij k l ij l
i j

v a v a
 

                                          (45) 448 

    Following this definition, an optimization model is constructed to minimize the sum of 449 

squared weighted distances between all pairs of MPRs: 450 

   (M-5)    min   2

2 9 , 9 ,
1 1, 1 1

1
(1 log ) (1 log )

4

m m n n

k ij k l ij l
k l l k i j

J v a v a
    

                            (46) 451 

             s. t .    
1

1
m

l
l

v



                                                                                             

    (47)        452 

                          0lv  , 1,2,...,l m                                                                                 (48) 453 

    Similar to the case of FPRs, (M-5) can be rewritten in a matrix form. 454 

Theorem 6. Model (M-5) is equivalent to (M-6) below in a matrix form 455 

     (M-6)      min    2
TJ v Bv                                                                                          (49) 456 

                s. t .         1Te v                                                                                                (50) 457 

                               0v                                                                                                  (51) 458 

where 1 2( , ,..., )T
mv v v v , (1,1,...,1)Te  , and ( )kl m mB b  . The elements in matrix B  are 459 

             2
9 ,

1 1

( 1)
(1 log )

2

n n

kk ij k
i j

m
b a

 


  ,   1, 2,...,k m                                                (52) 460 

             9 , 9 ,
1 1

1
(1 log )(1 log )

2

n n

kl ij k ij l
i j

b a a
 

    ,   , 1, 2,...,k l m , k l .                    (53) 461 

Similar to Theorem 3, the following result is obtained for MPRs. 462 

Theorem 7. For model (M-6), if for any , ,i j k  and l , there exists at least one inequality 463 

ijk ijla a , then matrix B determined by (52) and (53) is positive definite and, hence, non-464 

singular and invertible. 465 
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Proof.   Obviously, 2 0TJ v Bv  . Now, we prove that 2 0J   if there exists at least one 466 

inequality , ,ij k ij la a . 467 

    Assume that there exists a weight vector v , for all , ,i j k  and l , such that 2 0J  . Then,  468 

         9 , 9 ,(1 log ) (1 log )k ij k l ij lv a v a   , and 9 , 9 ,(1 log ) (1 log )k ji k l ji lv a v a    469 

thus, by Eq. (32), one can obtain  470 

       9 , 9 , 9 ,

9 , 9 , 9 ,

1 log 1 log 1 log

1 log 1 log 1 log
ij l ji l ij lk

l ij k ji k ij k

a a av

v a a a

  
  

  
 471 

which yields 472 

        , ,ij k ij la a , for all , ,i j k  and l  473 

This contradicts with the assumption that there exists at least one inequality , ,ij k ij la a . 474 

Therefore, 2 0J  , implying that B  is positive definite and, hence, nonsingular and 475 

invertible, i.e., 1B  exists. This completes the proof of Theorem 7. 476 

                                                                                             477 

Remark 5. Theorem 7 indicates that B is positive definite as long as Ak is not identical for 478 

all DMs. If all the judgment matrices are the same, then 0B  , and the weight vector for 479 

(M-6) is (1/ ,1/ ,...,1 / )Tm m m . In this case, a complete consensus is reached and no 480 

further process is needed. As such, only the general case is considered where there exits at 481 

least one inequality , ,ij k ij lp p . 482 

 483 

    Similarly, the Lagrangian multiplier method is employed to solve (M-6) as follows 484 

                        
1

*
1T

B e
v

e B e



                                                                                               (54) 485 

                      *
1

1
Te B e

                                                                                                (55) 486 

  It is trivial to verify that Theorems 3 and 4 hold for model (M-6) where G  is replaced 487 

with B . As such, B  is positive definite, 1B  is non-negative. Therefore, * 0v  . 488 

 489 

Based on the aforesaid models, similar to Algorithm 1, a consensus algorithm is devised 490 

for GDM with MPRs.  491 

Algorithm 2. 492 

Input: Each DM ke ’s MPR ,( )k ij k n nA a  ( 1,2,...,k m ),  the maximum number of 493 

iterations *t , the thresholds 2 , 2  for individual and group consensus indices, 494 

respectively. Generally, 2 2  . 495 

Output: Improved MPRs kA
 
( 1,2,...,k m ), terminal iterative step t , individual 496 

consensus index ( )kICI A  ( 1,2,...,k m ) and group consensus degree GCI . 497 
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Step 1. Let 0t  , (0)
k kA A  ( 1, 2,...,k m ). 498 

