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Abstract— Preferences that verify the transitivity property are 

usually referred to as rational or consistent preferences. Existent 

methods to improve consistency of inconsistent fuzzy reciprocal 

preference relations (FPRs) fail to retain the original preference 

values because they always derive a new FPR. This paper presents 

a new inconsistency identification and modification (IIM) method 

to detect and rectify only the most inconsistent elements of an 

inconsistent FPR. As such, the proposed IIM can be considered a 

local adjustment method to improve multiplicative consistency 

(MC) of FPRs. The case of inconsistent FPRs with missing 

preference values, i.e. incomplete FPRs, is addressed with the 

estimation of the missing preferences with a constrained nonlinear 

optimization model followed by the application of the IIM method. 

The implementation process of the proposed algorithms is 

illustrated with numerical examples. Simulation experiments and 

comparisons with existent methods are also included to show that 

the new method requires fewer iterations than existent methods to 

improve the MC of FPRs and achieves better MC level, while 

preserving the original preference information as much as possible, 

than existent methods. Thus, the results presented in the paper 

demonstrate the correctness, effectiveness, and robustness of the 

proposed method.  

 

Index Terms—Fuzzy reciprocal preference relation (FPR), 

Incomplete FPR, Inconsistency, Multiplicative consistency (MC). 

 

I. INTRODUCTION 

REFERENCE relations (PRs) are commonly used in multi-

attribute decision making to model preferences of decision 

makers (DMs) on a set of alternatives. In decision making 

theory, pairwise comparison of alternatives may be modelled 

via a multiplicative PR (MPR) [1, 2] as in the analytic hierarchy 

process (AHP) [3], or via a fuzzy PR (FPR) to deal with 

uncertainty and fuzziness of human thinking [4]. 

Since the lack of consistency of preferences could lead to 

misleading outcomes, its study and analysis are key in decision 

making theory [5-8]. Indeed, the priorities of alternatives 

derived from PRs are reliable only when the PRs are of 
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acceptable consistency. There are different approaches to 

improve  consistency of inconsistent MPRs: there are general 

method that are based on the revision of all the elements of the 

relation [9, 10], and local methods that are based on the revision 

of a single element of the relation [11, 12]. However, before 

improving consistency, it is important to address the measuring 

of the level of inconsistency of the relation. Recently, some 

axiomatizations have been proposed [13-17] for this purpose. A  

self-contained exposition  of the most relevant inconsistency 

indices is provided in [18] while  a unifying approach to 

measure inconsistency is proposed in [19]. A general 

framework, based a parametric generating function, for 

defining inconsistency indices and deriving the actual local 

contributions to the inconsistency index is investigated in [20].  

Traditionally, consistency of FPRs has been classified into 

two main categories: the ordinal consistency (OC) [21, 22] and 

the cardinal consistency [23]. The property of weak transitivity,  

on which OC is defined, is the minimum requirement for an 

FPR to be considered consistent [24], although cardinal 

consistency, a stronger concept than OC because it requires that 

the “actual intensity with which the preference is expressed 

transits through the sequence of objects in comparison” ([3], 

Page 7), is also required in research [25]. Two types of cardinal 

consistency of FPRs have been developed: the multiplicative 

consistency (MC) [23, 25, 26] and the additive consistency 

(AC) [27-31]. The AC clashes with the preference values range 

([0,1]) and, although Herrera-Viedma, et al. [27] developed a 

method to fit AC outcomes within the unit interval, it is also 

true that some of the original preference information is lost in 

that fitting process. In fact,  Chiclana, et al. [23] provided the 

conditions under which MC is the order isomorphic functional 

solution to modelling cardinal consistency of FPRs, which 

motivates us to focus on MC rather than AC.  

It is known that an FPR  that verify OC property may not 

verify MC or AC properties; however,  an FPR that verifies  MC 

or AC properties, it also verifies the OC property. When a PR 
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does not verify a consistency property, the concept of 

acceptable consistent PR can be used instead: a PR is of 

acceptable consistency with respect to a consistency property 

when the corresponding consistency property based 

consistency degree of such PR is above a predefined threshold. 

An acceptable consistent PR with respect to a consistency 

property may not be an acceptable consistent PR for other type 

of consistency property. The man difference between 

acceptable consistency and consistency of PRs is that an 

acceptable consistent FPR with respect to  MC or AC may as 

not be an acceptable consistent FPR  with respect to OC. 

Furthermore, there is not relationship between MC and AC for 

an FPR and, therefore, in general only the MC or AC is 

considered in consistency research. 

When a given FPR is not MC, methods can be applied to 

improve the MC, including Xu and Da [26]’s practical iterative 

algorithm to derive a modified FPR with acceptable MC, and 

Xia, et al. [25]’s two convergent algorithms to improve the MC 

and consensus levels of FPRs. However, these methods have 

associated the following issues, each one leading to a research 

question: 

1) The MC of FPRs are improved mathematically at the cost 

of modifying most of the original judgements of the FPRs. 

This does not conform to real situations where only few 

original judgements are expected to be modified. Thus, the 

following research question needs to be dealt with: Is it 

possible to improve the MC in other ways than just 

mathematically so that the modified FPRs retain most of 

the original judgements? 

2) Obtaining the FPRs with acceptable MC is 

computationally intensive with a high number of 

calculations and time required. It would be worth 

answering the following question: Is it possible to derive 

an FPR with acceptable MC more efficiently, i.e., with 

fewer calculation steps? 

3) The modified values obtained might not be in the original 

scale range, leading to a distortion of the DMs’ original 

information. The following question needs addressing: 

How can it be assured that the modified values are in the 

original scale U[0.1,0.9]={0.1,0.2,…,0.9}? 

This paper aims to answer the above research questions by 

proposing a novel local adjustment method to improve the MC 

of FPRs. The main research contributions of this paper are: 

• A new inconsistency identification and modification (IIM) 

method to detect and rectify the most inconsistency 

elements of FPRs. 

• A constrained nonlinear optimization model (CNOM) to 

estimate the missing values of incomplete FPRs. 

• Two algorithms to improve the MC of complete and 

incomplete FPRs, respectively. 

• In each consistency improving round, the preference value 

of only one pair of alternatives is modified, making this 

new approach a local adjustment method. The revised 

value is in the original scale range of preferences.  

• Simulation experiments and numerical examples show that 

the proposed method requires fewer iterations and less 

information is lost than with the mentioned existent 

methods.  

The rest of the paper is organized as follows. Section II 

contains a brief description and definitions of the basic concepts 

and known results needed throughout the paper: FPRs, 

incomplete FPRs, the geometric consistency index (GCI) and 

acceptable consistency. Section III presents the new 

multiplicative based IIM method to improve the MC of FPRs. 

Section IV contains the algorithms to estimate the missing 

values of an incomplete FPR and to improve its consistency, 

respectively. Numerical examples showing how the proposed 

method works in practice, which is complemented with an 

analysis and comparison with those obtained from existent 

methods, are included in Section V. This section also includes 

a comprehensive comparison with existent similar methods that 

evidence the advantages, effectiveness and robustness of the 

proposed method. Conclusions are drawn in Section VI.  

II. PRELIMINARIES 

Given a set of alternatives X={x1, x2, …, xn} (n≥2), an FPR 

on a set of alternatives X is modelled by a membership function 

μR: X×X→[0,1] being μR(xi, xj)=rij the preference degree of 

alternative xi over alternative
 

xj [32]. The following 

interpretation is assumed: rij = 0.5 indicates indifference 

between alternatives xi and xj: 0 < rij <0.5 means that alternative 

xj is preferred to alternative xi; the smaller rij, the stronger the 

preference of alternative xj over alternative
 
xi; 0.5 < rij ≤ 1 

implies that alternative xi is preferred to alternative xj; the 

greater rij, the stronger the preference of alternative xi over 

alternative
 

xj. Notice that there is an implicit reciprocity 

property of preferences on the above interpretation, which is 

summarized in the following definition: 

Definition 1: [33] An FPR is represented by a matrix 

R=(rij)n×n with element rij∈[0,1] verifying rij + rji = 1 for all i, j

∈N, where N={1, 2, …, n}. 

