711 research outputs found

    A Review and Performance Analysis of Image Edge Detection Algorithms

    Get PDF
    Edge detection is the fundamental operation of digital image processing and applied in many fields like industrial, medical, satellite, agriculture etc. According to this growth of edge detection applications, many researchers and scholars are interested to develop the edge detection algorithm by using various techniques. This paper illustrates the review for what are the novel techniques are used for the edge detection, which operators are mostly used by them and how they get the accurate results to compare with existing methods. It also discussing the performance analysis of most commonly used edge detection operators such as Canny, Laplacian Gaussian (LoG), Sobel, Prewitt and Roberts,. Finally the accuracy, PSNR (Peak Signal to Noise Ratio) and execution time are tabulated and realize the most precious and fast computed edge detection method is uncovered

    A Detailed Investigation into Low-Level Feature Detection in Spectrogram Images

    Get PDF
    Being the first stage of analysis within an image, low-level feature detection is a crucial step in the image analysis process and, as such, deserves suitable attention. This paper presents a systematic investigation into low-level feature detection in spectrogram images. The result of which is the identification of frequency tracks. Analysis of the literature identifies different strategies for accomplishing low-level feature detection. Nevertheless, the advantages and disadvantages of each are not explicitly investigated. Three model-based detection strategies are outlined, each extracting an increasing amount of information from the spectrogram, and, through ROC analysis, it is shown that at increasing levels of extraction the detection rates increase. Nevertheless, further investigation suggests that model-based detection has a limitation—it is not computationally feasible to fully evaluate the model of even a simple sinusoidal track. Therefore, alternative approaches, such as dimensionality reduction, are investigated to reduce the complex search space. It is shown that, if carefully selected, these techniques can approach the detection rates of model-based strategies that perform the same level of information extraction. The implementations used to derive the results presented within this paper are available online from http://stdetect.googlecode.com

    SKCS-A Separable Kernel Family with Compact Support to improve visual segmentation of handwritten data

    Get PDF
    Extraction of pertinent data from noisy gray level document images with various and complex backgrounds such as mail envelopes, bank checks, business forms, etc... remains a challenging problem in character recognition applications. It depends on the quality of the character segmentation process. Over the last few decades, mathematical tools have been developed for this purpose. Several authors show that the Gaussian kernel is unique and offers many beneficial properties. In their recent work Remaki and Cheriet proposed a new kernel family with compact supports (KCS) in scale space that achieved good performance in extracting data information with regard to the Gaussian kernel. In this paper, we focus in further improving the KCS efficiency by proposing a new separable version of kernel family namely (SKCS). This new kernel has also a compact support and preserves the most important properties of the Gaussian kernel in order to perform image segmentation efficiently and to make the recognizer task particularly easier. A practical comparison is established between results obtained by using the KCS and the SKCS operators. Our comparison is based on the information loss and the gain in time processing. Experiments, on real life data, for extracting handwritten data, from noisy gray level images, show promising performance of the SKCS kernel, especially in reducing drastically the processing time with regard to the KCS

    Cell Nuclear Morphology Analysis Using 3D Shape Modeling, Machine Learning and Visual Analytics

    Full text link
    Quantitative analysis of morphological changes in a cell nucleus is important for the understanding of nuclear architecture and its relationship with cell differentiation, development, proliferation, and disease. Changes in the nuclear form are associated with reorganization of chromatin architecture related to altered functional properties such as gene regulation and expression. Understanding these processes through quantitative analysis of morphological changes is important not only for investigating nuclear organization, but also has clinical implications, for example, in detection and treatment of pathological conditions such as cancer. While efforts have been made to characterize nuclear shapes in two or pseudo-three dimensions, several studies have demonstrated that three dimensional (3D) representations provide better nuclear shape description, in part due to the high variability of nuclear morphologies. 3D shape descriptors that permit robust morphological analysis and facilitate human interpretation are still under active investigation. A few methods have been proposed to classify nuclear morphologies in 3D, however, there is a lack of publicly available 3D data for the evaluation and comparison of such algorithms. There is a compelling need for robust 3D nuclear morphometric techniques to carry out population-wide analyses. In this work, we address a number of these existing limitations. First, we present a largest publicly available, to-date, 3D microscopy imaging dataset for cell nuclear morphology analysis and classification. We provide a detailed description of the image analysis protocol, from segmentation to baseline evaluation of a number of popular classification algorithms using 2D and 3D voxel-based morphometric measures. We proposed a specific cross-validation scheme that accounts for possible batch effects in data. Second, we propose a new technique that combines mathematical modeling, machine learning, and interpretation of morphometric characteristics of cell nuclei and nucleoli in 3D. Employing robust and smooth surface reconstruction methods to accurately approximate 3D object boundary enables the establishment of homologies between different biological shapes. Then, we compute geometric morphological measures characterizing the form of cell nuclei and nucleoli. We combine these methods into a highly parallel computational pipeline workflow for automated morphological analysis of thousands of nuclei and nucleoli in 3D. We also describe the use of visual analytics and deep learning techniques for the analysis of nuclear morphology data. Third, we evaluate proposed methods for 3D surface morphometric analysis of our data. We improved the performance of morphological classification between epithelial vs mesenchymal human prostate cancer cells compared to the previously reported results due to the more accurate shape representation and the use of combined nuclear and nucleolar morphometry. We confirmed previously reported relevant morphological characteristics, and also reported new features that can provide insight in the underlying biological mechanisms of pathology of prostate cancer. We also assessed nuclear morphology changes associated with chromatin remodeling in drug-induced cellular reprogramming. We computed temporal trajectories reflecting morphological differences in astroglial cell sub-populations administered with 2 different treatments vs controls. We described specific changes in nuclear morphology that are characteristic of chromatin re-organization under each treatment, which previously has been only tentatively hypothesized in literature. Our approach demonstrated high classification performance on each of 3 different cell lines and reported the most salient morphometric characteristics. We conclude with the discussion of the potential impact of method development in nuclear morphology analysis on clinical decision-making and fundamental investigation of 3D nuclear architecture. We consider some open problems and future trends in this field.PHDBioinformaticsUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttps://deepblue.lib.umich.edu/bitstream/2027.42/147598/1/akalinin_1.pd

