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Abstract

Objective: Time series often appear in medical databases, but only few

machine learning methods exist that process this kind of data properly. Most

modeling techniques have been designed with a static data model in mind

and are not suitable for coping with the dynamic nature of time series. Re-

current Neural Networks (RNN) are often used to process time series, but

only a few training algorithms exist for RNNs which are complex and often

yield poor results. Therefore, researchers often turn to traditional machine
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learning approaches, such as support vector machines (SVM), which can eas-

ily be set up and trained and combine them with feature extraction (FE)

and selection (FS) to process the high-dimensional temporal data. Recently,

a new approach, called echo state networks (ESN), has been developed to

simplify the training process of RNNs. This approach allows modeling the

dynamics of a system based on time series data in a straightforward way.

The objective of this study is to explore the advantages of using ESN in-

stead of other traditional classifiers combined with FE and FS in classification

problems in the intensive care unit (ICU) when the input data consists of

time series. While ESNs have mostly been used to predict the future course

of a time series, we use the ESN model for classification instead. Although

time series often appear in medical data, little medical applications of ESNs

have been studied yet.

Methods and material: ESN is used to predict the need for dialysis be-

tween the fifth and tenth day after admission in the ICU. The input time

series consist of measured diuresis and creatinine values during the first 3

days after admission. Data about 830 patients was used for the study, of

which 82 needed dialysis between the fifth and tenth day after admission.

ESN is compared to traditional classifiers, a sophisticated and a simple one,

namely support vector machines and the naive Bayes (NB) classifier. Prior

to the use of the SVM and NB classifier, FE and FS is required to reduce the

number of input features and thus alleviate the curse dimensionality. Exten-

sive feature extraction was applied to capture both the overall properties of

the time series and the correlation between the different measurements in the

times series. The feature selection method consists of a greedy hybrid filter-

2



wrapper method using a NB classifier, which selects in each iteration the

feature that improves prediction the best and shows little multicollinearity

with the already selected set. Least squares regression with noise was used to

train the linear readout function of the ESN to mitigate sensitivity to noise

and overfitting. Fisher labeling was used to deal with the unbalanced data

set. Parameter sweeps were performed to determine the optimal parameter

values for the different classifiers. The area under the curve (AUC) and max-

imum balanced accuracy are used as performance measures. The required

execution time was also measured.

Results: The classification performance of the ESN shows significant dif-

ference at the 5% level compared to the performance of the SVM or the NB

classifier combined with FE and FS. The NB + FE + FS, with an average

AUC of 0.874, has the best classification performance. This classifier is fol-

lowed by the ESN, which has an average AUC of 0.849. The SVM + FE +

FS has the worst performance with an average AUC of 0.838. The computa-

tion time needed to pre-process the data and to train and test the classifier

is significantly less for the ESN compared to the SVM and NB.

Conclusion: It can be concluded that the use of ESN has an added value in

predicting the need for dialysis through the analysis of time series data. The

ESN requires significantly less processing time, needs no domain knowledge,

is easy to implement, and can be configured using rules of thumb.

Keywords: time series, classification, echo state network, dialysis, feature

extraction and selection
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1. Introduction1

Time series are a special kind of input data to machine learning problems.2

Most modeling techniques have been designed with a static data model in3

mind and are not suitable for coping with the dynamic nature of time series.4

Most dynamic data models are very complex in both design and training5

algorithms. Examples of such models based on artificial neural networks6

are the hidden control neural network (Levin, 1993), the neural prediction7

model (Iso and Watanabe, 1991), the linked predictive neural network (Tebel-8

skis et al., 1990) and the adaptive time-delay neural network (Xie et al.,9

2006). Recurrent Neural Networks (RNNS) are often used (Robinson, 1994)10

since this type of artificial neural network can represent high-dimensional11

nonlinear temporal data. Hidden Markov models (Rabiner, 1989) and neural12

network - hidden Markov model hybrids (Graves and Schmidhuber, 2005;13

Trentin and Gori, 2003) are also used to model time series data. An obsta-14

cle when using RNNS is that only a few training algorithms exist which are15

complex and often yield poor results (Haykin, 1994; Jaeger, 2002b).16

More recently, three approaches to simplify the training process of RNNS17

were independently developed. These approaches are liquid state machines18

(LSM) (Maass et al., 2002), echo state networks (ESN) (Jaeger, 2001), and19

backpropagation decorrelation (BPDC) (Steil, 2006). The underlying idea of20

these three methods is similar and nowadays they are referred to as reservoir21

computing (Verstraeten et al., 2007). Reservoir computing has become a22

vivid research field and recently a special issue of “Neural Networks” was23

dedicated to it (Jaeger et al., 2007).24

The key idea in reservoir computing is that the dynamic system producing25
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(readout function)

Figure 1: The general layout of an echo state network. Circles represent input, reservoir,

and output nodes. Arrows represent non-zero weighted connections. Dotted arrows denote

optional connections.

the time series data is modeled in a reservoir consisting of a RNN. The26

reservoir is then read by a linear readout function, which is illustrated in27

Figure 1. The output of this readout function can then be used to make28

several kinds of predictions. The training algorithm only affects the linear29

readout function. For training linear functions many algorithms exist such30

as linear regression (Fisher, 1925).31

The goal of this study is to verify whether the use of reservoir computing32

methods is an added value in classification problems in the intensive care33

unit (ICU) when the input data consists of time series. We select a case34

study that is easily characterized by medical experts. This medical classifi-35
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cation problem is then handled using reservoir computing, which can directly36

cope with time series data, and the performance is compared to more tra-37

ditional machine learning approaches, which cannot directly cope with this38

high-dimensional temporal data and thus need to be combined with feature39

extraction (FE) and selection (FS) to process the time series.40

LSMs and ESNs are the two pioneering reservoir computing methods.41

However, the two methods have a very different background (Jaeger et al.,42

2007). The initial ESN publications were framed in settings of machine learn-43

ing and nonlinear signal processing applications (Jaeger, 2001, 2002a,b, 2003;44

Jaeger and Haas, 2004). In contrast, LSMs were developed from a compu-45

tational neuroscience background, aiming at elucidating principal computa-46

tional properties of microcircuits (Maass et al., 2002, 2003, 2004; Natschläger47

et al., 2002).48

This difference in background also explains the main difference between49

LSMs and ESNs (Lukoševičius and Jaeger, 2009). ESNs standardly use sim-50

ple sigmoid neurons or leaky integrator neuron models, while LSMs use more51

sophisticated and biologically realistic models built from a spiking neuron52

model called the Leaky Integrate and Fire (LIF) neuron (Maass and Bishop,53

2001) and dynamic synaptic connection models (Gerstner and Kistler, 2002)54

in the reservoir. Since the model of both the connections and the neurons55

themselves in LSMs is quite sophisticated, it has a large number of free pa-56

rameters to be set, which is done manually, guided by biologically observed57

parameter ranges. The parameters of ESNs, e.g., the warm-up drop and the58

leak rate, are more intuitive and can easily be set by using rules of thumb or59

performing parameter sweeps. Moreover, LSMs require pulse trains as input60
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data. Translating continuous data, of which the training data of the medical61