In the following the concept of AC of FPRs is defined: 

Definition 2: [34] An FPR R=(rij)n×n is AC if and only if rij=rik 

+ rkj − 0.5, for all , ,i j k N . 

The above definitions of FPR and AC FPR are in conflict. 

Indeed, assuming that a DM states a preference degree of 0.8 of 

alternative x over alternative y, and a preference degree 0.9 of 

alternative y over alternative z, then it is not possible for this 

DM to provide an AC FPR because the only admissible AC 

preference degree of alternative x over alternative z would be 

1.2, which is not in preference range [0,1]. To avoid this conflict 

with the unit interval, Herrera-Viedma, et al. [27] proposed a 

re-scaling method of the AC based preference values in the [0,1] 

scale; however, this process obviously distorts the original 

preference information. This issue, though, can be avoided if 

the following MC property is used instead.  

Definition 3: [34] An FPR R=(rij)n×n is MC if and only if 

rikrkjrji=rkirkjrij, for all i, j, k ∈N. 

Given an MC FPR, R=(rij)n×n, there exists a priority vector, 

w = (w1, w2, …, wn)T with 
1

1
n

ii
w

=
=  and 0iw  , i N , such 

that 
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Algebraic manipulation leads to 

ln ln ln ln ln ln
ij iji i

ij ji i j

ji j ji j

r rw w
r r w w

r w r w
=  =  − = −        

(2) 

FPRs rarely satisfy MC in practice; therefore, measuring the 

degree of consistency is useful. Xia, et al. [25] introduced the 

below geometric consistency index (GCI) to measure the MC 

degree of FPRs. 

Definition 4: [25]  The GCI of FPR R=(rij)n×n with priority 

vector w=(w1, w2, …, wn)T is  

2

1

2
( ) (ln ln ln ln )

( 1)( 2)
ij ji i j

i j n

GCI R r r w w
n n   

= − − +
− −

    (3) 

When an FPR R is of MC, it is GCI(R)=0. So, the smaller 

GCI(R) is, the more MC the FPR R is. Given a threshold value  
GCI̅̅ ̅̅ ̅, when GCI(R)≤ GCI̅̅ ̅̅ ̅, the FPR R is said to be of acceptable 

consistency. In AHP, Saaty [3] originally proposed the 

consistency ratio (CR) to measure the consistency index (CI) of 

MPRs. Afterwards, Aguarón and Moreno-Jiménez [35] 

developed the measure of consistency proposed by Crawford 

and Williams [36], which is called GCI for MPRs. How to 

determine the value of GCI̅̅ ̅̅ ̅ for FPRs is still an open issue, 

which needs further investigation. Generally, the value is given 

by the DM in advance. A highly consistent FPR is implemented 

with small GCI̅̅ ̅̅ ̅ values. 

  Wang and Fan [37] proposed the below logarithmic least 

square model (LLSM) to derive the priority vector of FPRs: 

(M-1) min  
2

1 1

(ln ln ln ln )
n n

ij ji i j

i j

J r r w w
= =

= − − +               

(4) 

s.t.    
1

1
n

i

i

w
=

= , 0iw  , i N                                       

They proved the following main result: 

Theorem 1: [37] The optimal solution of (M-1) is 
1/

1

1/

1 1

ij

ji

ij

ji

n
n

r

r

j

i n
nn

r

r

i j

w
=

= =

 
 
 

=
 
 
 



 

, i N                                (5) 

Lack of sufficient knowledge, limited expertise or time 

pressure may lead DMs to provide incomplete FPRs [38-40]. 

Recall that “a function f: X→Y is partial when not every element 

in the set X maps to an element in the set Y” [36]. Thus, 

incomplete FPRs are defined as follows:  

Definition 5:[41] An FPR B=(bij)n×n
 
on a set of alternatives 

X  is an incomplete FPR if its membership function is partial. 

Since the reciprocity property is assumed for FPRs, when bij 

is known, then bji=1−bij is also known. 

Definition 6: [39] An incomplete FPR B=(bij)n×n
 
is MC if all 

the known elements of B satisfy bikbkjbji=bkibjkbij, for all i, j, k∈
N. 

Definition 7:[25] Let B=(bij)n×n be an incomplete FPR, and 

w=(w1, w2, …, wn)T  the priority vector derived from B. The GCI 

of B is  

2

1 1

1
( ) (ln ln ln ln )

n n

ij ij ji i j

i j

GCI B b b w w
s


= =

= − − +               (6) 

where δij is the binary variable (bij=− indicates elements bij is 

missing/unknown)  

0, if ,
,

1, if ,

ij

ij

ij

b
i j N

b


= −
= 

 −
                           (7) 

and s is the number of known preference values in B
  
 

1 1

n n

ij

i j

s 
= =

=                                                  (8) 

If GCI(B)=0, then the incomplete FPR B is MC. Thus, values 

close to zero of GCI(B) indicate high degrees of MC by B. 

   Xu, et al. [42] extended the above LLSM method to derive 

the weighting vector of incomplete FPRs. 

Theorem 2: [42] The priority vector  of an incomplete FPR B 

is  

1

1

1

1

exp( )
, 1,2,..., 1

exp( ) 1

1
,

exp( ) 1

i

n

jj

i

n

jj

m
i n

m
w

i n
m

−

=

−

=


= −

+
= 

 =
 +






            (9) 

where exp(.) is the exponential function; M=(m1,m2,…,mn−1)T is  
1M P Q−=                                                     

(10) 

P=(pij)(n−1)×(n−1) and Q=(qij)(n−1)×1 are matrices with elements 

         
1,

n

ii ij

j j i

p 
= 

=  , 
ij ijp = −  ( i j ), , 1,2,..., 1i j n= −    (11) 

        
1

(ln ln )
n

i ij ij ji

j

q b b
=

= − , 1,2,..., 1i n= −                 (12) 

and δij as per (7). 

Theorem 3: [42] The necessary condition for an incomplete 

FPR B=(bij)n×n to be acceptable is that at least (n−1) non-

diagonal elements in B are known. 

III. A LOCAL ADJUSTMENT METHOD OF INCONSISTENCY 

IDENTIFICATION AND MODIFICATION FOR FPRS 

A. The Induced Matrix for Inconsistency Identification 

In decision making, inconsistent conclusions are often 

obtained from lack of consistency [27]. In practice, it is difficult 

that a given PR is “fully” consistent as per Definition 3. 

Therefore, it is worth investigating how to get consistent PRs 

from inconsistent ones [3], an issue that has indeed attracted 

quite a lot of research efforts recently [25, 26, 29]. It is well 

known that in the process of constructing consistent preferences, 

the original preference information is usually modified. 

This section proposes an MC based IIM to improve the 

inconsistency of FPRs practice. An induced matrix is built to 

identify the inconsistent elements in a given (initial/original) 

FPR. In order to keep the DM’s original preference information 
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as much as possible, the preference value of only one pair of 

inconsistent elements is repaired at each step of the iterative 

improvement method. 

Theorem 4: The induced matrix of the FPR R=(rij)n×n, is the 

matrix, C=(cij)n×n, with elements cij= ∑
rik

rki

rkj

rjk
− n

rij

rji

n
k=1 , i, j, k∈

N. If R=(rij)n×n is MC, then C will be the zero matrix. 

Proof: If R is MC, then applying Definition 3 it is 

rikrkjrji=rkirkjrij, for all , ,i j k N ,  

which can be re-written as 

ij kjik

ji ki jk

r rr

r r r
=  , for all , ,i j k N . 

This yields 

1 1

n n
kj ij ijik

k kki jk ji ji

r r rr
n

r r r r= =

= =   

which implies that 

1

0
n

kj ij ij ijik

ij

k ki jk ji ji ji

r r r rr
c n n n

r r r r r=

= − = − = . 

This completes the proof.               □ 

Theorem 5: If the induced matrix of an FPR is the zero 

matrix, then the FPR is MC. 

Proof:  If C=(cij)n×n is the zero matrix, then 

1

=0
n

kj ijik

ij

k ki jk ji

r rr
c n

r r r=

= −     

1

1
=1

n
kj jiik

k ki jk ij

r rr

n r r r=

 .

