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Abstract

The assessment of risk of default on credit is irtgra for financial institutions.
Logistic regression and discriminant analysis aohmiques traditionally used in
credit scoring for determining likelihood to defalbbased on consumer application
and credit reference agency data. We test suppotbvmachines against these
traditional methods on a large credit card databa&efind that they are competitive
and can be used as the basis of a feature selec@thod to discover those features

that are most significant in determining risk ofaiét.

1. Introduction

Credit scoring is the set of decision models aotrigues that aid lenders in granting
consumer credit by assessing the risk of lendirgjfferent consumers. It is an
important area of research that enables finanesitutions to develop lending
strategies to optimise profit. Additionally, badotiés a growing social problem that
could be tackled partly by better informed lendam@bled by more accurate credit
scoring models. A range of different data mining atatistical techniques have been
used since the 1930’s when numerical score cards fivst introduced by mail-order
companies (Thomas et al. 2002, Section 1.3).ribi8 common for financial
institutions to use statistical methods such astmyegression (LR) and linear

discriminant analysis (LDA) to build credit scoringpdels. Potential borrowers are
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classified according to their probability to detaah a loan, based on application and
credit reference agency data collected about tiseroh models are used by setting a
threshold on the probability to default and rejegtioan applications that fall below
this level.

Support vector machines (SVMs) have been appliedessfully in many
classification problems such as text categorisatrnage recognition and gene
expression analysis (eg see Cristianini and Shaayée (2000), chapter 8).
Experiments using SVM for credit scoring are reflly new, however. Several
papers have recently been published assessingtfwgrpance of SVM for credit
scoring. Baesens et al. (2003) apply SVMs, aloitly @ther classifiers to several
data sets. They report that SVMs perform wellamparison with other algorithms,
but do not always give the best performance. Setwband Stecking (2005) apply
SVM to a database of applicants for building arehloredit. They conclude that
SVMs perform slightly better than LR, but not siggantly so. They also use SVMs,
with its capacity to output support vectors, tacdiger typical and critical regions of
the problem space. Both papers report using lis& and a Gaussian radial basis
function (RBF) kernel. In both cases, the sizéhefcredit database is much smaller
than would typically be used in a real applicatidfan Gestel et al (2006) use least
squares SVMs with a Bayesian kernel to derive tlassfor corporate bankruptcy.
They find no significant difference between SVM, BRd LDA in terms of
proportion of test cases correctly classified andlifference between LR and SVM
in terms of area under the ROC curve. Li et aD@Gind SVMs outperform multi-
layer perceptrons for consumer credit data, but theults are also based on a small
sample size. Huang et al (2004) compare SVMs avttack-propagation neural
network to predict corporate credit ratings butlfinconsequential differences in
performance. Lee (2007) find a similar resultdorporate loans. Dikken (2005)
finds SVMs to be inferior to LR when modelling corpte credit risk. Huang et al
(2007) find SVMs classify credit applications nomaccurately than artificial neural
nets (ANN), decision trees or genetic algorithm&)Y@&nd compared the relative
importance of using features selected by GA and S¥vig with ANN and genetic
programming. However, they use data sets far ematid with fewer features than
would be used by a financial institution and do cmnpare the features selected by

SVM alone, nor do they compare with methods usquactice such as LR.
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In this paper, our general framework is to comlaegperformance of SVM against

several other well-known algorithms: LR, LDA akdhearest neighbour&NIN). We

extend the work on assessing SVM for credit sconnggveral ways.

1. SVM is tested against a much larger database dftaard customers than

has been considered in the literature so far. &8tict our attention to those
accounts opened in the same three month periodd (2906) points out that
for many classification problems, the data suffesen population drift, in that
the class distributions shift over time. This @stpularly true of credit data
with customer behaviour changing over time duectmemic circumstances
or changes in product development and marketirgg.thts reason a clearer
model can be developed if it is based on data t&kem a narrow time period

within which there is likely to be less variability these circumstances.

. SVM is tested with a polynomial kernel to determiing non-linear
polynomial decision space yields better performahae linear SVM or using

the Gaussian RBF kernel.

. SVM performance is assessed in light of the nurebsupport vectors

required to model the data.

