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Computational scientists have designed many useful algorithms by exploring a biological process or imitating natural evolution.
These algorithms can be used to solve engineering optimization problems. Inspired by the change of matter state, we proposed
a novel optimization algorithm called differential cloud particles evolution algorithm based on data-driven mechanism (CPDD).
In the proposed algorithm, the optimization process is divided into two stages, namely, fluid stage and solid stage. The algorithm
carries out the strategy of integrating global exploration with local exploitation in fluid stage. Furthermore, local exploitation is
carried out mainly in solid stage. The quality of the solution and the efficiency of the search are influenced greatly by the control
parameters. Therefore, the data-driven mechanism is designed for obtaining better control parameters to ensure good performance
on numerical benchmark problems. In order to verify the effectiveness of CPDD, numerical experiments are carried out on
all the CEC2014 contest benchmark functions. Finally, two application problems of artificial neural network are examined. The
experimental results show that CPDD is competitive with respect to other eight state-of-the-art intelligent optimization algorithms.

1. Introduction

Optimization problems in engineering are often very com-
plex and difficult to solve. At first, lots of deterministic algo-
rithms based on mathematical programming theory are used
for engineering optimization problems. They obtain better
results for relative simple and ideal models. Unfortunately,
these deterministic algorithms show poor performance for
real-world complex problems. Inspired by natural evolution,
more and more researchers are interested in the devel-
opment of nature-inspired algorithm by exploring natural
phenomena [1]. These natural phenomena mainly include the
biological evolutionary process, animal behavior, and phys-
ical phenomena. The nature-inspired algorithms can solve
the difficult design and optimization problems by building
solutions that are more fit relative to desired properties [2].
The resulting field, nature-inspired algorithms have been
successful in solving optimization, design, constrained, large-
scale, and multiobjective clustering and forecasting [3-9].
Evolutionary algorithms (EAs), such as Genetic Algo-
rithm (GA) [10], Differential Evolution (DE) [11], and
Derandomized Evolution Strategy with Covariance Matrix

Adaptation (CMA-ES) [12], are inspired by the biological
evolutionary process. GA, proposed by Fraser and popular-
ized by Holland, has been widely studied. It solves optimiza-
tion problems by simulating Darwinian evolution concepts,
such as crossover, mutation, and selection. DE, proposed
by Storn and Price, is a simple yet powerful population-
based evolutionary algorithm. CMA-ES, proposed by Hansen
and Ostermeier, adapts the complete covariance matrix of
the normal mutation distribution. Swarm intelligence (SI)
algorithms, such as Particle Swarm Optimization (PSO) [13,
14], Artificial Bee Colony (ABC) [15], Teaching-Learning-
Based Optimization (TLBO) [16, 17], and Jaya (a Sanskrit
word meaning victory) algorithm [18], are inspired by all
kinds of animal behavior. PSO explores the search space
according to pbest and gbest, which are the past best position
and the global best position achieved by particles, respec-
tively. ABC, proposed by Karaboga, simulates the foraging
behavior of the honeybee swarm and has been applied to
solve many engineering optimization problems [19, 20]. The
TLBO method, proposed by Rao, is based on the effect of the
influence of a teacher on the output of learners in a class [16].
In order to reduce the complexity of the algorithm, Rao [18]
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proposed Jaya algorithm which uses one phase instead of
two phases of the TLBO algorithm. Jaya algorithm tries to
get closer to reaching the best solution and tries to move
away from the worst solution. Other heuristic methods, such
as biogeography-based optimization (BBO) [21], Simulated
Annealing (SA) [22, 23], Chemical Reaction Optimization
(CRO) [24], and Brain Storm Optimization (BSO) [25],
simulate the physical phenomena or rules. BBO, proposed by
Simon in 2008, is a newly proposed metaheuristic algorithm.
In BBO, mathematical models are used to describe the
evolution process of species, such as migration, mutation,
and distribution of species. A solution is regarded as an
island (habitat) with a habitat suitability index (HSI). Islands
with a high HIS are well suited for species, and vice versa.
Suitability index variables (SIV), which refer to the fea-
tures correlated with HSI, and HSI are considered as the
search space and objective function, respectively [26]. SA
is a heuristic algorithm which is based on an analog of
thermodynamics with the way metals cool and anneal [27].
CRO is a chemical-reaction-inspired metaheuristic which
mimics the characteristics of chemical reactions in solving
optimization problems [24]. BSO mimics the brainstorming
process in which a group of people solves a problem together
[28].