   

    

Matrix G=(gij)= (1

n
∑

rik

rki

rkj

rjk

rji

rij

n
k=1 )  verifies 

1 1

1 1n n
kj ji jk ijik ki

ij ji

k kki jk ij kj ik ji

r r r rr r
g g

n r r r n r r r= =

+ = + 
 

1

1 n
kj ji jk ijik ki

k ki jk ij kj ik ji

r r r rr r

n r r r r r r=

 
= + 

 
 

 .  

The above expression is of the type 1 2
y

y +    (with y>0), with 

equality being true only when y=1. Therefore, it is  gij+gji=2, i.e. 

, ,i j k N  :
 
rikrkjrji=rkirkjrij. Thus, R is MC. This completes the 

proof.                                                           □ 
Notice that when gij < 1, it is gji >1. Therefore, in the presence 

of inconsistent preference values some gij or gji values will be 

greater than 1.  

Remark 1. Theorems 4 and 5 are obvious results, but, the 

value of cij is the sum of some items, and we could check which 

item is responsible for the value cij being far away from 0. From 

this, we can locate which comparison contributes more to the 

inconsistency, and thus, to improve the MC locally.  

B. An Algorithm to Improve MC for FPRs 

The assumption of the experts being able to quantify their 

preferences numerically in [0, 1] instead of {0, 1}, implies that 

experts can accurately select from an infinite set of possible 

options, which in turn implies that consistency of FPRs can be 

mathematically modeled via a functional equation. However, 

due to the limitations of the human cognitive perspective and 

the complexity nature of decision problems, DMs may provide 

inconsistent FPRs. As per Theorems 4-5, the closer the induced 

matrix C=(cij)n×n is to the zero matrix, the more MC the FPR 

R=(rij)n×n will be. Therefore, MC of FPRs will increase when 

the distance between (rik/rki)∙(rkj/rjk) and rij/rji approaches zero. 

Thus, when the absolute value of some elements in the induced 

matrix C is quite different to zero, there will be a remarkable 

deviation between 
1

n
∑ (

rik

rki
)n

k=1 (
rkj

rjk
)  and rij/rji. This happens 

when either some of the values (rik/rki)∙(rkj/rjk) are too large or 

the ratio rij/rji is too small. Since 0<ruv<1 and rvu=1−ruv, 

,u v N , then either rik or rki or both are too large or rij is too 

small. This is the idea driving the IIM method on the initial FPR, 

which is given in Algorithm I. 

Algorithm I.  

Let R=(rij)n×n be an FPR, t be the number of iterations, and 

GCI(R)̅̅ ̅̅ ̅̅ ̅̅ ̅ be a (given) threshold value. 

Step 1: Let 0t = , R(t)=(rij

(t)
)n×n=(rij) n×n. 

Step 2: Apply (5) to derive the priority vector w(t)=(w1

(t)
, 

 w2

(t)
..., wn

(t)
)T associated with R(t). 

Step 3: Apply (3) to compute GCI(R(t)). If GCI(R(t))≤ 
GCI(R)̅̅ ̅̅ ̅̅ ̅̅ ̅, then go to Step 12. Otherwise, go to Step 4. 

Step 4: Construct the induced matrix C(t)=(cij

(t)
)n×n associated 

with R(t): 
( ) ( )( )

( )

( ) ( ) ( )
1

, , ,

t ttn
kj ijt ik

ij t t t
k ki jk ji

r rr
c n i j k N

r r r=

= −             (13) 

Step 5: Identify the largest absolute value in the induced 

matrix C(t):
( )t

ijc . 

Step 6: Construct the deviation vector F(t): 
( ) ( ) ( ) ( ) ( ) ( )( ) ( ) ( )

1 2( ) 1 2

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

1 1 2 2

, ,...,

t t t t t tt t t
j ij j ij nj ijt i i in

t t t t t t t t t

i j ji i j ji ni jn ji

r r r r r rr r r
F

r r r r r r r r r

 
= − − − 

 
 

   (14) 

Step 7: Identify the inconsistent elements in R(t).  

Sub-step 1: If the only two values in vector F(t)
 equal to zero 

are the i-th and j-th components and the rest of the values are 

positive and close to each other, then rij

(t)
/rji

(t)
 is too small. Since 

0<rij

(t)
<1 and rji

(t)
=1− rij

(t)
, then rij

(t)
 is too small. However, if the 

rest of values are negative and close to each other, then rij

(t)
 is 

too large. Go to Step 10. 

Sub-step 2: Otherwise, identify the largest absolute value in 

vector F(t) and those close to it. If 
( ) ( ) ( ) ( ) ( ) ( )( / )( / ) /t t t t t t

ik ki kj jk ij jir r r r r r−  

is the largest positive value in F(t) and the rest of values are close 

to zero, then either rik

(t) or rkj

(t) or both are too large. Then, go to 

Step 8. 

Step 8: Find the values 
( ) ( ) ( )

( ) ( ) ( )

( )

1

t t t
il lk ik

t t t
li kl ki

n r r rt

ik l r r r
c n

=
= − , and 

( ) ( )( )

( ) ( ) ( )

( )

1

t tt
lj kjkl

t t t
lk jl jk

r rn rt

kj l r r r
c n

=
= −  in the induced matrix C(t). It is not 

possible for cik

(t)
 >0 and ckj

(t)
 >0 to be true simultaneously.  

Table I displays the three possible cases. 
TABLE I. DIFFERENT SITUATIONS IN STEP 8. 

Situation Problem Measure Next step 

cik

(t)
 <0, ckj

(t)
 >0 rik

(t)
 is too large Decrease rik

(t)
 Step 10 

cik

(t)
 >0, ckj

(t)
 <0 rkj

(t)
  is too large Decrease rkj

(t)
 Step 10 

cik

(t)
 <0, ckj

(t)
 <0 

either rik

(t)
  or

 
rkj

(t)
 or 

both are too large 

Continue to identify 

inconsistent 

elements 

Step 9 
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Step 9: Consistency test of the order reduced FPR 

R(n−1)×(n−1)

(t)'
formed by removing sequentially one of the 

alternatives xi, xk and xj. Based on the above discussion, rik

(t), rkj

(t) 

and rij

(t) are likely to be the inconsistent elements, indicating that 

inconsistent judgments on xi, xk or xj have been made. Hence, 

these alternatives can be removed, one after another, to check 

whether the corresponding order reduced FPR passes the 

consistency test, which is used to identify explicitly the 

inconsistent element. 

Sub-step 1: Consistency test of order reduced FPR 
( ) '

( 1) ( 1)

t

n nR −  −
formed by removing the alternative xi from FPR R(t) 

(delete the i-th row and the i-th column from FPR R(t)). If the 

consistency test is passed, the alternative xi is an inconsistent 

element and ( )t

kjr  is consistent. Otherwise, ( )t

kjr
 
is inconsistent. 

Go to Sub-step 2. 

Sub-step 2: Consistency test of order reduced FPR 
( ) ''

( 1) ( 1)

t

n nR −  −
 formed by removing the alternative xk from FPR 

R(t). If the consistency test is passed, rij

(t)
 is consistent. 

Otherwise, rij

(t)
 is inconsistent. Go to Sub-step 3. 

Sub-step 3: Consistency test of order reduced FPR 
( ) '''

( 1) ( 1)

t

n nR −  −
formed by removing alternative xj from FPR R(t). If 

the consistency test is passed, rik

(t)
 is consistent. Otherwise, rik

(t)
   

is inconsistent.  

TABLE II. THE IDENTIFICATION PROCESSES IN STEP 9 

Remove 
alternative 

Consistency 
test 

Potential inconsistent 
elements 

Consistent 
elements 

Inconsistent 
elements 

xi Yes rik

(t)
, rij

(t)
 rkj

(t)
  

 No rik

(t)
, rij

(t)
  rkj

(t)
 

xk Yes rik

(t)
 rij

(t)
  

 No rik

(t)
  rij

(t)
 

xj Yes  rik

(t)
  

 No   rik

(t)
 

 

Table II shows the Step 9 identification process with column 

“Consistency test” showing whether the order reduced FPRs do 

pass the consistency test. 