Financial institutions are primarily interesteddigtermining which consumers
are most likely to default on loans. However, they also interested in
knowing which characteristics of a consumer aretrikay to affect their
likelihood to default. For example, is a home-owess likely to default than
a tenant? This information allows credit modelkerstress test their
predictions. Traditionally a test of significanaffeatures is used to discover
these characteristics. When a LR problem is sab&#ag maximum likelihood
estimation, a Wald statistic can be computed fohdaature which is then
used to determine significance. As an alternatieefollow Guyon et al.
(2002) who select significant features in the deiag the square of weights

on features output by SVM. We apply this approackeiect the top ranking
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features that are significant for credit scorifighis selection is compared with

that given using LR.

2. Data

A data set of approximately 25,000 customers widldlit cards opened in the same
three month period of 2004 was provided by a mi@@ncial institution. Four
different credit card products are representetiéndata. A customer is defined to
havedefaulted if he or she has become three months or more théhitneir payments
within the first 12 months after the account isrogk  Other definitions of default can
be used, but this one is common in credit scorifgptnas, et al. 2002, Section 8.3).
Defaulting customers are referred tdbad cases and all others gaod cases. The
data includes 34 features taken from each custsmeginal application along with
features extracted from a credit reference agentheaime of application. The data

is standardized before use, so each feature hasithe mean (0) and variance (1).

Typically, credit data is not easily separable by decision surface. This is natural
since the data at time of application cannot captioe complexities in each individual
customer’s life that may lead to default. The aggilon data can at best only provide
an indication of default. Consequently, it is usioalthe rates of misclassification on
credit data to be between around 20% and 30% @8aesens et al, 2003). This
would be considered a poor result for many othassification problems but is

typical of credit data. The poor separability loé tredit data is illustrated in Figure 1.
The good cases tend to cluster towards the botigint-@nd the bad towards the top-

left, but this is only a very general trend and¢his no clear separation.

Figure 1. lllustration the of poor separabilitytbé credit data.
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Partial least squares was used to transform date0fdgood cases (black) and 100
bad cases (white) selected randomly from the ddatwo factors given as the

andy axis of the graph.

3. Methods

The SVM is a relatively new learning algorithm tleah be used for classification.
We compare its performance against three oldesstai classification methods: LR,
LDA andkNN. All algorithms are described briefly below @isequence of

training examplegx,, y;,...,X,,y, ) with feature vectors; and class labelg. For

credit scoring, the class label is eithad or good.

3.1. Support Vector Machine (SVM) classifier

SVM separates binary classified data by a hypegotarch that the margin width
between the hyperplane and the examples is maxdm&tatistical learning theory
shows that maximizing the margin width reducesctbraplexity of the model,
consequently reducing the expected general rigkrof. For problems where data is
not separable by a hyperplane, typical of mostweald classification problems, a
soft margin is used. In this case, training exasple allowed some slack to be on
the wrong side of the margin. However, they acerpenalty proportional to how far
they are on the wrong side. The sum of the pezailsi minimized whilst maximizing
the margin width. A parametércontrols the relative cost of each goal in therale
optimization problem. The SVM optimization proble&an be expressed

algebraically as a dual form quadratic programnmraplem.
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Let y, O{-1+1} for alli=1 ton. Then the SVM optimization problem is

mﬂax(Zai +% > vy aakx;, X, )J
i=1

i,j=1
subject to constraints

O<a, <C foralli=1tonand ) y,a, =0
i=1
wherea; is a Lagrange multiplier for each training exampl&he kernel functiok
can be used to implement non-linear models of #ia.d~or this paper, we consider

three commonly used kernels.

Linear model k(X;,X;) =X%; X
Polynomial model, with degres K(X,,X,) = (Xi X, +1)d
Gaussian radial basis function (RBF), HX . H2
— i i
with parametero k(x;,x;) =exg - 502

Using non-linear kernels means that it is not faagio extract an explicit scorecard,

although predictions can be made using them.

The vector of Lagrange multipliexs is sufficient to define the output decision rule.
A classification prediction is made on a new exawm@s
y= Sg’{zai yik(x;,x) + bJ
i=1
whereb is a threshold term computed as
b=>a,yk(x,,x,) foranyjO{1...,n} such thab<a, <C.
i=1
Training examples are called “support vectors” (B¥/they are on the margin or are
on the wrong side of the margin. This is becaugetteer they are sufficient to

“support” the optimal separating hyperplane, siocly SVs are such that, > .0t
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follows that the decision rule can be expresseglsimn terms of SVs. See Vapnik
(1998) and Cristianini and Shawe-Taylor (2000)details about SVMs.