The issue of exploration-exploitation is the major factor
which influences the performance of evolutionary algorithm.
Exploration helps to find new potential solutions and improve
the convergence rate of algorithm. Exploitation helps to
improve the quality of found-so-far solutions. However,
overexploration may lead to slow convergence and overex-
ploitation may increase the risk of premature convergence.
Therefore, numerous ideas are proposed to balance the
exploitation and exploration search process of EAs [29]. For
example, a large scaling factor F in DE is required at the early
stage of the evolution to ensure strong exploration capability,
while a small F is preferred to improve exploitation capability
at the later stage [30]. Therefore, many improved DE variants,
such as adaptive differential evolution with optional external
archive (JADE) [31], self-adaptive control parameters in
differential evolution (JDE) [32], a self-adaptive DE (SaDE)
algorithm [33], and a composite DE (CoDE) algorithm [34],
are proposed to improve the relationship of exploration and
exploitation with the proper settings of control parameters
[35-39]. For PSO, many different modified PSO variants,
including inertia weight and the acceleration coefficient, are
proposed by the researchers to enhance PSO’s exploration
capability and alleviate premature convergence problem [40-
46].

Designing suitable evolutionary strategies and control
parameters is important to realize a good balance between
exploration and exploitation. In this paper, we proposed
a novel nature-inspired algorithm called differential cloud
particles evolution algorithm based on data-driven (CPDD)
mechanism for solving global optimization problems. The
CPDD algorithm simulates the change of matter state and
cloud transformation process. The optimization process is
divided into two stages, namely, fluid stage and solid stage.
The CPDD algorithm carries out the strategy of integrating
global exploration with local exploitation in fluid stage.
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F1GURE 1: Cloud formation and matter state transition.

Furthermore, local exploitation is carried out mainly in
solid stage. Data-driven mechanism is designed for obtaining
better control parameters to keep a better balance between
exploration and exploitation.

The rest of the paper is organized as follows. Section 2
introduces the proposed CPDD and the concepts behind it in
detail. In Section 3, the performance of the proposed CPDD
is validated on different optimization problems. Section 4
shows the applications for training artificial neural network.
Finally, the conclusions and ideas for future research are
drawn up in Section 5.

2. Differential Cloud Particles
Evolution Algorithm Based on
Data-Driven Mechanism

2.1. Algorithm Background. The idea of differential cloud
particles evolution algorithm based on data-driven mech-
anism is inspired from the phenomenon of matter state
transition and cloud formation. For further understanding,
an explanation on the principles of matter state transition and
cloud formation will be stated as follows.

Substances commonly exist in three states: gaseous, lig-
uid, and solid. For example, heat evaporates water into steam,
while low temperature turns water to ice. Similarly, three
states are involved in the formation and change of cloud.
The water evaporated into vapor. Water vapor condenses to
form clouds. The clouds transform into snow or hailstone
with decreasing temperature. Therefore, water vapor, cloud,
and snow can be regarded as gaseous, liquid, and solid,
respectively. The cloud transformation process and matter
state transition are illustrated in Figure 1. As a result, the
matter shows different states with different temperature.

CPDD loosely simulates the cloud transformation pro-
cess and matter state transition. Because the gas and the liquid
have fluidity, there are two types of operation implemented
in CPDD, namely, fluid stage operation and solid stage
operation. We utilize the term “phase transition” to describe
transitions between fluid stage and solid stage. A phase
transition is the transformation of a thermodynamic system
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FIGURE 2: Three states of cloud particles.

from one phase or state of matter to another one by heat
transfer.