problem under study in this research consists, to pulse trains is a complex62

problem. Consequently, LSMs are usually more difficult to implement, to63

correctly set up and tune, and typically more expensive to emulate on digital64

computers than simple ESN-type “weighted sum and non-linearity” RNNs.65

Thus LSMs are less widespread for engineering applications of RNNs than66

ESNs. This makes ESNs the better choice for “simple” engineering tasks,67

such as the medical classification problem under study in this research.68

The idea of separation between a reservoir and a readout function has69

also been arrived at from the point of view of optimizing the performance of70

the RNN training algorithms that use error backpropagation. It was found71

that the Atiya-Parlos recurrent learning (APRL) rule (Schiller and Steil,72

2005) restricts the adaptation of the weights to the output layer, effectively73

splitting the RNN into a reservoir and a readout layer. The outputs weights74

are trained and the internal weights are only globally scaled up or down a75

bit (Schrauwen et al., 2007). This lead to a learning rule for RNNs called76

BPDC. Here too, sigmoidal neurons are used, but a significant difference77

between BPDC reservoirs and ESNs is the fact that feedback connections78

from the readout layer into the reservoir and into the readout layer itself are79

used, whereas in practice this is hardly ever the case for ESNs (Verstraeten80

et al., 2007). As for the medical classification task under scrutiny these81

feedback connections are not needed, ESNs were used instead of BPDC in82

this research.83

More information about the different reservoir computing methods and84

their various properties and application domains can be found in Verstraeten85
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et al. (2007); Jaeger et al. (2007); Lukoševičius and Jaeger (2009).86

Thus, the ESN was selected as reservoir computing method to handle the87

medical classification problem studied in this research. The medical time88

series are also classified using support vector machines (SVM) and the naive89

Bayes (NB) classifier. This way, we can compare the performance of two90

traditional classifiers - a sophisticated and a simple one - and the recent91

classifier based on ESN.92

Although medical data are often time series, little medical applications93

of ESN have been studied yet. To our knowledge, apart from this study, of94

which a preliminary report has been published which focusses on the clinical95

aspect of the study (Verplancke et al., 2010), ESN have been applied to two96

other medical use cases. An abstract reported the classification of autistic97

and normal children (Noris et al., 2008) and a study described the detection98

of epileptic seizures on rat data using reservoir computing (Buteneers et al.,99

2008, 2011).100

In time-oriented medical studies, longitudinal data analysis is a popu-101

lar approach. However, this is only suitable for relatively short time series102

- typically up to 10 measurements per input parameter - since longitudinal103

data analysis focuses on the correlation of measurements within a time series,104

which diminishes when the time series grows and measurements lie further105

apart in time (Zeger et al., 2006). Another approach is repeatedly perform-106

ing data analysis only in a very small interval or individual points in time.107

However, this neglects the temporal nature of the data almost completely.108

The remainder of this paper is structured as follows. The application data109

is described in Section 2. In Section 3 the classification, feature extraction110
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and selection, and performance evaluation methods used in this study are111

briefly introduced. Section 4 then summarizes the experimental setup, after112

which the results are presented in Section 5. These are discussed in Section 6113

after which a conclusion is formulated in Section 7.114

2. Application data115

Since we want to explore the advantages of the use of echo state networks116

in this study, a simple problem is selected. That is, a problem that is easily117

solved by an expert in the field. This way, we are sure that the required in-118

formation to solve the problem is contained in the data and that the acquired119

result is the outcome of the used method, not the used data.120

In collaboration with the ICU department of the Ghent University we121

selected the problem of predicting whether or not a patient will need dialysis122

between five and ten days after admission in the ICU. The prediction is made123

at hour 72 after submission, so only the diuresis and creatinine values of the124

first three days after ICU admission were retrieved from the ICU database125

for each patient included in the study. The study population consisted of an126

observational cohort of 916 patients admitted consecutively to the ICU be-127

tween May 31st 2003 and November 17th 2007. These patients were selected128

from a total of 9752 medical and surgical ICU (MICU/SICU) patients admit-129

ted in this period after application of inclusion/exclusion criteria. Namely,130

8725 patients with a length of stay in the ICU of less than 10 days and 111131

patients who received dialysis in the first five days of ICU admission were132

excluded from analysis.133

Diuresis is measured in 2 hour intervals, while creatinine is measured one,134
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Figure 2: Interpolated creatinine and diuresis measurements for an example patient who

a) needed dialysis between five and ten days after ICU admission b) who did not need

dialysis.

two or exceptionally three times a day. These measurements are performed135

by hand, so there exists some variance in the intervals between succeeding136

measurements. Also the interval between creatinine measurements is larger137

than the one between diuresis measurements. However, the input time series138

needs to contain measurements over regular time intervals and these intervals139

must be the same for both input parameters. Therefore linear interpolation140

of the data is the very first preprocessing step.141

The availability of both diuresis and creatinine measurements does not142

fully overlap. Measurements not within the overlapping interval are excluded143

from the data. Patients who do not have an overlapping interval of minimal144

40 measurements are excluded from the study. After pre-processing, 830145

patients are available with 60 interpolated measurements for both creatinine146

and diuresis. Figure 2 visualizes these interpolated creatinine and diuresis147

measurements, expressed as milliliter/hour (ml/hr), for two patients. The148

patient in Figure 2a needed dialysis between five and ten days after ICU149
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admission and the patient in Figure 2b did not. The interval between these150

measurements is 1 hour, so the data consists of a 60 hour period somewhere151

in the first 3 days of the patient’s stay in the ICU. 62% of the patients were152

male and the mean age of the study population was 58.6 years. The selected153

population had a total mortality rate of 17% and the mean Simplified Acute154

Physiology Score (SAPS) II score was 37.2. 82/830 (9.9%) patients needed155

dialysis between the fifth and tenth day after admission, while the remaining156

748/830 (90.1%) patients did not need dialysis during that period.157

3. Classifiers158

In this section we discuss the feature extraction and selection methods159

and the classifiers under study. The time series are classified using support160

vector machines, the naive Bayes classifier and echo state networks. Prior161

to the use of SVM and the NB classifier, feature extraction and selection is162

required to reduce the number of input features and thus alleviate the effect163

of curse of dimensionality (Bowden G.J., 2005). This way, we can compare164

the performance of two traditional classifiers - a sophisticated and a simple165

one - and the recent classifier based on ESN.166

3.1. Feature extraction and selection167

Classical classification techniques, such as the SVM and NB classifier,168

have been designed with a static data model in mind and are not suitable for169

coping with the dynamic nature of time series. The performance of the SVM170

and NB classifiers suffers from a large number of features if not all the features171