Step 2. Apply the quadratic program (M-6) to determine the optimal weight vector 499 
( ) ( ) ( ) ( )

1 2( , ,..., )t t t t T
mv v v v  as per Eq. (54) for ( ) ( )

,( )t t
k ij k n nA a 

 
( 1, 2,...,k m ). 500 

Step 3. Utilize the WGA operator Eq. (33) to aggregate individual MPRs ( ) ( )
,( )t t

k ij k n nA a 501 

( 1, 2,...,k m ) into a collective MPR ( ) ( )( )t t
ij n nA a  . 502 

 Step 4. Calculate individual consensus index ( )( )t
kICI A  by the following formula: 503 

                
1

1 1
9 , 9 ,2 2

1 1 1

2
( ) ( , ) (1 log ) (1 log )

( 1)

n n n

k k ij k l ij l
i j i l

ICI A d A A a v a
n n



   

     
     504 

                               
1

9 , 9 ,
1 1 1

1
log log

( 1)

n n n

ij k l ij l
i j i l

a v a
n n



   

 
                                            (56) 505 

and 506 

                 2
1

( , )
m

k k
k

GCI v d A A


                                                                                  (57) 507 

respectively. If 2 2   and ( )
2( )t

kICI A   (for all 1,2,...,k m ) or *t t , then go to Step 508 

6. Otherwise, find MPRs ( )t
kA  such that ( )

2( )t
kICI A  . Go to Step 5. 509 

Step 5. Find the position i  and j  of the maximum elements ( )
,

t
i j kd
 

( 1,2,...,k m ), such 510 

that ( )
2( )t

kICI A  , where ( ) ( ) ( )
, 9 , 9

,
max log logt t t

i j k ij k ij
i j

d a a
 

   for each DM ke , and 511 

adjust the corresponding preference value as per 512 

                   
( )

( 1)
, ( )

,

, ,

,

t
ijt

ij k t
ij k

a if i i j j
a

a otherwise

 
   


   

  
                                                                        (58) 513 

            and 1t t  . Then, go to Step 2. 514 

Step 6. Let ( )t
k kA A . Output the modified MPRs kA  ( 1,2,...,k m ), the terminal 515 

iteration step t , individual consensus index ( )( )t
kICI A ( 1,2,...,k m ), and group 516 

consensus index GCI . 517 

5. Illustrative examples 518 

Example 1. Consider a GDM problem that is concerned with evaluating and selecting 519 

suitable locations for a shopping center as shown in [62] and [46]. Five experts ke520 

( 1,2,...,5k  ) are commissioned to assess six potential locations (adapted from [34]),  521 

denoted by ix  ( 1,2,...,6i  ). After carrying out pairwise comparisons, the experts ke522 

( 1,2,...,5k  ) furnish their assessments as the following FPRs (0)
, 6 6( )k k ij kP P p  523 

( 1,2,...,5k  ):  524 
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(0)
1 1

0.5 0.4 0.2 0.6 0.7 0.6

0.6 0.5 0.4 0.6 0.9 0.7

0.8 0.6 0.5 0.6 0.8 1.0

0.4 0.4 0.4 0.5 0.7 0.6

0.3 0.1 0.2 0.3 0.5 0.3

0.4 0.3 0.0 0.4 0.7 0.5

P P

 
 
 
 

   
 
 
 
 

, (0)
2 2

0.5 0.3 0.3 0.5 0.8 0.7

0.7 0.5 0.4 0.7 1.0 0.8

0.7 0.6 0.5 0.5 0.9 0.9

0.5 0.3 0.5 0.5 0.6 0.7

0.2 0.0 0.1 0.4 0.5 0.4

0.3 0.2 0.1 0.3 0.6 0.5

P P

 
 
 
 

   
 
 
 
 

, 525 

(0)
3 3

0.5 0.5 0.6 0.6 0.7 0.9

0.5 0.5 0.3 0.8 0.7 0.8

0.4 0.7 0.5 0.7 0.7 0.8

0.4 0.2 0.3 0.5 0.8 0.6

0.3 0.3 0.3 0.2 0.5 0.2

0.1 0.2 0.2 0.4 0.8 0.5

P P

 
 
 
 

   
 
