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Abstract 

The assessment of risk of default on credit is important for financial institutions. 

Logistic regression and discriminant analysis are techniques traditionally used in 

credit scoring for determining likelihood to default based on consumer application 

and credit reference agency data. We test support vector machines against these 

traditional methods on a large credit card database. We find that they are competitive 

and can be used as the basis of a feature selection method to discover those features 

that are most significant in determining risk of default. 

1. Introduction 

Credit scoring is the set of decision models and techniques that aid lenders in granting 

consumer credit by assessing the risk of lending to different consumers. It is an 

important area of research that enables financial institutions to develop lending 

strategies to optimise profit. Additionally, bad debt is a growing social problem that 

could be tackled partly by better informed lending enabled by more accurate credit 

scoring models. A range of different data mining and statistical techniques have been 

used since the 1930’s when numerical score cards were first introduced by mail-order 

companies (Thomas et al. 2002, Section 1.3). It is now common for financial 

institutions to use statistical methods such as logistic regression (LR) and linear 

discriminant analysis (LDA) to build credit scoring models.  Potential borrowers are 
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classified according to their probability to default on a loan, based on application and 

credit reference agency data collected about them. Such models are used by setting a 

threshold on the probability to default and rejecting loan applications that fall below 

this level.  

 

Support vector machines (SVMs) have been applied successfully in many 

classification problems such as text categorisation, image recognition and gene 

expression analysis (eg see Cristianini and Shawe-Taylor (2000), chapter 8).  

Experiments using SVM for credit scoring are relatively new, however. Several 

papers have recently been published assessing the performance of SVM for credit 

scoring.  Baesens et al. (2003) apply SVMs, along with other classifiers to several 

data sets.  They report that SVMs perform well in comparison with other algorithms, 

but do not always give the best performance.  Schebesch and Stecking (2005) apply 

SVM to a database of applicants for building and loan credit.  They conclude that 

SVMs perform slightly better than LR, but not significantly so.  They also use SVMs, 

with its capacity to output support vectors, to discover typical and critical regions of 

the problem space.  Both papers report using linear SVM and a Gaussian radial basis 

function (RBF) kernel.  In both cases, the size of the credit database is much smaller 

than would typically be used in a real application.  Van Gestel et al (2006) use least 

squares SVMs with a Bayesian kernel to derive classifiers for corporate bankruptcy.  

They find no significant difference between SVM, LR and LDA in terms of 

proportion of test cases correctly classified and no difference between LR and SVM 

in terms of area under the ROC curve.  Li et al (2006) find SVMs outperform multi-

layer perceptrons for consumer credit data, but their results are also based on a small 

sample size.   Huang et al (2004) compare SVMs with a back-propagation neural 

network to predict corporate credit ratings but find inconsequential differences in 

performance.  Lee (2007) find a similar result for corporate loans.  Dikken (2005) 

finds SVMs to be inferior to LR when modelling corporate credit risk.  Huang et al 

(2007) find SVMs classify credit applications no more accurately than artificial neural 

nets (ANN), decision trees or genetic algorithms (GA), and compared the relative 

importance of using features selected by GA and SVM along with ANN and genetic 

programming.  However, they use data sets far smaller and with fewer features than 

would be used by a financial institution and do not compare the features selected by 

SVM alone, nor do they compare with methods used in practice such as LR. 
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In this paper, our general framework is to compare the performance of SVM against 

several other well-known algorithms: LR, LDA and k-nearest neighbours (kNN).  We 

extend the work on assessing SVM for credit scoring in several ways. 

 

1. SVM is tested against a much larger database of credit card customers than 

has been considered in the literature so far.  We restrict our attention to those 

accounts opened in the same three month period.  Hand (2006) points out that 

for many classification problems, the data suffers from population drift, in that 

the class distributions shift over time.  This is particularly true of credit data 

with customer behaviour changing over time due to economic circumstances 

or changes in product development and marketing.  For this reason a clearer 

model can be developed if it is based on data taken from a narrow time period 

within which there is likely to be less variability in these circumstances. 

 

2. SVM is tested with a polynomial kernel to determine if a non-linear 

polynomial decision space yields better performance than linear SVM or using 

the Gaussian RBF kernel. 

 

3. SVM performance is assessed in light of the number of support vectors 

required to model the data. 