3.2. Logistic Regression (LR)

Let y, 0{01} for alli=1 ton. LR estimates the probability that the label fsrla

given example using the model

1

P(y=1lx)=1+exr(—WD(—b)'

Parameterss andb can be estimated using the maximum likelihood @doce to

maximize the log-likelihood function, with respéctw andb,
L(X;,. 0 X, [w,b) = ZYi logp, +(@-Y;)log@~ p;) wherep, =P(y=1|X; )
i=1

Non-linear LR models are allowed by including imigtion variables chosen for

inclusion using a likelihood ratio test.

3.3. Linear Discriminant Analysis (LDA)

Let y, D{O,]} for alli=1 ton. The Fisher discriminant criterion is given bg th

function

2
_(m -m,)
I(W, (X1, Yy X V2)) Saroroy
wherem, and sj are in-class means and variances given by

m= L yws, g2 LS -mF wheree, ={i=1 nly =5}
|C:y|iDCy

Maximizing the Fisher discriminant criterion yieldsyperplane = w [x which
maximizes the distance between the means of thelagses in relation to their
variance. This is the optimization problem for LD®nce a hyperplane is computed,
a prediction is made on a new exampksy = sgr{w D(). Assuming a Gaussian
distribution of examples about the class mean,rtathod can also yield probabilities

for each class label prediction. Duda et al. (208&ktion 3.8.3, give further details.
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3.4. k-Nearest Neighbours (KNN)

kNN is a nonparametric classification algorithm tha¢s a distance measure to make
predictions without building a model. The prediatifor a new examplbeis given by
the majority class label within a neighbourhoodc af the training data. Formally,

y= argmyaxky wherek, is the number of cases of clgsamongst thé& nearest

neighbours taken from the training set. The prdiigitaf the example belonging to

classy is estimated ap =k, /k (Hand 1981, Section 2.4). We use the usual

Euclidean distance measure to determine the neiughbod of an example. Henley
and Hand (1997) use kNN for credit scoring and campvith other methods
including LR.

3.5. Validation and assessment

The data set is randomly divided into a training st set in the ratio 2:1, whilst
preserving the same proportion of bad cases in. eAdiold-out procedure is then
used to assess each classification method. Expetéare repeated 10 times for
different random splits of the data to test thatplerformance measures are stable

with low standard deviation across the 10 permoteti

Error rates are reported on the test set as thpopron of test examples wrongly
classified. It is possible to set a threshold téwnthe decision rule output by each
algorithm to control the distribution of cases slfisd as good or bad. For example,

in LR, we set a thresholdand classify all exampleswith P(y =1|x) <t as good
(¥ =0). Otherwise is classified as a bad case. The threshold satépgnds on a

prior assumption of the relative cost of misclagaij good or bad cases. For
example, we expect that a bad case misclassifigd@s$, and so given a loan, would
yield a greater loss — ie the loss of a substapé&#l of the loan value — than a good
case misclassified as bad, leading to a loan nogbeade and the subsequent loss of
interest payments. However, it is not reasonablssume this relative cost for
assessment. Also, using error rates makes it diffio compare algorithms with
different threshold terms that would lead to difietr distributions of misclassification
of good and bad cases. Therefore it is usual tesuregerformance with a receiver
operating characteristic (ROC) curve which plotss#tévity (true positive rate)

against 1-specificity (false negative rate) for fiérange of possible threshold
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values. This is a typical performance measurerfedit scoring (eg Engelmann et al.
2003, Baesens et al. 2003). The area under thed®@ (AUC) is used as a single
summary statistic for measuring performance andpasing algorithms (DeLong et
al. 1988). Note that a ROC curve is constructedsidoM by varying the threshold

termb. Reducing this threshold will increase the nundferases classified as bad
(y=+1).