 
 
 

, (0)
4 4

0.5 0.2 0.1 0.5 0.8 0.9

0.8 0.5 0.2 0.9 0.6 1.0

0.9 0.8 0.5 0.8 0.6 0.6

0.5 0.1 0.2 0.5 1.0 0.8

0.2 0.4 0.4 0.0 0.5 0.4

0.1 0.0 0.4 0.2 0.6 0.5

P P

 
 
 
 

   
 
 
 
 

, 526 

(0)
5 5

0.5 0.3 0.3 0.7 0.8 0.5

0.7 0.5 0.2 0.7 0.8 0.6

0.7 0.8 0.5 0.7 0.7 0.8

0.3 0.3 0.3 0.5 0.9 0.7

0.2 0.2 0.3 0.1 0.5 0.4

0.5 0.4 0.2 0.3 0.6 0.5

P P

 
 
 
 

   
 
 
 
 

. 527 

    Algorithm 1 is employed to obtain a solution to the GDM problem. Assume that the 528 

maximum number of iterations * 10t  , the individual consensus degree threshold 529 

1 0.065  . To facilitate a comparison with the results in [46] and [62], the group 530 

consensus degree threshold is set at 1 0.05  . 531 

Step 1. Applying the quadratic program (M-3) to determine the optimal weight vector 532 
(0) (0) (0) (0)

1 2 5( , ,..., )Tw w w w  for (0) (0)
, 6 6( )k ij kP p 

 
( 1,2,k  ...,5 ) as per Eq. (29): 533 

          (0) (0.2041,0.2005,0.2025,0.1886,0.2042)Tw   534 

Step 2. Using Eq. (3) to obtain the collective FPR: 535 

           

(0)

0.5 0.3421 0.3026 0.5815 0.7593 0.7170

0.6579 0.5 0.3012 0.7376 0.8025 0.7765

0.6974 0.6988 0.5 0.6583 0.7417 0.8232

0.4185 0.2624 0.3417 0.5 0.7976 0.6782

0.2407 0.1975 0.2583 0.2024 0.5 0.3391

0.2830 0.2235 0.1768 0.3218 0.6609

P 

0.5

 
 
 
 
 
 
 
 
 

 536 

Step 3. Calculating (0)( )kICI P  ( 1,2,...,5k  ) and (0)GCI based on Eqs. (10) and (11): 537 

            
(0)

1( ) 0.0849ICI P  , (0)
2( ) 0.0810ICI P  , (0)

3( ) 0.0821ICI P  , (0)
4( ) 0.1487ICI P  ,  538 
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(0)

5( ) 0.0687ICI P  , (0) 0.0923GCI  . 539 

Step 4. Since (0) 0.0923 0.05GCI   , and (0)( ) 0.065kICI P   ( 1,2,...,5k  ), we need to 540 

find the position of elements (0)
,i j kd

 
( 1,2,...,5k  ), where (0) (0) (0)

, ,
,

maxi j k ij k ij
i j

d p p
 

  . 541 

For (0)
1P , since (0) (0) (0) (0)

36,1 63,1 ,1
,

max 0.1768ij ij
i j

d d p p    , replacing these two 542 

preference values with the corresponding elements in the collective FPR (0)P , 543 
(0) (0)
361 36p p  0.8232 , (0) (0)

631 63 0.1768p p  . Similarly, the same procedure is used 544 

to update the other four DMs’ FPRs. 545 

            
(0) (0)
25,2 25 0.8025p p  , (0) (0)

52,2 52 0.1975p p  ,  546 

            
(0) (0)
13,3 13 0.3026p p  , (0) (0)

31,3 31 0.6974p p  ,  547 

            
(0) (0)
26,4 26 0.7765p p  , (0) (0)

62,4 62 0.2235p p  , 548 

            
(0) (0)
16,5 16 0.7170p p  , (0) (0)

61,5 61 0.2830p p  . 549 

      Let 1t  , then go to Step 1. 550 

This procedure terminates after 6 iterations, and the detailed iterative processes are 551 

depicted in Table 1.  552 

The final improved individual fuzzy preference relations kP  ( 1,2,k   ...,5 ) and group 553 

fuzzy preference relation P  are 554 

1

0.5 0.4 0.2 0.6 0.7 0.7616

0.6 0.5 0.3010 0.7379 0.8005 0.7

0.8 0.6990 0.5 0.6 0.8 0.8232

0.4 0.2621 0.4 0.5 0.8374 0.6

0.3 0.1995 0.2 0.1626 0.5 0.3

0.2384 0.3 0.1768 0.4 0.7 0.5

P

 
 