2.2. 'The Proposed CPDD. Similar to other metaheuristic
algorithms, the proposed algorithm begins with an initial
population called the cloud particles. Each cloud particle in
CPDD algorithm represents a solution in the population. The
population size is similar to the temperature in real world.
Liquefaction refers to the process in which gas is transformed
into liquid. Solidification is a phase transition in which liquid
is turned into solid. Liquefaction and solidification need to
give off heat. The temperature will gradually decrease in the
exothermic process. In order to improve the performance
of the algorithm, EAs had better to start with exploration
and then gradually change into exploitation [47]. Therefore,
CPDD algorithm has a larger population to ensure strong
exploration ability at the beginning of the evolution. The pop-
ulation size gradually decreased and the exploitation ability
gradually improved during evolution. In the later evolution,
CPDD algorithm has a smaller population to encourage
broader exploitation. The change of population number is
similar to the change of the temperature; namely, matter has
high temperature in gas state and has low temperature in solid
state.

2.2.1. Fluid Stage. The fluid stage, which mimics the move-
ment of the fluid, includes gaseous state and liquid state.
At the beginning, the initial state is gaseous state, which is
composed of many cloud particles. Each cloud particle has
good fluidity and can move freely. Therefore, the algorithm
shows strong exploration ability in gaseous state. For the
evolutionary process, the population size gradually decreases.
Then, the local exploitation ability can be improved by reduc-
ing the population size. In addition, the state of population
transforms from gaseous state into liquid one as the cloud
particles move. The movement of cloud particles in liquid
state causes macrolocal exploitation. The movement of cloud
particles in fluid stage is given in Figure 2(a).

Inspired by JADE, an improved search strategy is intro-
duced in fluid stage. Similar to other evolutionary algorithms
for optimization problems, a CPDD population is repre-
sented as a set of real parameter vectors which is defined as

follows:
Xi:(xlyxZ)-~-)xD): izl,...,N, (1)

where D is the dimensionality of the optimization problem
and N is the population size. In fluid stage, the search

strategy, based on DE/current-to- pbest with optional archive,
is generated in the following manner:

Vi = X + Fy (X = X + X2 ~ Xp3), ()
where i € {1,...,N}, r, r,, and r; are mutually different
random integer indices selected fromi € {1,..., N}, and X,
is randomly chosen as one of the top 100 p% cloud particles in
the current population. p is 15% of the population size. x,5 is
selected from the union of the population and the archive.
The archive is the set of archived inferior solutions and is
used for maintaining diversity in JADE [34]. If the archive
size exceeds 150% of the population size, some solutions are
randomly removed from the archive so that some newly cloud
particles can be inserted into the archive. F;, which is different
from F in JADE, is a mutation factor that controls the speed
of algorithm process and is generated at each generation by
data-driven mechanism introduced later in (4).

2.2.2. Solid Stage. The algorithm has found the potential area
of optimal solution after global exploration and macrolocal
exploitation in fluid stage. Then the phase transition is carried
out; namely, the population transforms from fluid into solid.
The cloud particles vibrate only in a small region and carry
out microlocal exploitation. The process, in which most of
the cloud particles are gathered toward the optimal solution
(microlocal exploitation), is analogous to the solidification.
Finally, most of the cloud particles will gather to a position,
that is, the location of the optimal solution. Figure 2(b) shows
the movement of cloud particles in solid stage. The following
strategy is search strategy used in solid stage:

Vi = Xpest T Fi ’ (sz - xrl) . (3)

Similar to fluid stage, Xy, is randomly chosen as one of
the top 100 p% cloud particles in the current population. x,, is
selected from the union of the population and the archive. r,
and r, are mutually different random integer indices selected
fromi € {1,..., N}. F;is generated at each generation by data-
driven mechanism.

The population size is reducing from N to four in order
to balance the exploration and exploitation. In fluid stage,
the algorithm carries out global exploration and macrolocal
exploitation. In solid stage, the algorithm performs macrolo-
cal exploitation. Consequently, the algorithm can balance the
exploration and exploitation based on the transformation
from fluid stage to solid stage.



