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Algorithms to Detect and Rectify Multiplicative and Ordinal Inconsistencies 

of Fuzzy Preference Relations 

Yejun Xu*, Mengqi Li, Francisco Javier Cabrerizo, Francisco Chiclana, Enrique Herrera-Viedma 

 

Abstract 

Consistency, multiplicative and ordinal, of fuzzy preference relations (FPRs) is investigated. The geometric consistency 

index (GCI) approximated thresholds are extended to measure the degree of consistency for an FPR. For inconsistent FPRs, 

two algorithms are devised (1) to find the multiplicative inconsistent elements, and (2) to detect the ordinal inconsistent 

elements. An integrated algorithm is proposed to improve simultaneously the ordinal and multiplicative consistencies. Some 

examples, comparative analysis, and simulation experiments are provided to demonstrate the effectiveness of the proposed 

methods. 

 

Index Terms-FPRs; Multiplicative consistency (MC); Ordinal consistency (OC); Inconsistent elements. 

Ⅰ. INTRODUCTION 

In multiple criteria decision-making problems, pairwise comparisons on alternatives are usually used by decision makers 

(DMs) to express their preference information [1-3], which can be modelled mathematically with a preference relation (PR). 

Multiplicative PRs (MPRs) [4-9] and fuzzy PRs (FPRs) [10-13] are widely used for numerical PRs. A key drawback of 

pairwise comparison is that DMs fail to consider the global relationship of alternatives because they focus on two 

alternatives at a time. This may end in the provision of inconsistent preferences[14], especially in the presence of a large 

number of alternatives. Thus, in decision making scenarios with PRs, it is sensible to ensure that preferences are consistent 

before making the final decision. 

Consistency of preferences generally has two types: ordinal consistency (OC) [15-19] and cardinal consistency (CC) [18, 
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20-22]. The OC, which is based on the concept of the weak transitivity [23], is defined as follows: “if alternative ix  is 

preferred to alternative jx  and alternative jx  is preferred to alternative kx , then alternative ix  should be preferred to 

alternative kx ”. This type of consistency is considered to be the minimum requirement to be fulfilled by a ‘consistent’ PR [4, 

21, 24]. A stronger concept than OC is CC because it requires in addition that the “intensity with which the preference is 

expressed transits through the sequence of objects in comparison” [4].  

In the Analytic Hierarchy Process (AHP), Saaty [4] introduced the notions of perfect consistency and acceptable 

consistency. This was based on the consistency ratio (CR) between the consistency index (CI) of an MPR and the average 

CIs of a large number of random generated MPRs of the same order. An MPR with 0.1CR   is considered of acceptable 

consistency. However, acceptable consistency does not imply OC as illustrated by Kwiesielewicz and van Uden [17] where 

an MPR with CR smaller than 0.1 was shown to be ordinally inconsistent, i.e., it contained inconsistent elements.  

There are also studies on the consistency of FPRs that deal with different types of inconsistencies: OC [16, 25], additive 

consistency (AC) [16, 26-28] and multiplicative consistency (MC) [13, 29]. Ma, et al. [30] introduced a method to detect and 

repair the inconsistency of strict FPRs. Li, et al. [22] reviewed the AC of FPRs. Xu, et al. [15] developed an OC index (OCI) 

to measure the level of OC of FPRs and an algorithm to eliminate unreasonable 3-cycles in the relation digraph. Xia, et al. 

[13] adapted the geometric consistency index (GCI) for MPRs proposed by Aguarón and Moreno-Jiménez [31] to the case of 

FPRs, which was the base of a method to improve their MC. However, Xu, et al. [29] provided an example where 

contradictory preference values may still be present in an FPR that fulfils the MC test, which suggests that MC on its own is 

not sufficient to assure the consistency of FPRs. Thus, it is clear that there is a need for a study that focus on both the OC and 

CC at the same time. 

There conflict between AC and the scale for measuring FPR values ([0,1]) led Chiclana, et al. [20] to propose a functional 

modelling of consistency of FPRs, that under the conditions of monotonicity and continuity was proved to be verified by a 

representable uninorm with strict negator operator ( ) 1N x x  . Because the MC is an AND-like representable uninorm 

with the above strict negator operator, Chiclana, et al. [20] concluded that MC is the most appropriate property for modelling 

CC of FPRs. Meanwhile, few researches have investigated both the OC and the MC at the same time. Because the OC can 

ensure the rationality and the MC can measure the level of consistency and lead to more consistent FPRs. Xu, et al. [29] 

developed some methods to modify the ordinal and multiplicative inconsistencies for FPRs. However, their improvement 

methods have two steps: ordinal inconsistency modification step, and multiplicative inconsistency modification step. The 

latter step aims at improving multiplicative consistency by adjusting the elements that contributes most to the multiplicative 

inconsistency, which it is followed by a checking of whether the adjustment destroys ordinal consistency. If the modified 

FPR does not have ordinal consistency, the method requires a further check and adjustment of the element second most 

contributor to multiplicative inconsistency. These are obviously complex and time-consuming methods. Although the OC 
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and MC of FPRs have been deeply investigated, there are still some open questions to be answered: 

(1) In the existing work (for example, Refs. [13, 29]), the GCI threshold is usually set artificially and may not be 

reasonable. Thus, the following question needs to be addressed: is there a reasonable threshold for GCI to measure the 

level of MC? 

(2) One of the two types of consistency discussed is not enough to ensure the rationality of the FPRs, while improving the 

two types of consistency separately will make the calculation process time-consuming and will also distort the 

information greatly. Thus, the following question requires also consideration: Can the OC and MC be improved 

simultaneously with a unique single method? 

This paper aims at answering the above two research questions and fill a gap in the current research knowledge. This 

paper extends GCI to measure the MC of an FPR. A new method to detect and measure the OC is also devised. Finally, an 

integrated algorithm to find the inconsistent elements to improve the OC and MC simultaneously is proposed. Monte Carlo 

simulation are also provided to show the effectiveness and advantages of the proposed methods. 

The remainder of the paper is organized as follows. Section II contains basic concepts about consistency of FPRs that will 

be used in subsequent sections. Section III proposes an MC-based algorithm to identify FPRs multiplicative inconsistent 

elements. Section IV presents a new index to measure the OC level and an algorithm to search the ordinal inconsistent 

elements of FPRs. Section V presents an algorithm to adjust the FPR inconsistent elements, while examples of its application 

and a comparison with existing methods in the literature to demonstrate the effectiveness of the proposed method are 

provided in Section VI. Finally, in Section VII conclusions are given. 

Ⅱ. PRELIMINARIES 

This section provides the basic definition related to FPRs needed in the following sections. 

For simplicity, let {1, 2, , , 2}N n n   and { , }iX x i N   be a finite set of alternatives. In multi-attribute decision 

making problems, DMs aim to get ranking of alternatives based on the provided information which is assumed to be in the 

form of FPRs. 

Definition 1 [11]: “An FPR R on a set of alternatives X is a fuzzy set on the cartesian product set X X , which is 

characterized by a membership function : [0,1]R X X   , which is represented by a n n  matrix ( )ij n nR r  , with 

element ijr  interpreted as the preference degree of the alternative ix  over the alternative jx . A value of 0.5ijr   

indicates indifference between ix  and jx  ( ~i jx x ); When 0.5 1ijr  , then ix  is strictly preferred to jx  ( i jx x ) 

with 1ijr   indicating absolute preference of ix  over jx ; while 0 0.5ijr   indicates that jx  is strictly preferred to 

ix ( i jx x ) with 0ijr  , indicating absolute preference of jx  over ix ”.  

This interpretation underlines a reciprocity property of preference often assumed to be verified, as it is the case in the 
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present paper: 

 1ij jir r  , 0.5iir  , [0,1],  ,ijr i j N               (1) 

A. Ordinal Consistency of FPRs 

The OC of FPRs is described as follows: 

Definition 2 [15]: “An FPR ( )ij n nR r   is OC when for all , ,i j k N , i j k  , the following properties are verified: 

(1) if [ 0.5ikr  , 0.5kjr  ], or [ 0.5ikr  , 0.5kjr  ] then 0.5ijr  ; 

(2) if [ 0.5ikr   and 0.5kjr  ] then 0.5ijr  ”. 

   Xu, et al. [15] applied graph theory to investigate the OC of FPRs. 