 
 

  
 
 
 
 

, 555 

2

0.5 0.3 0.3 0.5 0.8 0.7

0.7 0.5 0.4 0.7 0.8016 0.8

0.7 0.6 0.5 0.6581 0.7415 0.9

0.5 0.3 0.3419 0.5 0.7976 0.7

0.2 0.1984 0.2585 0.2024 0.5 0.4

0.3 0.2 0.1 0.3 0.6 0.5

P

 
 
 
 

  
 
 
 
 

, 556 
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3

0.5 0.3418 0.3026 0.6 0.7 0.9

0.6582 0.5 0.3 0.8 0.7 0.8

0.6974 0.7 0.5 0.7 0.7 0.8

0.4 0.2 0.3 0.5 0.8 0.6

0.3 0.3 0.3 0.2 0.5 0.3392

0.1 0.2 0.2 0.4 0.6608 0.5

P

 
 
 
 

  
 
 
 
 

, 557 

4

0.5 0.2 0.2418 0.5 0.8 0.9

0.8 0.5 0.2 0.7666 0.8016 0.7765

0.7582 0.8 0.5 0.8 0.6 0.7866

0.5 0.2334 0.2 0.5 0.8374 0.8

0.2 0.1984 0.4 0.1626 0.5 0.4

0.1 0.2235 0.2134 0.2 0.6 0.5

P

 
 
 
 

  
 
 
 
 

, 558 

5

0.5 0.3 0.3 0.7 0.8 0.7170

0.7 0.5 0.2 0.7 0.8 0.7344

0.7 0.8 0.5 0.7 0.7 0.8

0.3 0.3 0.3 0.5 0.9 0.7

0.2 0.2 0.3 0.1 0.5 0.4

0.2830 0.2656 0.2 0.3 0.6 0.5

P

 
 
 
 

  
 
 
 
 

, 559 

0.5 0.3091 0.2690 0.5803 0.7597 0.7952

0.6909 0.5 0.2808 0.7408 0.7806 0.7621

0.7310 0.7192 0.5 0.6909 0.7090 0.8222

0.4197 0.2592 0.3091 0.5 0.8344 0.6792

0.2403 0.2194 0.2910 0.1656 0.5 0.3676

0.2048 0.2379 0.1778 0.3208 0.6324 0.5

P 

 
 
 
 
 
 
 
 
 

. 560 

 561 

    The corresponding ( )kICI P  ( 1,2,...,5k  ) for the final modified FPRs and ( )GCI t are: 562 

    
(6)

1( ) 0.0474ICI P  , (6)
2( ) 0.0472ICI P  , (6)

3( ) 0.0420ICI P  , (6)
4( ) 0.0609ICI P  ,  563 

    
(6)

5( ) 0.0404ICI P  , (6) 0.0475GCI  , 6t  .  564 

 565 

Table 1 shows that after two iterations (i.e., 2t  ), (2)
5( ) 0.0476 0.05ICI P   , 566 

indicating that DM 5e ’s modified FPR has reached an acceptable level of consensus with 567 

the collective FPR at this step. Therefore, (2)
5P  will not be further updated so that the 568 

DM’s original judgments can be by and large retained. Similarly, at 3t  , (3)
3( )ICI P   569 

0.0446 0.05 , the updating of 3P  will be stopped at this step. When 6t  , the group 570 
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consensus index (6) 0.0475 0.05GCI   , and all individual to group consensus indices 571 

are less than the threshold 0.065, so the iteration process terminates. The updated FPRs 1P , 572 

2P , 3P , 4P  and 5P  are deemed to reach an acceptable consensus level, and an appropriate 573 

selection method can be applied to come up with a recommendation for the group 574 

decision problem. As an illustration, the normalizing rank aggregation method [53] 575 

                        
2

1

2 n

i ij
j

p
n




                    576 

is adopted to derive a priority vector for the collective FPR P  as follows 577 

              (0.1785,0.2086,0.2318,0.1668,0.0991,0.1152)T   578 

As commented earlier,  the method in Wu and Xu [46] is equivalent to setting 1 1 579 