After Step 9 the inconsistent element among rik

(t)
,  rkj

(t)
 and rij

(t)

 
is identified. Assuming that rij

(t)
 is the inconsistent value, it is 

denoted riτjτ

(t)
; Step 10 is activated to adjust the value of the 

inconsistent element in order to improve the MC of the FPR. 

Step 10: Change the value of the inconsistent element riτjτ

(t)
 to 

the value riτjτ

(t+1)
 verifying: 

 
( ) ( ) ( 1)

( ) ( ) ( 1)
1, ,

( 2) 0
1

t t tn
i k kj i j

t t t
k k i k j ki j k i j

r r r
n

r r r

   

     

+

+
=  

− − =
−

                   (15) 

Denoting  

( ) ( )

( ) ( )
1, ,

1
=

2

t tn
i k kj

t t
k k i k j ki j k

r r

n r r

 

   


=  −

 ,  it is: 

( 1)

1

t

i jr
 





+ =
+

                                                    (16) 

The rest of consistent elements are not modified: ruv
(t+1)

=ruv
(t)

, for 

all u,v∈N, u≠iτ and v≠jτ. A new FPR R(t+1)
 is computed.  

Step 11: Let t=t+1, then go to Step 2. 

Step 12: Output: Number of iterations t, the modified FPR
( )tR  and its acceptable consistency degree GCI(R(t)). 

Step 13: End. 

Remark 2: The aim of Algorithm I is twofold: (1) to identify 

the most inconsistent elements of an FPR, and (2) to modify the 

identified inconsistent element.  In order to achieve this, the 

GCI of a given FPR is computed. If it is above the MC threshold, 

the induced matrix is used to find the element which contributes 

most to its inconsistency. 

Remark 3: Generally, a DM provides preference values in the 

scale U[0.1,0.9]={0.1,0.2,…,0.9}. However, in Step 10 of 

Algorithm I, riτjτ

(t+1)

 
as per (16) is not in U[0.1,0.9]. In order to let 

the adjusted value be in this scale, it could be rounded first, i.e., 

riτjτ

(t+1)
=round( riτjτ

(t+1)
×10)×10−1, and subsequently compared 

against 0.9: riτjτ

(t+1)
= min{round(riτjτ

(t+1)
×10)×10−1, 0.9}. However, 

if the aim is to improve the MC of an FPR, the value given by 

(16) can be implemented without further modification.  

Remark 4. In Sub-step 2 of Step 7, if there are more than one 

largest value in F(t), any one of them can be chosen to compute 

in Step 8.  

IV. A LOCAL ADJUSTMENT METHOD OF INCONSISTENCY 

MODIFICATION FOR INCOMPLETE FPRS 

A. CNOM Estimation of Missing Values of Incomplete FPRs 

Let B=(bij)n×n be an incomplete FPR with p missing elements. 

Recall that p is even; xl and 1−xl (l=1, 2, …, p/2) denote the 

unknown elements in B. From Theorem 4, if an FPR R is of 

acceptable MC, then the elements of its induced matrix 

C=(cij)n×n
 
will be close to zero, i.e., cij ≈ 0. This can be used as 

a criterion to complete B=(bij)n×n with acceptable MC. Thus, the 

following optimization problem, referred to as CNOM, is 

proposed:  

(M-2)  min  

2

1 1 1

( ) ( )( )
( , )

( ) ( ) ( )

n n n
kj ijik

ij

i j k ki jk ji

b x b xb x
f b x n

b x b x b x= = =

 
= − 

 
 

       

(17) 

            s.t. 0 1lx  , 1,2,..., / 2l p=   

where bij(x) represents the (i, j)-element in B. Since f(bij, x) is a 

function of x=(x1, x2,…, xp/2), the MatlabTM ‘syms’ can be used 

to construct the symbolic matrix to derive f(bij,x), while the 

MatlabTM ‘Fmincon’ function can be utilized to obtain the 

optimal solution of CNOM. 

B. Algorithm to Improve MC of Incomplete FPRs 

As mentioned above, an incomplete FPR is usually not 

consistent in practical situations. Based on Algorithm I and (M-

2), a method to improve the MC of incomplete FPRs is 

described in Algorithm II.  

Algorithm II.  

Let B=(bij)n×n be an incomplete FPR, t be the number of 

iterations, and GCI(B)̅̅ ̅̅ ̅̅ ̅̅ ̅
 
a (given) consistency threshold value. 

Step 1: Apply Theorem 3. If all non-diagonal elements in a 

row or column of B are unknown, then B is returned to the DM 
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and asked to provide a new FPR verifying Theorem 3 condition. 

Otherwise, the priority vector associated with B is obtained as 

per (9)-(12). 

Step 2: Apply (6)-(8) to compute GCI(B)̅̅ ̅̅ ̅̅ ̅̅ ̅ . If GCI(B) 

≤ GCI(B)̅̅ ̅̅ ̅̅ ̅̅ ̅, then go to Step 11. Otherwise, continue to Step 3. 

Step 3: Construct the auxiliary FPR B̅=(b̅ij)n×n 

, if

, if  and 

1 , if  and 

ij

ij

ij

ij

ij l

l

b

b x i j

j

b

b

bx i




= 
 − − 

−

= −

=



                        (18) 

Step 4: Apply MatlabTM ‘Fmincon’ function to obtain the 

optimal solution of CNOM and derive the complete FPR 

B̃=(b̃ij)n×n. 

Step 5: Let t=0 and B̃
(t)

 =(b̃ij

(t)
)n×n=(b̃ij)n×n. 

Step 6: Apply Algorithm I Steps 4-9 to identify the 

inconsistent element in B̃
(t)

. If the identified inconsistent 

element is an original unknown value, then continue to check 

the next second absolute largest value in C(t), until the identified 

inconsistent element is one of the known values: biτjτ

(t)
 (exists 

because GCI(B) ≤ GCI(B)̅̅ ̅̅ ̅̅ ̅̅ ̅ is not true). 

Step 7: Change the inconsistent element b̃iτjτ

(t)
 to the value 

b̃iτjτ

(t+1)

 
verifying: 

1,

( ) ( ) ( 1)

( ) ( ) ( 1)
,

( 2) 0
1

t t t

i k kj i j

t t t

ki j k i j

n

k k i k j

b b b

b b
n

b

   

   


+

+
= 

− − =
−

                    (19) 

Denoting 

( )

( )

( )

( )
1, ,

1
=

2

tn
i k

t
k k

t

kj

t
i k j ki j k

b

n

b

b b



 






=  −

 , it is 

( 1)

1

t

i jb
 





+ =
+

                                                               (20) 

The rest of elements of B are unchanged: b̃uv

(t+1)
=b̃uv

(t)
, for all u, 

v∈N, u≠iτ and v≠jτ. Thus, a new modified FPR ( 1)tB +  is 

constructed. 

Step 8: Discard the inferred values of the unknown elements 

to derive the modified incomplete FPR B(t+1). 

Step 9: Calculate GCI(B(t+1)). If GCI(B(t+1))>GCI(B)̅̅ ̅̅ ̅̅ ̅̅ ̅, let t = 

t+1, and go to Step 6. Otherwise, go to Step 10. 

Step 10: Output: Number of iterations t, the modified 

incomplete FPR B(t+1) and its acceptable consistency degree 

GCI(B(t+1)). 

Step 11: End. 

Remark 5: Different from Algorithm I, the first task of 

Algorithm II is to estimate the missing values of an incomplete 

FPR. Here, CNOM is applied. After the corresponding 

complete FPR is obtained, Algorithm I is performed to improve 

its MC. The modified values are from the original known values 

of the incomplete FPR. 

V. ILLUSTRATIVE EXAMPLES AND COMPARISONS 

A. Illustrative Examples 

Example 1 and Example 2 assume inconsistent complete 

FPRs, so Algorithm I is applied. Example 3 assumes an 

incomplete and inconsistent FPR, so Algorithm II applies. 

Simulation experiments and comparisons with the existent 

methods are also offered to show the advantages of the 

proposed methods. 

A.1 Example 1 

 Algorithm I is applied to the following FPR on the set of 

alternatives 
1 2 3 4{ , , , }X x x x x= : 

0.5 0.1 0.8 0.2

0.9 0.5 0.8 0.7

0.2 0.2 0.5 0.3

0.8 0.3 0.7 0.5

R

 
 
 =
 
 
 

 

Step 1: Let t=0, (0) (0)

4 4 4 4( ) ( )ij ijR r r = = ; GCI(R)̅̅ ̅̅ ̅̅ ̅̅ ̅=0.4. 