Definition 3 [15]: “The adjacency matrix of an FPR ( )ij n nR r   is:   

( )ij n nB b  ; 
1, 0.5,  

0,
ij

ij

r i j
b

otherwise

 
 
                                                         

(2) 

The digraph of the FPR R is denoted by ( , )G X A , where the set of alternatives X is the node set and 0.5ijr 

{( , ) |  0.5}i j ijA x x i j r     is the directed arc set. When 0.5ijr  , i j , it is also 0.5jir   and therefore there exist 

two directed arcs between ix  and jx  (one from ix  to jx , and another from jx  to ix ).” 

Remark 1: It is easy to prove that if an FPR R violates OC, then there must exist at least one directed 3-cycle in the 

digraph G of R, i.e. i j k ix x x x   . Therefore, the OC of FPRs requires directed 3-cycles to be identified and 

eliminated. 

B. Multiplicative consistency of FPRs 

MC refers to the multiplicative transitivity property of preferences: 

Definition 4 [11]: “An FPR ( )ij n nR r   is MC if it satisfies: 

 ,  , ,ij jk ki ji kj ikr r r r r r i j k N     (3) 

Which is referred to as the multiplicative transitivity property”. 

Remark 2: Eq.(3) requires that 0ijr  , ,i j , and therefore it can be rewritten as: 

 ,  , ,ij kjik

ji ki jk

r rr
i j k N

r r r
     (4) 

The value ij jir r  represents the ratio of the preference power for ix  to that of jx , and it is interpreted as follows: ix  

is ij jir r

 

times preferred to jx . This value will be referred to as the direct judgement of alternative ix  over alternative jx , 

while kjik

ki jk

rr
r r  will be referred to as the indirect judgement of alternative ix  over alternative jx  via (though) alternative 
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kx .  

  In order to measure the level of consistency, Aguarón and Moreno-Jiménez [31] proposed the geometric consistency index 

(GCI) for reciprocal MPRs ( )ij n nA a   ( 1ij jia a  ): 

 
22

( ) (log log log )
( 1)( 2) ij i j

i j

GCI A a v v
n n 

  
    (5) 

where 1 2( , , , )T
nv v v v   is the following priority vector derived from A: 

   1 1

11 1

n nn nn

i ij ijjj j
v a a

 
   ; 

1
1

n

ii
v


  and 0,  iv i N  .  

According to the theoretical relation between CR and the GCI, Aguarón and Moreno-Jiménez [31] provided the below 

approximated threshold values for GCI (Table I). 

TABLE I. THE APPROXIMATED THRESHOLDS FOR GCI 

CR 0.01 0.05 0.1 0.15 

( 3)GCI n   0.0314 0.1573 0.3147 0.4720 

( 4)GCI n   0.0352 0.1763 0.3526 0.5289 

( 4)GCI n   ~0.037 ~0.185 ~0.370 ~0.555 

The following transformation provides a route to derive an MPR ( )ij n nA a   from an FPR ( )ij n nR r  [32]:  

ij
ij

ji

r
a

r
                                                                           (6) 

Motivated by Aguarón and Moreno-Jiménez [31], Xia, et al. [13] adopted the GCI to the case of FPRs. 

Definition 5 [13]: “Let ( )ij n nR r   be an FPR, and 1 2( , , , )T
nw w w w   be the priority vector derived from R satisfying 

1
1

n

ii
w


 , 1iw   and 0,  iw i N  , then the GCI of R is given by 

 
22

( ) (ln ln ln ln )
( 1)( 2) ij ji i j

i j

GCI R r r w w
n n 

   
     (7) 

When ( )GCI R  is zero, the FPR R is of perfect MC. The smaller the value of ( )GCI R , the better the consistency of R ”. 

In practical situations, the DMs’ FPRs are not of perfect MC. In these cases, a threshold value GCI  is set when 

( )GCI R GCI  the FPR R is considered of acceptable MC. Xia, et al. [13] did not provide GCI  threshold values, 

although it is obvious from Eq.(5) and Eq.(6) that the threshold values of Table I for MPRs can be used to check acceptable 

MC for FPRs.  

Given an FPR, checking its acceptable MC requires the computation of its priority vector in the first place. Wang and Fan 

[33] proposed the following logarithmic least squares model to obtain the priority vector from an FPR: 

(M-1) 2

1 1

min  (ln ln ln ln )
n n

ij ji i j
i j

J r r w w
 

     
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1

s.t. 1,  0< 1,  
n

i i
i

w w i N


    

The solution to (M-1) was also given by Wang and Fan [33]: 

 

1

1

1

1 1

,  

n
n

ij

j ji

i n
nn

ij

i j ji

r

r
w i N

r

r



 

 
  
  
 
  
 



 
 (8) 

  It coincides, as expected, with the one given by Aguarón and Moreno-Jiménez [31] for MPRs using Eq.(6). 

Xu, et al. [29] illustrated with some examples that FPR may still contain contradictory judgments in terms of OC but be 

regarded as MC. Thus, to study consistency of preferences properly MC is not sufficient on its own and OC should also be 

considered. This is the focus of Section IV where an effective method to measure OC of FPRs is put forward. Before this can 

be done, in next section the problem of detecting multiplicative inconsistency is first tackled. 

Ⅲ. MULTIPLICATIVE INCONSISTENCY DETECTION FOR FPRS 

First, measuring the ‘MC degree’ of FPRs can help devising effective methods to detect its most inconsistent elements. 

Subsequently, we can improve its consistency. 

A. The Multiplicative Inconsistency of FPRs 

The equality ( )ij ji ik kir r r r  ( )kj jkr r ( for all , ,i j k N ) holds for an FPR ( )ij n nR r   of perfect MC. This property 

can be explained intuitively in Fig. 1, which combines direct and indirect judgments on a judgment scale.  

If R is of perfect MC, all indirect judgments ( ) ( )ik ki kj jkr r r r

 

would be located in the blue dot of Fig. 1. Otherwise, there 

would be indirect judgments located on the right of the blue dot (as the two provided in Fig.1), which indicate preference 

ratios higher than the direct judgment, and/or on the left of the blue dot (as the one indirect in Fig. 1), which indicates 

preference ratios lower than the direct judgment. 

 

Fig. 1. The direct and indirect judgments on a judgment scale 

From Fig. 1, if R is not MC, then the direct value ij jir r  and the indirect preference value ( ) ( )ik ki kj jkr r r r  may be 

diversely scattered and their deviation is measured as follows: 

𝑟௜௝
𝑟௝௜

Preference equivalence 

𝑟௜௝
𝑟௝௜
ൌ 1 

𝑟௜௞
𝑟௞௜

𝑟௞௝
𝑟௝௞

Through k2 

𝑟௜௞
𝑟௞௜

𝑟௞௝
𝑟௝௞

 
𝑟௜௞
𝑟௞௜

𝑟௞௝
𝑟௝௞

 

Through k1 Through k3 
xi 

xj 
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 , log logij kj ij kjik ik

ji ki jk ji ki jk

r r r rr r

r r r r r r

     

             
     

 (9) 

or 

 

2

, log logij kj ij kjik ik

ji ki jk ji ki jk

r r r rr r

r r r r r r


      
                     

 (10) 

Remark 3: Clearly an FPR is MC if and only if the deviation values from Eq.(9) to Eq.(10) are 0 for all , ,i j k N . 

Meanwhile, if a particular deviation value associated with ij jir r  is not 0, then we can say that ijr  is an inconsistent 

element of the FPR. 

In order to measure the inconsistency degree of an FPR and detect the multiplicative inconsistent elements, we first 

aggregate the above deviations values: 

 
1, ,

1
, ,  , ,

2

n
ij kjik

ij
k k i k j ji ki jk

r rr
i j k N

n r r r
 

  

 
       

  (11) 

Alternative approaches to define ij  are possible, such as the worst deviation approach: 

 
,

max , ,   , ,ij kjik
ij

k i k j
ji ki jk

r rr
i j k N

r r r
 

 

  
         

 (12) 

or the geometric mean approach 

 

1

2

1, ,

, ,   , ,
nn

ij kjik
ij

k k i k j ji ki jk

r rr
i j k N

r r r
 



  

  
         
  (13) 

Different definitions of ij
 

and   would result in different values of ij , which may lead to different results and 

different formulas in practical problems. In any case, in the symmetrical matrix ( )ij n n    ( ij ji  ), the larger the value 

ij , the more inconsistent the element ijr  is. Thus, the most inconsistent element of an FPR will correspond to the largest 

value in the matrix ( )ij n n   . Thus, the following algorithm (Algorithm 1) is proposed. 

