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20-22]. The OC, which is based on the concept of the weak transitivity [23], is defined as follows: “if alternative x, is
preferred to alternative x; and alternative x, is preferred to alternative x,, then alternative x, should be preferred to

alternative x, ”. This type of consistency is considered to be the minimum requirement to be fulfilled by a ‘consistent’ PR [4,

21, 24]. A stronger concept than OC is CC because it requires in addition that the “intensity with which the preference is
expressed transits through the sequence of objects in comparison” [4].

In the Analytic Hierarchy Process (AHP), Saaty [4] introduced the notions of perfect consistency and acceptable
consistency. This was based on the consistency ratio (CR) between the consistency index (CI) of an MPR and the average
ClIs of a large number of random generated MPRs of the same order. An MPR with CR < 0.1 is considered of acceptable
consistency. However, acceptable consistency does not imply OC as illustrated by Kwiesielewicz and van Uden [17] where
an MPR with CR smaller than 0.1 was shown to be ordinally inconsistent, i.e., it contained inconsistent elements.

There are also studies on the consistency of FPRs that deal with different types of inconsistencies: OC [16, 25], additive
consistency (AC) [16, 26-28] and multiplicative consistency (MC) [13, 29]. Ma, et al. [30] introduced a method to detect and
repair the inconsistency of strict FPRs. Li, et al. [22] reviewed the AC of FPRs. Xu, et al. [15] developed an OC index (OCI)
to measure the level of OC of FPRs and an algorithm to eliminate unreasonable 3-cycles in the relation digraph. Xia, et al.
[13] adapted the geometric consistency index (GCI) for MPRs proposed by Aguaron and Moreno-Jiménez [31] to the case of
FPRs, which was the base of a method to improve their MC. However, Xu, et al. [29] provided an example where
contradictory preference values may still be present in an FPR that fulfils the MC test, which suggests that MC on its own is
not sufficient to assure the consistency of FPRs. Thus, it is clear that there is a need for a study that focus on both the OC and
CC at the same time.

There conflict between AC and the scale for measuring FPR values ([0,1]) led Chiclana, et al. [20] to propose a functional
modelling of consistency of FPRs, that under the conditions of monotonicity and continuity was proved to be verified by a

representable uninorm with strict negator operator N(x)=1-x. Because the MC is an AND-like representable uninorm

with the above strict negator operator, Chiclana, et al. [20] concluded that MC is the most appropriate property for modelling
CC of FPRs. Meanwhile, few researches have investigated both the OC and the MC at the same time. Because the OC can
ensure the rationality and the MC can measure the level of consistency and lead to more consistent FPRs. Xu, et al. [29]
developed some methods to modify the ordinal and multiplicative inconsistencies for FPRs. However, their improvement
methods have two steps: ordinal inconsistency modification step, and multiplicative inconsistency modification step. The
latter step aims at improving multiplicative consistency by adjusting the elements that contributes most to the multiplicative
inconsistency, which it is followed by a checking of whether the adjustment destroys ordinal consistency. If the modified
FPR does not have ordinal consistency, the method requires a further check and adjustment of the element second most

contributor to multiplicative inconsistency. These are obviously complex and time-consuming methods. Although the OC
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and MC of FPRs have been deeply investigated, there are still some open questions to be answered:

(1) In the existing work (for example, Refs. [13, 29]), the GCI threshold is usually set artificially and may not be
reasonable. Thus, the following question needs to be addressed: is there a reasonable threshold for GCI to measure the
level of MC?

(2) One of the two types of consistency discussed is not enough to ensure the rationality of the FPRs, while improving the
two types of consistency separately will make the calculation process time-consuming and will also distort the
information greatly. Thus, the following question requires also consideration: Can the OC and MC be improved
simultaneously with a unique single method?

This paper aims at answering the above two research questions and fill a gap in the current research knowledge. This
paper extends GCI to measure the MC of an FPR. A new method to detect and measure the OC is also devised. Finally, an
integrated algorithm to find the inconsistent elements to improve the OC and MC simultaneously is proposed. Monte Carlo
simulation are also provided to show the effectiveness and advantages of the proposed methods.

The remainder of the paper is organized as follows. Section II contains basic concepts about consistency of FPRs that will
be used in subsequent sections. Section III proposes an MC-based algorithm to identify FPRs multiplicative inconsistent
elements. Section IV presents a new index to measure the OC level and an algorithm to search the ordinal inconsistent
elements of FPRs. Section V presents an algorithm to adjust the FPR inconsistent elements, while examples of its application
and a comparison with existing methods in the literature to demonstrate the effectiveness of the proposed method are
provided in Section VI. Finally, in Section VII conclusions are given.

I1. PRELIMINARIES
This section provides the basic definition related to FPRs needed in the following sections.

For simplicity, let N ={1,2,...,n,n>2} and X ={x,,ie N} be a finite set of alternatives. In multi-attribute decision
making problems, DMs aim to get ranking of alternatives based on the provided information which is assumed to be in the
form of FPRs.

Definition I [11]: “An FPR R on a set of alternatives X is a fuzzy set on the cartesian product set X x X , which is
with

characterized by a membership function g, : X x X' —[0,1], which is represented by a nxn matrix R=(r;)

nxn?

element 7 interpreted as the preference degree of the alternative x, over the alternative x;. A value of r, =0.5
indicates indifference between x, and x; (x;~x;); When 0.5<7;, <1, then X, is strictly preferred to x, (x, > x,)
with 7, =1 indicating absolute preference of x, over x,; while 0<r, <0.5 indicates that x, is strictly preferred to
x, (x; < x;) with 7, =0, indicating absolute preference of x, over x,”.

This interpretation underlines a reciprocity property of preference often assumed to be verified, as it is the case in the
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present paper:

ro4r, =1, r,=05, r e[0,1], Vi,je N ()

A. Ordinal Consistency of FPRs
The OC of FPRs is described as follows:
Definition 2 [15]: “An FPR R =(r;),,, is OC when forall i,j,ke N, i# j+#k, the following properties are verified:

(1) if[{r, >05, rn,>205],0r[r, 205, 7, >05]then 7, >0.5;

(2) if[r, =0.5 and r, =0.5]then 7, =0.5".

ij
Xu, et al. [15] applied graph theory to investigate the OC of FPRs.

Definition 3 [15]: “The adjacency matrix of an FPR R =(7,),,, is:

nxn

1, rl.jZO.S, i#j

B= (bg/')nxn 5 bij :{ (2)

0, otherwise

The digraph of the FPR R is denoted by G =(X,4), where the set of alternatives X is the node set and 7, >0.5
A={(x,x;)|i# jn r; 20.5} is the directed arc set. When r, =05, i#j,itis also r, =0.5 and therefore there exist
two directed arcs between x; and x; (onefrom x, to x,,andanother from x, to x).”

