8 research outputs found

    IMPROVING CONTENT MARKETING PROCESSES WITH THE APPROACHES BY ARTIFICIAL INTELLIGENCE

    Get PDF
    Content marketing is today’s one of the most remarkable approaches in the context of marketing processes of companies. Value of this kind of marketing has improved in time, thanks to the latest developments regarding to computer and communication technologies. Nowadays, especially social media based platforms have a great importance on enabling companies to design multimedia oriented, interactive content. But on the other hand, there is still something more to do for improved content marketing approaches. In this context, objective of this study is to focus on intelligent content marketing, which can be done by using artificial intelligence. Artificial Intelligence is today’s one of the most remarkable research fields and it can be used easily as multidisciplinary. So, this study has aimed to discuss about its potential on improving content marketing. In detail, the study has enabled readers’ to improve their awareness about the intersection point of content marketing and artificial intelligence. Furthermore, the authors have introduced some example models of intelligent content marketing, which can be achieved by using current Web technologies and artificial intelligence techniques

    Chaos Embed Marine Predator (CMPA) Algorithm for Feature Selection

    Get PDF
    Data mining applications are growing with the availability of large data; sometimes, handling large data is also a typical task. Segregation of the data for extracting useful information is inevitable for designing modern technologies. Considering this fact, the work proposes a chaos embed marine predator algorithm (CMPA) for feature selection. The optimization routine is designed with the aim of maximizing the classification accuracy with the optimal number of features selected. The well-known benchmark data sets have been chosen for validating the performance of the proposed algorithm. A comparative analysis of the performance with some well-known algorithms advocates the applicability of the proposed algorithm. Further, the analysis has been extended to some of the well-known chaotic algorithms; first, the binary versions of these algorithms are developed and then the comparative analysis of the performance has been conducted on the basis of mean features selected, classification accuracy obtained and fitness function values. Statistical significance tests have also been conducted to establish the significance of the proposed algorithm

    Improved Multi-Population Differential Evolution for Large-Scale Global Optimization

    Get PDF
    Differential evolution (DE) is an efficient population-based search algorithm with good robustness, however, it is challenged to deal with high-dimensional problems. In this paper, we propose an improved multi-population differential evolution with best-and-current mutation strategy (mDE-bcM). The population is divided into three subpopulations based on the fitness values, each of subpopulations uses different mutation strategy. After crossover, mutation and selection, all subpopulations are updated based on the new fitness values of their individuals. An improved mutation strategy is proposed, which uses a new approach to generate base vector that is composed of the best individual and current individual. The performance of mDE-bcM is evaluated on a set of 19 large-scale continuous optimization problems, a comparative study is carried out with other state-of-the-art optimization techniques. The results show that mDE-bcM has a competitive performance compared to the contestant algorithms and better efficiency for large-scale optimization problems

    Differential Cloud Particles Evolution Algorithm Based on Data-Driven Mechanism for Applications of ANN

    Get PDF
    Computational scientists have designed many useful algorithms by exploring a biological process or imitating natural evolution. These algorithms can be used to solve engineering optimization problems. Inspired by the change of matter state, we proposed a novel optimization algorithm called differential cloud particles evolution algorithm based on data-driven mechanism (CPDD). In the proposed algorithm, the optimization process is divided into two stages, namely, fluid stage and solid stage. The algorithm carries out the strategy of integrating global exploration with local exploitation in fluid stage. Furthermore, local exploitation is carried out mainly in solid stage. The quality of the solution and the efficiency of the search are influenced greatly by the control parameters. Therefore, the data-driven mechanism is designed for obtaining better control parameters to ensure good performance on numerical benchmark problems. In order to verify the effectiveness of CPDD, numerical experiments are carried out on all the CEC2014 contest benchmark functions. Finally, two application problems of artificial neural network are examined. The experimental results show that CPDD is competitive with respect to other eight state-of-the-art intelligent optimization algorithms
    corecore