Algorithm 1. Let ( )ij n nR r   be an FPR, and ( )GCI R  a consistency threshold value from Table I. 

Step 1. Compute ( )GCI R  using Eq.(7). If ( ) ( )GCI R GCI R , then R  has acceptable MC and go to Step 5. Otherwise, 

continue with the next step. 

Step 2. Compute the deviation   using Eq.(9) or Eq.(10). 

Step 3. Compute ij  and establish the matrix ( )ij n n    according to one of Eq.(11) to Eq.(13). 

Step 4. Find the value ,max { }
m mi j i j ij   in matrix ( )ij n n   , then the corresponding 

m mi jr  is the most multiplicative 
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inconsistent element in the FPR R. 

Step 5. End.  

B. The Accumulation of Multiplicative Inconsistent Elements 

Given an FPR, the accumulation of the inconsistency values associated with its respective elements can be considered as 

its multiplicative inconsistency degree:  

 
1 1

1

( 1)

n n

ij
i jn n

 
 


   (14) 

Alternative expression for  , such as the worst deviation is stated below 

 
,

max( )ij
i j

   (15) 

Depending on the different mathematical formulations used for   and ij ,   may result in different values. In any case, 

when 0  , R  will be of perfect MC; while the smaller the value of  , the more consistent it will be. 

As we know, GCI is equivalent to CI in that it is used to measure the degree of inconsistency of R, but it cannot identify 

inconsistent elements conveniently and intuitively. Therefore, after measuring the degree of inconsistency by GCI, if 

( ) ( )GCI R GCI R , ( )ij n n    can be used to further locate the FPR multiplicative inconsistent elements. The following 

example illustrates this process. 

Example 1: Assume a DM gives the following FPR (adapted from [15, 34]): 

1

0.5 0.7 0.9 0.5

0.3 0.5 0.6 0.7

0.1 0.4 0.5 0.8

0.5 0.3 0.2 0.5

R

 
 
 
 
 
 

 

Algorithm 1 is run to compute the multiplicative inconsistent degree of 1R  and to identify its most MC element. Eq.(8) 

results in (0.4697,0.2428,0.1619,0.1255)Tw  . From Eq.(7), it is noticed that 1( )GCI R  1.4581 0.3526 , and 

consequently 1R  is not of acceptable MC. Using Eq.(9) to Eq.(13), the corresponding matrix ( )ij n n    are obtained 

and shown in Table II: 

TABLE II. THE MATRIX   OBTAINED BY DIFFERENT DEFINITIONS OF ij
 

AND  . 

       
  

 (By Eq.(9))  (By Eq.(10)) 

  
(By Eq.(11)) 

0 1.3195 2.2640 2.6391

1.3195 0 0.9445 1.3195

2.2640 0.9445 0 2.2640

2.6391 1.3195 2.2640 0

 
 
 
 
 
 

  

0 1.8818 6.8668 7.8566

1.8818 0 0.8920 1.8818

6.8668 0.8920 0 6.8668

7.8566 1.8818 6.8668 0

 
 
 
 
 
 

 

  
(By Eq.(12)) 

0 1.6946 3.5835 3.5835

1.6946 0 0.9445 1.6946

3.5835 0.9445 0 3.5835

3.5835 1.6946 3.5835 0

 
 
 
 
 
 

 

0 2.8717 12.8416 12.8416

2.8717 0 0.8920 2.8717

12.8416 0.8920 0 12.8416

12.8416 2.8717 12.8416 0

 
 
 
 
 
 
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  
(By Eq.(13)) 

0 1.2651 1.8397 2.4643

1.2651 0 0.9445 1.2651

1.8397 0.9445 0 1.8397

2.4643 1.2651 1.8397 0

 
 
 
 
 
 

 

0 1.6005 3.3845 6.0727

1.6005 0 0.8920 1.6005

3.3845 0.8920 0 3.3845

6.0727 1.6005 3.3845 0

 
 
 
 
 
 

 

Form Table II, it is obvious that 14  is the largest value, thus 14r  is treated as the most multiplicative inconsistent 

element in 1R . 

Ⅳ.  ORDINAL INCONSISTENCY DETECTION FOR FPRS 

This section introduces first some basic concepts of OC of FPRs. Then, an algorithm is provided to construct a matrix to 

locate ordinally inconsistent elements and the ordinal inconsistent matrix of an FPR, respectively. Some properties of the 

ordinally inconsistent matrix are also investigated. 

A. The Ordinal Inconsistency of FPRs 

The OC of FPRs directly affects the alternatives ranking. As discussed in Section 2, an FPR that passes the test of 

consistency ( )GCI  does not guarantee its OC. Thus, an effective method to determine the level of OC is required. 

Xu, et al. [16] proposed the definition of ordinal inconsistency of an FPR as below. 

Definition 6 [16]: “FPR ( )ij n nR r   is ordinally inconsistent if it has contradictory elements , ,ij ik kjr r r  for , ,i j k N , 

i j k   satisfying 

[ 0.5ikr  , 0.5kjr  , 0.5ijr  ] or  

[ 0.5ikr  , 0.5kjr  , 0.5ijr  ] or 

[ 0.5ikr  , 0.5kjr  , 0.5ijr  ].” 

Definition 6 is equivalent to Definition 7. 

Definition 7: “FPR ( )ij n nR r   is ordinally inconsistent if it has contradictory elements , ,ij ik kjr r r  for , ,i j k N , 

i j k   satisfying 

[ 0.5ikr  , 0.5kjr  , 0.5ijr  ] or  

[ 0.5ikr  , 0.5kjr  , 0.5ijr  ] or 

[ 0.5ikr  , 0.5kjr  , 0.5ijr  ].” 

The following result derives from Definitions 6 and 7: 

Theorem 1: FPR ( )ij n nR r   is ordinally inconsistent, if and only if one the following cases is true. 

Case a1: If 1ik kir r  , 1kj jkr r  , then 1ij jir r  ; 

Case a2: If 1ik kir r  , 1kj jkr r  , then 1ij jir r  ; 

Case a3: If 1ik kir r  , 1kj jkr r  , then 1ij jir r  ; 
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Case a4: If 1ik kir r  , 1kj jkr r  , then 1ij jir r  ; 

Case a5: If 1ik kir r  , 1kj jkr r  , then 1ij jir r  ; 

Case a6: If 1ik kir r  , 1kj jkr r  , then 1ij jir r  ; 

Case b1: If 1ik kir r  , 1kj jkr r  , then 1ij jir r  ; 

Case b2: If 1ik kir r  , 1kj jkr r  , then 1ij jir r  ; 

Case c1: If 1ik kir r  , 1kj jkr r  , then 1ij jir r  ; 

Case c2: If 1ik kir r  , 1kj jkr r  , then 1ij jir r  ; 

Case c3: If 1ik kir r  , 1kj jkr r  , then 1ij jir r  ; 

Case c4: If 1ik kir r  , 1kj jkr r  , then 1ij jir r  ; 

Case c5: If 1ik kir r  , 1kj jkr r  , then 1ij jir r  ; 

Case c6: If 1ik kir r  , 1kj jkr r  , then 1ij jir r  . 

Proof. On the one hand, if R is ordinally inconsistent, according to Definition 6 and Definition 7, it is easy to see that one of 

the above 14 possible cases is true. On the other hand, if one of the Cases a1-b1 is true, then it is ,  ,  1ik ki kj jk ji ijr r r r r r 

( )i j k   (with at least one of them being >1), and therefore it would be ,  ,ik kjr r 0.5jir   (with at least one of them 

being >0.5). i.e., there would be a directed  3-cycles i k j ix x x x    (with at least one   in the cycle) and the FPR 

would be ordinal inconsistent. If one of the Cases b2-c6 is true, then it is ,ki ikr r ,  1 ( )jk kj ij jir r r r i j k    (with at least 

one of them being >1), which means that ,  ,  0.5ki jk ijr r r   (with at least one of them being >0.5), i.e., there would be a 

direct 3-cycle i j k ix x x x    (with at least one   in the cycle) and the FPR would be ordinal inconsistent.     □ 

Theorem 1 can in practice be used to find the contradictory elements of an FPR that lead to directed 3-cycles. It can also 

be used to propose a measurement of ordinal inconsistency of an FPR R via the following Algorithm 2 designed to compute 

a symmetrical matrix ( )ij n n    by detecting all possible combinations of three judgments and analyzing the ordinally 

inconsistent conditions. 