 

4. Financial institutions are primarily interested in determining which consumers 

are most likely to default on loans. However, they are also interested in 

knowing which characteristics of a consumer are most likely to affect their 

likelihood to default. For example, is a home-owner less likely to default than 

a tenant? This information allows credit modellers to stress test their 

predictions.  Traditionally a test of significance of features is used to discover 

these characteristics. When a LR problem is solved using maximum likelihood 

estimation, a Wald statistic can be computed for each feature which is then 

used to determine significance.  As an alternative, we follow Guyon et al. 

(2002) who select significant features in the data using the square of weights 

on features output by SVM. We apply this approach to select the top ranking 
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features that are significant for credit scoring.  This selection is compared with 

that given using LR. 

2. Data 

A data set of approximately 25,000 customers with credit cards opened in the same 

three month period of 2004 was provided by a major financial institution. Four 

different credit card products are represented in the data. A customer is defined to 

have defaulted if he or she has become three months or more behind in their payments 

within the first 12 months after the account is opened.  Other definitions of default can 

be used, but this one is common in credit scoring (Thomas, et al. 2002, Section 8.3). 

Defaulting customers are referred to as bad cases and all others as good cases. The 

data includes 34 features taken from each customer’s original application along with 

features extracted from a credit reference agency at the time of application.  The data 

is standardized before use, so each feature has the same mean (0) and variance (1). 

 

Typically, credit data is not easily separable by any decision surface.  This is natural 

since the data at time of application cannot capture the complexities in each individual 

customer’s life that may lead to default. The application data can at best only provide 

an indication of default. Consequently, it is usual for the rates of misclassification on 

credit data to be between around 20% and 30% (eg see Baesens et al, 2003).  This 

would be considered a poor result for many other classification problems but is 

typical of credit data.  The poor separability of the credit data is illustrated in Figure 1.  

The good cases tend to cluster towards the bottom-right and the bad towards the top-

left, but this is only a very general trend and there is no clear separation. 

 

Figure 1. Illustration the of poor separability of the credit data. 



SVM for credit scoring and discovery of significant features Bellotti T and Crook J 

 5 of 16 

 
Partial least squares was used to transform data for 100 good cases (black) and 100 

bad cases (white) selected randomly from the data into two factors given as the x 

and y axis of the graph. 

 

3. Methods 

The SVM is a relatively new learning algorithm that can be used for classification. 

We compare its performance against three older statistical classification methods: LR, 

LDA and kNN.  All algorithms are described briefly below for a sequence of n 

training examples ( )nn yy ,,,, 11 xx …  with feature vectors xi and class labelsiy .  For 

credit scoring, the class label is either bad or good. 

3.1. Support Vector Machine (SVM) classifier 

SVM separates binary classified data by a hyperplane such that the margin width 

between the hyperplane and the examples is maximized. Statistical learning theory 

shows that maximizing the margin width reduces the complexity of the model, 

consequently reducing the expected general risk of error.  For problems where data is 

not separable by a hyperplane, typical of most real-world classification problems, a 

soft margin is used. In this case, training examples are allowed some slack to be on 

the wrong side of the margin. However, they accrue a penalty proportional to how far 

they are on the wrong side.  The sum of the penalties is minimized whilst maximizing 

the margin width.  A parameter C controls the relative cost of each goal in the overall 

optimization problem.  The SVM optimization problem can be expressed 

algebraically as a dual form quadratic programming problem. 
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Let { }1,1+−∈iy  for all i=1 to n.  Then the SVM optimization problem is 











+∑ ∑

= =
),(

2

1
max

1 1,
jijij

n

i

n

ji
ii kyy xx

α

ααα  

subject to constraints  

Ci ≤≤ α0  for all i=1 to n and ∑
=

=
n

i
iiy

1

0α  

where iα  is a Lagrange multiplier for each training example i.  The kernel function k 

can be used to implement non-linear models of the data. For this paper, we consider 

three commonly used kernels. 
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Using non-linear kernels means that it is not feasible to extract an explicit scorecard, 

although predictions can be made using them. 

 

The vector of Lagrange multipliers α  is sufficient to define the output decision rule. 

A classification prediction is made on a new example x as 
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where b is a threshold term computed as  

∑
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=
n

i
jiii kyb

1

),( xxα  for any { }nj ,,1…∈  such that Cj << α0 . 

Training examples are called “support vectors” (SVs) if they are on the margin or are 

on the wrong side of the margin. This is because together they are sufficient to 

“support” the optimal separating hyperplane, since only SVs are such that 0>iα .  It 
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follows that the decision rule can be expressed simply in terms of SVs.  See Vapnik 

(1998) and Cristianini and Shawe-Taylor (2000) for details about SVMs.   