0.05 . Based on their approach, a slightly different priority weight vector is obtained as 580 

(0.1772,0.2111,0.2289,0.1672,0.0956,0.1200)T  . In both cases, 3x  arises as the best 581 

option for the group DMs. 582 

Compared with the approaches proposed in [46] and [62], the study here differs in 583 

several aspects. Firstly, separate thresholds 1 , 1  are set for individual and group 584 

consensus indices. In doing so, each expert is allowed to express his/her judgments 585 

slightly different from the group opinion, making it sensible to model consensus reaching 586 

processes in reality. Secondly, at each iteration, only one pair of judgments, if any, in 587 

each DM’s individual FPR that deviate the most from the corresponding elements in the 588 

collective FPR are adjusted in the proposed consensus reaching process. The rationale is 589 

to retain each DM’s original preference information. On the other hand, Wu and Xu [46] 590 

and Xu and Cai [62] employ Eq. (15) to modify all preference values for all DMs by 591 

setting a parameter  . The implication is that the final modified FPRs often significantly 592 

differ from the original judgments furnished by the DMs. Thirdly, the proposed quadratic 593 

programming models can be used to determine expert weights automatically. Although 594 

Xu and Cai [62] aimed to incorporate this idea in their quadratic programs, our theoretic 595 

analysis and their illustrative examples demonstrate that the resulting expert weights are 596 

always 1 / m  for every DM ( m is the number of DMs in the GDM problem). As for Wu 597 

and Xu [46], expert weights are arbitrarily set without sufficiently considering each DM’s 598 

judgment information. 599 
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Table 1. The iterative process for Example 1. 

t  ( )tw  ( )tP  ( )( )t
kICI P , ( )GCI t  ( )

,
t

ij kp  

0 0.2041 
0.2005 
0.2025 
0.1886 
0.2042 

0.5 0.3421 0.3026 0.5815 0.7593 0.7170

0.6579 0.5 0.3012 0.7376 0.8025 0.7765

0.6974 0.6988 0.5 0.6583 0.7417 0.8232

0.4185 0.2624 0.3417 0.5 0.7976 0.6782

0.2407 0.1975 0.2583 0.2024 0.5 0.3391

0.2830 0.2235 0.1768 0.3218 0.6609 0.5






 
 
 
 
 
 
 
 

 

(0)
1( ) 0.0849ICI P  , 
(0)

2( ) 0.0810ICI P  , 
(0)

3( ) 0.0821ICI P  , 
(0)

4( ) 0.1487ICI P  , 
(0)

5( ) 0.0687ICI P  , 
(0) 0.0923GCI   

(0)
36,1 0.8232p  , (0)

63,1 0.1768p  , 
(0)
45,2 0.7976p  , (0)

54,2 0.2024p  , 
(0)
13,3 0.3026p  , (0)

31,3 0.6974p  , 
(0)
26,4 0.7765p  , (0)

62,4 0.2235p  , 
(0)
16,5 0.7170p  , (0)

61,5 0.2830p  . 

1 0.2057 
0.1978 
0.2020 
0.1917 
0.2028 

0.5 0.3418 0.2416 0.5813 0.7592 0.7616

0.6582 0.5 0.3009 0.7380 0.8016 0.7344

0.7584 0.6991 0.5 0.6590 0.7410 0.7862

0.4187 0.2620 0.3410 0.5 0.8376 0.6784

0.2408 0.1984 0.2590 0.1624 0.5 0.3390

0.2384 0.2656 0.2138 0.3216 0.6610 0.5






 
 
 
 
 
 
 
 

 

(1)
1( ) 0.0746ICI P  , 
(1)

2( ) 0.0826ICI P  , 
(1)

3( ) 0.0678ICI P  , 
(1)

4( ) 0.1243ICI P  , 
(1)

5( ) 0.0547ICI P  , 
(1) 0.0803GCI   

(1)
16,1 0.7616p  , (1)

61,1 0.2384p  , 
(1)
25,2 0.8016p  , (1)

52,2 0.1984p  , 
(1)
12,3 0.3418p  , (1)

21,3 0.6582p  , 
(1)
25,4 0.8016p  , (1)

52,4 0.1984p  , 
(1)
26,5 0.7344p  , (1)

62,5 0.2656p  . 