Remark 1: Tt is easy to prove that if an FPR R violates OC, then there must exist at least one directed 3-cycle in the

digraph G of R, ie. x, > x, — x, —> x;. Therefore, the OC of FPRs requires directed 3-cycles to be identified and

eliminated.
B. Multiplicative consistency of FPRs
MC refers to the multiplicative transitivity property of preferences:

Definition 4 [11]: “An FPR R =(r),,, 1s MC if it satisfies:

nxn

Lilyly =Fililys Vi, j,ke N 3)

ij" jk

Which is referred to as the multiplicative transitivity property”.
Remark 2: Eq.(3) requires that 7, >0, Vi, j, and therefore it can be rewritten as:
v 7. ij

Sl W i keN ()
I"ﬁ rk. rjk

i

The value 7, / r, represents the ratio of the preference power for x, to that of x, and it is interpreted as follows: x,

i

is r,[r, times preferred to x;. This value will be referred to as the direct judgement of alternative x, over alternative x;,,

T '
Ti Tk

while will be referred to as the indirect judgement of alternative x, over alternative x, via (though) alternative
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X, .
In order to measure the level of consistency, Aguardén and Moreno-Jiménez [31] proposed the geometric consistency index

(GCI) for reciprocal MPRs 4 =(a,),,, (a,-a,=1):

2 2
GCI(A) = m;(log a; —logv, +logv,) 5)

where v =(v,,v,,---,v,)" is the following priority vector derived from A4:

1/n

n l/” n n n — .
vi:(H/_zlal.j) /21:1(1—[;;1“&) ; Zlevi—l and v,>0,ieN.
According to the theoretical relation between CR and the GCI, Aguaréon and Moreno-Jiménez [31] provided the below

approximated threshold values for GCI (Table I).

TABLE 1. THE APPROXIMATED THRESHOLDS FOR GCI

CR 0.01 0.05 0.1 0.15

GCI(n=3) 0.0314 0.1573 0.3147 0.4720

GCI(n=4) 0.0352 0.1763 0.3526 0.5289

GCI(n>4) ~0.037 ~0.185 ~0.370 ~0.555

The following transformation provides a route to derive an MPR 4 = (q,),,, fromanFPR R=(r,),,, [32]:
r.
a;, =— (6)

Y

Motivated by Aguar6on and Moreno-Jiménez [31], Xia, et al. [13] adopted the GCI to the case of FPRs.

Definition 5 [13]: “Let R =(7,),,, beanFPR,and w= (W, Wy, w,)" be the priority vector derived from R satisfying

nxn

Z:;lm=1, w, <1 and w, >0, i e N, then the GCI of R is given by

2 2
GCI(R)=—————% (Inr, ~In7, —Inw +Inw, 7
(R) (n—l)(n—2);( ry—Inr, —Inw, +Inw,) (7

When GCI(R) is zero, the FPR R is of perfect MC. The smaller the value of GCI(R), the better the consistency of R ”.
In practical situations, the DMs’ FPRs are not of perfect MC. In these cases, a threshold value GCI is set when

GCI(R)<GCI the FPR R is considered of acceptable MC. Xia, et al. [13] did not provide GCI threshold values,

although it is obvious from Eq.(5) and Eq.(6) that the threshold values of Table I for MPRs can be used to check acceptable
MC for FPRs.
Given an FPR, checking its acceptable MC requires the computation of its priority vector in the first place. Wang and Fan

[33] proposed the following logarithmic least squares model to obtain the priority vector from an FPR:

(M-1) min J = ZZ(lnri/. —Inr, —Inw, +In w,.)2

i=1 j=1
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s.t. Zwl. =1, 0<w, <L ieN

i=1

The solution to (M-1) was also given by Wang and Fan [33]:

w=—" I/ ieN (8)

It coincides, as expected, with the one given by Aguardon and Moreno-Jiménez [31] for MPRs using Eq.(6).

Xu, et al. [29] illustrated with some examples that FPR may still contain contradictory judgments in terms of OC but be
regarded as MC. Thus, to study consistency of preferences properly MC is not sufficient on its own and OC should also be
considered. This is the focus of Section IV where an effective method to measure OC of FPRs is put forward. Before this can
be done, in next section the problem of detecting multiplicative inconsistency is first tackled.

III. MULTIPLICATIVE INCONSISTENCY DETECTION FOR FPRS

First, measuring the ‘MC degree’ of FPRs can help devising effective methods to detect its most inconsistent elements.

Subsequently, we can improve its consistency.
A. The Multiplicative Inconsistency of FPRs
The equality 7, /r, =(r, /1) (1, /ry) (for all i,j,k € N) holds for an FPR R =(r),,, of perfect MC. This property

can be explained intuitively in Fig. 1, which combines direct and indirect judgments on a judgment scale.
If R is of perfect MC, all indirect judgments (7, /1,,)-(r;;/r) Wwould be located in the blue dot of Fig. 1. Otherwise, there
would be indirect judgments located on the right of the blue dot (as the two provided in Fig.1), which indicate preference

ratios higher than the direct judgment, and/or on the left of the blue dot (as the one indirect in Fig. 1), which indicates

preference ratios lower than the direct judgment.

Preference equivalence

=
<

— =1
Tji
1
1
Tike Tiej : Tij Tike Tkj Tik Tij
Tiei Tjk I Tji Tiei Tjte Tiei T
1
A ! PY A A
X Xj
Through £, Through k, Through /3

Fig. 1. The direct and indirect judgments on a judgment scale

From Fig. 1, if R is not MC, then the direct value 7, /r, and the indirect preference value (7, /r,)-(;/r,) may be

diversely scattered and their deviation is measured as follows:
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i T Ti " Vi T
2
v,y T, 7. .7,
) L)r'_ki = log s —10g r;—ki (10)
Bii T Tk T o T

Remark 3: Clearly an FPR is MC if and only if the deviation values from Eq.(9) to Eq.(10) are O for all i,j,ke N .

or

Meanwhile, if a particular deviation value associated with 7, /r;, is not 0, then we can say that 7; is an inconsistent

element of the FPR.
In order to measure the inconsistency degree of an FPR and detect the multiplicative inconsistent elements, we first

aggregate the above deviations values:

N r,or, Ty
0,-—— 3 oLl vijken -
on=2 Tk T T

Ji i rjk

Alternative approaches to define 6, are possible, such as the worst deviation approach:

i

r. d v,
Hi/_ = max (5[i,’;—kiJ], Vi, j, ke N (12)

k#i,k#j
v Ti Ta T

or the geometric mean approach

1
n I3 . 7. n-2
6,=| [] o~ 22| | vijkeN (13)
k=tkikz; \ Vi Y Vi

Different definitions of ¢, and & would result in different values of 6, which may lead to different results and

different formulas in practical problems. In any case, in the symmetrical matrix © =(6,),,, (6, =0,), the larger the value

nxn

7

i

the more inconsistent the element 7; is. Thus, the most inconsistent element of an FPR will correspond to the largest

value in the matrix © =(6,),,, - Thus, the following algorithm (Algorithm 1) is proposed.

nxn

Algorithm 1. Let R =(r;),,, beanFPR,and GCI(R) a consistency threshold value from Table I.

nxn

Step 1. Compute GCI(R) using Eq.(7). If GCI(R)<GCI(R), then R has acceptable MC and go to Step 5. Otherwise,

continue with the next step.
Step 2. Compute the deviation & using Eq.(9) or Eq.(10).