2.3. Control Parameters Assignments. In CPDD algorithm,
the parameter F controls the diversity of the population.
Higher value of the parameter F will increase the diversity of
the cloud particles and enhance the convergence speed. On
the contrary, smaller value of the parameter F will result in
premature convergence and slow convergence rate. In addi-
tion, for different problems, different values of parameters are
needed in different evolution stage. Based on our previous
research [48], in this paper, F is produced based on data-
driven mechanism which can be described as follows:

Crpxsin(l-f) - (4)
fa= —’—maxFES +sin (1 - f;)
F=nrxf,+fi.

Initial F; is generated according to (4). f, is a parameter
and is set to 0.068. In each generation, F; value that succeeds
in generating a trial v; which is better than the parent
individual x; is preserved and is recorded as F;. The size of
Fg is recorded as |Fg|. If |Fg| exceeds the current population
size, randomly selected elements are deleted. If |F]| is less
than the current population size N, the (N-|F;|) new F "is
generated according to (4). Consequently, F; value that shows
better performance is preserved for next generation. It means
that F; value from last generation drives the evolution of new
generation.

CR, the crossover rate, is another important control
parameter in CPDD algorithm. The initial CR is a Gaussian
distribution with mean “0.5” and standard deviation “0.1.”
Similar to the parameter F, CR values that have performed
well in generation G are preserved for next generation. The
preserved CR is recorded as CR. The size of CR; is recorded
as |CRg|. If [CRg| = 0, CR; is regenerated as follows:

CR; = 0.9 + rand. (5)

In addition, the cloud particles transfer from fluid stage
to solid stage when CRg; is empty.

If |CRg] is less than the current population size N, the
(N-|CRg|) new CRis given by

CR =¢ (CRg) + rand, 6)

where 0(CR;) refers to the standard deviation of CR;. rand
denotes a uniformly selected random number from [0,1). If
|CRg| > N, extra elements are randomly selected and deleted.
Therefore, the next generation of CR is produced by CRg,
which shows better performance in the last generation.

The pseudocode of CPDD is illustrated in Algorithm 1.
®(0.5,0.1) refers to a Gaussian distribution with mean
“0.5” and standard deviation “0.1.” Popsize is the current
population size. FES stands for the number of function evalu-
ations. maxFES stands for the maximum number of function
evaluations.
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3. Experiments and Discussions

3.1. General Experimental Setting

3.11 Test Problems and Dimension Setting. For a compre-
hensive evaluation of CPDD, all the CEC2014 Special Session
on Real-Parameter Single Objective Optimization [49] bench-
mark problems are used to test the performance of CPDD.
The CEC2014 benchmark set consists of 30 test problems.
According to their shape characteristics, these benchmark
problems can be broadly classified into four kinds of opti-
mization problems [49]:

(i) Unimodal problems f;- f;

(ii) Simple multimodal problems f,- f ¢
(iii) Hybrid problems f,-f,,
(iv) Composite problems f,;- f3o

For all of the problems, the search space is [~100, 100]°.
In this paper, the dimension (D) of all problems is set to 10
and 30.

3.1.2. Experimental Platform and Termination Criterion. For
all experiments, 30 independent runs are carried out on the
same machine with a Celoron 3.40 GHz CPU, 4 GB memory;,
and windows 7 operating system with Matlab R2009b and
conducted with D x 10, 000 (number of function evaluations,
FES).

3.1.3. Performance Metrics. In our experimental studies, the
mean value (F,,,,), standard deviation (SD), maximum value
(Max), and minimum value (Min) of the solution error
measure [50] which is defined as f(x) — f(x") are recorded
for evaluating the performance of each algorithm, where f(x)
is the best fitness value found by an algorithm in a run and
f(x") is the real global optimization value of tested problem.
In order to statistically compare the proposed algorithm with
its peers, the statistical tool ¢-test [16] at a 0.05 significant level
is used to evaluate whether the median fitness values of two
sets of obtained results are statistically different from each

other. Three marks “+,” “-,” and “=” are also used to report

the results clearly.“+,” “—,” and “=” denote that the perfor-
mance of CPDD is better than, worse than, and similar to that

of the corresponding algorithm, respectively.