Algorithm 2.  Let ( )ij n nR r   be an FPR. 

Set zero( )n   

For all , ,i j k  ( i j k i   ) from 1 to n  

If log( ) log( ) 0ij ji ik kir r r r   and log( ) log( ) 0ij ji kj jkr r r r  , then 

1ij ij    
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If log( ) log( ) 0ij ji ik kir r r r   and log( ) log( ) 0ij ji kj jkr r r r  , then 

1ij ij    

If log( ) 0ik kir r   and log( ) 0kj jkr r   and log( ) 0ij jir r  , then 

1ij ij    

If log( ) 0ik kir r   and log( ) 0kj jkr r   and log( ) 0ij jir r  , then 

1ij ij    

If log( ) 0ik kir r   and log( ) 0kj jkr r   and log( ) 0ij jir r  , then 

1ij ij    

If log( ) 0ij jir r   and log( ) log( ) 0ik ki kj jkr r r r  , then 

1ij ij    

End if 

End for 

Output   

Notice that the smaller the value of ij , the more ordinally consistent the element ijr  is. Thus, the largest value in   

will correspond to the most ordinally inconsistent element in R, which would need to be rectified to improve the OC of R. 

Notice that in a directed 3-cycle with one inconsistent arc i jx x , the reverse is not in G. However, in the process of 

consistency improvement, due to the reciprocity property we need to change both the value of ijr  and jir . If ijr  is an 

ordinal inconsistent element which forms a directed 3-cycle, both ijr  and jir  are in the same 3-cycle. Hence, in the process 

of improvement, we can consider any one of them. 

We use the following example to demonstrate the usefulness of Algorithm 2. 

Example 2 (Example 1 continuation):  

By Algorithm 2, the matrix ( )ij n n    is established: 

0 1 1 2

1 0 0 1

1 0 0 1

2 1 1 0

 
 
  
 
 
 

 

By observing the matrix  , it is noticed that the element 41r  appears twice in all directed 3-cycles while the rest of 

values appear once. Therefore, by Theorem 4 there exist the following two directed 3-cycles:  

1 2 4{L x x x   1 1 3 4 1~ ,  ~ }x x x x x  .  
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Then, 41r  or 14r
 

are regarded as the most ordinally inconsistent elements.  

B. Overall OC 

The ordinal inconsistency of an FPR is measured by the number of directed 3-cycles present in its digraph. The following 

result provide a convenient relationship between the sum of the elements of matrix   and the number directed 3-cycles 

present in the digraph of an FPR. 

Theorem 2: For FPR R, the sum of all elements in ( )ij n n    is 6 times the number of directed 3-cycles in G. 

Proof. The elements of R in a directed 3-cycle in G are contradictory and therefore by Algorithm 2 it is 

1ij jk ki ji kj ik           . Thus, the sum of all elements in ( )ij n n    is 6 times the number of directed 

3-cycles in G.  □ 

Theorem 2 justifies the below definition of overall OC of an FPR. 

Definition 8: The overall OC of an FPR ( )ij n nR r   is: 

1 1

1
( )

6

n n

ij
i j

R 
 

                                                                           (16) 

The following theorem is provided: 

Theorem 3: An FPR ( )ij n nR r   is OC if and only if ( ) 0R  . 

Proof: If R is OC, then there is no directed 3-cycles present in its digraph and consequently it will be ( ) 0R  . On the 

contrary, if ( ) 0R   then it is 0ij  , ,i j N   and therefore no element of R is present in a directed 3-cycle; 

consequently R is OC. 

The larger the value of ( )R , the less OC R is. 

The FPR of Example 2 has an overall OC of 1( ) 2R  , and it is not OC. 

V. AN ALGORITHM FOR IMPROVING CONSISTENCIES 

When multiplicative and ordinally inconsistent judgments are detected, the next task is to remove them. In order to 

achieve this goal, in the following, an automatic procedure to guide the DM on how to revise inconsistent preference values 

are proposed. 

In order to revise the inconsistent element ij jir r , all possible indirect judgments ( ) ( )ik ki kj jkr r r r  are used to derive the 

following revised value of ij jir r   

1

2

1, ,

nn
ij kjik

k k i k jji ki jk

r rr

r r r



  

  
     

                                                                 (17) 

In FPRs, DMs tend to provide their preference information using the discrete scale [0.1,0.9] {0.1,0.2,0.3,0.4,0.5,0.6,S 

Page 12 of 30

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



13 

0.7,0.8,0.9} . However, the revised value ijr  using Eq.(17) is generally not in this scale. Thus, to make the revised values in 

this scale, values for ij jir r   via Eq.(17) will be matched with the Table III closet to ratio value in the [0.1,0.9]S . 

TABLE III. THE RATIOS CORRESPONDING TO THE VALUE IN THE SCALE S[0.1,0.9] 

ij

ji

r

r
 0.1

0.9
 

0.2

0.8
 

0.3

0.7
 

0.4

0.6
 

0.5

0.5
 

0.6

0.4
 

0.7

0.3
 

0.8

0.2
 

0.9

0.1
 

Ratio 0.1111 0.25 0.4286 0.6667 1 1.5 2.3333 4 9 

In particular, when the obtained value ij jir r   is greater than 9, then the following will be set 0.9ijr  ; while for a ij jir r   

lower than 0.11111, it will be set 0.1ijr  . Meanwhile, ij jir r   is close to 1 it will be 0.6ijr   when 1ij jir r   , and 

0.4ijr   when 1ij jir r   . 

Based on Algorithms 1 and 2, the automatic approach to identify and repair inconsistent judgments is detailed in 

Algorithm 3 and depicted in Fig. 2. 

Algorithm 3. Let ( )ij n nR r   be an FPR and let t  be the number of iterations. 

Step 1. Let ( ) ( )( ) ( )t t
ij n n ij n nR r r    and 0t  . 

Step 2. Calculate the priority vector ( ) ( ) ( ) ( )
1 2( , , , )t t t t T

nw w w w   of ( )tR  by Eq.(8). 

Step 3. Construct the matrix ( ) ( )( )t t
ij n n    by Algorithm 2. 

Step 4. Compute ( )( )tGCI R  by Eq.(7) and ( )( )tR  by Eq.(16). 

Step 5. ( )tR  can be classified into the following four types. 

Step 5A: If ( )tR  is both multiplicative and ordinally inconsistent ( ( )( ) ( )tGCI R GCI R , ( )( ) 0tR  ), go to Step 6A. 

Step 5B: If ( )tR  is MC but ordinally inconsistent ( ( )( ) ( )tGCI R GCI R , ( )( ) 0tR  ), go to Step 6B. 

Step 5C: If ( )tR  is OC but multiplicative inconsistent ( ( )( ) 0tR  , ( )( ) ( )tGCI R GCI R ), go to Step 6C. 

Step 5D: If ( )tR  is both MC and OC, that is ( )( ) ( )tGCI R GCI R , ( )( ) 0tR  , then go to Step 9. 

Step 6. The treatments of inconsistencies. 

Step 6A: Following Step 5A: 

(1) According to Algorithm 1, establish matrix ( ) ( )( )t t
ij n n   . 

(2) Find ( ) ( )

,
max{ }t t

i j ij
i j 

   in matrix ( ) ( )( )t t
ij n n    and ( ) ( )

,
max{ }

m m

t t
i j ij

i j
   in matrix ( ) ( )( )t t

ij n n   . 

(3) If the corresponding ( )

m m

t
i jr  and ( )t

i jr
 

 are the same element (i.e., mi i , mj j ), then it is regarded as the most 

inconsistent element to be adjusted. Otherwise, we automatically select the corresponding ( )t
i jr
 

 as the most inconsistent 

element to be adjusted. 
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(4) Compute the value of ( ) ( )t t
ij jir r   using Eq.(17) and identify the closest ratio to ( ) ( )t t

ij jir r   in Table III. Then find the 

revised value ( )t
ijr  and go to next step. 