2 0.2044 
0.2010 
0.2018 
0.1910 
0.2018 

0.5 0.3098 0.2419 0.5810 0.7594 0.7946

0.6902 0.5 0.3013 0.7379 0.8009 0.7618

0.7581 0.6987 0.5 0.6585 0.7415 0.7866

0.4190 0.2621 0.3415 0.5 0.8375 0.6785

0.2406 0.1991 0.2585 0.1625 0.5 0.3392

0.2054 0.2382 0.2134 0.3215 0.6608 0.5






 
 
 
 
 
 
 
 

 

(2)
1( ) 0.0700ICI P  , 
(2)

2( ) 0.0675ICI P  , 
(2)

3( ) 0.0554ICI P  , 
(2)

4( ) 0.1048ICI P  , 
(2)

5( ) 0.0476ICI P  , 
(2) 0.0687GCI   

(2)
24,1 0.7379p  , (2)

42,1 0.2621p  , 
(2)
35,2 0.7415p  , (2)

53,2 0.2585p  , 
(2)
56,3 0.3392p  , (2)

65,3 0.6608p  , 
(2)
36,4 0.7866p  , (2)

63,4 0.2134p  . 
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Table 1. (Continued) 
t  ( )tw  ( )tP  ( )( )t

kICI P , ( )GCI t  ( )
,
t

ij kp  

3 0.2031 
0.2029 
0.2028 
0.1902 
0.2011 

0.5 0.3098 0.2422 0.5808 0.7594 0.7945

0.6902 0.5 0.3015 0.7660 0.8007 0.7620

0.7578 0.6985 0.5 0.6581 0.7097 0.8224

0.4192 0.2340 0.3419 0.5 0.8374 0.6784

0.2406 0.1993 0.2903 0.1626 0.5 0.3674

0.2055 0.2380 0.1776 0.3216 0.6326 0.5






 
 
 
 
 
 
 
 

 

(3)
1( ) 0.0643ICI P  , 
(3)

2( ) 0.0566ICI P  , 
(3)

3( ) 0.0446ICI P  , 
(3)

4( ) 0.0889ICI P  , 
(3)

5( ) 0.0461ICI P  , 
(3) 0.0598GCI  . 

(3)
45,1 0.8374p  , (3)

54,1 0.1626p  , 
(3)
34,2 0.6581p  , (3)

43,2 0.3419p  , 
(3)
45,4 0.8374p  , (3)

54,4 0.1984p  . 

4 0.2016 
0.2025 
0.2025 
0.1926 
0.2008 

0.5 0.3094 0.2418 0.5806 0.7596 0.7948

0.6906 0.5 0.3011 0.7664 0.8005 0.7621

0.7582 0.6989 0.5 0.6906 0.7093 0.8223

0.4194 0.2336 0.3094 0.5 0.8343 0.6789

0.2404 0.1995 0.2907 0.1657 0.5 0.3675

0.2052 0.2379 0.1777 0.3211 0.6325 0.5






 
 
 
 
 
 
 
 

 

(4)
1( ) 0.0577ICI P  , 
(4)

2( ) 0.0480ICI P  , 
(4)

3( ) 0.0422ICI P  , 
(4)

4( ) 0.0759ICI P  , 
(4)

5( ) 0.0441ICI P  , 
(4) 0.0534GCI  . 

(4)
25,1 0.8005p  , (4)

52,1 0.1995p  , 
(5)
13,4 0.2418p  , (5)

31,4 0.7582p  . 

5 0.2023 
0.2018 
0.2019 
0.1938 
0.2002 

0.5 0.3093 0.2690 0.5805 0.7596 0.7950

0.6907 0.5 0.3010 0.7666 0.7805 0.7621

0.7310 0.6990 0.5 0.6907 0.7092 0.8223

0.4195 0.2334 0.3093 0.5 0.8343 0.6790

0.2404 0.2195 0.2908 0.1657 0.5 0.3675

0.2050 0.2379 0.1777 0.3210 0.6325 0.5






 
 
 
 
 
 
 
 

 

(5)
1( ) 0.0543ICI P  , 
(5)

2( ) 0.0476ICI P  , 
(5)

3( ) 0.0390ICI P  , 
(5)

4( ) 0.0695ICI P  , 
(5)

5( ) 0.0435ICI P  , 
(5) 0.0507GCI  . 