3.2. Comparison with Eight State-of-the-Art Optimization
Algorithms on 10 and 30 Dimensions. In this part, CPDD is
compared with PSO, PSOcf (PSO with constriction factor)
[44], TLBO, DE, JADE, CMA-ES, ABC, and BBO. The
appropriate parameters are important for the performance
of the optimization algorithms. Therefore, the setting of
parameters of different algorithms is given in the following.
For CPDD, F and CR are produced according to the data-
driven mechanism. Initial F is produced according to (4).
The initial CR is a Gaussian distribution with mean “0.5”
and standard deviation “0.1.” The population size N is set to
13 x D. The maximum size of the archive is set to 1.5 x N. For
DE, the population size N is set to 100. F and CR are set to 0.5
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(2) T, (initial temperature) = Nj;
(3) State = 0;
(4) Initialize population randomly

(6) fori=1to N do
%) CR, = ®(0.5,0.1);

(14)  endfor
(15) fori=1to N do

(16) if f(u;) < f(x;) then
17) A=AUx;
(18) X, =y
19) endif
(20)  endfor
T,
@) T=[T,- o FES x FES]
(22)  if N > T then
(23) N =N-1 % cool down
(24) delete the worst individual
(25) Resize archive size
(26)  endif

(27)  if |CRg| < N then
(28) if CR; = ¢ then

(40) if |F| < N then

(42) F=F,UF
(43) elseif |F5| > N then

(45) else

(46) F=F;
(47) endif
(48) endwhile

(1) Initialize D (number of dimensions), N (number of population); Archive A = ¢; A, = 0.3 X N;

(5) while the termination criteria are not met do

(8) Generate mutation factor F; according to Eq. (4)

9) if State == 0 then

(10) Generate new individual according to Eq. (2) % fluid stage
(11) else

(12) Generate new individual according to Eq. (3) % solid stage
(13) endif

(29) Generate CR according to Eq. (5)
(30) State =1

(31) else

(32) Generate CR’ according to Eq. (6)
(33) CR = CR; UCR’

(34) endif

(35) elseif |[CR;| > N then

(36) delete randomly selected elements from the CRg; so that the cross rate size is N
(37) else

(38) CR = CR,

(39) endif

(41)  generate (N — |F;|) new F' according to Eq. (4)

(44) delete randomly selected elements from the Fg so that the mutation factor size is N

Output: the cloud particle with the smallest objection function value in the population.

AvrGoriTHM 1: CPDD algorithm.

and 0.9, respectively. For PSO, the population size N is set to
40, the linearly decreasing inertia w from 0.9 to 0.4 is adopted
over the course of the search, and the acceleration coefficients
¢, and ¢, are both set to 1.49445. For ABC, the number of
colony sizes is set to 20, and the number of food sources is
set to half of the colony sizes. For JADE, the population size

N is set to 100; p = 0.05 and ¢ = 0.1. The parameters of other
algorithms are the same as those used in the corresponding
references.

The statistical results, in terms of F,,.,,, SD, Max, and
Min obtained in 30 independent runs by each algorithm, are

reported in Tables 1~7.
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3.2.1. Unimodal Problems f,-f;. From the statistical results
of Table 1, we can see that CMA-ES and CPDD achieve the
optimal solution in each run for unimodal problems f;-f;
for 10 dimensions. CPDD performs better than other algo-
rithms on f,- f; and achieves the second best performance
on f; for 30. The reason that CPDD has the outstanding
performance may be because of data-driven mechanism,
which is helpful for obtaining better control parameters.

3.2.2. Simple Multimodal Problems f,- f,4. From Table 2, we
observe from the statistical results that CPDD is significantly
better than other algorithms on fi-f;, fo, fi3> fis and fie.
ABC performs well on f;; JADE performs well on f,-f};
and fi5, respectively. PSOcf performs well on f,,. CPDD
and JADE achieve the optimal solution on f;. Table 3 shows
that CPDD obtains better solutions than other algorithms
on fy, fe f12> and f;5. CMA-ES performs well on f;. JADE
performs well on f;-f;,, fis5» and fi4. ABC performs well
on f4. DE, JADE, and CPDD perform well and achieve the
similar solutions on f.