are of the same type and of equal importance (Bowden G.J., 2005). This is172

the case in the medical problem addressed in this research as it consists of173
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two types of features, namely diuresis and creatinine values. 60 interpolated174

measurements for both diuresis and creatinine are used as features. Not all175

these measurements are equally important as expert opinion reveals that the176

tails of the time series, i.e., later measurements, contain more information177

than the start of the series.178

An inclusion of a large number of features in the SVM and NB classifiers179

leads to “the curse of dimensionality” (Bowden G.J., 2005; Muttil and Chau,180

2007), which is associated with the following shortcomings:181

• As the input dimensionality increases, the computational complexity182

and memory requirements of the model increase, which in turn increases183

the time to build the models.184

• As the input variables increase, the number of training samples required185

also increase.186

• Misconvergence and poor model accuracy may result from the inclusion187

of irrelevant inputs due to an increase in the number of local minima188

present in the error surface.189

• Interpreting complex models is more difficult than interpreting simple190

models that give comparable results.191

Feature extraction, which generates additional features from the time192

series, and feature selection, which selects the most appropriate features and193

thus reduces the amount of input features, helps to improve the performance194

of learning models by (Guyon and Elisseeff, 2003):195

• Alleviating the effect of the curse of dimensionality196
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• Enhancing generalization capability197

• Speeding up the learning process and198

• Improving model interpretability.199

To make sure that all the information contained in the time series is200

captured, extensive feature extraction is applied for the SVM and the NB201

classifier. Features are therefore extracted that capture the overall properties202

of the time series and the correlation between the different measurements203

in the time series. For each time series the minimum, maximum, mean,204

median, 25th percentile, 75th percentile, standard deviation (stdev), the linear205

regression (y = ax + b) coefficients a and b and the area under the curve206

(AUC) are calculated. This results in 10 features per time serie.207

As mentioned previously, expert opinion reveals that the tails of the time208

series contain more information than the start of the series. We therefore209

repeat the feature extraction multiple times for reduced time series. The210

10 features are extracted for the full time series, the 59 last values of the211

time series, the 58 last values of the time series, ..., and the 2 last values212

of the time series. This results in 59 ∗ 10 = 590 extracted features per213

input parameter, or 1180 extracted features in total. Finally we add the214

measurements themselves to the extracted feature set as well, which results215

in 1180 + 2 ∗ 60 = 1300 features.216

Feature selection needs to be performed on these 1300 features to select217

the most useful ones for the NB and SVM classifiers. Ideally, a brute-force218

search is performed in which the classification performance of each possible219

combination of features is tested and the best combination is selected. Brute-220
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force feature selection is however very resource-intensive. As the number of221

possible feature combinations for 1300 features is nearly endless, namely222

(21300 − 1) possible combinations, the required computation time would be223

virtually infinite.224

To boost the performance, a greedy feature selection algorithm is used225

which iteratively adds the feature that improves prediction the best out226

of a set of features that show little multicollinearity with the already se-227

lected set of features. This approach is similar to the one used by Lang-228

ley and Sage (1994), but in each iteration we filter the set of candidates229

so that it contains only features that are not collinear with the already230

selected set. This drastically reduces the size of the set of candidate fea-231

tures in each iteration and therefore speeds up the feature selection pro-232

cess. Detection of multicollinearity is done using the common rule of thumb:233

variance inflation factor > 5 (Kutner et al., 2004). The classifier used in234

this hybrid filter-wrapper method (Guyon and Elisseeff, 2003) is the NB235

classifier.236

All data is globally scaled to the [−0.9, 0.9] interval. Scaling features to a237

fixed interval is necessary to avoid favoring a feature only because it has the238

largest scale. The bounds −0.9 and 0.9 are chosen instead of −1 and 1 to239

avoid excessive weight saturation in the recurrent artificial neural network.240

3.2. Support vector machines241

As first discussed by Cortes and Vapnik (1995), a SVM tries to separate242

positive and negative examples in a multi-dimensional space by a hyperplane.243

Assume that the training data is labeled as {xi, yi}, i = 1, . . . , l, yi ∈244

{−1, 1},xi ∈ Rd. The points x that lie on the hyperplane satisfy the equation245
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w·x+b = 0, where w is normal to the hyperplane. d+ and d− are the shortest246

distances from the separating hyperplane to the closest positive and negative247

example. The margin of the separating hyperplane is then defined as d++d−.248

The SVM discussed by Cortes and Vapnik (1995) was a linear classifier.249

For the linearly separable case, the SVM searches for the hyperplane that250

separates the data from the two classes with maximal margin (Vapnik, 1995).251

This search can be formulated as an optimization problem, where252 ∑
i

αi −
1

2

∑
i,j

αi αj yi yj xi · xj (1)

is maximized, subject to253 ∑
i

αi yi = 0, for αi ≥ 0 (2)

with αi being the Lagrangian multipliers for each training example. Given254

the αi, the solution is given by255

w =
∑
i

αi yi xi (3)

The examples for which αi > 0 are called support vectors. All other example256

have αi = 0.257

When the positive and negative examples are not linearly separable, an258

additional condition needs to be added:259

0 ≤ αi ≤ C (4)

This gives the αi een upper bound of C.260

Switching to the non-linear case can be done by using the kernel-trick (Aiz-261

erman et al., 1964). Notice that the data appears in the training problems,262
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see Equation (1), only in the form of dot products xi · xj. If the data is263

mapped to some other Euclidian space H, using a mapping Φ : Rd 7→ H, the264

training problem can be solved in H by replacing xi · xj by Φ(xi) · Φ(xj). If265

there is a kernel function K such that K(xi,xj) = Φ(xi) ·Φ(xj), then only K266

needs to be used in the training algorithm and it never needs to be explicitly267

known what Φ is. An example of such a kernel function and the one which268

was used in this study is the Radial Basis Function (RBF) kernel function.269

Rüping (2001) showed that the RBF kernel performs very well on different270

types of time series and learning tasks. The RBF kernel function has the271

following definition:272

K(xi,xj) = exp(−γ ‖xi − xj‖2) (5)

This results in a training algorithm with only two parameters, namely C and273

γ. For a more detailed introduction to SVMs, we refer to Burges (1998).274

SVMs have been successfully applied to perform time series prediction and275

prediction on real problems in different engineering fields (Lin et al., 2006;276

Rüping, 2001; Kampouraki et al., 2009; Zhang et al., 2010).277

The libSVM (Chang and Lin, 2012) support vector machine implemen-278

tation is used in this study. The C and γ parameters were optimized using279

parameter sweeps during each experiment, as is further detailed in Section 4.280

3.3. Naive Bayes classifier281

The Naive Bayes Classifier is based on the application of Bayes’ theorem,282

which relates the conditional and marginal probabilities of events A and B:283

P (A|B) =
P (B|A)P (A)

P (B)
(6)
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where P (A) is the prior probability of A, P (B) is the prior probability of284