(5)
23,1 0.3010p  , (5)

32,1 0.6990p  , 
(5)
24,4 0.7666p  , (5)

42,4 0.2334p  . 

6 0.2016 
0.2015 
0.2015 
0.1954 
0.2 

0.5 0.3091 0.2690 0.5803 0.7597 0.7952

0.6909 0.5 0.2808 0.7408 0.7806 0.7621

0.7310 0.7192 0.5 0.6909 0.7090 0.8222

0.4197 0.2592 0.3091 0.5 0.8344 0.6792

0.2403 0.2194 0.2910 0.1656 0.5 0.3676

0.2048 0.2379 0.1778 0.3208 0.6324 0.5






 
 
 
 
 
 
 
 

 

(6)
1( ) 0.0474ICI P  , 
(6)

2( ) 0.0472ICI P  , 
(6)

3( ) 0.0420ICI P  , 
(6)

4( ) 0.0609ICI P  , 
(6)

5( ) 0.0404ICI P  , 
(6) 0.0475GCI  . 
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Example 2. The following numerical example was first developed by Yeh et al. [64], and 
further discussed by Wu and Xu [48]. Suppose that three managers from the design, 
manufacturing and marketing departments in a firm participate in a group decision to 
formulate their new product development strategy. Five decision criteria for the new 

product are identified as cost ( 1c ), manufacturability ( 2c ), quality ( 3c ), technological 

improvement ( 4c ) and market share ( 5c ). The three managers provide their preferences as 

MPRs kA  ( 1,2,3k  ) given below. 

    1

1 5 7 3 1/ 3

1/ 5 1 3 1/ 3 1/ 5

1/ 7 1/ 3 1 1/ 7 1/ 9

1/ 3 3 7 1 1/ 3

3 5 9 3 1

A

 
 
 
 
 
 
  

,  2

1 1/ 3 7 1/ 2 3

3 1 3 1 5

1 1/ 3 1 1/ 3 3

2 1 3 1 5

1/ 3 1/ 5 1/ 3 1/ 5 1

A

 
 
 
 
 
 
  

,  

    3

1 7 5 4 3

1/ 7 1 1/ 3 1/ 4 1/ 5

1/ 5 3 1 1/ 3 1/ 4

1/ 4 4 3 1 1

1/ 3 5 4 1 1

A

 
 
 
 
 
 
  

. 

 
Now, Algorithm 2 is applied to solve the problem. Assume that the maximum number of 

iterations * 10t  , the individual consensus degree threshold 2 0.055  , and the group 

consensus degree threshold 2 0.05  . The iterations terminate after 6 steps. Table 2 lists 

the iteration time t  along with the weight vector ( )tw , the individual to group consensus 

degree ( )( )t
kICI A  and the group consensus index ( )GCI t  at each iteration. 

   The terminal improved individual MPRs kA  ( 1,2,3k  ) and group MPR A  are 

 

Table 2. t , ( )tw ,  ( )( )t
kICI A , ( )GCI t  for Example 2.  

t  ( )tw  ( )( )t
kICI A  ( )GCI t  

0 0.3292    0.3259    0.3449 0.1841    0.2622    0.1556 0.1997 
1 0.3270    0.3305    0.3425 0.1355    0.2052    0.1083 0.1492 
2 0.3270    0.3317    0.3413 0.1176    0.1567    0.0875 0.1203 
3 0.3267    0.3351    0.3382 0.0929    0.1170    0.0799 0.0966 
4 0.3274    0.3368    0.3358 0.0821    0.0910    0.0691 0.0807 
5 0.3292    0.3342    0.3365 0.0698    0.0697    0.0573 0.0656 
6 0.3272    0.3388    0.3340 0.0535    0.0485    0.0484 0.0500 
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    1

1 2.5995 7 1.3916 1.4554

0.3847 1 3 1/ 3 1/ 5

1/ 7 1/ 3 1 1/ 7 0.4360

0.7186 3 7 1 2.2169

0.6871 5 2.2935 0.4511 1

A

 
 
 
 
 
 
  

,  

    2

1 1.5606 7 1.3916 3

0.6408 1 3 0.4381 0.5710

1/ 7 1/ 3 1 1/ 3 0.4360

0.7186 2.2825 3 1 2.2169

1/ 3 1.7513 2.2935 0.4511 1

A

 
 