Step 2: Applying (5), the priority vector of R(0) is w=(0.1065, 

0.5582,0.0746, 0.2607)T.  

Step 3: Applying (3), the geometric consistency index of R(0) 

is GCI(R(0))=0.7192>GCI̅̅ ̅̅ ̅. 

Step 4: The induced matrix C(0) associated with R(0) is: 

(0)

0 0.8849 6.9722 1.4735

7.6667 0 33.4444 0.7024

3.4643 0.2885 0 0.2113

3.5595 0.1706 13.0476 0

C

− 
 
− −

 =
 − −
 
− 

 

Step 5: The largest absolute value in C(0) is 
(0)

23 33.4444c = . 

Step 6: The obtained deviation vector  
(0) (0) (0) (0) (0) (0) (0) (0) (0)(0) (0) (0)

(0) 13 23 23 23 23 33 23 43 2321 22 24

(0) (0) (0) (0) (0) (0) (0) (0) (0) (0) (0) (0)

12 31 32 22 32 32 32 33 32 42 34 32

, , ,
r r r r r r r r rr r r

F
r r r r r r r r r r r r

 
= − − − − 

 

is F(0)=(32, 0, 0, 1.4444). 

Step 7: The largest absolute value in F(0) is 32, while the other 

values are zero or close to zero. Therefore, the inconsistent 

element is 32=(r21

(0)
/r12

(0)
)( r13

(0)
/r31

(0)
)−r23

(0)
/r32

(0)
, and either r21

(0)
 or r13

(0)
 

or both are quite large (within [0,1]). 

Step 8: Since c21

(0)
 =−7.6667 and c13

(0)
=−6.9722, the third rule 

of Table I applies and Step 9 is applied to identify the 

inconsistent element. 

Step 9: Removing sequentially alternatives x1, x2, x3, and 

checking whether the corresponding order reduced preference 

relation passes the consistency test. 

Sub-step 1: Obtain the 3×3 order matrix R(0)'  by removing 

the 1st row and the 1st column from R(0): 

(0) '

0.5 0.8 0.7

0.2 0.5 0.3

0.3 0.7 0.5

R

 
 

=
 
  

 

Applying (3) and (5): w = (0.588, 01327, 0.2793)T and 

GCI(R(0)')) = 0.0317<0.4. Therefore, R(0)' is of acceptable 

consistency. From Table II rules, r23

(0)
  is a consistent element. 

Sub-step 2: Obtain the 3×3 order matrix R(0)'' by removing 

the 2nd row and the 2nd column from R(0) 

(0) ''

0.5 0.8 0.2

0.2 0.5 0.3

0.8 0.7 0.5

R

 
 

=
 
  

 

Applying (3) and (5): w=(0.2793,0.1327,0.5880)T and 

GCI(R(0)'') =1.2356>0.4, so R(0)'' is not of acceptable 
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consistency. From Table II rules, r13

(0)
 is an inconsistent element 

and its value should be decreased. 

Sub-step 3: Obtain the 3 3  order matrix R(0)''' by removing 

the 3rd row and the 3rd column from R(0) 

(0) '''

0.5 0.1 0.2

0.9 0.5 0.7

0.8 0.3 0.5

R

 
 

=
 
  

 

Applying (3) and (5): w=(0.0711,0.6479,0.2810)T and 

GCI(R(0)''') =0.0004<0.4, so R(0)''' is of acceptable consistency. 

From Table II rules, r21

(0)
 is a consistent element. 

Table III shows the identification processes of Step 9. 

Step 10: Apply (16) to find the value that the inconsistent 

element r13

(0)
 is to be modified to: r13

(1)
=0.3394, and  r31

(1)
=0.6606. 

The new modified FPR R(1) is: 

(1)

0.3394

0.66

0.5 0.1 0.2

0.9 0.5 0.8 0.7

0.2 0.5 0.3

0.8 0.3 0.7 .5

06

0

R

 
 
 =
 
 
 

 

Steps 2-3: Applying (3) and (5):  GCI(R(1))=0.0111<0.4, and 

R(1) is of acceptable consistency. 

In the above Step 10, the value generated by (16) is the only 

one automatically adopted. The new revised value 
(1)

13r  is not in 

the scale U[0.1,0.9]. As it is difficult for a DM to precisely provide 

the value 0.3394 in real applications, 
(1)

13 0.3r = (the value that 

derives from the proposed round operation) is suggested to be 

the revised value while, to comply with reciprocity property, 

0.7 is suggested to be the revised value 
(1)

31r . It is worth 

mentioning here that Steps 10-11 with the new rounded 

preference values do not change the final conclusion, i.e., the 

new FPR is of acceptable consistency because GCI(R(1))= 

0.0161<0.4. 
TABLE III. THE IDENTIFICATION PROCESSES IN STEP 9 OF EXAMPLE 1. 

Removed 
alternative 

Order reduced matrix Weight vector GCI 
Potential inconsistent 
elements 

Consistent 
elements 

Inconsistent elements 

1x  (0)'

0.5 0.8 0.7

0.2 0.5 0.3

0.3 0.7 0.5

R

 
 

=  
  

 

0.5880

0.1327

0.2793

w

 
 

=  
  

 0.0317<0.4 r
13

(0)
,r

21

(0)
 r

23

(0)
  

2x  (0)''

0.5 0.8 0.2

0.2 0.5 0.3

0.8 0.7 0.5

R

 
 

=  
  

 

0.2793

0.1327

0.5880

w

 
 

=  
  

 
1.2356 > 

0.4 
r

21

(0)
  r

13

(0)
 

3x  (0)'''

0.5 0.1 0.2

0.9 0.5 0.7

0.8 0.3 0.5

R

 
 

=  
  

 

0.0711

0.6479

0.2810

w

 
 

=  
  

 
0.0004 < 

0.4 
 

r
21

(0)
 

 
 

 

This example shows that Algorithm I significantly improves 

the consistency of the FPR via the modification of just one pair 

of its elements. Therefore, the proposed approach preserves the 

majority of the original preference information, which 

illustrates its feasibility and effectiveness. 

A.2 Example 2 

The following example is adapted from Xia, et al. [25]. 

Consider the following FPR on a set of four alternatives: 

0.5 0.4 0.7 0.3

0.6 0.5 0.6 0.8

0.3 0.4 0.5 0.3

0.7 0.2 0.7 0.5

R

 
 
 =
 
 
 

 

Algorithm I is applied with the same threshold consistency 

value 
 
used in Xia, et al. [25]: GCI(R)̅̅ ̅̅ ̅̅ ̅̅ ̅=0.4. 

Step 1: Let t=0, R(0)=(rij

(0)
)=(rij)4×4. 

Step 2: Applying (5), the priority vector of R(0) is: w=(0.2098, 

0.4021,0.1373,0.2508)T.  

Step 3: Applying (3), the geometric consistency index of R(0) 

is GCI(R(0))=0.6767> GCI(R)̅̅ ̅̅ ̅̅ ̅̅ ̅. 

Step 4: Applying (13), the induced matrix C(0) is: 

(0)

0 0.3294 2.6667 2.8095

6.9762 0 9.8333 6.7143

1.1429 0.9405 0 1.9932

3.2917 2.6111 1.1528 0

C

− 
 

−
 =
 −
 
− 

 

Step 5: The largest absolute value in C(0) is |c23

(0)
|=9.8333. 

Step 6: The deviation vector is: F(0)=(2,0,0,7.8333). 

Step 7: The largest absolute value in F(0) is 7.8333, while the 

rest of values are zero or close to zero. Since 7.8333= (r24

(0)
/r42

(0)
) 

∙( r43

(0)
/r34

(0)
)−r23

(0)
/r32

(0)
 then either r24

(0)
 or r43

(0)
 or both are too large 

(within [0,1]).  

Step 8: Since c24

(0)
=−6.7143 and c43

(0)
=1.1528, the first rule of 

Table I applies and apply Step 10 to find the value that the 

identified inconsistent element is to be modified to. 