3.2. Logistic Regression (LR) 

Let { }1,0∈iy  for all i=1 to n.  LR estimates the probability that the label is 1 for a 

given example x using the model 

( )b
yP

−⋅−+
==

xw
x

exp1

1
)|1( . 

Parameters w and b can be estimated using the maximum likelihood procedure to 

maximize the log-likelihood function, with respect to w and b, 

∑
=

−−+=
n

i
iiiin pypybL

1
1 )1log()1(log),|,,( wxx …  where )|1( ii yPp x== . 

Non-linear LR models are allowed by including interaction variables chosen for 

inclusion using a likelihood ratio test. 

3.3. Linear Discriminant Analysis (LDA) 

Let { }1,0∈iy  for all i=1 to n.  The Fisher discriminant criterion is given by the 

function 
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Maximizing the Fisher discriminant criterion yields a hyperplane xw ⋅=0  which 

maximizes the distance between the means of the two classes in relation to their 

variance. This is the optimization problem for LDA.  Once a hyperplane is computed, 

a prediction is made on a new example x as ( )xw ⋅= sgnŷ .  Assuming a Gaussian 

distribution of examples about the class mean, this method can also yield probabilities 

for each class label prediction. Duda et al. (2001), Section 3.8.3, give further details. 
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3.4. k-Nearest Neighbours (kNN) 

kNN is a nonparametric classification algorithm that uses a distance measure to make 

predictions without building a model.  The prediction for a new example x is given by 

the majority class label within a neighbourhood of x in the training data.  Formally, 

y
y

ky maxargˆ =  where yk  is the number of cases of class y amongst the k nearest 

neighbours taken from the training set. The probability of the example belonging to 

class y is estimated as kkp y /ˆ =  (Hand 1981, Section 2.4).  We use the usual 

Euclidean distance measure to determine the neighbourhood of an example.  Henley 

and Hand (1997) use kNN for credit scoring and compare with other methods 

including LR. 

3.5. Validation and assessment 

The data set is randomly divided into a training and test set in the ratio 2:1, whilst 

preserving the same proportion of bad cases in each.  A hold-out procedure is then 

used to assess each classification method.  Experiments are repeated 10 times for 

different random splits of the data to test that the performance measures are stable 

with low standard deviation across the 10 permutations. 

 

Error rates are reported on the test set as the proportion of test examples wrongly 

classified. It is possible to set a threshold term for the decision rule output by each 

algorithm to control the distribution of cases classified as good or bad. For example, 

in LR, we set a threshold t and classify all examples x with tyP <= )|1( x  as good 

( 0ˆ =y ).  Otherwise x is classified as a bad case. The threshold setting depends on a 

prior assumption of the relative cost of misclassifying good or bad cases. For 

example, we expect that a bad case misclassified as good, and so given a loan, would 

yield a greater loss – ie the loss of a substantial part of the loan value – than a good 

case misclassified as bad, leading to a loan not being made and the subsequent loss of 

interest payments. However, it is not reasonable to assume this relative cost for 

assessment. Also, using error rates makes it difficult to compare algorithms with 

different threshold terms that would lead to different distributions of misclassification 

of good and bad cases. Therefore it is usual to measure performance with a receiver 

operating characteristic (ROC) curve which plots sensitivity (true positive rate) 

against 1-specificity (false negative rate) for the full range of possible threshold 
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values.  This is a typical performance measure for credit scoring (eg Engelmann et al. 

2003, Baesens et al. 2003).  The area under the ROC curve (AUC) is used as a single 

summary statistic for measuring performance and comparing algorithms (DeLong et 

al. 1988).  Note that a ROC curve is constructed for SVM by varying the threshold 

term b. Reducing this threshold will increase the number of cases classified as bad 

( 1ˆ +=y ). 

3.6. Parameter Tuning 

Both SVM and kNN require parameters to be set prior to classification. These 

parameters are tuned against a separate data set, independent of the data set used for 

classification as described in Section 2. The tuning data set comprises 17,585 

customers taken from 2003 for the same products. It is split into a training and test set, 

again in a 2:1 ratio.  A grid search is used to determine those parameter values that 

maximize the AUC on the test set.  SVM is tuned for a range of values of C from 10-9 

to 104. Additionally the polynomial kernel is tuned for degrees d=2, 3 and 4; and the 

Gaussian RBF kernel is tuned for values of σ  from 10-8 to 10-3.  kNN is tuned for 

values of k from 50 to 6000. 