3.2.3. Hybrid Problems f,,-f,,. In the case of f,,—f,,, we
find that CPDD achieves very competitive results from Tables
4 and 5. It beats PSO, PSOcf, TLBO, DE, JADE, CMA-
ES, ABC, and BBO on these hybrid problems for 10 and
30 dimensions except f,,. DE performs well on f,, for 10
dimensions. This may be due to the fact that the scheme of
matter state change can help CPDD to keep a better balance
between exploration and exploitation.

3.2.4. Composite Problems f,;- f5,. From Tables 6 and 7, we
find that these composite problems are very time-consuming
for fitness evaluation compared to others because these
problems combine multiple test problems into a complex
landscape. Therefore, it is extremely difficult for state-of-the-
art optimization algorithms to obtain relatively ideal results.
Table 6 shows that CPDD obtains the better solutions on
foas fo5> and f,; for 10 dimensions. ABC performs well on
fo3 and f,5. For f,, all the algorithms can find the similar
solutions except CMA-ES. ABC performs well on f,; and f.
DE performs well on f,,. DE and CPDE achieve the similar
solutions on f,. It can be concluded from Table 7 that all the
algorithms can find the similar solutions on f,; except BBO.
All the algorithms can find the similar solutions on f,4 except
PSO, PSOcf, and CMA-ES. CPDD obtains the better solutions
on f,s and f,,. DE obtains the better solutions on f,4 and f5,.
TLBO performs well on f,,.

According to the experimental results on thirty test
problems from Table 8, we find that CPDD outper-
forms PSO, PSOcf, TLBO, DE, JADE, CMA-ES, ABC, and
BBO on twenty-six, twenty-six, twenty-seven, twenty, eigh-
teen, twenty-five, twenty-three, and twenty-five test prob-
lems, respectively, for 10 dimensions. CPDD outperforms
PSO, PSOcf, TLBO, DE, JADE, CMA-ES, ABC, and BBO
on twenty-eight, twenty-six, twenty-six, twenty, fourteen,
twenty-two, twenty-one, and twenty-two test problems,
respectively, for 30 dimensions. Moreover, Figures 3 and 4
have further displayed the convergence graphs of different

benchmark problems in terms of the mean errors (in logarith-
mic scale) achieved by each of nine algorithms for CEC2014
problems versus the number of FES for 10 and 30 dimensions.

In summary, it is suggested that CPDD beats PSO, PSOcf,
TLBO, DE, JADE, CMA-ES, ABC, and BBO in 15 out of
30 benchmark problems for 10 dimensions. CPDD achieves
better performance than other seven algorithms in 14 out of
30 benchmark problems for 30 dimensions. The experiment
results reveal that CPDD works well for most benchmark
problems. This is due to the data-driven mechanism and
the phase transition of matter mechanism which are used in
CPDD. The data-driven mechanism makes use of the better
control parameters which are found by the last generation
to produce new control parameters for next generation. The
experiment results indicate that the control parameters which
are achieved by the data-driven mechanism are appropriate
for most benchmark problems and are helpful for finding
better solutions. The cloud particles carry out phase transition
according to the extent of evolution. The exploration ability
and exploitation ability of the algorithm are dynamically
adjusted by the phase transition mechanism. Therefore, it not
only can improve the convergence rate of algorithm but also
can decrease the risk of premature convergence as much as
possible.

4. The Real-World Optimization Problem

In this section, the proposed CPDD algorithm is applied
to estimate parameters of a real-world problem. The arti-
ficial neural network trained by our CPDD algorithm is a
three-layer feed-forward network which includes input units,
hidden units, and output units. The basic structure of the
proposed scheme is depicted in Figure 5.

In the three-layer feed-forward network, input X =
(X715 X e es Xjs v s X,) 5 OUPUL O = (01,005 .,045-..,0.) ",
and desired output D = (d,,d,, ..., d;,...,d,)". Comparison
needs to be made to check out the difference between the test
output and real demand. The aim of neural network training
is to find a set of weights with the smallest error measure. The
objective function is the mean sum of squared errors (MSE)
over all training patterns which is shown as follows:

1 Q& 2
MSE = Q*—K;ZJ:E (dz] - Oij) > (7)

where Q is the number of training data sets, K is the number
of output units, d;; is desired output, and o; is output inferred
from neural network.