Step 3. Compute ¢, and establish the matrix © =(6,),,, according to one of Eq.(11) to Eq.(13).

nxn

Step 4. Find the value Q ;, = max; A0,} in matrix © = (6;),., » then the corresponding 7, ;  is the most multiplicative
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inconsistent element in the FPR R.

Step S. End.

B. The Accumulation of Multiplicative Inconsistent Elements
Given an FPR, the accumulation of the inconsistency values associated with its respective elements can be considered as
its multiplicative inconsistency degree:

1 n n

= (14)
n(n-1) =53 g
Alternative expression for @, such as the worst deviation is stated below
6=nex(@) (15)
L]

Depending on the different mathematical formulations used for 6 and ¢,, ¢ may result in different values. In any case,

when =0, R will be of perfect MC; while the smaller the value of @, the more consistent it will be.
As we know, GCI is equivalent to CI in that it is used to measure the degree of inconsistency of R, but it cannot identify

inconsistent elements conveniently and intuitively. Therefore, after measuring the degree of inconsistency by GCI, if

GCI(R)>GCI(R), ©=(0,),,, can be used to further locate the FPR multiplicative inconsistent elements. The following

nxn

example illustrates this process.
Example 1: Assume a DM gives the following FPR (adapted from [15, 34]):

0.5 07 09 0.5
03 0.5 0.6 0.7
101 04 05 08
0.5 03 02 0.5

Algorithm 1 is run to compute the multiplicative inconsistent degree of R, and to identify its most MC element. Eq.(8)
results in  w=(0.4697,0.2428,0.1619,0.1255)" . From Eq.(7), it is noticed that GCI(R,)= 1.4581>0.3526 , and
consequently R, is not of acceptable MC. Using Eq.(9) to Eq.(13), the corresponding matrix @ =(6,),,, are obtained

nxn

and shown in Table II:

TABLE II. THE MATRIX ® OBTAINED BY DIFFERENT DEFINITIONS OF 9/1 AND §.

5 5 (By Eq.9) 5 (By Eq.(10))
©
e} [0 13195 22640 2.6391] 0 18818 6.8668 7.8566
(By Eq.(1D)) 13195 0 09445 13195 1.8818 0  0.8920 1.8818
22640 09445 0 22640 6.8668 0.8920 0  6.8668
[2.6391 13195 22640 0 | 7.8566 1.8818 6.8668 0
¢} [0 1.6946 3.5835 3.5835] 0 28717 12.8416 12.8416
(By Eq.(12)) 1.6946 0 0.9445 1.6946 28717 0 0.8920 2.8717
35835 0.9445 0 3.5835 12.8416 0.8920 0  12.8416
13.5835 1.6946 35835 0 | 12.8416 2.8717 12.8416 0
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¢} 0 12651 1.8397 2.4643 0 1.6005 3.3845 6.0727
(By Eq.(13)) 12651 0 09445 1.2651 1.6005 0  0.8920 1.6005
1.8397 0.9445 0 1.8397 33845 0.8920 0  3.3845

24643 12651 18397 0 6.0727 1.6005 33845 0

Form Table II, it is obvious that 6, is the largest value, thus 7, is treated as the most multiplicative inconsistent
elementin R, .

IV. ORDINAL INCONSISTENCY DETECTION FOR FPRS
This section introduces first some basic concepts of OC of FPRs. Then, an algorithm is provided to construct a matrix to
locate ordinally inconsistent elements and the ordinal inconsistent matrix of an FPR, respectively. Some properties of the
ordinally inconsistent matrix are also investigated.
A. The Ordinal Inconsistency of FPRs
The OC of FPRs directly affects the alternatives ranking. As discussed in Section 2, an FPR that passes the test of

consistency (GCI) does not guarantee its OC. Thus, an effective method to determine the level of OC is required.
Xu, et al. [16] proposed the definition of ordinal inconsistency of an FPR as below.

Definition 6 [16]: “FPR R =(7;),,, is ordinally inconsistent if it has contradictory elements 7,7, ,r, for i,j,ke N,

i
i# j#k satisfying
[r, >05, 1,205, rp,<05]or
[, 205, 1, >05, rp,<05]or
[r, =05, r,=05, r,#05]”
Definition 6 is equivalent to Definition 7.
is ordinally inconsistent if it has contradictory elements r,,r

nxn ij o ik

Definition 7: “FPR R =(r;) r, for i,j,keN,
i# j#k satisfying
[r, <05, 1, <05, r,=205]or
[, =05, 1, <05, r,205]or
[r, =05, r,=05, r,#05]”
The following result derives from Definitions 6 and 7:

is ordinally inconsistent, if and only if one the following cases is true.

nxn

Theorem 1: FPR R = (r;)
Caseal:If 7, /n, >1, r,/r, >1,then 7, /r, <1;
Casea2: If 7, /n, >1, n.[ry>1,then r,/r, =1;

Casea3: If 7, [, >1, r,/r, =1,then 7, /r, <1;
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Casead: If 7, /r, >1, r,/r, =1,then 7, /r, =1;
CaseaS:If 7, /n, =1, r,/r, >1,then 7, /r, <1;
Casea6: If 7, /r, =1, r,/r, >1,then r, [r,=1;
Casebl:If 7, /r, =1, n,[r, =1,then 7, [r, <1;
Caseb2: If 1, /r, =1, r,/r, =1, then 1, /r,>1;
Casecl: If 7, /r, <1, n,[r, <1,then r, [r,>1;
Casec2:If 7, /r, <1, r;[r, <1,then r,/r,=1;
Casec3:If 7, /r, <1, r;/r, =1,then r, /r, >1;
Casecd: If r, [n, <1, r,[r, =1, then r, [r, =1;
Casec5:If 7, /r, =1, n,[r, <1, then r, [r, >1;
Casec6:If 7, /r, =1, r,[r, <1,then 7 /r,=1.

Proof. On the one hand, if R is ordinally inconsistent, according to Definition 6 and Definition 7, it is easy to see that one of

the above 14 possible cases is true. On the other hand, if one of the Cases al-bl is true, then it is r, /r;, , T / Tys T / =1
(i# j#k) (with at least one of them being >1), and therefore it would be 7, r,, 7, >0.5 (with at least one of them
being >0.5). i.e., there would be a directed 3-cycles x; > x, = x; = x, (with at least one > in the cycle) and the FPR
would be ordinal inconsistent. If one of the Cases b2-¢6 is true, then itis 7, /1, 7, /1, 1 /r; 21 (i # j#k) (with at least

one of them being >1), which means that 7, r,, , >0.5 (with at least one of them being >0.5), i.e., there would be a

direct 3-cycle x, = x, = x, = x; (withatleastone > in the cycle) and the FPR would be ordinal inconsistent. O

Theorem 1 can in practice be used to find the contradictory elements of an FPR that lead to directed 3-cycles. It can also
be used to propose a measurement of ordinal inconsistency of an FPR R via the following Algorithm 2 designed to compute

a symmetrical matrix ¥ =(y,),,, by detecting all possible combinations of three judgments and analyzing the ordinally

nxn

inconsistent conditions.

Algorithm 2. Let R=(r,),,, beanFPR.