3.7. Discovering significant features 

The maximum likelihood method used for LR is typically used to determine the most 

significant features in a model.  The process of maximizing the likelihood function 

yields a Wald statistic for each coefficient to test the null-hypothesis that its true value 

is zero. A p-value is computed based on the Wald statistic using a chi-square test.  

The lower the p-value, the less likely the true value is zero, hence the more significant 

the feature with the coefficient is likely to be for the model. We set a significance 

level of 0.01 and select those features with p-values less than this. 

 

Guyon et al. (2002) propose using the square of the weights from the hyperplane 

generated by SVM as a feature selection criterion. They show this will minimize 

generalized risk and apply the technique to cancer classification. They used a 

recursive procedure, removing a few features at a time. However, since for the credit 

scoring problem, there are relatively few features to begin with, we do not need to 

apply a recursive procedure. We simply use the magnitude of weights on features as a 

feature selection criterion. We set a threshold of 0.1 and all features with weights 
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greater than this will be selected as significant features. This threshold level is chosen 

since we found it yields approximately the same number of features as the LR method 

described above.  Since the data is standardized, it is reasonable to directly compare 

the magnitudes of weights on different features. 

4. Results 

Results are given in this section for pre-classification parameter tuning, algorithm 

comparison and significant feature discovery using LR and SVM. 

4.1. Parameter tuning 

Table 1 shows the optimal parameter values that maximize test AUC for SVM on the 

tuning data set. 

 

Table 1. Optimal parameter values. 

SVM kernel Optimal parameters #SV Training 

AUC 

Test 

AUC 

Linear C=0.001 7961 0.796 0.791 

Polynomial C=10-5, d=2 9458 0.808 0.758 

Gaussian RBF C=1000, 610−=σ  7803 0.796 0.791 

#SV = number of support vectors 

 

It is interesting that the non-linear kernels do not perform better than the simple linear 

model. In particular, the polynomial kernel performs poorly. This may be because this 

non-linear model is over-fitting the data. This is evident in the difference between the 

relatively high training AUC and low test AUC. However, the results are not 

sufficient to assert this conclusively. 

 

The best results are achieved when large numbers of SVs are extracted. Over 50% of 

training examples are SVs. This is due to the fact that credit data is not easily 

separable by any decision surface as explained in Section 2, so many of the training 

examples remain misclassified.   

 

For kNN, test AUC was stable at over 0.760 for values of k between 500 and 4000. It 

is usual for performance to be stable across a wide range of values of k for large 
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training sets (Olsson 2006). We choose the mid-range figure k=2000 as an optimal 

value for the following comparative experiments. 

4.2. Comparing algorithms 

Table 2 shows results on the test set.  Mean and standard deviations of AUC are given 

for the 10 experiments with different random splits of the data into training and test 

sets. The optimal parameter settings found in the previous section are used for these 

experiments. 

 

Table 2.  Performance for different algorithms 

Classification algorithm Test AUC 

(mean) 

Standard 

deviation 

LR 0.779 0.0063 

LR with interaction variables 0.777 0.0076 

SVM: linear 0.783 0.0055 

SVM: polynomial 0.755 0.0068 

SVM: Gaussian RBF 0.783 0.0053 

LDA 0.781 0.0058 

kNN 0.756 0.0063 

 

The standard deviations are relatively low (less than 1% of mean AUC) indicating 

that the measured performance is stable. 

 

SVM with a linear or Gaussian model performs best yielding the highest AUC.  

However, the differences in performance are small and are not significant.  Schebesch 

and Stecking (2005) reach a similar conclusion with their experiments. 

 

The only algorithms that stand out as particularly poor are SVM with polynomial 

kernel and kNN. As mentioned in Section 4.1, we suspect the polynomial kernel over-

fits the training data. The poor result with kNN corroborates the results given by 

Baesens et al (2003). 

 

Neither LR with interaction variables nor SVM with non-linear kernels give an 

improvement over the simpler models. This indicates that the data is broadly linearly 
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separable.  Gayler (2006) has argued that interaction variables are less stable than the 

main effects and they would usually only be included in a model if the modeller has 

prior belief in their relevance to credit scoring.  Our results tend to support this view. 