Step 6B: Following Step 5B: 

(1) Find ( ) ( )

,
max{ }t t

i j ij
i j 

   in matrix ( ) ( )( )t t
ij n n   , then the corresponding ( )t

i jr
 

 in ( )tR  is regarded as the most 

ordinally inconsistent element. If there are two or more most ordinally inconsistent elements, choose any one to be the most 

ordinally inconsistent one. 

(2) Compute the value of ( ) ( )t t
ij jir r   using Eq.(17) and identify the closest ratio to ( ) ( )t t

ij jir r   in Table III. Then find the 

revised value ( )t
ijr  and go to next step. 

(3) If the value of ( )t
ijr  satisfies ( ) ( ) ( ) ( )log( ) log( ) 0t t t t

ij ji ij jir r r r   , go to next step. Otherwise, we set ( ) ( )1t t
ij ijr r   , 

( ) ( )t t
ji ijr r  . 

Step 6C: Following Step 5C: 

(1) According to Algorithm 1, establish matrix ( ) ( )( )t t
ij n n   . 

(2) Find ( ) ( )

,
max{ }

m m

t t
i j ij

i j
   in matrix ( ) ( )( )t t

ij n n   , then the corresponding ( )

m m

t
i jr  in ( )tR  is regarded as the most 

multiplicative inconsistent element. 

(3) Compute the value of ( ) ( )t t
ij jir r   using Eq.(17) and identify the closest ratio value from Table III. Then find the 

revised value ( )t
ijr . 

(4) If the value of ( )t
ijr  satisfies ( ) ( ) ( ) ( )log( ) log( ) 0t t t t

ij ji ij jir r r r   , go to Step 7. Otherwise, go back to (2) to search the 

second largest value in matrix ( ) ( )( )t t
ij n n    to improve. 

Step 7. New improved FPR ( 1) ( 1)( )t t
ij n nR r 

 , where 

 
( ) ( ) ( )

( 1) ( 1)
( ) ( )

( ,1 ), if  is the inconsistent element
( , )

( , ), otherwise

t t t
ij ij ijt t

ij ji t t
ij ji

r r r
r r

r r
 

   


    (18) 

Step 8. Let 1t t  , then go back to Step 2. 

Step 9. Output t , ( )tR , ( )( )tR  and ( )( )tGCI R . 

Step 10. End. 

Remark 4: In Step 6A, after finding the largest value ( )t
i j 

  and ( )

m m

t
i j , the most multiplicative inconsistent element ( )

m m

t
i jr  

and the most ordinally inconsistent element ( )t
i jr
 

 in ( )tR  are identified. If ( )

m m

t
i jr  and ( )t

i jr
 

 are the same (i, j) element in R, 
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we naturally adopt the above improved method; Otherwise, priority is given to revise the ordinally inconsistent element 

because it is considered the minimum requirement for the judgement information not to be illogical. This explains why in 

Algorithm 3, the ordinally inconsistent element ( )

o o

t
i jr  is selected to be the rectified element when both inconsistencies 

happen in different fuzzy preference value positions.  

 

Fig. 2. The process of identifying and repairing inconsistent judgments in Algorithm 3 
 

Remark 5: In Algorithm 3, we identify the most inconsistent element (i.e. search the maximum value in the matrix 

( ) ( )( )t t
ij n n    and ( ) ( )( )t t

ij n n   ). If there exist more than one inconsistent element in ( )tR  with maximum value, then 

the inconsistent element with value closer to 0.5 is selected. If more than one value results again, then any of them is selected 

(randomly, for example) as the inconsistent element to adjust. 

Remark 6: In Step 6B, when the FPR is ordinally inconsistent but MC, the revised values should reverse the direction of 

the ordinally inconsistent elements. If the revised values do not satisfy this requirement, i.e., 

( ) ( ) ( ) ( )log( ) log( ) 0t t t t
ij ji ij jir r r r   , then we just reverse its direction by changing their original values. If there are two or more 

Input an FPR R and the 
threshold value 𝐺𝐶𝐼തതതതത

Start 

 Compute GCI(R) and Ψ(R)  

R is both 
multiplicative 
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consistent 
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inconsistent 

R is 
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inconsistent 
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multiplicative 
and ordinally 
inconsistent 
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multiplicative 
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𝑟௜೘௝೘ and ordinally 
inconsistent element 

𝑟௜೚௝೚ 

Identify and modify 
the ordinally 

inconsistent element 
𝑟௜೚௝೚ 

Identify and modify 
the multiplicative 

inconsistent 
element 𝑟௜೘௝೘ 

log ൬
௥೔ೕ
௥ೕ೔
൰ log ൬

௥೔ೕ
ᇲ

௥ೕ೔
ᇲ ൰>0?

Output the 
consistent 
FPR 𝑅ᇱ, 
𝜓ሺ𝑅ᇱሻ and 
𝐺𝐶𝐼ሺ𝑅ᇱሻ  

End 𝑟௜೘௝೘ ൌ 𝑟௜೚௝೚? 

Modify the 
inconsistent 

element 

Yes No 
Yes 

No 
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ordinally inconsistent elements, we choose any one to reverse it, this does not affect the final result. This is also verified in 

our Monte Carlo simulation experiments. In Step 6C, the FPR is the OC but multiplicative inconsistent (i.e., ( )( ) 0tR   

and ( )( ) ( )tGCI R GCI R ). Thus, the revised value ( )t
ijr  should not reverse the direction of the original value 

( )t
ijr . In 

order to achieve this goal, the constraint    ( ) ( ) ( ) ( )log log 0t t t t
ij ji ij jir r r r    is imposed, i.e., if  ( ) 0.5t

ijr  (i.e., ( ) ( ) 1t t
ij jir r  ), 

then the adjusted value ( )t
ijr  also should be larger than 0.5, i.e., ( ) ( ) 1t t

ij jir r   . Similarly, if ( ) 0.5t
ijr  , (i.e., ( ) ( ) 1t t

ij jir r  ), 

then the adjusted value ( )t
ijr  should be lower than 0.5, i.e., ( ) ( ) 1t t

ij jir r   . Therefore, the revised element should satisfy 

   ( ) ( ) ( ) ( )log log 0t t t t
ij ji ij jir r r r   . Otherwise, the second largest value in matrix ( ) ( )( )t t

ij n n    is chosen to be improved. 

This will guarantee the construction of an FPR with acceptable MC and OC.  

VI. ILLUSTRATIVE EXAMPLES, COMPARATIVE ANALYSES AND DISCUSSIONS 

This section includes two subsections. The first one offers some illustrative examples, and comparisons with the previous 

methods in literature. The second one provides some simulation experiments to additionally support the effectiveness of the 

proposed methods.  

A. Illustrative Examples and Comparative Analyses 

In this section, we will offer four examples, one for each type of inconsistency situation of Algorithm 3 (Fig. 2), to 

demonstrate the usefulness and feasibility of our developed methods.    

 Example 3 is the continuation of Example 1, which has been studied in Xu, et al. [15], and corresponds to the case of 

an FPR that is both multiplicative and ordinally inconsistent, with same ordinal and multiplicative inconsistent 

elements.  

 Example 4 was investigated by Xia, et al. [13], and corresponds to an FPR that is OC but multiplicative 

inconsistency.  

 Example 5 was examined by Xu, et al. [29]. It corresponds to an FPR that is ordinally inconsistent but with 

acceptable MC. 

 Example 6 is from Xu and Cai [35], and it covers the case of an FPR that is both ordinally and multiplicative 

inconsistent, with different ordinal and multiplicative inconsistent elements. 

Comparisons with the previous approaches in the literature are also provided for each example. 

Example 3 (Example 1 continuation): In this example, we will adjust the multiplicative and ordinal inconsistencies of an 

FPR which has the same ordinal and multiplicative inconsistent elements. 

Step 1. Let (0) (0)
1 4 4 4 4( ) ( )ij ijR r r   , 0t  , and 1( ) 0.3526GCI R  . 
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Step 2. By Eq.(8), (0) (0.4697,0.2428,0.1619,0.1255)Tw  . By Eq.(7), it is (0)
1( )GCI R  11.4581 ( )GCI R . Thus, (0)

1R  is 

multiplicative inconsistent. 

Step 3. In Example 2, it was obtained the following the matrix (0) (0)
4 4( )ij   : 

(0)

0 1 1 2

1 0 0 1

1 0 0 1

2 1 1 0

 
 
  
 
 
 

 

Step 4. By Eq.(16), (0)
1( ) 2 0R   . It means that (0)

1R  is also ordinally inconsistent. 