Set ¥ = zero(n)

Forall i,j,k (i#j#k#i)from]1to »n

If log(r, /r;)-log(r, [r;) <0 and log(r; /r;)-log(r,; /ry) <0, then

vy =y, +1

10



Page 11 of 30

oNOYTULT D WN =

If log(r; /r;)-log(r, /1) <0 and log(r, /r;)-log(r, /r,) =0, then
Wy =+l

If log(r, /1,)=0 and log(r; /r,) =0 and log(r,/r,)# 0, then
Wy =+l

If log(r, /1,)#0 and log(r, /r,)=0 and log(r, /r;) =0, then
Wy =y +1

If log(r, /1,)=0 and log(r, /r,)#0 and log(r; /r,) =0, then
Wy =y +1

If log(r,; /r;) =0 and log(r, /n,)-log(r,; [r;) >0, then
Wy =+l

End if

End for

Output ¥

Notice that the smaller the value of y;, the more ordinally consistent the element 7, is. Thus, the largest value in ¥

will correspond to the most ordinally inconsistent element in R, which would need to be rectified to improve the OC of R.

Notice that in a directed 3-cycle with one inconsistent arc x; — x;, the reverse is not in G. However, in the process of
consistency improvement, due to the reciprocity property we need to change both the value of 7, and r,. If 7 is an
ordinal inconsistent element which forms a directed 3-cycle, both 7, and r, are in the same 3-cycle. Hence, in the process

of improvement, we can consider any one of them.
We use the following example to demonstrate the usefulness of Algorithm 2.
Example 2 (Example 1 continuation):

By Algorithm 2, the matrix ¥ =(y;),,, Is established:

nxn

Y=

_—0 O =
—_— 0 O
S = = N

0
1
1
2
By observing the matrix W, it is noticed that the element 7, appears twice in all directed 3-cycles while the rest of

values appear once. Therefore, by Theorem 4 there exist the following two directed 3-cycles:

L={x, >x, >x, ~Xx, X >X =X, ~X}.

11
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Then, r,, or 7, areregarded as the most ordinally inconsistent elements.

B. Overall OC

The ordinal inconsistency of an FPR is measured by the number of directed 3-cycles present in its digraph. The following
result provide a convenient relationship between the sum of the elements of matrix ¥ and the number directed 3-cycles
present in the digraph of an FPR.

Theorem 2: For FPR R, the sum of all elements in ¥ =(y),,, is 6 times the number of directed 3-cycles in G.

Proof. The elements of R in a directed 3-cycle in G are contradictory and therefore by Algorithm 2 it is

Wy =YW, =Wu=V¥,=¥, =y, =1. Thus, the sum of all elements in ¥ =(y,),, is 6 times the number of directed

nxn

3-cyclesinG. [

Theorem 2 justifies the below definition of overall OC of an FPR.

Definition 8: The overall OC of an FPR R =(r;),,, is:

nxn

n_n

vR =3 S, (16)

i=1 j=1
The following theorem is provided:

Theorem 3: An FPR R =(1,),,, is OCifandonly if y(R)=0.

Proof: If R is OC, then there is no directed 3-cycles present in its digraph and consequently it will be (R)=0. On the
contrary, if y(R)=0 then it is y, =0, Vi,j€N and therefore no element of R is present in a directed 3-cycle;

consequently R is OC.

The larger the value of y(R), the less OC R is.

The FPR of Example 2 has an overall OC of w(R,)=2, and it is not OC.

V. AN ALGORITHM FOR IMPROVING CONSISTENCIES

When multiplicative and ordinally inconsistent judgments are detected, the next task is to remove them. In order to
achieve this goal, in the following, an automatic procedure to guide the DM on how to revise inconsistent preference values
are proposed.

In order to revise the inconsistent element 7, / r; » all possible indirect judgments (7, /7,)-(r; /1) are used to derive the
following revised value of 7, /7,
1

k=Lkzik=j Vg Vi

In FPRs, DMs tend to provide their preference information using the discrete scale S, o, =10.1,0.2,0.3,0.4,0.5,0.6,
12
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0.7,0.8,0.9} . However, the revised value 7; using Eq.(17) is generally not in this scale. Thus, to make the revised values in

this scale, values for 7/ /r; viaEq.(17) will be matched with the Table III closet to ratio value in the S, -

TABLE III. THE RATIOS CORRESPONDING TO THE VALUE IN THE SCALE S[O.I,OBJ

noo| oo |02 | e3 | 04 | 05 |06 | 07 | 08 | 09
Tji 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1
Ratio 0.1111 0.25 0.4286 0.6667 1 1.5 2.3333 4 9

In particular, when the obtained value 7, /r/ is greater than 9, then the following will be set 7/ =0.9; while fora 7 /r;
lower than 0.11111, it will be set 7/ =0.1. Meanwhile, #//r is close to 1 it will be 1/ =0.6 when r//r;>1, and
;=04 when r/ri <1.

Based on Algorithms 1 and 2, the automatic approach to identify and repair inconsistent judgments is detailed in

Algorithm 3 and depicted in Fig. 2.

Algorithm 3. Let R =(r;),,, beanFPRandlet 7 be the number of iterations.

nxn

Step 1. Let R” =(r;"),., =(;),,, and 1=0.

Step 2. Calculate the priority vector w'” = (w”,w{’,---,w\")" of R by Eq.(8).
Step 3. Construct the matrix ¥ = (y;"),,, by Algorithm 2.

Step 4. Compute GCI(R") by Eq.(7) and w(R"”) by Eq.(16).

Step 5. R can be classified into the following four types.

Step 54:1f R is both multiplicative and ordinally inconsistent (GCI(R") > GCI(R), w(R"™)#0), go to Step 6A.
Step 5B: If R is MC but ordinally inconsistent (GCI(R“) < GCI(R), w(R")=0), go to Step 6B.
Step 5C: If R™ is OC but multiplicative inconsistent ((R“)=0, GCI(R")> GCI(R)), go to Step 6C.

Step 5D: If R is both MC and OC, thatis GCI(R")< GCI(R), w(R")=0, then go to Step 9.

Step 6. The treatments of inconsistencies.

Step 6A4: Following Step 5A:

(1) According to Algorithm 1, establish matrix @ =(6")

nxn *

. @) _ . . @) _ )y .
(2) Flnd !//i:ju - H}E}X{W;t)} In matrix ‘P(l) = (l//z;t))nxn and gi,,,tjm - rrl_la}_x{gijt } In matrix ®(t) = (sz) )nxn :

(3) If the corresponding ")

mJIm

and ri(’j) are the same element (i.e., i

m

=i, Jj,=J,) then it is regarded as the most

inconsistent element to be adjusted. Otherwise, we automatically select the corresponding 7’ as the most inconsistent

oJo

element to be adjusted.

13
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(4) Compute the value of r,.;“) / rj'l.(’) using Eq.(17) and identify the closest ratio to r,.jf(') / rj’l.“) in Table III. Then find the

revised value r,-;(’) and go to next step.

Step 6B: Following Step 5B:

© in R" is regarded as the most

. o _ O : O — (0 :
(1) Find —rr’),%x{l//ij. } in matrix W =(y,"),,,, then the corresponding 7,

ordinally inconsistent element. If there are two or more most ordinally inconsistent elements, choose any one to be the most

ordinally inconsistent one.
(2) Compute the value of 7" / ri" using Eq.(17) and identify the closest ratio to 7, / ri" in Table III. Then find the

. t
revised value 7

; and go to next step.