B, P (A|B) is the posterior probability of A and P (B|A) is the posterior285

probability B.286

A custom Java implementation of the Naive Bayes classifier is used in this287

study. This Naive Bayes classifier estimates the prior probability of class A288

as289

P (A) ≈ #items of class A in the training set

total#items in the training set
(7)

When a previously unseen example X is presented to the classifier, the like-290

lihood of class A is estimated as291

Li(A) ≈ #items of class A in the training set in the neighborhood of X

total#items of class A in the training set
(8)

Assuming that each feature is conditionally independent of every other fea-292

ture, the posterior probability that a previously unseen example X belongs293

to class A can be estimated as294

P (X = A) ≈ P (A)× Li(A) (9)

The number of examples in the training set that constitute the neighbor-295

hood of a previously unseen sample X, denoted by parameter k, is the only296

configurable parameter of the used Naive Bayes implementation. Parameter297

sweeps were performed to determine the optimal value for k per experiment,298

as is further detailed in Section 4.299

It can be noted that the Naive Bayes classifier is based on applying Bayes’300

theorem with strong independence assumptions. However, empirical results301

show that it performs surprisingly well in many domains containing clear fea-302

ture dependencies (Domingos and Pazzani, 1997). Zhang (2004) shows that303
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the feature dependence distribution plays a crucial role in the explanation of304

this behavior and that sufficient and necessary conditions for the optimality305

of Naive Bayes can be formulated.306

3.4. Echo state networks307

The key idea in reservoir computing (Verstraeten et al., 2007) is to feed308

time series to a reservoir, thereby modeling the dynamics of the system which309

generates the time series. The reservoir is then read by a readout function in310

order to make predictions using the constructed model. When training the311

model, only the readout function is modified, the complex dynamic modeling312

behavior of the reservoir is left unchanged.313

In ESN (Jaeger, 2001), the reservoir consists of a recurrent artificial neural314

network with sigmoid activation functions and the echo state property which315

ensures good modeling abilities. A recurrent artificial neural network is said316

to have the echo state property when its state is uniquely determined by the317

input time series. This implies the state forgetting property : the initial state318

of the reservoir has no impact on the state after feeding a - possibly infinite319

- time series. Although it is not yet clearly understood how it exactly works,320

the reservoir acts as a short-term fading memory (Jaeger, 2002a), which321

means in practical applications that the most recent input of the network322

has the largest impact on the prediction outcome. The readout function323

used in ESN is a linear classifier.324

The general layout of an ESN is illustrated in Figure 1. It consists of k325

input nodes, n reservoir nodes, and l output nodes. Each node is a perceptron326

with a sigmoid activation function. The state of each node at a given time327
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is the weighted sum of the last fed inputs, namely328

x[t+ 1] = (1− µ)x[t] + µf(Wx[t] + Winu[t]) (10)

where x[t] denotes the network state at time t and u is the input matrix.329

Leaky integrator neurons are used to optimize the leak rate µ of the reservoir330

so that it can perfectly match the timescale of the input data. For every331

sample, x[0] is initalized as 0. The weights in the ESN are represented in332

weight matrices. The k × n matrix Win contains the weights between the333

input and reservoir nodes and the n × n matrix W contains the recurrent334

weights between the reservoir nodes. The spectral radius λmax is defined as335

the largest absolute eigenvalue of the matrix W. It has been shown that336

reservoirs whose spectral radius is larger than one (|λmax| > 1) do not have337

the echo state property, but in practice the spectral radius is chosen close338

to one to achieve a suitable dynamic response (Jaeger, 2001). Zero weights339

are the equivalent of the absence of connections. Feedback connections from340

output nodes to reservoir nodes and connections from input nodes directly341

to output nodes are optional.342

By using Equation (10) the echo state network can be recursively simu-343

lated using the training data Dtrain. After each sample of the training data344

is simulated, the |Dtrain| reservoir state matrices are concatenated in a large345

state matrix A. Because an ESN is a dynamical system, it takes some time346

before the full effects of the input are visible in the reservoir states. Therefore,347

the initial states containing the transient effects are discarded which is known348

as warm-up drop. The number of states that is discarded is determined by349

the warm-up drop parameter α.350

Different methods can then be used to train the linear readout function,351
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and thus to determine the elements of the (k + n + l) × l output weight352

matrix Wout, which contains the weights between the reservoir nodes and353

the output nodes. A complete overview and discussion of the different avail-354

able techniques reported in literature for training the readout function of355

the reservoir can be found in Lukoševičius and Jaeger (2009). As the med-356

ical problem under study does not require on-line adaptation of the model,357

batch learning can be performed. In batch mode, the most recommended358

and used method is ridge or Tikhonov Regression (Wyffels et al., 2008), as it359

has the lowest computational cost, while still allowing to perform regulariza-360

tion. Ridge regression introduces a regularization parameter λ. In addition361

to improving the numerical stability, the regularization in effect reduces the362

magnitudes of entries in Wout, thus mitigating sensitivity to noise and over-363

fitting. However, because Fisher weighting is also used in this study to deal364

with the unbalanced data set, as further explained in the last two paragraphs365

of this section, ridge regression could not be used as this combination is not366

implemented in the Reservoir Computing Toolbox (RCToolbox) (Verstraeten367

and Wardermann, 2012). In this study, the RCToolbox is used to run the368

ESN experiments. However, using ridge regression is equivalent with using369

least squares regression (Björck, 1996) with noise. So, in this study, Wout
370

is trained by performing least squares regression on the matrix A, using the371

desired output matrix y as the right-hand side. Thus, the matrix Wout is372

computed that satisfies the equation:373

Wout = minW ‖A×W − y‖2 . (11)

In practice, this equation can be computed in a single step by using the374

Moore-Penrose generalized matrix inverse, or pseudo-inverse, of the matrix375
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A (Penrose, 1955). This provides least squares regression with a similar nu-376

merical stability as ridge regression. Gaussian noise is added to the matrix377

A in order to control the trade-off between model complexity and generaliza-378

tion capability (avoid overfitting). This guarantees that the model is complex379

enough to accurately model the underlying system, but not too complex such380

that it becomes sensitive to the noise in the samples. Similar to ridge re-381

gression, the amount of noise is determined by a regularization parameter382

λ.383

Other methods that are sometimes used in literature to train the linear384

readout function are weighted regression and evolutionary search (Jiang et al.,385