    Learning as a Nonlinear Line of Attraction for Pattern Association, Classification and Recognition

    Get PDF
    Development of a mathematical model for learning a nonlinear line of attraction is presented in this dissertation, in contrast to the conventional recurrent neural network model in which the memory is stored in an attractive fixed point at discrete location in state space. A nonlinear line of attraction is the encapsulation of attractive fixed points scattered in state space as an attractive nonlinear line, describing patterns with similar characteristics as a family of patterns. It is usually of prime imperative to guarantee the convergence of the dynamics of the recurrent network for associative learning and recall. We propose to alter this picture. That is, if the brain remembers by converging to the state representing familiar patterns, it should also diverge from such states when presented by an unknown encoded representation of a visual image. The conception of the dynamics of the nonlinear line attractor network to operate between stable and unstable states is the second contribution in this dissertation research. These criteria can be used to circumvent the plasticity-stability dilemma by using the unstable state as an indicator to create a new line for an unfamiliar pattern. This novel learning strategy utilizes stability (convergence) and instability (divergence) criteria of the designed dynamics to induce self-organizing behavior. The self-organizing behavior of the nonlinear line attractor model can manifest complex dynamics in an unsupervised manner. The third contribution of this dissertation is the introduction of the concept of manifold of color perception. The fourth contribution of this dissertation is the development of a nonlinear dimensionality reduction technique by embedding a set of related observations into a low-dimensional space utilizing the result attained by the learned memory matrices of the nonlinear line attractor network. Development of a system for affective states computation is also presented in this dissertation. This system is capable of extracting the user\u27s mental state in real time using a low cost computer. It is successfully interfaced with an advanced learning environment for human-computer interaction

    Magnetic Resonance Image segmentation using Pulse Coupled Neural Networks

    Get PDF
    The Pulse Couple Neural Network (PCNN) was developed by Eckhorn to model the observed synchronization of neural assemblies in the visual cortex of small mammals such as a cat. In this dissertation, three novel PCNN based automatic segmentation algorithms were developed to segment Magnetic Resonance Imaging (MRI) data: (a) PCNN image \u27signature\u27 based single region cropping; (b) PCNN - Kittler Illingworth minimum error thresholding and (c) PCNN -Gaussian Mixture Model - Expectation Maximization (GMM-EM) based multiple material segmentation. Among other control tests, the proposed algorithms were tested on three T2 weighted acquisition configurations comprising a total of 42 rat brain volumes, 20 T1 weighted MR human brain volumes from Harvard\u27s Internet Brain Segmentation Repository and 5 human MR breast volumes. The results were compared against manually segmented gold standards, Brain Extraction Tool (BET) V2.1 results, published results and single threshold methods. The Jaccard similarity index was used for numerical evaluation of the proposed algorithms. Our quantitative results demonstrate conclusively that PCNN based multiple material segmentation strategies can approach a human eye\u27s intensity delineation capability in grayscale image segmentation tasks

    Inferring surface shape from specular reflections

    Get PDF

    Detecting microcalcification clusters in digital mammograms: Study for inclusion into computer aided diagnostic prompting system

    Full text link
    Among signs of breast cancer encountered in digital mammograms radiologists point to microcalcification clusters (MCCs). Their detection is a challenging problem from both medical and image processing point of views. This work presents two concurrent methods for MCC detection, and studies their possible inclusion to a computer aided diagnostic prompting system. One considers Wavelet Domain Hidden Markov Tree (WHMT) for modeling microcalcification edges. The model is used for differentiation between MC and non-MC edges based on the weighted maximum likelihood (WML) values. The classification of objects is carried out using spatial filters. The second method employs SUSAN edge detector in the spatial domain for mammogram segmentation. Classification of objects as calcifications is carried out using another set of spatial filters and Feedforward Neural Network (NN). A same distance filter is employed in both methods to find true clusters. The analysis of two methods is performed on 54 image regions from the mammograms selected randomly from DDSM database, including benign and cancerous cases as well as cases which can be classified as hard cases from both radiologists and the computer perspectives. WHMT/WML is able to detect 98.15% true positive (TP) MCCs under 1.85% of false positives (FP), whereas the SUSAN/NN method achieves 94.44% of TP at the cost of 1.85% for FP. The comparison of these two methods suggests WHMT/WML for the computer aided diagnostic prompting. It also certifies the low false positive rates for both methods, meaning less biopsy tests per patient

    Event-Based Obstacle Detection with Commercial Lidar

    Get PDF
    Computerized obstacle detection for moving vehicles is becoming more important as vehicle manufacturers make their systems more autonomous and safe. However, obstacle detection must operate quickly in dynamic environments such as driving at highway speeds. A unique obstacle detection system using 3D changes in the environment is proposed. Furthermore, these 3D changes are shown to contain sufficient information for avoiding obstacles. To make the system easy to integrate onto a vehicle, additional processing is implemented to remove unnecessary dependencies. This system provides a method for obstacle detection that breaks away from typical systems to be more efficient
    • …
    corecore