 
 
 
 
  

, 

    3

1 2.2921 5 1.8268 3

0.4363 1 2.3250 0.4381 1/ 5

1/ 5 0.4301 1 1/ 3 1/ 4

0.5474 2.2825 3 1 1.8155

1/ 3 5 4 0.5508 1

A

 
 
 
 
 
 
  

, 

     

1 2.0968 6.2560 1.5240 2.3677

0.4769 1 2.7552 0.4006 0.2854

0.1598 0.3629 1 0.2526 0.3621

0.6562 2.4961 3.9585 1 2.0738

0.4223 3.5043 2.7617 0.4822 1

A

 
 
 
 
 
 
  

. 

    In order to compare with the results obtained in [48] and [64], we continue the 

selection process with the eigenvector method to derive a weight vector of A  as follows: 

            (0.3525,0.1162,0.0568,0.2745,0.1999)T   

Thus, the ranking of the five criteria is 1 4 5 2 3c c c c c    . In [48] and [64], the final 

weight vector of five criteria are (0.3722,0.0822,0.0691,0.2177,0.2587)T   and  

(0.3743,0.1288,0.0833,0.1867,0.2270)T , respectively, resulting in a slightly different 

ranking with the only difference between 4c  and 5c . However, a closer examination of 

the original MPRs kA  ( 1,2,3k  ) reveal that, by setting (1/ 3,1/ 3,1/ 3)Tv   and applying 

Eq. (34), Wu and Xu [48] would have obtained (0)
45 1.1856a  , indicating that 4c  is 

preferred to 5c  (i.e., 4 5c c ). This can also be verified by examining the original weight 

vector of the collective MPR in Wu and Xu [48], ( ) (0.3264,0.1232,0.0841,0.2574,c 

0.2088)T , yielding a ranking of 1 4 5 2 3c c c c c     based on the DMs’ original 

judgments. This result would have been identical to the ranking derived from the 
proposed method in this article. This minor discrepancy in the ranking result based on the 
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modified collective MPR, in our opinion, is due to the different adjustment mechanisms 
in the consensus reaching process. The approaches in [48] and [64] take a more 
aggressive manner to rectify preference values in the updating process, resulting in a 
larger distortion of the DMs’ original judgment. On the other hand, this study takes a 
more progressive approach to adjust at most one pair of preference values in each DM’s 
individual MPR, aiming to preserve DM’s original judgment. Therefore, the proposed 
method here tends to yield a ranking result closer to what is implied in the original 
judgments than those obtained in [48] and [64]. 
 
6. Conclusions 
    In this paper, distance-based group consensus models are proposed for FPRs and 
MPRs, respectively. Based on the proposed model, the expert weights can be 
automatically determined. We define an individual to group consensus index (ICI) 
between the individual FPR kP  (or MPR kA ) and a collective FPR P  (or a collective 

MPR A ) , and a group consensus index (GCI) which is a weighted average of ICIs. An 
ICI evaluates how far an individual’s judgments differ from the collective judgments and 
is used to determine whether an individual should adjust his/her judgments in the 
consensus building stage. A GCI measures the group’s overall consensus level and is 
employed to judge whether the group should continue to the next consensus improving 
stage. Two algorithms are provided for reaching group consensus based on FPRs and 
MPRs, respectively. Comparing with existing consensus models, the proposed consensus 
models have the following features: 
(1) The distance-based group consensus models can determine expert weights 

automatically. The weights of DMs would change when DMs adjust their preference 
values in the consensus reaching stage. This can use the DMs’ information 
sufficiently. 

(2) In the consensus reaching process, if an individual’s consensus index is larger than a 
predefined threshold, we only modify one pair of his/her judgments with the largest 
deviation from the corresponding group judgments at each iteration.  

(3) By introducing the ICI and GCI, the proposed models can monitor both the overall 
group consensus level and how far each DM deviates from the group in terms of the 
judgment. Furthermore, in the consensus reaching process, we set ICI a little larger 
than GCI, thereby allowing each individual judgment to differ slightly from the group 
opinion.  

The proposed models have potentials to be extended to other types of preference 
relations and adopting different aggregation schemes. It is also a worthy topic to explore 
real-world applications in intelligent GDM, such as the selection of advanced technology 
[13], credit scoring in financial risk management [66], emergency decision support [65], 
to name a few.  
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