2008). The first uses weights to emphasize some time steps t over others. As386

this study wanted to evaluate how well the ESN performed on the time series387

without using domain expert knowledge, this method was not used. State-388

of-art evolutionary methods are able to achieve the same level of precision for389

supervised tasks as with the best application of linear regression. However,390

their computational cost is much higher.391

Finally, the output of the reservoir can be computed as follows:392

ŷ[k] = Woutx[k] (12)

where ŷ is the actual output of the reservoir system.393

As mentioned previously, the RCToolbox is used to run the ESN experi-394

ments. As the original time series, and thus not the extracted features, are395

used as input for the ESN, a reservoir with k = 2 input nodes and l = 1396

output nodes is initialized. The elements of the input weight matrix Win are397

drawn from the discrete set {−0.1, 0.1} with equal probabilities. The density398

of the input weight matrix is 10%, which means that 10% of the weights are399
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non-zero. The elements of the reservoir weight matrix W are drawn from400

a Gaussian distribution. The density D of the reservoir weight matrix is401

chosen as d = 20%. The optimal value for the regularization parameter λ is402

determined by performing a brute-force grid search of the parameter space403

with cross-validation.404

Output-to-output connections are not used. Input-to-output connections405

are used to enable a direct linear mapping of the input.406

The RCToolbox allows performing parameter sweeps to find the optimal407

values for the various parameters of an ESN, namely the leak rate µ, the408

number of reservoir nodes n, the spectral radius λmax and the warm-up drop409

parameter α. These optimal values are found by performing a sensitivity410

analysis for each parameter. This means that the values for this parameter411

are varied while all other parameter settings of the ESN are left unchanged.412

The parameter value which results in the best average performance of the413

ESN is chosen.414

The sensitivity analysis of the leak rate µ is visualized in Figure 3. This415

figure shows the observed average performance and its standard deviation in416

30 runs for leak rate values between µ = 0.01 and µ = 1. Higher performance417

values are better. For a more detailed explanation of the performance mea-418

sure, see Section 3.5. Different runs with the same settings result in different419

performance results because the data is randomly divided among the folds420

and the reservoir is randomly initialized. In theory, performance should not421

depend on these random circumstances. In practice, the dependence should422

be minimized. For example because of the limited amount of available data,423

there will always be a certain amount of dependence on how exactly the data424
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Figure 3: Sensitivity analysis of the leak rate of the reservoir. Dots and crosses are

measured values. Lines are interpolated values. The area under the receiver operating

characteristic (ROC) curve (AUC) is a performance measure. The solid line is the average

performance in 30 runs. The dotted line denotes the observed standard deviation.

is divided among the folds. In this problem setting, the best average perfor-425

mance and the smallest deviation in performance is aimed at. From Figure 3426

it is clear that adjusting the leak rate does not boost the performance of the427

ESN significantly. Likely this is due to the fact that in this case, the optimal428

parameters of the ESN are outside the usual range: for the high total input429

to the reservoir used here, the reservoir acts more like a static kernel rather430

than a dynamical system. As a consequence, the leak rate is chosen to be the431

value µ = 0.01. This is the default value for the leak rate in the RCToolbox.432

This means that the reservoir will work very slowly, implementing a low-pass433

filter.434

The sensitivity analyses of the number of reservoir nodes n and the spec-435
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Figure 4: Sensitivity analysis of the number of reservoir nodes. Dots and crosses are

measured values. Lines are interpolated values. The area under the receiver operating

characteristic (ROC) curve (AUC) is a performance measure. The solid line is the average

performance in 30 runs. The dotted line denotes the observed standard deviation.

tral radius λmax are shown in Figures 4 and 5. These figures show the ob-436

served average performance and its standard deviation in 30 runs for number437

of reservoir nodes between n = 10 and n = 300 and for spectral radius val-438

ues between λmax = 0.1 and λmax = 1.5. From Figures 4 and 5 it can be439

derived that adjusting the number of reservoir nodes n or the spectral radius440

λmax also had minimal effects on the performance of the ESN. As mentioned441

previously, a spectral radius close to one should be chosen to achieve a suit-442

able dynamic response and to guarantee that the echo state property holds.443

Therefore, the spectral radius is chosen to be the value λmax = 0.99. The444

weights are rescaled so that the spectral radius λmax is set to this value. The445

number of reservoir nodes was chosen to be n = 70, as this was the parameter446
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Figure 5: Sensitivity analysis of the spectral radius. Dots and crosses are measured values.

Lines are interpolated values. The area under the receiver operating characteristic (ROC)

curve (AUC) is a performance measure. The solid line is the average performance in 30

runs. The dotted line denotes the observed standard deviation.

value with the highest average AUC across all the runs.447

Finally, the warm-up drop parameter α is optimized by performing a448

sensitivity analysis. The observed average performance and its standard de-449

viation in 30 runs for warm-up drop values between α = 0 (no warm-up450

drop) and α = 59 (only the last time point remains) are plotted in Figure 6.451

From Figure 6 it is clear that adjusting the warm-up drop parameter sig-452

nificantly boosts the performance of the ESN. A warm-up drop of α = 56453

first time steps of the time series leads to the best performance results. This454

corresponds with the opinion of the domain experts that the tail of the time455

series contains more information than the start of the series.456

As can be noted from Section 2, the dataset is unbalanced. There are a457
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Figure 6: Sensitivity analysis of the warm-up drop parameter of the echo state network.

Dots and crosses are measured values. Lines are interpolated values. The area under the

receiver operating characteristic (ROC) curve (AUC) is a performance measure. The solid

line is the average performance in 30 runs. The dotted line denotes the observed standard

deviation.

lot more examples of patients who did not receive dialysis between the fifth458

and tenth day after admission than there are patients that did (748 vs. 82459

of the 830 patients). This unbalance will have an effect on the generalization460

capabilities of the classifiers. Since the read-out is trained using regression,461

the separating hyperplane will shift towards the class centers that are most462

present in the dataset (the threshold will not be zero). This is undesirable463

as one wants the hyperplane to lie in the middle between the two classes464

(threshold equal to zero). To achieve this, Fisher labeling is applied (Duda465

et al., 2001).466

Assume, that the positive class has n1 examples and the negative class467
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has n2 examples, then Fisher labeling relabels these classes from the usual468

[−1, 1] for positive and negative examples respectively to [(n1 +n2)/n1, (n1 +469

n2)/n2]. In this way, the class labels reflect the unbalance of the number of470

examples in each class. This guarantees that the shifting of the hyperplane471

is undone. Thus for this dataset, the Fisher labeling relabels the classes to472

[830/82, 830/748].473

3.5. Performance evaluation474

Each of the 3 used methods outputs a prediction score. The SVM and475

the NB output a prediction score per sample. The ESN, on the other hand,476

outputs a prediction score per time point in the time series. As the warm-up477

drop parameter α is set to 56, only 4 time points remain and thus 4 prediction478

scores are outputted by the ESN per sample. These are summarized to one479

prediction score per sample by taken the mean of these 4 values. In contrast480

with a categorical prediction - class A versus class B - a prediction score is481

a value x ∈ < in the interval ] −∞,+∞[. The sign of x corresponds to a482

class while the magnitude of x reflects the estimated probability of actually483

belonging to that class. By varying the prediction threshold, different clas-484

sifiers can be constructed. These classifiers vary from one that classifies all485

patients into one class to one that classifies all patients into the other class.486