(3) If the value of 7 satisfies log(r" /r/it))-log(lfi;") /rj’."))<0, go to next step. Otherwise, we set 7 =1-7"

i i o

o

(1)
Ji j

Ty

Step 6C: Following Step 5C:

(1) According to Algorithm 1, establish matrix @ =(6")

nxn *

then the corresponding ) in R" is regarded as the most

nxn > 'mJm

(2) Find 6" =max{19,.j(.’)} in matrix ©“ =(0")
L]

mJm

multiplicative inconsistent element.
(3) Compute the value of r,./f(’) / if/.'l.(’) using Eq.(17) and identify the closest ratio value from Table III. Then find the

r,

revised value 7;

(4) If the value of " satisfies log(r" / r)-log(r;" / r")>0, go to Step 7. Otherwise, go back to (2) to search the

second largest value in matrix © =(6,"),,, to improve.

nxn

Step 7. New improved FPR R"*" = ("*"),_, where

nxn 2

(t+1)  (t+1)\ _
(’;j s rjj -

(18)

(0 0 ;
("), otherwise

{(Vi;m Jd—r™), if " is the inconsistent element
Step 8. Let ¢=¢+1, then go back to Step 2.
Step 9. Output #, R”, w(R”) and GCI(R").

Step 10. End.

Remark 4: In Step 6A, after finding the largest value l//l.(’j). and 01.(’]). , the most multiplicative inconsistent element 7"

'mJm

(1)

oJo

and the most ordinally inconsistent element ) in R are identified. If 7} and 7" are the same (i, /) element in R,

14
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; we naturally adopt the above improved method; Otherwise, priority is given to revise the ordinally inconsistent element
2 because it is considered the minimum requirement for the judgement information not to be illogical. This explains why in
Z Algorithm 3, the ordinally inconsistent element r[(j.) is selected to be the rectified element when both inconsistencies
7 . . ..
8 happen in different fuzzy preference value positions.
9
10
11
:
13
14
15 Input an FPR R and the
threshold value GCI

16
17
18 Compute GCI(R) and ¥ (k)
19
20
21 v l l y
22 Ris R I:S X R is R is both
23 multiplicative multiplicative ordinally multiplicative
24 and ordinally consistent but consistent but and ordinally

inconsistent i orqully n?ultipli-cative consistent
25 \l/ inconsistent inconsistent
26
27 Identify th i

entify the ) )
28 multiplicative Identify and modify Output the
) D
29 inconsistent element the ordinally consistent
30 T,,j, and ordinally inconsistent element FPR R'
31 inconsistent element TioJo Identify and modify P(R" a’nd
32 Tiojo the multiplicative GCI(R")
inconsistent

gi element 1; ;-
35 End
36
37
38 - -
39 Modify the log (r—’) log (T—{")>O?

inconsistent It Jt
40 element
41
42
43
44 Fig. 2. The process of identifying and repairing inconsistent judgments in Algorithm 3
45
46
47 Remark 5: In Algorithm 3, we identify the most inconsistent element (i.e. search the maximum value in the matrix
48
49 YO = (" and O =8 . If there exist more than one inconsistent element in R with maximum value, then

l//y nxn A nxn

50
g; the inconsistent element with value closer to 0.5 is selected. If more than one value results again, then any of them is selected
g i (randomly, for example) as the inconsistent element to adjust.
55 Remark 6: In Step 6B, when the FPR is ordinally inconsistent but MC, the revised values should reverse the direction of
56
57 the ordinally inconsistent elements. If the revised values do not satisfy this requirement, i.c.,
58
59 log(rl.j(.t) / rj(l.’)) . log(rl.jf(’) / rj'l.(’)) <0, then we just reverse its direction by changing their original values. If there are two or more
60
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ordinally inconsistent elements, we choose any one to reverse it, this does not affect the final result. This is also verified in

our Monte Carlo simulation experiments. In Step 6C, the FPR is the OC but multiplicative inconsistent (i.e., y(R"”)=0

and GCI(R")> GCI(R)). Thus, the revised value rl.]f(‘) should not reverse the direction of the original value I”;t). In

order to achieve this goal, the constraint log(rl.;t) [y )-log(;;,jf“)/rj’i(’)) >0 isimposed, ie., if 7 >0.5(e, #”/r >1),

then the adjusted value 7/ also should be larger than 0.5, i.e., 7 /ri >1. Similarly, if r" <0.5, (e, #”/r <1),

q

(1)

then the adjusted value rl./f should be lower than 0.5, i.e., rg./f‘” / r/.',(’) <1. Therefore, the revised element should satisfy

is chosen to be improved.

nxn

log(’”,-(-’)/ ”,&”)-log(rif‘” / rj'.(’)) > 0. Otherwise, the second largest value in matrix 0 =(6;"”)

y y 1

This will guarantee the construction of an FPR with acceptable MC and OC.
VI. ILLUSTRATIVE EXAMPLES, COMPARATIVE ANALYSES AND DISCUSSIONS

This section includes two subsections. The first one offers some illustrative examples, and comparisons with the previous
methods in literature. The second one provides some simulation experiments to additionally support the effectiveness of the
proposed methods.

A. Hlustrative Examples and Comparative Analyses

In this section, we will offer four examples, one for each type of inconsistency situation of Algorithm 3 (Fig. 2), to
demonstrate the usefulness and feasibility of our developed methods.

® Example 3 is the continuation of Example 1, which has been studied in Xu, et al. [15], and corresponds to the case of

an FPR that is both multiplicative and ordinally inconsistent, with same ordinal and multiplicative inconsistent
elements.

® Example 4 was investigated by Xia, et al. [13], and corresponds to an FPR that is OC but multiplicative

inconsistency.

® Example 5 was examined by Xu, et al. [29]. It corresponds to an FPR that is ordinally inconsistent but with

acceptable MC.

® Example 6 is from Xu and Cai [35], and it covers the case of an FPR that is both ordinally and multiplicative

inconsistent, with different ordinal and multiplicative inconsistent elements.

Comparisons with the previous approaches in the literature are also provided for each example.

Example 3 (Example 1 continuation): In this example, we will adjust the multiplicative and ordinal inconsistencies of an

FPR which has the same ordinal and multiplicative inconsistent elements.

Step 1. Let R” =(r{"),y =(5;)4s> t=0,and GCI(R)=0.3526.

16
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Step 2. By Eq.(8), W =(0.4697,0.2428,0.1619,0.1255)" . By Eq.(7), itis GCI(R"”)=1.4581> GCI(R)). Thus, R is
multiplicative inconsistent.

Step 3. In Example 2, it was obtained the following the matrix ¥” = (I//;.O) s :

o _

N = = O
==
==
S = = N

Step 4. By Eq.(16), w(R”)=2#0.It means that R is also ordinally inconsistent.

Step 5. According to Algorithm 1, due to different definitions of 6 and 6,

/i nxn

we may get many forms of © =(6")
which are shown in Table I. For the convenience of explanation, we use the following matrix established by Eq.(9) and
Eq.(11) as an example.