Step 10: Apply (16) to find the value r24

(1)
 that the inconsistent 

element r24

(0)
 is to be modified to. After applying the rounding 

process, r24

(1)
=0.4 and, by reciprocity property, r42

(1)
 is also 

modified to 0.6. The new modified FPR R(1) is: 

(1)

0.5 0.4 0.7 0.3

0.6 0.5 0.6

0.3 0

0.4

0.6

.4 0.5 0.3

0.7 0.7 0.5

R

 
 
 =
 
 
 
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Steps 2-3: Applying (3) and (5), we have GCI(R(1))=0.1199 

<0.4, and R(1) is of acceptable consistency. 

   Xia, et al. [25] obtained the following modified FPR after 

three iterations: 

(3)

0.5000 0.3842 0.6754 0.3394

0.6158 0.5000 0.6426 0.7574

0.3246 0.3574 0.5000 0.3141

0.6606 0.2426 0.6859 0.5000

R

 
 
 =
 
 
 

 

The geometric consistency index of R(3) is 0.3596, which means 

that the modified FPR obtained by the current proposed method 

is less inconsistent than with the method proposed in Xia, et al. 

[25]. Additionally, in Xia, et al. [25]’s method, the consistent 

FPR R(3) is obtained applying an auto-adaptive algorithm after 

several iterations rather than identifying and revising 

inconsistent pairwise values at each step. Consequently, the 

consistent FPR R(3) values are significantly different from the 

original preference values, which could be perceived by the DM 

as an untrue representation of his/her opinions, i.e., as 

unreliable. This obviously is avoided with the approach 

proposed in this article since the modification applies to only 

one pair of preference values, while the rest of original 

preference values are kept unchanged. This example also 

reinforces the merits of the proposed methodology. 

Remark 6. Both Examples 1 and 2 use Algorithm I to identify 

the inconsistent elements and then revise them to be consistent. 

The difference of the two examples is that Example 1 uses Step 

9 to determine which element is most inconsistent, while 

Example 2 identifies the most inconsistent elements directly.  

A. 3 Example 3  

Consider the following incomplete FPR on a set of six 

alternatives (adapted from [25, 42]):  

        

 

0.5 0.4 0.3 0.8 0.3

0.6 0.5 0.6 0.5 0.4

0.4 0.5 0.3 0.6

0.7 0.5 0.7 0.5 0.4 0.8

0.2 0.4 0.6 0.5 0.7

0.7 0.6 0.2 0.3 0.5

B

− 
 

−
 
 − −

=  
 
 −
 

−  

 

This incomplete FPR was first used by Xu in [39], then it was 

investigated by Xu, et al. in [42], Xu and Wang in [43], Xia et 

al. in [25]. Algorithm II is applied to improve the consistency 

of this incomplete FPR. To facilitate a comparison with the 

performance reported in [25, 42], the same geometric 

consistency index threshold value is used:  GCI(B)̅̅ ̅̅ ̅̅ ̅̅ ̅= 0.4. 

Step 1: According to Theorem 3, B is acceptable and, 

therefore, it can be completed using its known elements and, 

after applying (9)-(12), its priority vector is obtained: w= 

(0.1448,0.1807,0.141,0.2532,0.1427,0.1373)T. 

Step 2: From  (6)-(8), it is GCI(B)=0.4888> GCI(B)̅̅ ̅̅ ̅̅ ̅̅ ̅. 

    Step 3: As per (18), the auxiliary FPR B̅ is: 

1

2

1 3

2

3

0.5 0.4 0.3 0.8 0.3

0.6 0.5 0.6 0.5 0.4

1 0.4 0.5 0.3 0.6

0.7 0.5 0.7 0.5 0.4 0.8

0.2 1 0.4 0.6 0.5 0.7

0.7 0.6 1 0.2 0.3 0.5

x

x

x x
B

x

x

 
 
 
 −

=  
 
 −
 

−  

 

Step 4: The MatlabTM ‘Fmincon’ function provides the 

optimal solution of CNOM, which after 10 iterations, shown in 

Table IV and Fig. 1, is x=(0.5385, 0.5409, 0.5587). This results 

in the following complete FPR B̃: 

0.5 0.4 0.3 0.8 0.3

0.6 0.5 0.6 0.5 0.4

0.4615 0.4 0.5 0.3 0.6

0.7 0.5 0.7 0.5 0.4 0.8

0.2 0.4591 0.4 0.6 0.5 0.7

0.7 0.6 0.4413 0.2 0.3 0.5

0.5385

0.5409

0.5587
B

 
 
 
 

=  
 
 
 
  

 

TABLE IV. THE OBJECTIVE FUNCTION VALUES AND THE OPTIMAL SOLUTION 

Iterations Objective function  

value f(x) 

Iterations Objective function  

value ( )f x  

Unknown 

variable xl 

Optimal 

solution 

0 1.0471×103 6 1.0365×103 x1 0.5385 

1 1.0446×103 7 1.0365×103 x2 0.5409 

2 1.0445×103 8 1.0365×103 x3 0.5587 
3 1.0416×103 9 1.0365×103   

4 1.0471×103 10 1.0365×103   

5 1.0376×103     

Step 5: Let t=0, and (0) (0)

6 6 6 6( ) ( )ij ijB b b = = . 

 
Fig. 1. The process of objective function optimization 

 

Step 6: Algorithm I Steps 4-9 are applied to identify the 

inconsistent element in B̃
(0)

. From (13), the induced matrix C(0) 

is obtained: 

(0)

0 2.5777 0.3378 5.5596 12.9949 11.2550

0.5311 0 0.6044 0.7804 4.4897 6.6243

1.9010 1.5054 0 1.8862 0.9582 0.9619

3.6664 5.6770 1.5068 0 13.0591 9.8237

9.7889 2.2160 4.2412 4.1750 0 1.8163

5.7159 3.3041 2.6822 2.4814 1

C

−

− − −

−
=

− −

− −

− − 0.7378 0

 
 
 
 
 
 
 
 
  

 

The largest absolute value in C(0) is |c45

(0)
| =13.0591; the 

largest absolute value in the deviation vector F(0)=(8.6667, 

0.5115, 2.8333, 0, 1.0476) is 8.6667, while the rest of values 

are zero or close to zero. Since 8.6667=
(0) (0) (0) (0)

41 14 15 51( / )( / )b b b b  

(0) (0)

45 54/b b− , then either b̃41

(0)
 or b̃15

(0)
 or both are too large (within 

1.0360

1.0380

1.0400

1.0420
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1.0480
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[0,1]). Since c41

(0)
=3.6664 and c15

(0)
=−12.9949, the second rule of 

Table I applies and b̃15

(0)
 has to be decreased. 

Step 7: The inconsistent element b̃15

(0)
 is revised using (20). 

After applying the rounding process the revised values are:   

b̃15

(1)
 = 0.4 and, by reciprocity property, b̃51

(1)
 = 0.6. Thus, a new 

modified FPR B̃
(1)

 is obtained: 

(1)

0.5 0.4 0.3 0.3

0.6 0.5 0.6 0.5

0.4615 0.4 0.5 0.3 0.6

0.7 0.5 0.7 0.5 0.4 0.8

0.4591 0.4 0.6 0.5 0.7

0.7 0.6 0.4413

0.4

0.6

0.2 0.3

0.5385

0.5409 0.4

0.5

0.5

587
B

 
 
 
 

=  
 
 
 
  

 

Step 8: Ignoring the inferred values of the unknown elements, 

the following modified incomplete FPR is obtained: 

      

 

(1)

0.5 0.4 0.3 0.3

0.6 0.5 0.6 0.5 0.4

0.4 0.5 0.3 0.6

0.7 0.5 0.7 0.5 0.4 0.8

0.4 0.6 0.5 0.7

0.7 0.6 0.2 0.3

0.4

0.

0.5

6

B

− 
 

−
 
 − −

=  
 
 −
 

−  

 

Step 9: The priority vector of B(1) is w=(0.0974, 0.1647, 

0.153, 0.2491, 0.2036, 0.1322)T, and GCI(B(1))=0.2345<0.4, 

which means that B(1) is of acceptable consistency.  

