9,726 research outputs found

    Asymmetric bagging and random subspace for support vector machines-based relevance feedback in image retrieval

    Get PDF
    Relevance feedback schemes based on support vector machines (SVM) have been widely used in content-based image retrieval (CBIR). However, the performance of SVM-based relevance feedback is often poor when the number of labeled positive feedback samples is small. This is mainly due to three reasons: 1) an SVM classifier is unstable on a small-sized training set, 2) SVM's optimal hyperplane may be biased when the positive feedback samples are much less than the negative feedback samples, and 3) overfitting happens because the number of feature dimensions is much higher than the size of the training set. In this paper, we develop a mechanism to overcome these problems. To address the first two problems, we propose an asymmetric bagging-based SVM (AB-SVM). For the third problem, we combine the random subspace method and SVM for relevance feedback, which is named random subspace SVM (RS-SVM). Finally, by integrating AB-SVM and RS-SVM, an asymmetric bagging and random subspace SVM (ABRS-SVM) is built to solve these three problems and further improve the relevance feedback performance

    Knowledge-based gene expression classification via matrix factorization

    Get PDF
    Motivation: Modern machine learning methods based on matrix decomposition techniques, like independent component analysis (ICA) or non-negative matrix factorization (NMF), provide new and efficient analysis tools which are currently explored to analyze gene expression profiles. These exploratory feature extraction techniques yield expression modes (ICA) or metagenes (NMF). These extracted features are considered indicative of underlying regulatory processes. They can as well be applied to the classification of gene expression datasets by grouping samples into different categories for diagnostic purposes or group genes into functional categories for further investigation of related metabolic pathways and regulatory networks. Results: In this study we focus on unsupervised matrix factorization techniques and apply ICA and sparse NMF to microarray datasets. The latter monitor the gene expression levels of human peripheral blood cells during differentiation from monocytes to macrophages. We show that these tools are able to identify relevant signatures in the deduced component matrices and extract informative sets of marker genes from these gene expression profiles. The methods rely on the joint discriminative power of a set of marker genes rather than on single marker genes. With these sets of marker genes, corroborated by leave-one-out or random forest cross-validation, the datasets could easily be classified into related diagnostic categories. The latter correspond to either monocytes versus macrophages or healthy vs Niemann Pick C disease patients.Siemens AG, MunichDFG (Graduate College 638)DAAD (PPP Luso - Alem˜a and PPP Hispano - Alemanas

    Support Vector Machines for Credit Scoring and discovery of significant features

    Get PDF
    The assessment of risk of default on credit is important for financial institutions. Logistic regression and discriminant analysis are techniques traditionally used in credit scoring for determining likelihood to default based on consumer application and credit reference agency data. We test support vector machines against these traditional methods on a large credit card database. We find that they are competitive and can be used as the basis of a feature selection method to discover those features that are most significant in determining risk of default. 1

    DSL: Discriminative Subgraph Learning via Sparse Self-Representation

    Full text link
    The goal in network state prediction (NSP) is to classify the global state (label) associated with features embedded in a graph. This graph structure encoding feature relationships is the key distinctive aspect of NSP compared to classical supervised learning. NSP arises in various applications: gene expression samples embedded in a protein-protein interaction (PPI) network, temporal snapshots of infrastructure or sensor networks, and fMRI coherence network samples from multiple subjects to name a few. Instances from these domains are typically ``wide'' (more features than samples), and thus, feature sub-selection is required for robust and generalizable prediction. How to best employ the network structure in order to learn succinct connected subgraphs encompassing the most discriminative features becomes a central challenge in NSP. Prior work employs connected subgraph sampling or graph smoothing within optimization frameworks, resulting in either large variance of quality or weak control over the connectivity of selected subgraphs. In this work we propose an optimization framework for discriminative subgraph learning (DSL) which simultaneously enforces (i) sparsity, (ii) connectivity and (iii) high discriminative power of the resulting subgraphs of features. Our optimization algorithm is a single-step solution for the NSP and the associated feature selection problem. It is rooted in the rich literature on maximal-margin optimization, spectral graph methods and sparse subspace self-representation. DSL simultaneously ensures solution interpretability and superior predictive power (up to 16% improvement in challenging instances compared to baselines), with execution times up to an hour for large instances.Comment: 9 page

    Performance and optimization of support vector machines in high-energy physics classification problems

    Full text link
    In this paper we promote the use of Support Vector Machines (SVM) as a machine learning tool for searches in high-energy physics. As an example for a new- physics search we discuss the popular case of Supersymmetry at the Large Hadron Collider. We demonstrate that the SVM is a valuable tool and show that an automated discovery- significance based optimization of the SVM hyper-parameters is a highly efficient way to prepare an SVM for such applications. A new C++ LIBSVM interface called SVM-HINT is developed and available on Github.Comment: 20 pages, 6 figure
    corecore