The correctness of a classification can be evaluated by computing the487

number of true positives (TP , positive examples classified as positive), true488

negatives (TN , negative examples classified as negative), false positives (FP ,489

negative examples classified as positive), and false negatives (FN , positive490

example classified as negative) respectively. The most often used measures491

for binary classification based on these values are Accuracy, Precision, Sen-492
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sitivity (Recall), Specificity, F-Score and the area under the ROC curve493

(AUC) (Sokolova and Lapalme, 2009). These measures differ in their ability494

to preserve their value under a change of the number TP , TN , FP , and/or495

FN . A measure is invariant if its value does not change when one or more496

of the TP , TN , FP , or FN values change. This inability can be beneficial497

or adverse, depending on the goal of the classification task. More informa-498

tion about the different performance measures for classification can be found499

in Sokolova and Lapalme (2009).500

For the medical problem under scrutiny, we are interested in the overall501

performance of the classifier, i.e., interested in the performance of the clas-502

sifier on both identifying and correctly classifying positive and negative ex-503

amples. In other words, it is equally important to correctly identify whether504

a patient will receive dialysis or not between five and ten days after admis-505

sion in the ICU. Precision, Recall and F-Score are invariant to changes in506

the number of TN . These measures thus do not acknowledge the ability of507

the classifiers to correctly identify negative examples. In contrast, Specificity508

is invariant to changes in the number of TP . This measure thus does not509

acknowledge the ability of the classifiers to correctly identify positive exam-510

ples. Consequently, two measures remain that are non-invariant to changes511

to the number of TN and TP , namely AUC and accuracy. However, the512

accuracy is invariant to the distribution of classification results because it513

does not distinguish TP from TN and FN from FP . This measure is thus514

not trustworthy when using unbalanced data sets. The AUC is non-invariant515

to the distribution of classification results, which makes it a good measure516

for comparing classifiers on unbalanced data sets, such as the one used in517
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this study.518

The AUC is calculated based on the Specificity and Sensitivity perfor-519

mance measures of the classifier. Sensitivity measures the proportion of520

actual positive examples, i.e., patients needing dialysis, which are correctly521

identified by the classifier as follows:522

Sensitivity =
TP

TP + FN
. (13)

In contrast, Specificity measures the proportion of actual negative examples,523

which are correctly identified by the classifier as follows:524

Specificity =
TN

TN + FP
. (14)

Plotting Sensitivity versus (1−Specificity) for all these classifiers, results in525

the so called receiver operating characteristic (ROC) curve (Zweig and Camp-526

bell, 1993). The area under this ROC curve (AUC) is an estimation of the527

probability that a positive patient receives a higher prediction score than a528

negative patient by the classification method under study. An AUC value529

of 1.0 indicates a classifier that perfectly separates positives from negatives,530

while a classifier that randomly classifies patients as positive or negative cor-531

responds to AUC = 0.5. All other classifiers will result in 0.5 < AUC < 1.0.532

A two-sample t-test is used to determine whether an observed difference533

in AUC is random or real. A p-value expresses the probability of having a test534

statistic at least as extreme as the one that was actually observed, assuming535

that the null-hypothesis is true. The lower the p-value, the less likely the536

result, and consequently the more statistically significant the result is. A537

result is statistically significant if it is unlikely that it occurred by chance.538
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Generally, the null hypothesis is rejected if the p-value is smaller than or539

equal to the significance level, α.540

In this paper, the test statistics are the average AUCs across the 30 runs541

for each classifier. The null-hypothesis in these tests is that both average542

AUCs are equal. The significance level α is chosen to be 0.05, which expresses543

that results that are only 5% likely or less are deemed extraordinary, given544

that the null hypothesis is true.545

Since we test 3 average AUCs for equality, the significance level α must546

be corrected for multiple testing. This can be done by applying Dunn-Šidák547

correction (Abdi, 2007), that is548

αcor = 1− (1− α)1/C , (15)

where α is the chosen significance level, αcor is the corrected α-value, and C549

is the number of tests. The null-hypothesis in this test is that both average550

AUCs are equal. Thus the corrected significance level, with whom the p-551

values are compared, is552

αcor = 1− (1− 0.05)1/3 = 0.016952. (16)

When choosing a prediction threshold, we can select the value where553

the balanced accuracy of the classifier is the highest. We define balanced554

accuracy as follows:555

balanced accuracy =
Sensitivity + Specificity

2
. (17)

Using maximum balanced accuracy prevents favoring a classifier that always556

outputs the majority class in the case of heavily unbalanced data sets such557

as the one used in this study. If the classifier performs equally well on either558
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class, this term reduces to the conventional accuracy, i.e., the number of559

correct predictions divided by the total number of predictions. In contrast,560

if the conventional accuracy is above chance only because the classifier takes561

advantage of an imbalanced test set, then the maximum balanced accuracy562

will drop to chance.563

As can be seen, the AUC gives us a global view on the quality of the564

constructed classifiers, while the maximum balanced accuracy is an indica-565

tion of the best prediction accuracy we can expect. Moreover, the AUC566

is well-known and much used performance measure of binary classification567

tasks within the medical domain (Sokolova et al., 2006). Both the AUC and568

maximum balanced accuracy are invariant to a uniform change of positive569

and negative examples in the data set. This means that these measures are570

stable with the respect to the uniform increase of the data size. As in our571

medical problem, the proportion of representatives for the positive and neg-572

ative class will remain stable across different data sizes, these measures are573

a good choice. We will also look at the required execution time, which is a574

measure for the computational complexity of the methods under study.575

4. Problem setting576

To summarize, we compare the classification performance of 3 methods577

on the given problem. The performance measures are AUC and maximum578

balanced accuracy, which are determined for each of the methods using579

cross-validation. The computational complexity of the methods is compared580

through their required execution times. All these tests were performed on581

the same machine - Advanced Micro Devices (AMD) Athlon 64 X 2 Dual582
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Core Processor, 3000 megahertz (MHz) Central Processing Unit (CPU), 2583

Gigabyte (GB) of Random-Access Memory (RAM) - under exactly the same584

conditions.585

The input data consists of 2 time series per patient. Each time series586

consists of 60 linear interpolated values, which are constructed out of the587

original patient data. For the ESN method, no further preprocessing of the588

data is necessary. Prior to the use of SVM and the NB classifier, feature589

extraction and selection and global rescaling of the data is required.590

Several parts of the algorithms under study have a stochastic nature.591

Examples are the random division of the available data into folds and the592

random initialization of the reservoir weights in the ESN. To avoid faulty593

interpretation of results that origin from a coincidental odd configuration,594

the experiments are repeated 30 times, each time using another random595

initialization.596

The pre-processing phase of the SVM and NB classifier, consisting of597

the feature extraction and selection process and global rescaling of the data,598

is also subject to random factors, for example, the random division of the599

available data into folds. Moreover, there are several multicollinear features.600