The following provides a comparison analysis with the 

existent methods: 

• Xu [39] proposed two non-consistency based goal 

programming models to derive the priority vector of 

incomplete FPRs. Therefore, the results of this 

methodology are unreliable since the considered 

incomplete FPR B is of not acceptable consistency.  

• Since GCI(B)=0.4888>GCI(B)̅̅ ̅̅ ̅̅ ̅̅ ̅ , Xu, et al. [42] proposed 

the application of LLSM and eigenvector based methods to 

improve the MC of B, respectively. These two approaches 

obtained b15
(1)

=0.3, b51
(1)

=0.7, which are close but different to 

the values obtained with the proposed approach in this 

paper. However, the existent methodologies do not include 

any rules to guide the DM on how to identify and revise the 

inconsistent elements. This is not the case with the 

proposed approach herein, which therefore avoids 

arbitrariness. 
• Xu and Wang [43] also developed a method to repair the 

inconsistency of incomplete FPRs. They set  b15
(1)

=0.5
 
and 

b51
(1)

=0.5, which leads to GCI(B(1))=0.2648, a higher value 

than the value obtained with our proposed approach (see 

Step 9 above). Therefore, from the consistency 

improvement point of view, the method proposed in this 

paper is faster than Xu and Wang [43]’s methodology. 

• Xia, et al. [25] developed an auto-adaptive algorithm to 

improve the consistency of incomplete FPRs. This 

algorithm obtained, after five iterations, the following 

modified incomplete FPR with GCI(B(5))=0.3409:  

(5)

0.5 0.4182 0.3252 0.6952 0.3826

0.5818 0.5 0.5844 0.4654 0.4683

0.4156 0.5 0.3229 0.5584

0.6748 0.5346 0.6771 0.5 0.4990 0.7446

0.3048 0.4416 0.5010 0.5 0.6262

0.6174 0.5317 0.2554 0.3738 0.5

B

− 
 

−
 
 − −

=  
 
 −
 

−  

      

Again, the methodology proposed in this paper  outperforms, 

from the consistency improving point of view, Xia, et al. [25]’s 

method, which, after five iterations, changed all the original 

preference values but the main diagonal values. This contrasts 

with our proposed methodology, which retains all original 

preference values but two in one iteration. 

B.  Comparison with Methods by Xia, et al. [25], and Xu and 

Da [26] 

The above comparison between the proposed approach and 

the existent methods was based on a specific example widely 

used in this research area. Next, a statistical based comparative 

analysis is provided. 

Until now, several approaches [1, 9-11, 44] have been 

developed to adjust inconsistency of MPRs in the AHP 

framework. For FPRs, different methods to identify and rectify 

OC, AC and MC also exist. Xu, et al. [21] proposed an index 

(OCI) to measure the OC degree, and developed an algorithm 

to eliminate the ordinal inconsistency of FPRs. Ma, et al. [29] 

presented a methodology to identify inconsistency and weak 

transitivity together with a method to repair inconsistency of 

FPRs. Wu and Xu [45] proposed an algorithm to modify an FPR 

so that AC property is verified. Xu, et al. [46] developed a 

distance-based framework to deal with ordinal and additive 

inconsistencies of FPRs. These methods are only able to handle 

the AC property. However, Chiclana, et al. [23] proved that 

cardinal consistency of FPRs is to be modelled with MC. 

Recently, Zhang [47] investigated the MC and consensus of 

FPRs, although no method to improve the MC of FPRs was 

proposed. As far as we know, only Xia, et al. [25], and Xu and 

Da [26] have proposed methods to improve the MC of FPRs; 

thus, these are the subject of the below comparative analysis 

with our current proposed approach. 

If GCI(R(t))> GCI(R)̅̅ ̅̅ ̅̅ ̅̅ ̅ , then the FPR is not of acceptable 

consistency. In this case, Xia, et al. [25] proposed the following 

equation to improve MC: 

      

( ) 1 ( )

( 1)

( ) 1 ( ) ( ) 1 ( )

( ) ( )

( ) ( ) (1 ) ( )

t t

ij it

ij t t t t

ij i ij j

r w
r

r w r w

 

   

−

+

− −
=

+ −
                    (21) 

where wi (i=1, 2,…, n) is determined as per (5) and θ is a 

parameter of control. Xu and Da [26] first proposed to 

transform FPRs into corresponding MPRs, A=(aij)n×n with 

aij=rij/rji, from which, if its CR is acceptable, the weighting 

vector w=(w1, w2, …, wn)T was derived  using the eigenvalue 

method; otherwise, when CR is less than or equal to 0.1, Xu and 

Da [26] proposed the weighted geometric mean (WGM) and 

weighted arithmetic mean (WAM) methods to improve 

consistency. Once the revised MPR is of acceptable 

consistency, the corresponding revised FPR values are obtained 

as follows: rij=aij/(1+aji).                                                                   

The same expression (3) is used to measure the consistency 

degree of FPRs when comparing the proposed method and the 
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method by Xia, et al. [25]. Also, 1000 FPRs are randomly 

generated (for n=3 to n=9) when comparing the proposed 

method and the method by Xu and Da [26]. All the elements rij 

above the diagonal (i<j) are randomly generated ranging in (0, 

1), by setting rji=1−rij as well as rii=0.5. Average iterations 

needed to obtain the corresponding FPR with acceptable 

consistency are computed for the following different threshold 

values GCI̅̅ ̅̅ ̅=0.1,0.2,0.4, respectively. Table V shows the results 

obtained: method by Xia, et al. [25] with θ=0.1 (column 3); the 

methods by Xu and Da [26] (WGM-column 4; WAM-column 

5);  the proposed method in this paper (column 6). Fig. 2 

provides a graphical representation of the results in Table V.  
TABLE V. THE AVERAGE ITERATIONS FOR XIA, ET AL. [25], XU AND DA [26] 

AND THE PROPOSED METHODS 

n GCI̅̅ ̅̅ ̅ Xia, et al. 
[25]’s 
method 

Xu and Da 
[26]’s WGM 

Xu and Da 
[26]’s WAM 

The 

proposed 

method 

3 0.1 12.297 12.048 11.533 0.8590 

0.2 9.557 9.551 9.068 0.779 

0.4 6.854 6.743 6.318 0.733 
4 0.1 15.247 15.191 14.712 1.942 

0.2 11.528 11.692 11.19 1.713 

0.4 8.376 8.719 8.063 1.379 
5 0.1 15.938 16.087 15.919 4.437 

0.2 12.723 12.829 12.341 3.621 

0.4 9.333 9.479 8.931 2.887 

6 0.1 16.445 16.435 16.838 8.033 

0.2 13.275 13.319 13.307 6.564 

0.4 9.796 10.068 9.648 4.948 

7 0.1 16.551 16.471 17.213 12.788 

0.2 13.312 13.384 13.656 10.236 

0.4 10.165 10.277 10.086 7.717 
8 0.1 16.714 16.752 17.964 15.006 

0.2 13.444 13.56 14.194 11.962 

0.4 10.230 10.365 10.239 11.156 

9 0.1 16.834 16.839 18.622 20.118 

0.2 13.521 13.665 14.584 16.354 
0.4 10.278 10.39 10.458 15.608 

 

 
(a) 

 
                                              (b) 

 
(c) 

Fig. 2. The average iterations of Xia, et al. [25], Xu and Da [26] and the 

proposed methods for different GCI̅̅ ̅̅ , (a) GCI̅̅ ̅̅ ̅=0.1, (b) GCI̅̅ ̅̅ ̅=0.2, (c) GCI̅̅ ̅̅ ̅=0.4 
From Table V and Fig.2, we can see that the methods by Xia, 

et al. [25] and Xu and Da [26] perform similarly in the three 

considered cases GCI̅̅ ̅̅ ̅=0.1, 0.2, 0.4. The shapes are similar at 

different GCI threshold levels. But the average number of 

iterations is different, and it decreases when GCI̅̅ ̅̅ ̅ increases for 

the corresponding methods. However, these methods perform 

differently to the proposed method, which produces lower 

average iterations in all case but n=9. In general, the smaller the 

value of GCI̅̅ ̅̅ ̅, the larger the average number of iterations of the 

four methods. However, the smaller the value of n, the larger 

the differences between the average number of iterations of the 

methods by Xia, et al. [25], and Xu and Da [26]. Specifically, 

when n=3, the differences between the average number of 

iterations of these methods are less than 1. The experiment 

shows that if an FPR is not of acceptable consistency and n = 3 

or 4, our proposed method requires on average only one or two 

iterations to adjust an inconsistent FPR to become of acceptable 

consistency. However, for n=3, the methods by Xia, et al. [25] 

and Xu and Da [26] require approximately 12, 9, and 6 average 

iterations for  GCI̅̅ ̅̅ ̅=0.1, 0.2, 0.4, respectively. Thus, in addition 

to distorting less original information (see next) and improving 

the consistency to higher levels, this simulation shows that our 

proposed method is computationally more efficient than the 

methods by Xia, et al. [25], and Xu and Da [26]. 