Step 5. According to Algorithm 1, due to different definitions of 
 

and ij , we may get many forms of (0) (0)( )ij n n    

which are shown in Table I. For the convenience of explanation, we use the following matrix established by Eq.(9) and 

Eq.(11) as an example. 

(0)

0 1.3195 2.2640 2.6391

1.3195 0 0.9445 1.3195

2.2640 0.9445 0 2.2640

2.6391 1.3195 2.2640 0

 
 
  
 
 
 

 

Step 6. Observing the matrix (0 ) , the largest value in (0 )  is (0) (0)
14 41 2   . Meanwhile, the largest value in the 

matrix (0)  is (0) (0)
14 41 2.6391   . Therefore,  (0)

14r  is the most inconsistent element. 

Step 7. By Eq.(17), the new value of (0) (0)
14 41 14 9r r     is derived, and therefore it is set (0)

14 0.9r   . 

Step 8. According to Eq.(18), the following improved FPR (1)
1R  is derived: 

(1)
1

0.5 0.7 0.9 0.9

0.3 0.5 0.6 0.7

0.1 0.4 0.5 0.8

0.1 0.3 0.2 0.5

R

 
 
 
 
 
 

 

Step 9. By Eq.(8), (1) (0.6303,0.1881,0.1254,0.0562)Tw  , and the ranking of alternatives is 1 2 3 4x x x x   . 

Step 10. By Algorithm 2, the matrix (1) (1)
4 4( )ij    is: 

(1)

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

 
 
  
 
 
 

 

Step 11. By Eq.(7), (1)
1 1( ) 0.3299 ( )GCI R GCI R  . By Eq.(16), (1)

1( ) 0R  . Thus, (1)
1R  is OC and of acceptable MC. 

Through the proposed consistency improvement process, an FPR (1)
1R  with OC and acceptable MC is eventually 

obtained. Furthermore, the ranking of the alternatives that is derived from (1)
1R  coincides with the initial ranking result. 
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In this example, because there exist equal preferences ( i.e. 14 41 0.5r r  ), Ma, et al. [30]’s method fails to improve 

consistency. Xu, et al. [15]’s method can only remove the ordinal inconsistency because MC is not considered. Furthermore, 

Xu, et al. [15] derived the following adjusted OC consistent FPR: 

1

0.5 0.7 0.9 0.6

0.3 0.5 0.6 0.7

0.1 0.4 0.5 0.8

0.4 0.3 0.2 0.5

R

 
 
 
 
 
 

 

When Eq.(7) is applied, it is observed that 1 1( ) 1.1288 ( )GCI R GCI R  , i.e., 1R  is not of acceptable MC. It is evident that 

the proposed method in this paper is more efficient than existing ones, because it can improve the OC and MC 

simultaneously in a single model.  

Example 4: Suppose the following an FPR on four alternatives 1 2 3, ,x x x  and 4x  (adapted from Xia, et al. [13]): 

2

0.5 0.4 0.7 0.3

0.6 0.5 0.6 0.8

0.3 0.4 0.5 0.3

0.7 0.2 0.7 0.5

R

 
 
 
 
 
 

 

In this example, we will deal with an ordinal consistent but multiplicative inconsistent FPR. 

Step 1. Let (0) (0)
2 4 4 4 4( ) ( )ij ijR r r   , 0t  , and 2( )GCI R  0.3526 . 

Step 2. By Eq.(8), the priority vector of (0)
2R  is (0) (0.2098,0.4021,0.1373,0.2508)Tw  . 

Step 3. By Algorithm 2, the following matrix ( )ij n n    was obtained: 

(0)

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

 
 
  
 
 
 

 

Step 4. By Eq.(7), (0)
2 2( ) 0.6767 ( )GCI R GCI R  . By Eq.(16), the value of (0)

2( )R  is equal to 0. Thus, (0)
2R  is OC but 

multiplicative inconsistent. Thus, only MC of (0)
2R  is to be improved. 

Step 5. According to Eq.(9) and Eq.(11), the matrix (0) (0)( )ij n n   : 

(0)

0 1.3377 0.8473 1.3377

1.3377 0 1.3377 1.8281

0.8473 1.3377 0 1.3377

1.3377 1.8281 1.3377 0

 
 
  
 
 
 

 

Step 6. The largest value in (0)  is (0) (0)
24 42 1.8281   . Thus, (0)

24r  in (0)
2R  is the most multiplicative inconsistent 

element that requires to be improved. 

Step 7. By Eq.(17), (0) (0)
24 42 0.6429r r    and it is closet to 0.4 0.6  in Table III. Then (0)

24 0.4r   . 
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Step 8. However, it is  (0) (0) (0) (0)
24 42 24 42log( ) log 0r r r r   , which means that the new value (0)

24r   changes the original order. 

Thus, the second largest value in matrix (0)  is to be found and improved. 

Step 9. The second largest value in matrix (0)  is (0) (0) (0) (0) (0) (0) (0) (0)
12 21 14 41 23 32 34 43               1.3377 . According to 

Remark 5, any of the values (0)
12r , (0)

14r , (0)
23r , (0)

34r  can be selected as the most multiplicative inconsistent element. Here, 

(0)
23r  is selected. 

Step 10. By Eq.(17), we get the value of (0) (0)
23 32 5.7155r r   , which is closest to 0.8 0.2  in Table III. This means that 

(0)
23 0.8r   . 

Step 11. Because the values of (0)
23r  and (0)

23r   satisfy    (0) (0) (0) (0)
23 32 23 32log log 0r r r r   , the value of (0)

23r   does not 

modify the OC. 

Step 12. By Eq.(18), the following improved FPR (1)
2R  is obtained: 

(1)
2

0.5 0.4 0.7 0.3

0.6 0.5 0.8 0.8

0.3 0.2 0.5 0.3

0.7 0.2 0.7 0.5

R

 
 
 
 
 
 

 

Step 13. By Eq.(8), it is (1) (0.1939,0.4750,0.0993,0.2318)Tw  . 

Step 14. By Eq.(7), because (1)
2 2( ) 0.3996 ( )GCI R GCI R  , then (1)

2R  is still of unacceptable MC. Therefore, the MC 

needs further improvement. 

Step 15. According to Eq.(9) and Eq.(11), the new matrix (1) (1)( )ij n n    is: 

(1)

0 0.9808 0.4904 1.3377

0.9808 0 0.4904 1.3377

0.4904 0.4904 0 0.8473

1.3377 1.3377 0.8473 0

 
 
  
 
 
 

 

Step 16. The maximum value in the matrix (1)  is (1) (1) (1) (1)
14 41 24 42 1.3377       . As per Remark 5, (1)

24r  in (1)
2R  is 

selected as the multiplicative inconsistent element. 

Step 17. By Eq.(17), it is (1) (1)
24 42 1.0498>1r r   , which leads to (1)

24 0.6r  . 

Step 18. Because the values of (1)
24r  and (1)

24r  satisfy    (1) (1) (1) (1)
24 42 24 42log log 0r r r r   , (1)

24r  does not change the OC. 

Step 19. By Eq.(18), the new improved FPR (2)
2R  is: 
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(2)
2

0.5 0.4 0.7 0.3

0.6 0.5 0.8 0.6

0.3 0.2 0.5 0.3

0.7 0.4 0.7 0.5

R

 
 
 
 
 
 

 

Step 20. By Eq.(8), (2) (0.2017,0.3867,0.1034,0.3082)Tw  , i.e., 2 4 1 3x x x x   . 

Step 21. By Eq.(7), (2)
2 2( ) 0.1226< ( )GCI R GCI R , which means that (2)

2R  is of acceptable MC. 

Finally, (2)
2R  is both MC and OC. Furthermore, the derived ranking of alternatives 2 4 1 3x x x x    coincides with the 

initial ranking. 

 Xia, et al. [13]’s method requires 4 iterations to derive the following relation of acceptable MC [for 2( ) 0.3526GCI R  , 

0.1   (  is a parameter in Xia, et al. [13]’s method)]: 

(4)
2

0.5000 0.3799 0.6685 0.3503

0.6201 0.5000 0.6536 0.7450

0.3315 0.3464 0.5000 0.3181

0.6497 0.2550 0.6819 0.5000

R

 
 
 
 
 
 

, (4)
2 2( ) 0.2915 ( )GCI R GCI R  . 