In each iteration of the feature selection, the set of candidates is filtered so601

that it contains only features that are not collinear with the already selected602

set. Which of the multicollinear features thus ends up in the selected set is603

also subject to the random initialization of the feature selection. Therefore,604

this pre-processing phase is also repeated for each run of the SVM and NB605

classifier.606

Consequently, the data set that is used as input for the NB and SVM607
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classifiers is different in every run. To determine the optimal values for the608

parameter k of the NB classifier and parameters C and γ of the SVM classifier609

parameter sweeps thus need to be performed for each of the 30 runs. For610

each parameter, the value is selected that achieves the highest performance611

for the classifier in that run. Consequently, different parameter values are612

obtained for the NB and SVM classifiers in each run. The optimal value of613

the parameter k of the NB classifier across the 30 runs ranges from k = 29614

to k = 47 and is on average k = 40. The optimal value of the parameters615

C and γ of the SVM classifier across the 30 runs range from C = −4.12 to616

C = 23.65 and γ = −22.05 to γ = −10.57 and are on average C = 17.66 and617

γ = −17.58.618

5. Results619

Table 1 and Table 2 show respectively the observed AUC and maximum620

balanced accuracy performance measures. The best maximum balanced ac-621

curacy and best AUC achieved across the 30 runs for each classification622

method are shown as well as the average value and its accompanying stan-623

dard deviation (stdev) and Confidence Intervals (CI) at 95% and 99%. The624

performance measures for the ESN classifier are shown for both the configu-625

ration for which all the parameter values of the ESN were optimized through626

parameter sweeps and the default configuration which uses the default set-627

tings of the RCToolbox for the ESN. The default settings are a reservoir size628

n = 100, a leak rate µ = 0.01, a scale factor λmax = 0.9 and a warm-up629

drop α = 0. Table 3 contains the p-values that are obtained while testing630

the average AUCs for equality.631
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Table 1: Observed area under the curve (AUC) in 30 runs using 3 different classification

methods: the echo state network (ESN), the support vector machine (SVM) and the naive

Bayes classifier (NB). The latter two are preceded by a pre-processing phase, consisting of

the feature extraction (FE) and feature selection (FS) process and global rescaling of the

data.

best average stdev CI 95% CI 99%

ESN - optimized 0.854 0.849 0.002 0.001 0.001

ESN - default 0.804 0.799 0.003 0.001 0.001

SVM + FE + FS 0.857 0.838 0.021 0.007 0.010

NB + FE + FS 0.885 0.874 0.006 0.002 0.003

Table 2: Observed maximum balanced accuracy in 30 runs using 3 different classification

methods: the echo state network (ESN), the support vector machine (SVM), and the naive

Bayes classifier (NB). The latter two are preceded by a pre-processing phase, consisting of

the feature extraction (FE) and feature selection (FS) process and global rescaling of the

data.

best average stdev CI 95% CI 99%

ESN - optimized 0.803 0.795 0.002 0.001 0.001

ESN - default 0.746 0.742 0.003 0.001 0.001

SVM + FE + FS 0.812 0.784 0.019 0.007 0.009

NB + FE + FS 0.826 0.809 0.009 0.003 0.004

Figure 7 shows the obtained ROC curves in run 1. The obtained ROC632

curves in the other runs are very similar.633
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Table 3: P -values resulting from the tests for equality between the AUCs.

SVM + FE + FS NB + FE + FS

ESN - optimized 0.0097 < 0.001

SVM + FE + FS < 0.001

Table 4: Required computation time for the data pre-processing phase for the support

vector machine (SVM), the naive Bayes classifier (NB) and the echo state network (ESN).

SVM and NB share the same pre-processing phase, consisting of the feature extraction

(FE) and feature selection (FS) process and global rescaling of the data.

average stdev CI 95% CI 99%

ESN 253.87ms 6.86ms 2.45ms 3.22ms

SVM & NB 3h 59m 55s 245.93ms 47m 6s 299.70ms 16m 51s 359.77ms 22m 9s 152.05ms

As Table 4 shows, the pre-processing phase preceding the support vector634

machines and naive Bayes classifier approach, which includes the loading635

and interpolating the data and performing feature extraction and selection,636

requires on average 3 hours (h) 59 minutes (m) 55 seconds (s) and 245.93637

milliseconds (ms) of computation time. The pre-processing phase for the638

recurrent reservoir, which only includes loading and interpolating the data639

as no feature extraction and selection is needed, requires on average only640

253.87 ms of computation time.641

Table 5 shows the computation time needed to train the three classifiers.642

The reported train time includes finding the optimal value for the size of643

the neighborhood k, see Equation (8), for the NB classifier, for the C and γ644

parameters, see Equations (4) and (5), of the SVM classifier and the regular-645

ization parameter λ of the ESN classifier with default configuration. To reach646
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Figure 7: The obtained ROC curves in run 2 for the echo state network (ESN), the support

vector machine (SVM), and the naive Bayes classifier (NB). The latter two are preceded

by a pre-processing phase, consisting of the feature extraction (FE) and feature selection

(FS) process and global rescaling of the data.

the performance results of the Optimized ESN classifier, parameter sweeps647

need to be performed. The train time for performing one parameter sweep of648

the reservoir size, leak rate, scale factor or warm-up drop parameters of the649

ESN are also reported. Performing one sweep means that this parameter is650
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Table 5: Required train time for the support vector machine (SVM), the naive Bayes

classifier (NB) and the echo state network (ESN).

average stdev CI 95% CI 99%

ESN - default 6m 35s 209.35ms 1s 247.55ms 446.42ms 586.70ms

SVM 14m 19s 936.23ms 5m 37s 934.51ms 2m 0s 926.09ms 2m 38s 923.82ms

NB 35m 37s 258.40ms 39s 154.80ms 14s 11.11ms 18s 413.72ms

ESN - 1 parameter
6m 35s 117.86ms 2s 647.05ms 947.22ms 1s 244.86ms

sweep

Table 6: Required test time for the support vector machine (SVM), the naive Bayes

classifier (NB) and the echo state network (ESN).

average stdev CI 95% CI 99%

ESN 0.030ms 0.009ms 0.003ms 0.004ms

SVM 0.033ms 0.183ms 0.065ms 0.086ms

NB 0.300ms 0.466ms 0.167ms 0.219ms

set to 1 value (e.g. reservoir size = 300) and the ESN is trained. In practice,651

mainly the warm-up drop parameter needed to be sweeped to obtain the652

improved performance results of the Optimized ESN classifier.653

Finally, Table 6 visualizes the computation time needed to test the three654

classifiers with data about one patient.655

6. Discussion656

The p-values comparing the naive Bayes (NB) classifier combined with657

feature extraction (FE) & selection (FS), the support vector machine (SVM)658

combined with FE & FS and the echo state network (ESN) classifier are659
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smaller than the Dunn-Šidák corrected significance level α = 0.016952, see660