Changing of preference values are required when the FPR is 

not of acceptable consistency. In order to show the 

effectiveness of the proposed method, we measure the 

percentage of the original preference values that are adjusted: 

        
1 1

( 1) / 2

n n

ij

i j
AR

n n


= =

=
−


                                                         (22) 

where 
0, unchanged

1, changed

ij

ij

ij

r

r


 
= 

 

. 

In the experiments, average values υij
 
are computed. Table VI 

lists the AR values of the three methods. As stated above, AR is 

always 100% for the method by Xia, et al. [25], and 

consequently its entries for AR for all values of n is 1. The 

methods by Xu and Da [26] use (21) to improve consistency 

and they also modify all entries of FPRs of not acceptable 

consistency. As we can see, the AR values of the proposed 

method increase steadily when n increases from 3 to 9. The 

values are ranged from 0.209 to 0.3784. Obviously, our 

proposed method keeps a high percentage of original 
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information unchanged in the consistency improvement process. 

This also shows the merits of the proposed method. 

 
TABLE VI. THE VALUES OF AR FOR XIA, ET AL. [25], XU AND DA [26]’S METHODS AND THE PROPOSED METHOD WHEN GCI̅̅ ̅̅ ̅=0.1 

n 3 4 5 6 7 8 9 

AR of Xia, et al. [25]’s method 1 1 1 1 1 1 1 

AR of Xu and Da [26]’s method 1 1 1 1 1 1 1 

AR of the proposed method 0.209 0.2337 0.2887 0.3138 0.3425 0.3594 0.3784 

 

C. Comparison of the Priority Vectors Obtained by the 

Different Methods 

We use LLSM (5) to obtain the priority vector of FPRs and 

compare it against the following alternative methods: 

eigenvector method (EM)(Xu and Wang [43]), chi-square 

method (CSM)(Wang, et al. [48]) and least square method 

(LSM), please see in Appendix. 

To compare the robustness of the proposed method, 1,000 

FPRs with different dimension, ranging from 3 to 9, are 

randomly generated. The above four methods are used to obtain 

the priority weights in Step 2 of Algorithm I. The average 

number of iterations of Algorithm I is provided in Table VII and 

plotted in Fig. 3 (GCI̅̅ ̅̅ ̅=0.4). For n=3, the average number of 

iterations of all the methods is lower than 1, denoting that some 

of the randomly generated FPRs are of acceptable MC (these 

FPRs are not needed to be revised); otherwise, only one 

iteration is required to achieve FPRs of acceptable MC. From 

Table VII and Fig. 3, it is clear that the average number of 

iterations increases as the dimension n (number of alternatives) 

increases. No big differences are observed between the 

application of the different methods to derive the priority vector 

of FPRs, although the proposed LLSM method invariably 

required the lowest number of average iterations. However, 

different priority methods will derive different weights, and by 

Eq.(6), they will obtain different GCI values. In some cases, the 

GCI value for LLSM is smaller than the predefined threshold, 

but the GCI values for other methods are larger than the 

threshold, and these methods need one more iteration. Thus, the 

average iterations are different for these different methods. In 

any case, the similarity of values shown in Table VII indicates 

the robustness of the proposed Algorithm I, and therefore the 

effectiveness of the proposed method to improve MC of FPRs 

using different methods to derive the priority vector. 
 

TABLE VII. THE AVERAGE ITERATIONS OF THE LLSM, EM, CSM, LSM, 

CICAVALLO, OC 

n LLSM EM CSM LSM CICavall

o 

OC 

3 0.733 0.742 0.754 0.74 0.772 0.257 

4 1.379 1.455 1.4565 1.499 1.461 0.711 

5 2.887 2.913 3.2184 3.273 3.081 2.124 

6 4.948 5.082 5.5671 5.739 5.265 5.252 

7 7.717 7.919 8.987 9.106 8.231 9.631 
8 11.156 11.646 12.9639 12.846 11.813 15.142 

9 15.6076 15.8617 18.4575 18.4634 16.208 21.368 

 

 
Fig. 3. The average iterations of the LLSM, EM, CSM, LSM, CICavallo, and OC 

D. The average iterations of inconsistency depending on the 

entries 

In the above, we use the GCI to measure the inconsistency 

level, which depends on the weighting vector. Thus, when 

different priority methods are used, the average iterations may 

be different, which has been discussed in Section V.C, and 

shown in Fig. 3. Another important way to measure the 

consistency depends on entries ([49], [50]). In the following, 

we use Cavallo and D'Apuzzo [51], Cavallo, et al. [52]’s 

method to compute the consistency index (CI), and denoted as 

CICavallo. Cavallo and D'Apuzzo [51] also showed that CICavallo

∈ [0.5, 1], and it is consistent if and only if CICavallo=0.5. 

Ordinal consistency (OC)[53] is also another way to measure 

the consistency, which is independent of weighting vector. 

Please see in Appendix. Here, 1,000 FPRs with different 

dimension, ranging from 3 to 9, are also randomly generated. 

Algorithm I is also used to improve the MC and OC, and the 

difference is that we use Cavallo’s CI (See Eq.(17) in [52]), OC 

(See Eq.(11) in [53]) to measure the consistency degree instead 

of GCI, and the threshold is CI̅̅ ̅
Cavallo=0.7. The average number 

of iterations is also depicted in Fig. 3.  

From Fig. 3, we can see that the average number of iterations 

of CICavallo is close to EM and LSM, which shows the 

effectiveness of the proposed method to improve MC. When the 

proposed algorithm is used to improve OC, the average number 

of iterations are 0.257, 0.711, and 2.124 for n=3, 4, 5, 

respectively, which are remarkable smaller than other methods. 

It denotes that most of the original randomly generated FPRs 

are of OC, or they become OC fast with less MC improving 

iterations. The average number of iterations is close to other 

methods when n = 6, and it is larger than other methods when n 

≥ 7. It shows that the proposed IIM method is effective for 

improving MC, not OC when n ≥ 7, as OC is mainly related to 

transitivity or cycles of triad.  
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VI. CONCLUSIONS 

This paper investigated the consistency of FPRs based on the 

multiplicative transitivity property. First, the GCI proposed by 

Xia, et al. [25] was applied to measure the degree of MC of a 

given FPR. For a complete FPR that is not of acceptable 

consistency, a novel IIM method to improve its consistency was 

proposed. For an incomplete FPR, an CNOM has been put 

forward to estimate its missing values before the application of 

the IIM method to identify and modify the inconsistent 

elements. Compared with the existent methods, the proposed 

method has the following advantages: 

1) A novel local adjustment method is proposed to modify 

the most inconsistent element at each consistency 

improving round, with values belonging to the original 

preference scale range.  

2) The proposed method is more efficient because fewer 

average iterations are needed for different cardinality n (n=3, 

4, …, 8) as reported by simulation experiments. 

3) The proposed method retains the majority of the DM’s 

original information. This makes the results more reliable 

and acceptable by the DM. 

4) The proposed method is also effective for improving the 

MC with Cavallo, et al. [52]’s CI. 

Meanwhile, there are two interesting research directions for 

the future: 

1) how to extend the proposed method to other types of 

preference relations [54, 55]; 

2) additive consistency is another important consistency 

property of FPRs; thus, it is worth investigating in the 

future how to improve locally the additive consistency 

level of FPRs. 
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