3.6. Parameter Tuning

Both SVM andkNN require parameters to be set prior to clasgiica These
parameters are tuned against a separate datadsgiendent of the data set used for
classification as described in Section 2. The tyuiata set comprises 17,585
customers taken from 2003 for the same producis sfblit into a training and test set,
again in a 2:1 ratio. A grid search is used t@deine those parameter values that
maximize the AUC on the test set. SVM is tunedafoange of values & from 10°

to 10*. Additionally the polynomial kernel is tuned foegteesi=2, 3 and 4; and the
Gaussian RBF kernel is tuned for valuesiofrom 10° to 10%. kNN is tuned for
values otk from 50 to 6000.

3.7. Discovering significant features

The maximum likelihood method used for LR is tyflicased to determine the most
significant features in a model. The process afimaing the likelihood function
yields a Wald statistic for each coefficient tattine null-hypothesis that its true value
is zero. A p-value is computed based on the Waltissit using a chi-square test.

The lower the p-value, the less likely the trueueak zero, hence the more significant
the feature with the coefficient is likely to be the model. We set a significance

level of 0.01 and select those features with p-esless than this.

Guyon et al. (2002) propose using the square ofvifights from the hyperplane
generated by SVM as a feature selection critefitvey show this will minimize
generalized risk and apply the technique to cadlessification. They used a
recursive procedure, removing a few features ehe.tHowever, since for the credit
scoring problem, there are relatively few featuoebegin with, we do not need to
apply a recursive procedure. We simply use the madg of weights on features as a
feature selection criterion. We set a threshol@.bfand all features with weights
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greater than this will be selected as significaatdires. This threshold level is chosen
since we found it yields approximately the same bemnof features as the LR method
described above. Since the data is standardizisdeasonable to directly compare

the magnitudes of weights on different features.

4. Results

Results are given in this section for pre-clasatfan parameter tuning, algorithm

comparison and significant feature discovery usiRgand SVM.

4.1. Parameter tuning

Table 1 shows the optimal parameter values thatmmag test AUC for SVM on the

tuning data set.

Table 1. Optimal parameter values.
SVM kernel Optimal parameters | #SV | Training | Test

AUC AUC
Linear C=0.001 7961 0.796 0.791
Polynomial C=10>,d=2 9458| 0.808 0.758

Gaussian RBF ¢=1000,0 =10° 7803 | 0.796 0.791

#SV = number of support vectors

It is interesting that the non-linear kernels do merform better than the simple linear
model. In particular, the polynomial kernel perferpoorly. This may be because this
non-linear model is over-fitting the data. Thigigdent in the difference between the
relatively high training AUC and low test AUC. Howve, the results are not

sufficient to assert this conclusively.

The best results are achieved when large numbe&¥ofare extracted. Over 50% of
training examples are SVs. This is due to thetfzat credit data is not easily
separable by any decision surface as explaineéddtidh 2, so many of the training

examples remain misclassified.

For kNN, test AUC was stable at over 0.760 for valuek loétween 500 and 4000. It

is usual for performance to be stable across a reidge of values d€ for large
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training sets (Olsson 2006). We choose the midediggirek=2000 as an optimal

value for the following comparative experiments.

4.2. Comparing algorithms

Table 2 shows results on the test set. Mean amdiatd deviations of AUC are given
for the 10 experiments with different random sphitshe data into training and test
sets. The optimal parameter settings found in teeipus section are used for these

experiments.

Table 2. Performance for different algorithms

Classification algorithm Test AUC | Sandard
(mean) deviation
LR 0.779 0.0063
LR with interaction variables 0.777 0.0076
SVM: linear 0.783 0.0055
SVM: polynomial 0.755 0.0068
SVM: Gaussian RBF 0.783 0.0053
LDA 0.781 0.0058
kNN 0.756 0.0063

The standard deviations are relatively low (lessth% of mean AUC) indicating

that the measured performance is stable.

SVM with a linear or Gaussian model performs beésting the highest AUC.
However, the differences in performance are snmallare not significant. Schebesch

and Stecking (2005) reach a similar conclusion withr experiments.

The only algorithms that stand out as particulpdgr are SVM with polynomial
kernel anckNN. As mentioned in Section 4.1, we suspect thgrmhial kernel over-
fits the training data. The poor result WHNN corroborates the results given by
Baesens et al (2003).

Neither LR with interaction variables nor SVM witlon-linear kernels give an

improvement over the simpler models. This indic#ites the data is broadly linearly
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separable. Gayler (2006) has argued that interagtriables are less stable than the
main effects and they would usually only be incldidea model if the modeller has

prior belief in their relevance to credit scorinQur results tend to support this view.