 

Figure 2 shows typical ROC curves taken from one experiment. It is clear that the 

ROC curve for SVM, LR and LDA are all very similar.  The only algorithm which 

gives a distinctly poor ROC curve is kNN which is outperformed by SVM across the 

whole range of the graph. 

 

Figure 2.  ROC curves for performance on test data, comparing the performance of 

linear SVM with LR, LDA and kNN. 

 
SVM (unbroken line) and LR (broken line)  SVM (unbroken line) and LDA (broken line) 
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SVM (unbroken line) and kNN (broken line) 

 

Error rates can be derived by setting a cut-off threshold for each model and predicting 

those test cases with a score computed from the model below the cut-off as bads and 

those above as goods.  Error rates are given by comparing predicted against actual 

classifications across the test set.  However, error rates are not comparative since each 

classifier will yield a different distribution of errors on good and bad cases.  This is 

why using AUC is a better comparative measure, since it measures predictive 

performance across all possible chosen cut-off thresholds.  Nevertheless, it is 

interesting to review error rates on good and bad cases for SVM to ensure that they 

represent an acceptable performance.  The natural cut-off for SVM is the threshold 

term b described in Section 3.1.  For linear SVM the error rates for good and bad 

cases in the test set are 27.4% and 29.6% respectively and for SVM with a Gaussian 

RBF kernel the error rates for good and bad cases are 27.2% and 30.1%.  These 

outcomes are within the range of error rates we would expect from predicting default 

in credit data, as we discussed in Section 2. 

4.3. Significant features 

Table 3 shows significant features selected using LR and SVM with a linear model as 

described in Section 3.7. A count of the number of times each feature is selected in 

each of the 10 experiments is made. Only those features with a count greater than 4 

for either the LR or SVM selection methods are reported. Typical weights and 

coefficient estimates are also given for each variable. 

 

Table 3. Significant features. 

Feature SVM 

count 

LR 

count 

Typical 

SVM 

weight 

Typical LR 

coefficient 

estimate 

F1: Home owner 10 10 -0.280 -0.357 

F2: Time with bank 10 10 -0.180 -0.240 

F3: Insurance required 10 10 +0.346 +0.337 

F4: No. settled non-mail order CAIS 

accounts 

10 10 -0.187 -0.230 
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F5: Total outstanding balance excluding 

mortgages on all active CAIS accounts 

10 10 +0.325 +0.357 

F6: Total no. of credit searches in last 6 

months 

10 10 +0.208 +0.221 

F7: Worst account status (0 to 99) 10 10 +0.248 +0.211 

F8: Age 10 10 * * 

F9: Product (type of credit card) 10 10 * * 

F10: Time since most delinquent account 7 7 +0.139 +0.112 

F11: UK Mosaic code 7 5 +0.103 +0.129 

*These variables are course classified into several indicator variables. Therefore there are several 

weights and coefficient estimates associated with each of them. 

 

The direction of SVM weights and LR coefficient estimates is the same and indicates 

how each feature contributes to the risk of default. A positive value indicates higher 

risk and a negative value a lower risk. For example, an applicant who has already 

applied for credit several times (F6) will be more likely to default and a home owner 

(F1) is less likely to default. 

 

These results show that the two methods agree strongly on the most significant 

features.  The fact that two very different methods give the same results provides 

further confidence that these features can be taken forward for use in credit scorecards 

to determine the risk of default for individual applicants for credit. It shows that SVM 

can be used successfully for feature selection in credit scoring. 

5. Conclusions 

SVMs are a relatively new technique for application to credit scoring.  We test them 

on a much larger credit data set than has been used in previous studies.  We find that 

SVMs are successful in comparison to established approaches to classifying credit 

card customers who default. This corroborates the findings of previous researchers. In 

addition, we find that, unlike many other learning tasks, a large number of support 

vectors are required to achieve the best performance. This is due to the nature of the 

credit data for which the available application data can only be broadly indicative of 

default. Finally, we show that SVM can be used successfully as a feature selection 
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method to determine those application variables that can be used to most significantly 

indicate the likelihood of default. 

 

There are several further lines of investigation.  Firstly, we discovered that the type of 

product (F9 in Table 3) is an important indicator of default.  It would be interesting to 

build separate models for each product to determine how performance and significant 

features vary between them.  Secondly, we took data from just one three-month 

period to avoid the problem of population drift (Hand 2006). It would be interesting to 

see how models and performance change across time and how robust simple and 

complex models are when tested against test sets drawn from later dates. 
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