4.1. SISO Nonlinear Function Approximation. In this exam-
ple, there are one input unit, five hidden units, and one
output unit in the three-layer feed-forward ANN. The model
is constructed to model the curve of a nonlinear function
which is described by the following equation [21]:

y = sin (2x) exp (—2x) . 8)

The sigma function is used as activation function in the
output layer. The number (dimension) of the variables is 16
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FI1GURE 3: Evolution of the mean function error values derived from PSO, PSOcf, TLBO, DE, JADE, CMA-ES, ABC, BBO, and CPDD versus
the number of FES on sixteen test problems of ten variables. (a) f4. (b) fis. (¢) fig. (d) fi7- (&) fig- () fio- (&) fro- () for. (D) for- () frz. (K)
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TaBLE 8: Comparison of CPDD with PSO, PSOcf, TLBO, DE, JADE, CMA-ES, ABC, and BBO on the CEC2014 benchmarks (D = 10 and 30

dimensions).
D PSO PSOcf TLBO DE JADE CMA-ES ABC BBO
+ 26 26 27 20 18 25 23 25
10 - 1 1 3 0 3
= 3 3 2 9 5
+ 28 26 26 20 14 22 21 22
30 - 1 3 4
= 1 7 4 3 2

for CPDD-based ANN. In order to train the ANN, 200 pairs
of data are chosen from the real model. The population size
is set as 50; the maximal number of function evaluations
(FES = 10000) is used as ended condition of each algorithm.
To assess the performance of each algorithm in noise, 30 db
additive with Gaussian noise is added to the experiment. For
each algorithm, 50 runs are performed. The other parameters
are same as those of the previous investigations.

Table 9 shows that CPDD performs better than other
compared algorithms in terms of the mean MSE and the
standard deviation of MSE. The approximation curves for
training and test using different algorithms are shown in Fig-
ure 6. It indicates that CPDD outperforms other algorithms
for training the model.

4.2. Lorenz Chaotic Time Series Prediction. In this example,
there are three input units, five hidden units, and one output
unit in the three-layer feed-forward ANN. It is used to
forecast a Lorenz chaotic time series which is described by
the following equation [51]:

& —a(y-)
%:bx—xz+cy 9)
j—jzxy—dz,

where a = 10, b = 28, and ¢ = 8/3.
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FIGURE 5: CPDD-based ANN.

In order to train the ANN, 10000 pieces of data are
selected according to the real model, among which the first
8000 pieces of data are discarded; the rest normalized 2000
pieces of data are selected as experiment data. The former
1500 points are chosen as the training data points, and the
rest 500 points are chosen as the testing data points to test
the validity of the model. The simulation goal is to build the
single-step-ahead prediction model of chaotic time series as
the following form [51]:

X(t+1)=f(x(t-6),x(t-3),x(1). (10)

In our experiment, population size is set as 50; the
maximal number of function evaluations (FES = 10000)
is used as ended condition of each algorithm. The results
are shown in Table 10 in terms of the mean MSE and the

standard deviation obtained in the 50 independent runs for
nine optimization algorithms.

Table 10 indicates that CPDD shows better performance
than other compared methods in terms of the mean MSE
and the standard deviation. Figure 7 shows the prediction
of Lorenz chaotic time series for training and test with
different optimization algorithm. The curves show that the
prediction obtained by CPDD performs better than other
algorithms. The experimental results represent that CPDD
has better prediction performance for Lorenz chaotic time
series compared with other optimization algorithms.