Figure 2 shows typical ROC curves taken from orpgegrment. It is clear that the
ROC curve for SVM, LR and LDA are all very similafhe only algorithm which
gives a distinctly poor ROC curvekBIN which is outperformed by SVM across the
whole range of the graph.

Figure 2. ROC curves for performance on test dataparing the performance of
linear SVM with LR, LDA andkNN.
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SVM (unbroken line) andNN (broken line)

Error rates can be derived by setting a cut-offshold for each model and predicting
those test cases with a score computed from thehbetbw the cut-off as bads and
those above as goods. Error rates are given bpaong predicted against actual
classifications across the test set. Howevery eates are not comparative since each
classifier will yield a different distribution ofers on good and bad cases. This is
why using AUC is a better comparative measure esinmeasures predictive
performance across all possible chosen cut-ofttiulels. Nevertheless, it is
interesting to review error rates on good and lzes for SVM to ensure that they
represent an acceptable performance. The nawiralffficfor SVM is the threshold
termb described in Section 3.1. For linear SVM the erates for good and bad
cases in the test set are 27.4% and 29.6% resplycind for SVM with a Gaussian
RBF kernel the error rates for good and bad cagef7a2% and 30.1%. These
outcomes are within the range of error rates welavexpect from predicting default

in credit data, as we discussed in Section 2.

4.3. Significant features

Table 3 shows significant features selected usRghd SVM with a linear model as
described in Section 3.7. A count of the numbeimés each feature is selected in
each of the 10 experiments is made. Only thoserfeatvith a count greater than 4
for either the LR or SVM selection methods are reggh Typical weights and

coefficient estimates are also given for each wdeia

Table 3. Significant features.
Feature SYM | LR Typical | Typical LR

count | count | SVYM coefficient

weight | estimate

F1: Home owner 10 10 -0.280 -0.357
F2: Time with bank 10 10 -0.180 -0.240
F3: Insurance required 10 10 +0.346 +0.337
F4: No. settled non-mail order CAIS 10 10 -0.187| -0.230
accounts
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F5: Total outstanding balance excluding | 10 10 +0.325| +0.357
mortgages on all active CAIS accounts
F6: Total no. of credit searches in last 6 | 10 10 +0.208| +0.221

months

F7: Worst account status (0 to 99) 10 10 +0.248 2HD.
F8: Age 10 10 * *

F9: Product (type of credit card) 10 10 * *

F10: Time since most delinquent account 7 7 +0.139.112
F11: UK Mosaic code 7 5 +0.108 +0.129

*These variables are course classified into sevediatator variables. Therefore there are several

weights and coefficient estimates associated vatthef them.

The direction of SVM weights and LR coefficientigsdtes is the same and indicates
how each feature contributes to the risk of defaupositive value indicates higher
risk and a negative value a lower risk. For exarmguteapplicant who has already
applied for credit several times (F6) will be mbkely to default and a home owner

(F1) is less likely to default.

These results show that the two methods agreegsyron the most significant
features. The fact that two very different methgil® the same results provides
further confidence that these features can be tikerard for use in credit scorecards
to determine the risk of default for individual &ippnts for credit. It shows that SVM

can be used successfully for feature selectiomaditscoring.

5. Conclusions

SVMs are a relatively new technique for applicatiorcredit scoring. We test them
on a much larger credit data set than has beeningedvious studies. We find that
SVMs are successful in comparison to establishedoaghes to classifying credit
card customers who default. This corroboratesitigirigs of previous researchers. In
addition, we find that, unlike many other learntagks, a large number of support
vectors are required to achieve the best performartus is due to the nature of the
credit data for which the available applicationade&n only be broadly indicative of
default. Finally, we show that SVM can be used sastully as a feature selection
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method to determine those application variablesdha be used to most significantly

indicate the likelihood of default.

There are several further lines of investigatiéirstly, we discovered that the type of
product (F9 in Table 3) is an important indicatbdefault. It would be interesting to
build separate models for each product to deterimive performance and significant
features vary between them. Secondly, we took fdaa just one three-month
period to avoid the problem of population drift (#d62006). It would be interesting to
see how models and performance change across ttithieoav robust simple and

complex models are when tested against test ssatsdrom later dates.
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