Equation (16). We therefore conclude that there is a significant difference661

between the average AUCs of the used methods observed at the 5% level.662

This means that the SVM + FE + FS, with an average AUC of 0.838, is663

the worst classifier. The NB + FE + FS has an average AUC of 0.874 and664

is thus the best classifier. The ESN classifier lies somewhere in the middle665

with an average AUC of 0.849. Inspection of Figure 7, which shows the ROC666

curves, and Table 2, which shows the observed maximum balanced accuracy,667

see Equation (17), confirms this conclusion. However, the results of the668

NB classifier combined with FE & FS are biased as the feature selection669

method is a hybrid filter-wrapper method which also uses a NB classifier670

as classifier. Consequently, features selected by this hybrid filter-wrapper671

method are optimal for and best recognized by the NB classifier used in672

this feature selection method. If we then again apply a NB classifier on the673

selected features, the achieved results are slightly biased towards the NB674

classifier, since the selected feature set favors this type of classifier.675

Based on the observed values of the performance measures we cannot676

definitely favor the ESN classifier. The picture changes when we look at677

the procedure followed for each method. The SVM and the NB classifier678

are designed for datasets where the data resides in an n-dimensional space as679

such. The longitudinal correlation along the different dimensions/parameters680

is not taken into account in any way. Therefore SVM and NB perform rather681

poorly when time series data is used unprocessed. To get satisfying results,682

we first must extract useful features based on the time series. This can be683

done in an automated way or by using domain knowledge of the problem684
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at hand. Extracting features in an automated way often results in missing685

important characteristics of the data, while acquiring domain knowledge is a686

time consuming and often cumbersome activity. In this study we used a com-687

bined approach, exploiting the time saving properties of automated feature688

extraction and limiting the domain knowledge gathering to acquiring general689

properties of the data. The latter allows to steer the automated procedure,690

which avoids exploring useless regions in the search space. This approach691

still results in an enormous amount of candidate features, which makes a692

feature selection phase necessary as well. Furthermore, both feature extrac-693

tion and feature selection phases combined require a considerable amount of694

computation time, namely on average approximately 4 hours (see Table 4).695

In the ESN approach, no feature extraction and selection is needed. The696

reservoir stores features from the input data and actually adds features to it,697

as we go from an input space from k = 2 dimensions to a reservoir space of698

n = 70 dimensions. Thus, by putting a reservoir between the input data and699

the readout, a lot more features are available to build the estimation on. The700

ESN consequently succeeds nicely in modeling the information contained in701

the time series data. It therefore needs on average less than a second of pre-702

processing time (see Table 4) and no domain knowledge. Additionally, the703

reservoir algorithms are easy to implement, and existing rules of thumb suffice704

for acquiring a good performing configuration of the reservoir, as can be705

noted from the performance of the ESN with default configuration in Table 1.706

Moreover, a simple linear regression classification suffices for determining the707

final classification results, where complex non-linear methods are required in708

the traditional approach.709
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Note that expert opinion states that in the data used the required in-710

formation is mostly contained in the tail of the time series. This was ex-711

plicitly taken into account during the pre-processing phase of the SVM and712

NB classifiers by extracting features from an increasingly shorter time series.713

Namely, the 10 features were extracted for the full time series, the 59 last714

values of the time series, the 58 last values of the time series, ..., and the 2715

last values of the time series. If we study the features, which were selected716

during the feature selection phase, we see that mainly features of the shorter717

time series and linear regression coefficients were selected. However, for the718

ESN classifier this domain knowledge does not need to be taken explicitly719

into account. The ESN classifier takes it implicitly into account because720

of the fading short-term memory (Jaeger, 2002a) characteristic of the ESN.721

This means that the most recent input of the network has the largest impact722

on the prediction outcome, which matches the domain knowledge that the723

most important information is contained in the tail of the time series. This724

explains the successful results.725

The computation time for training the ESN classifier is also better than726

the other classifiers, as shown in Table 6. However, additional time is needed727

to optimize the values of the various parameters of the ESN classifier through728

parameter sweeps. Optimizing the value of the warm-up drop parameter re-729

sulted in significant performance improvements. In practice, about 5 sweeps730

would have to be performed to obtain the optimal value for the warm-up731

drop parameter. Therefore, the train time for the different classifiers is com-732

parable.733

As can be derived from Table 6, the test time of the SVM and ESN is also734
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comparable. The computation time for testing the NB classifier is slightly735

higher on average, because the NB classifier takes into account each training736

sample when calculating the neighborhood of the testing sample. Since the737

data set used in this study is relatively small, the difference in test time738

between the NB classifier and the SVM and ESN classifiers is still negligible.739

Since the ESN allows complex non-linear modeling in a simpler and com-740

putationally much more efficient way compared to the traditional approach741

while yielding a comparable classification performance, the authors believe742

that the ESN will play an important role in future analysis of medical time743

series data.744

7. Conclusion745

Medical data often consists of time series. This kind of data should be746

analyzed by specialized methods. The echo state network (ESN) is a recent747

method that was optimized to handle time series data. ESNs are easy to im-748

plement and to use, and do not require that feature extraction and selection749

is performed on the time series data before using it as input. We show the750

usefulness of ESN by using it to predict the need for dialysis between the fifth751

and tenth day after admission in ICU patients, and comparing the results to752

those acquired by using support vector machines (SVM) and the naive Bayes753

(NB) classifier combined with feature extraction (FE) and selection (FS). A754

hybrid filter-wrapper feature selection method is used with an NB classifier755

as classifier. Performance is measured by the area under the ROC curve and756

the maximum balanced accuracy.757

Limitations of this study are that no extensive comparative study was per-758
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formed between different feature selection methods that could be combined759

with the SVM and NB classifiers and the lack of comparison of the ESN to760

other classification methods which can directly process time series. Future761

work will further investigate these limitations by studying if the choice of the762

feature selection method significantly improves the performance of the SVM763

and NB classifiers on this medical classification task. Moreover, the perfor-764

mance of the ESN will be compared to other reservoir computing methods,765

such as liquid state machines and backpropagation decorrelation.766

The results of this study showed statistically significant difference at the767

5% level between the performance of ESN and the other two methods. The768

SVM + FE + FS had the worst performance, the NB classifier + FE + FS769

the best and the performance of the ESN lies in the middle. However, the770

results of the NB classifier + FE + FS are biased as the feature selection771

method is a hybrid filter-wrapper method which also uses a NB classifier.772

Moreover, its simplicity in usage, its ability to model and extract features773

without the need of domain knowledge, and its limited usage of computing774

time, make ESN the most suitable method for predicting the need for dialysis775

when using measured time series as input.776

Future work will focus on applying the reservoir computing methods on a777

medical classification task which is not trivial for the medical experts, namely778

detecting whether a patient who has been admitted to the ICU has sepsis.779

Sepsis is the number one cause of death in the ICU.780
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Rüping, S., 2001. SVM kernels for time series analysis. In: Klinkenberg, R.,
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