This shows that Xia, et al. [13]’s approach is computationally more expensive than the present method, in addition to 

modifying all the original preference values except those on the main diagonal. However, the proposed method requires the 

modification of only 4 original preference values; the improved FPR has a lower (2)
2( )GCI R  of 0.1226 , and therefore it is 

more MC than the improved FPR derived by Xia, et al. [13]. 

Example 5: Assume that a DM provides the following preferences over a set of six alternatives (adapted from [29]): 

3

0.5 0.7 0.3 0.7 0.3 0.7

0.3 0.5 0.6 0.5 0.2 0.5

0.7 0.4 0.5 0.8 0.5 0.8

0.3 0.5 0.2 0.5 0.2 0.5

0.7 0.8 0.5 0.8 0.5 0.8

0.3 0.5 0.2 0.5 0.2 0.5

R

 
 
 
 

  
 
 
 
  

 

  In this example, an FPR that is ordinally inconsistent but with acceptable MC needs to be repaired. 

Step 1. Let (0) (0)
3 6 6 6 6( ) ( )ij ijR r r   , 0t  , and the Table I threshold value 3( ) 0.37GCI R  . 

Step 2. By Eq.(8), the priority vector of (0)
3R  is (0) (0.1646,0.1054,0.2443,0.0782,0.3293,0.0782)Tw  . By Eq.(7), 

(0)
3 3( ) 0.2419< ( )GCI R GCI R . Thus, (0)

3R  is acceptable MC. 

Step 3. According to Algorithm 2, the matrix (0) (0)
6 6( )ij   : 
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(0)

0 1 1 0 0 0

1 0 4 1 1 1

1 4 0 1 1 1

0 1 1 0 0 0

0 1 1 0 0 0

0 1 1 0 0 0

 
 
 
 

   
 
 
 
  

 

Step 4. By Eq.(16), (0)
3( ) 4R  . It means that (0)

3R  is ordinally inconsistent. 

Step 5. In (0) , the largest value is (0) (0)
23 32 4   , then (0)

23r  is the most ordinally inconsistent element. 

Step 6. By Eq.(17), we have: (0) (0)
23 32 0.2315r r    and it is closest to 0.2 0.8  in Table III. Then (0)

23 0.2r   . 

Step 7. According to Eq.(18), the following improved FPR (1)
3R  is derived: 

(1)
3

0.5 0.7 0.3 0.7 0.3 0.7

0.3 0.5 0.5 0.2 0.5

0.7 0.5 0.8 0.5 0.8

0.3 0.5 0.2 0.5 0.2 0.5

0.7 0.8 0.5 0.8 0.5 0.8

0.3 0.5 0.2 0.5 0.2 0.5

0.2

0.8
R

 
 
 
 

  
 
 
 
  

 

Step 8. By Eq.(8), it is (1) (0.1556,0.0739,0.3113,0.0739,0.3113,0.0739)Tw  . 

Step 9. By Algorithm 2, the matrix (1) (1)
6 6( )ij    is: 

(1)

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

 
 
 
 

   
 
 
 
  

 

Step 10. By Eq.(7), (1)
3 3( ) 0.0095< ( )GCI R GCI R . By Eq.(16), (1)

3( ) 0R  . Thus, (1)
3R  is now both MC and OC. 

The ranking of alternatives will be: 3 5 1 2 4 6~ ~ ~x x x x x x  . 

This example was investigated by Xu, et al. [29], where they derived the following improved FPR: 

       3

0.5 0.7 0.3 0.7 0.3 0.7

0.3 0.5 0.5 0.2 0.5

0.7 0.5 0.8 0.5 0.8

0.3 0.5 0.2 0.5 0.2 0.5

0.7 0.8 0.5 0.8 0.5 0.8

0.3 0.5 0.2 0.5 0.2 0.

0.4

0.

5

6
R

 
 
 
 

   
 
 
 
  

 

By Eq. (7), the weighting vector of  3R  is (0.1611,0.0901,0.2736,0.0765,0.3222,0.0765)Tw  and it has 3( )GCI R 

0.0837 . Then the ranking of alternatives for 3R  would be: 5 3 1x x x   2 4 6~x x x . As we can see in 3R , the original 
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indifference between pairs of alternatives (for example between 5x  and 3x : 5 3x x , 35 0.5r  ) is kept by the proposed 

method but not by Xu, et al. [29]’s method. Again, this example shows that the proposed method is able to improve the OC 

and the MC simultaneously. After adjusting the inconsistent elements, the inconsistent elements are eliminated, and the 

degree of GCI is greatly improved from 0.2419 to 0.0095.  

Example 6: Suppose a DM gives an FPR on the set of 6 alternative as follows (adapted from [35]): 

4

0.5 0.3 0.3 0.7 0.8 0.5

0.7 0.5 0.2 0.7 0.8 0.6

0.7 0.8 0.5 0.7 0.7 0.8

0.3 0.3 0.3 0.5 0.9 0.7

0.2 0.2 0.3 0.1 0.5 0.4

0.5 0.4 0.2 0.3 0.6 0.5

R

 
 
 
 

  
 
 
 
  

 

  In this example, we will rectify the multiplicative and ordinal inconsistencies of an FPR that has different ordinal and 

multiplicative inconsistent elements. 

Step 1. Let (0) (0)
4 6 6 6 6( ) ( )ij ijR r r   , 0t  , and Table I value 4( )GCI R  0.37. 

Step 2. By Eq.(8), the priority vector of (0)
4R  is (0) (0.1548,0.2007,0.3430,0.1538,0.0501,0.0975)Tw  . By Eq.(7), 

(0)
4 4( ) 0.5051 ( )GCI R GCI R  , which means that is not of acceptable MC. 

Step 3. According to Algorithm 2, the matrix (0) (0)
6 6( )ij   : 

(0)

0 0 0 1 0 1

0 0 0 0 0 0

0 0 0 0 0 0

1 0 0 0 0 1

0 0 0 0 0 0

1 0 0 1 0 0

 
 
 
 

   
 
 
 
  

 

Step 4. By Eq.(16), (0)
4( ) 1R  . It means that (0)

4R  is also ordinally inconsistent. 

Step 5. By Eq.(9) and Eq.(11), the matrix (0) (0)( )ij n n    is derived: 

(0)

0 0.8807 1.0397 1.2619 1.2182 0.9141

0.8807 0 1.2758 1.2952 1.2515 0.6779

1.0397 1.2758 0 1.1848 1.6133 0.5493

1.2619 1.2952 1.1848 0 1.6145 1.0591

1.2182 1.2515 1.6133 1.6145 0 0.8613

0.9141 0.6779 0.5493 1.0591 0.8613 0






  














 

 

Step 6. The largest value in (0)  is (0) (0) (0) (0) (0) (0)
14 41 16 61 46 64 1           . Meanwhile, the largest value in the matrix 

(0)  is (0) (0)
45 54 1.6145   . Because (0)

16r  and (0)
45r  are different elements, (0)

16r  is regarded as the most inconsistent 

element. 
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Step 7. By Eq.(17), (0) (0)
16 61 2r r    and it is closest to 0.7 0.3  in Table III. Then (0)

16 0.7r   . 

Step 8. According to Eq.(18), the improved FPR (1)
4R  is obtained: 

(1)
4

0.5 0.3 0.3 0.7 0.8

0.7 0.5 0.2 0.7 0.8 0.6

0.7 0.8 0.5 0.7 0.7 0.8

0.3 0.3 0.

0.7

0.3

3 0.5 0.9 0.7

0.2 0.2 0.3 0.1 0.5 0.4

0.4 0.2 0.3 0.6 0.5

R

 
 
 
 

  
 
 
 
  

 

Step 9. By Eq.(8), it is (1) (0.1248,0.1994,0.3408,0.1883,0.0498,0.0969)Tw  . By Eq.(7), it is (1)
4( ) 0.4747GCI R 

4( )GCI R  and it is still of not acceptable MC. 

Step 10. By Algorithm 2, the matrix (1) (1)
6 6( )ij    is: 

(1)

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

 
 
 
 

   
 
 
 
  

 

Step 11. By Eq.(16), (1)
4( ) 0R  . Thus, (1)

4R  is OC. 