5. Conclusion

A new metaheuristic optimization algorithm CPDD, which
is inspired from the phenomenon of cloud transformation
and the transition of matter state, is proposed in this paper.
Data-driven mechanism is introduced into differential cloud
particles evolution algorithm and it is applied to 30 bench-
mark problems from the CEC2014 Special Session on Real-
Parameter Single Objective Optimization benchmark suite.
The experimental results showed that phase transition and
data-driven mechanism can not only balance the exploration
and exploitation capacity of CPDD but also accelerate the
convergence rate. It can be also concluded that CPDD shows



20

y(t)

y(t)

50 100 150 200
Sample number

— Actual

- -~ Output

‘‘‘‘‘‘ Error

(@
50 100 150 200
Sample number
— Actual
--- Output
‘‘‘‘‘‘ Error
(d)
100 150 200

Sample number

— Actual
--- Output
Error

(g)

Computational Intelligence and Neuroscience

50 100 150 200
Sample number
— Actual
- -~ Output
‘‘‘‘‘‘ Error
(b)
0.4
P B
50 100 150 200
Sample number
— Actual
--- Output
‘‘‘‘‘‘ Error
(e)
= |
50 100 150 200

Sample number

— Actual
--- Output
Error

(h)

y(t)

y(t)

50 100 150 200
Sample number
— Actual
- -~ Output
‘‘‘‘‘‘ Error
(©)
50 100 150 200
Sample number
—— Actual
--- Output
‘‘‘‘‘‘ Error
(f)
50 100 150 200

Sample number

— Actual
--- Output
Error

®

FIGURE 6: Comparison of the performance curves using different algorithm. (a)~(i) Function approximation with noise using PSO, PSOcf,
TLBO, DE, JADE, CMA-ES, ABC, BBO, and CPDD.

TABLE 9: Comparisons between PSO, PSOcf, TLBO, DE, JADE, CMA-ES, ABC, BBO, and CPDD on MSE.

Training error

Algorithm Testing error
Mean Std. Mean Std.

PSO 4.52e - 04 8.25¢ — 04 1.54e - 02 5.44e — 02
PSOcf 3.38¢ - 04 7.77e — 04 4.52e — 04 1.19¢ - 03
TLBO 3.4le - 03 2.45e — 03 2.68e — 03 2.22e - 03
DE 3.3le-03 1.59¢ - 03 4.31e-03 2.31e - 03
JADE 1.15e - 03 7.90e — 04 1.07e + 00 2.78e + 00
CMA-ES 8.65¢ — 03 1.49¢ — 02 5.05e - 03 9.27e — 03
ABC 1.32e - 03 1.32e - 03 1.53e - 02 4.03e - 02
BBO 3.13e - 03 7.46e — 03 8.65¢ — 02 2.47e - 01
CPDD 7.31e - 05 9.0le - 05 3.70e — 04 8.54e — 04
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FIGURE 7: Comparison of the performance curves using different algorithm. (a)~(i) Time series prediction using PSO, PSOcf, TLBO, DE,

JADE, CMA-ES, ABC, BBO, and CPDD.

TaBLE 10: Comparisons between PSO, PSOcf, TLBO, DE, JADE, CMA-ES, ABC, BBO, and CPDD on MSE.

Training error

Testing error

Algorithm
Mean Std. Mean Std.

PSO 4.83e - 04 3.36e — 04 5.02e — 04 3.50e — 04
PSOcf 1.11e - 03 9.93e — 04 1.16e — 03 1.05e - 03
TLBO 4.88¢e — 03 2.32e - 03 5.00e — 03 2.45e - 03
DE 4.54e - 03 3.71e - 03 4.69¢ — 03 3.80e — 03
JADE 2.00e — 03 8.51e — 04 6.78¢ — 01 2.87e + 00
CMA-ES 3.14e - 02 3.83¢ — 02 3.17e - 02 3.72e - 02
ABC 3.6le — 03 1.76e — 03 3.76e — 03 1.87e - 03
BBO 1.50e — 03 1.19¢ - 03 1.57e - 03 1.26e — 03
CPDD 2.90e — 04 2.44e — 04 3.00e — 04 2.55e — 04
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better performance on artificial neural network training
compared with other optimization algorithms.

However, these methods show poor performance on
composite problems. This indicates that the control parame-
ters produced by data-driven mechanism are not appropriate
for these problems. Therefore, the exploitation of CPDD is
poor on these problems. How to improve the exploitation
ability of CPDD will need to be further gone into. It is
necessary to introduce some new techniques in CPDD for
improving exploration and exploitation ability to solve hybrid
composition problems. In addition, CPDD will be used to
solve real-world engineering problems.
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