0 1.3195 2.2640 2.6391
1.3195 0 0.9445 1.3195
2.2640 0.9445 0 2.2640
2.6391 1.3195 2.2640 0

0) _

(0) (0)

Step 6. Observing the matrix ¥'”, the largest value in ¥ is ) =) =2. Meanwhile, the largest value in the

matrix ©” is 0 =6\ =2.6391. Therefore, #{ is the most inconsistent element.
Step 7. By Eq.(17), the new value of #1®/r/’ =14>9 is derived, and therefore it is set 7" =0.9.
Step 8. According to Eq.(18), the following improved FPR R" is derived:

05 07 09 09

. 03 05 0.6 0.7
]?f ) —

0.1 04 05 038

0.1 03 02 05

Step 9. By Eq.(8), w" =(0.6303,0.1881,0.1254,0.0562)" , and the ranking of alternatives is x, > x, > x, > X, .

1

Step 10. By Algorithm 2, the matrix ¥ = (l//,; DI

\Ij(l) —

S O O O
S O o O
S O o O
S O O O

Step 11. By Eq.(7), GCI(R")=0.3299 < GCI(R,) . By Eq.(16), w(R")=0.Thus, R" is OC and of acceptable MC.

Through the proposed consistency improvement process, an FPR R" with OC and acceptable MC is eventually

)
1

obtained. Furthermore, the ranking of the alternatives that is derived from R/’ coincides with the initial ranking result.

17
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In this example, because there exist equal preferences ( i.e. 1, =7, =0.5), Ma, et al. [30]’s method fails to improve

consistency. Xu, et al. [15]’s method can only remove the ordinal inconsistency because MC is not considered. Furthermore,
Xu, et al. [15] derived the following adjusted OC consistent FPR:

05 0.7 09 0.6
03 05 0.6 07
0.1 04 05 038
04 03 02 05

R =

When Eq.(7) is applied, it is observed that GCI(R))=1.1288 > GCI(R,),i.e., R, isnotof acceptable MC. It is evident that
the proposed method in this paper is more efficient than existing ones, because it can improve the OC and MC

simultaneously in a single model.

Example 4: Suppose the following an FPR on four alternatives x,,x,,x, and x, (adapted from Xia, et al. [13]):

05 04 07 03
0.6 05 06 08
27103 04 05 03
0.7 02 07 05

In this example, we will deal with an ordinal consistent but multiplicative inconsistent FPR.

Step 1. Let R\ = (17;0))4X4 =) 44> t=0,and GCI(R,))=0.3526.

Step 2. By Eq.(8), the priority vector of R is w” =(0.2098,0.4021,0.1373,0.2508)" .

Step 3. By Algorithm 2, the following matrix ¥ =(y,),., Was obtained:

nxn

PO

S O O O
S O O O
S o o O
S O O O

Step 4. By Eq.(7), GCI(R\”)=0.6767 > GCI(R,) . By Eq.(16), the value of y(R”) is equal to 0. Thus, R\” is OC but
multiplicative inconsistent. Thus, only MC of R\” is to be improved.

Step 5. According to Eq.(9) and Eq.(11), the matrix 0 = (6’;.0))” :
0 1.3377 0.8473 1.3377
1.3377 0 1.3377 1.8281
0.8473 1.3377 0 1.3377
1.3377 1.8281 1.3377 0

00 —
Step 6. The largest value in ©7 is 6\ =% =1.8281. Thus, " in R\” is the most multiplicative inconsistent

element that requires to be improved.

Step 7. By Eq.(17), 7" /r\” =0.6429 and it is closetto 0.4/0.6 in Table IIl. Then 7 =0.4.
18
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Step 8. However, it is log(r}’ /r{)- log( 1O [0 ) <0, which means that the new value 7,\” changes the original order.

Thus, the second largest value in matrix @ is to be found and improved.
Step 9. The second largest value in matrix ©” is 69 =6 =4 =02 =60 =0 =0 =0 = 1.3377. According to

D, 7, 1Y, 1Y can be selected as the most multiplicative inconsistent element. Here,

Remark 5, any of the values s Ty

P
ry s selected.

Step 10. By Eq.(17), we get the value of 71" /1" =5.7155, which is closest to 0.8/0.2 in Table III. This means that
HO =08,

Step 11. Because the values of £y’ and 7" satisfy log(ry/r")-log(r” /") >0, the value of r\” does not
modify the OC.

Step 12. By Eq.(18), the following improved FPR R{"” is obtained:

05 04 0.7 03
06 05 0.8 038
03 02 05 03
0.7 02 0.7 05

M _
R =

Step 13. By Eq.(8), itis w'” =(0.1939,0.4750,0.0993,0.2318)" .

Step 14. By Eq.(7), because GCI(R{")=0.3996 > GCI(R,), then R!” is still of unacceptable MC. Therefore, the MC
needs further improvement.

Step 15. According to Eq.(9) and Eq.(11), the new matrix ©" =(6,")

nxn

0 0.9808 0.4904 1.3377
0.9808 0 0.4904 1.3377
0.4904 0.4904 0 0.8473
1.3377 1.3377 0.8473 0

o _

Step 16. The maximum value in the matrix @V is 00 =¥ =6V =) =1.3377. As per Remark 5, ’ in R is
selected as the multiplicative inconsistent element.

Step 17. By Eq.(17), itis 7" /r/" =1.0498>1, which leads to 7/ =0.6.
Step 18. Because the values of 7} and 7" satisfy log(rz(j) / rj;)) log( o/ r4’2“)) , 7" does not change the OC.

Step 19. By Eq.(18), the new improved FPR R{” is:

19
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; 05 04 0.7 03
3 RO — 06 05 08 0.6
4 * 103 02 05 03
> 0.7 04 07 0.5
6
7
8 Step 20. By Eq.(8), W' =(0.2017,0.3867,0.1034,0.3082)" , i.e., x, > x, = X, > x,.
9
10 Step 21. By Eq.(7), GCI(R”)=0.1226<GCI(R,) , which means that R!* is of acceptable MC.
11
g Finally, R® is both MC and OC. Furthermore, the derived ranking of alternatives x, >x, >x, >x, coincides with the
14 o .
15 initial ranking.
16 -
17 Xia, et al. [13]’s method requires 4 iterations to derive the following relation of acceptable MC [for GCI(R,)=0.3526,
18
19 6 =0.1 (@ is a parameter in Xia, et al. [13]’s method)]:
20
21 0.5000 0.3799 0.6685 0.3503
22 w | 0.6201 0.5000 0.6536 0.7450 “ —
23 R = , GCI(R,”)=0.2915<GCI(R)) .
24 0.3315 0.3464 0.5000 0.3181
25 0.6497 0.2550 0.6819 0.5000
26
27 This shows that Xia, et al. [13]’s approach is computationally more expensive than the present method, in addition to
28
29 modifying all the original preference values except those on the main diagonal. However, the proposed method requires the
30
31 modification of only 4 original preference values; the improved FPR has a lower GCI(R{”) of 0.1226 , and therefore it is
32
33 more MC than the improved FPR derived by Xia, et al. [13].
34
35 Example 5: Assume that a DM provides the following preferences over a set of six alternatives (adapted from [29]):
36
37 [0.5 0.7 03 07 03 0.7]
gg 03 05 06 05 02 05
07 04 05 08 05 038
40 R, =
41 03 05 02 05 02 05
42 0.7 0.8 0.5 08 05 038
43 03 05 02 05 02 05
44 - -
22 In this example, an FPR that is ordinally inconsistent but with acceptable MC needs to be repaired.
47 -
48 Step 1. Let R = (G}O))sxs =(;)ee» 1=0, and the Table I threshold value GCI(R;)=0.37.
49

50 Step 2. By Eq.(8), the priority vector of R is w” =(0.1646,0.1054,0.2443,0.0782,0.3293,0.0782)" . By Eq.(7),
51

52
53
54
55 Step 3. According to Algorithm 2, the matrix ¥ = (l//g'(j()))6x6 :
56

57

58

59

60

GCI(R")=0.2419<GCI(R,) . Thus, R!” is acceptable MC.