Step 12. By Eqs.(9) and (11), the matrix (1) (1)( )ij n n    is constructed: 

(1)

0 1.0925 0.9820 1.0500 1.0063 0.6446

1.0925 0 1.2758 1.2952 1.2515 0.8898

0.9820 1.2758 0 1.1848 1.6133 0.4916

1.0500 1.2952 1.1848 0 1.6145 0.8473

1.0063 1.2515 1.6133 1.6145 0 0.6495

0.6446 0.8898 0.4916 0.8473 0.6495 0






  














 

 

Step 13. The largest value in the matrix (1)  is (1)
45 1.6145  . Thus, the corresponding (1)

45r  in (1)
4R  is the multiplicative 

inconsistent element. 

Step 14. By Eq.(17), (1) (1)
45 54 1.7908r r   , which is closest to 0.6 0.4  in Table III. Then (1)

45 0.6r  . 

Step 15. (1)
45r  and (1)

45r  satisfy    (1) (1) (1) (1)
45 54 45 54log log 0r r r r   , hence the value of (1)

45r  does not modify the OC. 

Step 16. By Eq.(18), the new improved FPR (2)
4R  is: 
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(2)
4

0.5 0.3 0.3 0.7 0.8

0.7 0.5 0.2 0.7 0.8 0.6

0.7 0.8 0.5 0.7 0.7 0.8

0.3 0.3 0.

0.7

0.6

0.4

0.3

3 0.5 0.7

0.2 0.2 0.3 0.5 0.4

0.4 0.2 0.3 0.6 0.5

R

 
 
 
 

  
 
 
 
  

 

Step 17. By Eq.(8), it is (2) (0.1803,0.2031,0.3471,0.1155,0.0684,0.0856)Tw  . By Eq.(7), (2)
4( ) 0.3030GCI R 

4( )GCI R , and (2)
4R  is of acceptable MC. Thus, (2)

4R  is MC and OC. 

The following ranking of alternatives is obtained: 3 2 1 4 6 5x x x x x x     , which coincides with the improved FPR 

(2)
4R . 

According to Xu, et al. [29] ’s method, the following induced matrix C  and improved matrix 4R  are obtained: 

1 2.1667 1.5764 0.5539 1.4152 1.4965

0.5893 1 3.0595 0.8416 1.7153 1.7346

1.3036 0.5521 1 1.5299 4.0714 1.0208

2.5910 2.5514 2.1733 1 0.4802 0.9762

1.7169 1.8757 0.4826 4.0119 1 1.0142

1.0077 0.7944 1.1859 1.8349 1.4193 1

C

 




  














; 4

0.5 0.3 0.3 0.7 0.8 0.6

0.7 0.5 0.2 0.7 0.8 0.6

0.7 0.8 0.5 0.7 0.9 0.8

0.3 0.3 0.3 0.5 0.9 0.7

0.2 0.2 0.1 0.1 0.5 0.4

0.4 0.4 0.2 0.3 0.6 0.5

R

 
 
 
 

   
 
 
 
  

. 

The priority vector of 4R  is (0.1532,0.1857,0.3974,0.1423,0.0370,0.0843)Tw  and 4( )GCI R  40.3097 ( )GCI R . In 

each iteration, a pair of elements is adjusted. Observing the induced matrix C , since 35 53c c , 35r  is regarded as the most 

multiplicative inconsistent element while 53r  is not the most multiplicative inconsistent element. Thus, it is unreasonable to 

adjust 35r  and 53r . However, in Algorithm 2,   is a symmetrical matrix, which can easily identify a pair of multiplicative 

inconsistent elements. Moreover, the proposed method derives a modified FPR with (2)
4( ) 0.3030GCI R  , and therefore 

with better MC. It means that adjusting 45r  is more effective than adjusting 35r . 

In comparison with Xia, et al. [13]’s method, for values 4( ) 0.37GCI R  , 0.1   (  is a parameter in Xia, et al. [13]’s 

method), the following matrix is derived: 

(2)
4

0.5000 0.3240 0.3021 0.6654 0.7920 0.5220

0.6760 0.5000 0.2272 0.6764 0.8000 0.6144

0.6979 0.7728 0.5000 0.6981 0.7411 0.7960

0.3346 0.3236 0.3019 0.5000 0.8800 0.6841

0.2080 0.2000 0.2589 0.1200 0.5000 0.3882

0.4780 0.3856 0.

R 

2040 0.3159 0.6118 0.5000

 
 
 
 
 
 
 
 
  

 

This matrix has a larger value (2)
4 4( ) 0.3312 ( )GCI R GCI R   than the corresponding one for the matrix derived from 

the proposed method. In addition, the proposed method retains most of the original judgments. It only needs to adjust 4 
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elements. Therefore, the proposed method is not only simpler and effective but also has better consistency and retains more 

original preference information. 

B. Monte Carlo Simulation and Further Discussion 

This subsection further discusses the effectiveness of the proposed methods. Monte Carlo simulations depends on the 

random sampling to generate the results, and is an important method to model uncertainty phenomena. In order to do this, 

1,000 FPRs for different dimension ranging from 3 to 9 are randomly generated and their consistencies (ordinal and/or 

multiplicative) are improved using the proposed method. When randomly generating FPRs, the continuous domain (0,1) is 

used and therefore the values of entries will not be in the discrete scale [0.1,0.9]S . Thus, in the adjustment process, the 

adjusted values are in the domain (0,1). The average numbers of iterations of Algorithm 3 with different thresholds for 

different dimension values n (of Table I) are provided in Table IV and plotted in Fig. 13. For 3n  , the average number of 

iterations is lower than 1, denoting that some of the randomly generated FPRs are of OC and MC (these FPRs are not needed 

to be revised); otherwise, only one iteration is required to achieve the OC and MC. From Table IV and Fig. 3, it is clear that 

the average number of iterations increases as n increases. The percentages of the entries changed in the matrices are listed in 

Table V against their dimension value n, with an increasing tendency observed. In any case, the majority of the original 

values are not modified (largest percentage change value is 36.56%) with the proposed method. This also indicates the 

effectiveness of the proposed method. 

TABLE IV. THE AVERAGE ITERATIONS FOR DIFFERENT n 

n 3 4 5 6 7 8 9 
iterations 0.758 1.879 3.332 5.417 7.88 11.057 14.807 

 
Fig. 3. The average number of iterations of the proposed method 

TABLE V. THE PERCENTAGE OF THE VALUES CHANGED FOR DIFFERENT n 

n 3 4 5 6 7 8 9 
percentage 16.84% 23.49% 26.66% 30.09% 32.16% 34.55% 36.56%
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VII. CONCLUSIONS 

In this paper, algorithms to rectify the multiplicative and ordinal inconsistencies for FPRs have been proposed. Firstly, we 

have analyzed the MC property of FPRs. Geometric consistency has been applied to measure the MC degree of an FPR. The 

approximated thresholds of GCI for MPRs were extended to the case of FPRs to test whether an FPR is of acceptable MC. 

To improve the level of MC: 

  First, the degree of inconsistency is measured with GCI, and then a matrix ( )ij n n    is established to identify the 

multiplicative inconsistent elements. 

  Secondly, we presented the ordinal inconsistent conditions of FPRs. An effective algorithm to find the ordinally 

inconsistent elements was developed. Meanwhile, we proposed an approach based on the matrix ( )R  to measure the 

level of OC for FPRs. 

  Thirdly, we designed an integrated method to improve simultaneously the OC and MC of an FPR. 

  Finally, we demonstrated the validity of our proposed integrated consistency improvement method with its superior 

performance against existing methods using both examples that represent the four different scenarios of ordinal and 

multiplicative inconsistencies and simulation experiments. The following advantages noticed: 

(1) Only the MC is considered in [13], and only the OC is considered in [15]. Our proposed method can improve 

multiplicative and OC simultaneously. 

(2) Our method is simple and straightforward. In the process of improving of MC and OC, most of the original judgements 

are kept unchanged. This is possible because, at each iteration of the proposed method, inconsistent elements are accurately 

located and only one pair of preference values are modified. In contrast, other existing methods [13, 30, 32] change all the 

original judgments given by DM. 

(3) The developed method can be applied not only to strict FPRs but also to non-strict FPRs. However, Ma, et al. [30] can 

only be applied to strict FPRs. 

In the future, we will study the MC and OC for incomplete FPRs [25, 36-41] and will consider the application of the 

proposed method in group consensus models [42-50]. 
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