20
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\IJ(O) —

oS o o = = O

i N R
e e e S NG

o o o = = O
o o o = = O
o o o = = o

Step 4. By Eq.(16), w(R{")=4.It means that R” is ordinally inconsistent.

Step 5.In W©, the largest value is y.Y =) =4 then 7}’ isthe most ordinally inconsistent element.

Step 6. By Eq.(17), we have: 7" /r/{” =0.2315 and itis closestto 0.2/0.8 in Table III. Then 7” =0.2.

Step 7. According to Eq.(18), the following improved FPR R{" is derived:

M _
R =

[0.5
0.3
0.7
0.3
0.7

103

07 03 0.7 03 0.7]
05 02 05 02 0.5
0.8 05 08 05 0.8
05 02 05 02 05
0.8 05 08 05 0.8
0.5 02 05 02 05|

Step 8. By Eq.(8), itis " =(0.1556,0.0739,0.3113,0.0739,0.3113,0.0739)" .

Step 9. By Algorithm 2, the matrix W = (t//;.'))éx(, is:

o —

S O O o o O

Step 10. By Eq.(7),

S O O O o O
S O O O o O
S O O O o O
S O O O o O
S O O o o O

GCI(R") =0.0095<GCI(R,) . By Eq.(16), w(R")=0.Thus, R" is now both MC and OC.

The ranking of alternatives will be: x; ~ x5 = x, = x, ~x, ~ X, .

This example was investigated by Xu, et al. [29], where they derived the following improved FPR:

[0.5
0.3
0.7
0.3
0.7

10.3

0.7 03 0.7 03 0.7]
05 04 05 02 05
06 0.5 0.8 05 0.8
05 02 05 02 0.5
08 0.5 0.8 05 0.8
0.5 02 05 02 0.5]

By Eq. (7), the weighting vector of R} is w=(0.1611,0.0901,0.2736,0.0765,0.3222,0.0765)" and it has GCI(R;)=

0.0837. Then the ranking of alternatives for R; would be: x; > x, >x, > X, > X, ~ X,. As we can see in R, the original
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indifference between pairs of alternatives (for example between x, and x;: x, ~x;, 7, =0.5) is kept by the proposed

method but not by Xu, et al. [29]’s method. Again, this example shows that the proposed method is able to improve the OC
and the MC simultaneously. After adjusting the inconsistent elements, the inconsistent elements are eliminated, and the
degree of GCI is greatly improved from 0.2419 to 0.0095.

Example 6: Suppose a DM gives an FPR on the set of 6 alternative as follows (adapted from [35]):

(0.5 03 03 0.7 0.8 0.5]
0.7 05 02 0.7 08 0.6
07 0.8 0.5 0.7 0.7 08
“ 103 03 03 05 09 0.7
02 02 03 0.1 05 04
105 04 02 03 06 05]

In this example, we will rectify the multiplicative and ordinal inconsistencies of an FPR that has different ordinal and

multiplicative inconsistent elements.

Step 1. Let R{” = (r1")gs = (7)gs» 1=0,and Table I value GCI(R,)=0.37.
Step 2. By Eq.(8), the priority vector of R is w” =(0.1548,0.2007,0.3430,0.1538,0.0501,0.0975)" . By Eq.(7),
GCI (Rf))) =0.5051> GCI(R,), which means that is not of acceptable MC.

Step 3. According to Algorithm 2, the matrix W = ("), :

\{1(0) —

- o = o o O
S O O O o O
S O O O o O
- o o o o =
S O O O o O
o o = o o =

Step 4. By Eq.(16), w(R\”)=1.It means that R\” is also ordinally inconsistent.

Step 5. By Eq.(9) and Eq.(11), the matrix @' = (49,.1(.0))““ is derived:

0 0.8807 1.0397 1.2619 1.2182 0.9141]
0.8807 0 1.2758 1.2952 1.2515 0.6779
1.0397 1.2758 0 1.1848 1.6133 0.5493
1.2619 1.2952 1.1848 0 1.6145 1.0591
1.2182 1.2515 1.6133 1.6145 0 0.8613

10.9141 0.6779 0.5493 1.0591 0.8613 0

00 —

(0) (0) (0) (0) (0) (0)

Step 6. The largest value in W is y) =) =y =y =wi =y, =1. Meanwhile, the largest value in the matrix

0 is 02 =6 =1.6145. Because r\” and rY are different elements, " is regarded as the most inconsistent

element.
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; Step 7. By Eq.(17), 7" /r/® =2 and itis closestto 0.7/0.3 in Table IIl. Then 7" =0.7.
2 Step 8. According to Eq.(18), the improved FPR R!" is obtained:

5

6 05 03 03 07 08 0.7

/ 0.7 05 02 0.7 08 0.6

g RY = 0.7 0.8 05 07 0.7 0.8

10 03 03 03 05 09 0.7

1 02 02 03 01 05 04

g 103 04 02 03 06 0.5

14

15 Step 9. By Eq.(8), it is w" =(0.1248,0.1994,0.3408,0.1883,0.0498,0.0969)" . By Eq.(7), it is GCI(R")=04747
17 > GCI(R,) and it s still of not acceptable MC.

Step 10. By Algorithm 2, the matrix ¥ = (1//;.1))6X6 is:

25 PO =

S O O O o O
S O O O o O
S O O O O O
S O O O o O
S O O O o O
S O O O o O

Step 11. By Eq.(16), w(R")=0.Thus, R" is OC.

33 Step 12. By Egs.(9) and (11), the matrix @ = (49;.1))“” is constructed:

35 K 1.0925 0.9820 1.0500 1.0063 0.6446 |

1.0925 0 1.2758 1.2952 1.2515 0.8898

38 o 09820 1.2758 0 1.1848 1.6133 0.4916
@ =

39 1.0500 1.2952 1.1848 0 1.6145 0.8473

40 1.0063 1.2515 1.6133 1.6145 0 0.6495

10.6446 0.8898 0.4916 0.8473 0.6495 0

44 Step 13. The largest value in the matrix ®" is @)’ =1.6145. Thus, the corresponding 7’ in R{" is the multiplicative

46 inconsistent element.

48 Step 14. By Eq.(17), 7" /ri" =1.7908, which is closest to 0.6/0.4 in Table IIL. Then 7" =0.6.
Step 15. ) and 7" satisfy log(rj;)/;gﬂ:) ) . log(ds“)/lgﬁf”) >0, hence the value of " does not modify the OC.

53 Step 16. By Eq.(18), the new improved FPR R\” is:
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(0.5 03 03 07 08 0.7]
0.7 05 02 0.7 0.8 0.6
, 07 08 05 07 07 08
RP =

03 03 03 05 0.6 0.7
02 02 03 04 0.5 04
103 04 02 03 06 05]

Step 17. By Eq.(8), it is w” =(0.1803,0.2031,0.3471,0.1155,0.0684,0.0856)" . By Eq.(7), GCI(R?)=0.3030
<GCI(R,),and R’ isof acceptable MC. Thus, R{’ is MC and OC.

The following ranking of alternatives is obtained: x; > x, > x; > x, > X, > x5, which coincides with the improved FPR
RO

According to Xu, et al. [29] ’s method, the following induced matrix C' and improved matrix R; are obtained:

1 2.1667 1.5764 0.5539 1.4152 1.4965 | (05 03 03 0.7 08 0.6]
0.5893 1 3.0595 0.8416 1.7153 1.7346 0.7 05 02 07 0.8 0.6
oo 1.3036  0.5521 1 1.5299 4.0714 1.0208 | R 0.7 08 0.5 0.7 09 08
2.5910 2.5514 2.1733 1 0.4802 0.9762 | 03 03 03 05 09 07/
1.7169 1.8757 0.4826 4.0119 1 1.0142 02 02 0.1 0.1 05 04
11.0077 0.7944 1.1859 1.8349 1.4193 1 | 104 04 02 03 0.6 0.5]

The priority vector of R, is w=(0.1532,0.1857,0.3974,0.1423,0.0370,0.0843)" and GCI(R])= 0.3097 < m In
each iteration, a pair of elements is adjusted. Observing the induced matrix C’', since c¢;5 # ¢, I35 is regarded as the most
multiplicative inconsistent element while r;; is not the most multiplicative inconsistent element. Thus, it is unreasonable to
adjust 7, and 7;;. However, in Algorithm 2, © is a symmetrical matrix, which can easily identify a pair of multiplicative
inconsistent elements. Moreover, the proposed method derives a modified FPR with GCI(R!”)=0.3030, and therefore

with better MC. It means that adjusting 7, is more effective than adjusting 7.

In comparison with Xia, et al. [13]’s method, for values GCI(R,)=0.37, 6=0.1 (6 isa parameter in Xia, et al. [13]’s

method), the following matrix is derived:

[0.5000 0.3240 0.3021 0.6654 0.7920 0.5220 |
0.6760 0.5000 0.2272 0.6764 0.8000 0.6144
0.6979 0.7728 0.5000 0.6981 0.7411 0.7960
0.3346 0.3236 0.3019 0.5000 0.8800 0.6841
0.2080 0.2000 0.2589 0.1200 0.5000 0.3882

10.4780 0.3856 0.2040 0.3159 0.6118 0.5000

@ _
R =

This matrix has a larger value GCI (Riz)) =0.3312< GCI(R,) than the corresponding one for the matrix derived from

the proposed method. In addition, the proposed method retains most of the original judgments. It only needs to adjust 4

24



Page 25 of 30

oNOYTULT D WN =

elements. Therefore, the proposed method is not only simpler and effective but also has better consistency and retains more
original preference information.
B. Monte Carlo Simulation and Further Discussion

This subsection further discusses the effectiveness of the proposed methods. Monte Carlo simulations depends on the
random sampling to generate the results, and is an important method to model uncertainty phenomena. In order to do this,
1,000 FPRs for different dimension ranging from 3 to 9 are randomly generated and their consistencies (ordinal and/or

multiplicative) are improved using the proposed method. When randomly generating FPRs, the continuous domain (0,1) is

used and therefore the values of entries will not be in the discrete scale Sy, o;. Thus, in the adjustment process, the

adjusted values are in the domain (0,1). The average numbers of iterations of Algorithm 3 with different thresholds for
different dimension values n (of Table I) are provided in Table IV and plotted in Fig. 13. For » =3, the average number of
iterations is lower than 1, denoting that some of the randomly generated FPRs are of OC and MC (these FPRs are not needed
to be revised); otherwise, only one iteration is required to achieve the OC and MC. From Table IV and Fig. 3, it is clear that
the average number of iterations increases as n increases. The percentages of the entries changed in the matrices are listed in
Table V against their dimension value n, with an increasing tendency observed. In any case, the majority of the original
values are not modified (largest percentage change value is 36.56%) with the proposed method. This also indicates the

effectiveness of the proposed method.

TABLE IV. THE AVERAGE ITERATIONS FOR DIFFERENT 7

n 3 4 5 6 7 8 9
iterations 0.758 1.879 3.332 5417 7.88 11.057 14.807
15 T T
/
/
s
/
s
/
*
s
101 / 1
s
7/
v
K
Ve
Ve
Ve
7
*
5 = _ e m
Ve
7
¥
K -

¥
0 . . . . .

3 4 5 6 7 8 9

Fig. 3. The average number of iterations of the proposed method

TABLE V. THE PERCENTAGE OF THE VALUES CHANGED FOR DIFFERENT 71

n 3 4 5 6 7 8 9
percentage 16.84% 23.49% 26.66% 30.09% 32.16% 34.55% 36.56%
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VII. CONCLUSIONS

In this paper, algorithms to rectify the multiplicative and ordinal inconsistencies for FPRs have been proposed. Firstly, we
have analyzed the MC property of FPRs. Geometric consistency has been applied to measure the MC degree of an FPR. The
approximated thresholds of GCI for MPRs were extended to the case of FPRs to test whether an FPR is of acceptable MC.
To improve the level of MC:

e First, the degree of inconsistency is measured with GCI, and then a matrix © =(6,),,, s established to identify the

multiplicative inconsistent elements.
e Secondly, we presented the ordinal inconsistent conditions of FPRs. An effective algorithm to find the ordinally

inconsistent elements was developed. Meanwhile, we proposed an approach based on the matrix (R) to measure the

level of OC for FPRs.

e Thirdly, we designed an integrated method to improve simultaneously the OC and MC of an FPR.

¢ Finally, we demonstrated the validity of our proposed integrated consistency improvement method with its superior
performance against existing methods using both examples that represent the four different scenarios of ordinal and
multiplicative inconsistencies and simulation experiments. The following advantages noticed:

(1) Only the MC is considered in [13], and only the OC is considered in [15]. Our proposed method can improve
multiplicative and OC simultaneously.

(2) Our method is simple and straightforward. In the process of improving of MC and OC, most of the original judgements
are kept unchanged. This is possible because, at each iteration of the proposed method, inconsistent elements are accurately
located and only one pair of preference values are modified. In contrast, other existing methods [13, 30, 32] change all the
original judgments given by DM.

(3) The developed method can be applied not only to strict FPRs but also to non-strict FPRs. However, Ma, et al. [30] can
only be applied to strict FPRs.

In the future, we will study the MC and OC for incomplete FPRs [25, 36-41] and will consider the application of the

proposed method in group consensus models [42-50].
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