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Abstract 

This thesis concerns the field of machine vision, in which computers are used 

to interpret pictures provided by television cameras. In particular it tackles the 

problems of interpreting pictures containing the glossy highlights produced by 

specular reflection. These specular highlights or specularities occur only where 

a glossy surface reflects the direct illumination of a light source almost straight 

into the camera's aperture - as if the surface were a mirror. Practical vision 

systems ought to detect specularities for two reasons: firstly so that they will 

not be mistaken as surface markings, and secondly so that they can be used 

to infer shape information about the surface upon which they appear to lie. 

Schemes for both detection and shape inference are discussed and developed in 

this thesis. 

Surfaces which are not glossy - Lambertian surfaces - form images of a cer-

tain constrained class. The detection scheme described in this thesis identifies 

regions. of. an. image where the Lambertian constraints break. These regions are 

candidate specularities. In all, the evidence provided by tests on three separate 

constraints is combined to detect specularities. The scheme will work even for 

achromatic ('black and white') cameras. 

Two independent methods of inferring surface shape information are dis-

cussed. The first uses the manner in which the surface distorts the image of 

the light source. The second requires two cameras and uses the stereo disparity 

of the specularity relative to a nearby surface marking. The results obtained 

by the two methods can be combined to provide fuller information. Often the 

local surface curvature can be fully recovered. 

The detection and inference schemes have been implemented in a software 

system coded in C, together with a user friendly interface for interrogating the 

results. 
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Chapter 1 

Introduction 

A large variety of visual cues aid our perception of three-dimensional scenes. 

Those that are provided by specular reflection motivate the work in this thesis. 

A simple example of when specular reflection plays an important role in visual 

perception can be observed by viewing the hollow end of a metallic soup spoon'. 

The most prominent visual cue is the bright blob, or specularity, formed by 

the specular reflection of a light source on the curved surface of the spoon. 

Without this cue the surface shape would be relatively unconstrained. It might 

be convex or concave; it might be highly or gently curving. The specularity on 

the surface constrains the curvature. Its rounded shape suggests that a spherical 

surface is possible and its apparent leftward motion when the viewpoint switches 

from the left to the right eye, suggests a concavity. Turn the spoon over and 

the specularity appears to move to the right, suggesting a convex sphere. In 

this thesis, methods are developed that exploit both the shape and motion of 

specularities for the purposes of machine vision. Figure 1-1 provides an example 

of the results achieved: both radii of curvature of an ellipsoid are determined to 

a reasonable accuracy. The purpose of machine vision is the extraction of useful 

descriptions of the 3-D surfaces from the images supplied by t.v. cameras, such 

as the image pair shown in figure 1-2. Once obtained, these descriptions can 

'Not included. 

1 



Chapter 1. Introduction 	 9 

SI 

Figure 1-1: An example of the results obtained by the shape-from-specularity 

scheme Top: A stereo pair of images of an ellipsoid—aligned for binocular 

fusion. Below: The scheme localises the radii of curvature r1  and r2  in the 

vicinity of the specular reflection to lie within the black-box marked on the graph 

Of (r 1 , r 2 ) space. Thus providing a useful estimation of their exact values—

indicated by the white cross. 
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Figure 1-2: A typical stereo-pair of images obtained by t.v. cameras, Specu- 

larities in these images have been detected and used to infer surface curvature. 

be applied to robotics tasks such as object recognition, collision avoidance and 

automated production. However, obtaining these descriptions involves much 

more than merely pointing the camera in the right direction. The "raw" images 

provided by cameras are two-dimensional and usually noise-ridden—while three-

dimensional, noise-resistant descriptions are required for robotics applications. 

Workers have found some success in devising methods that exploit visual cues, 

in order to extract useful surface descriptions from "raw" images. However, the 

descriptions provided so far, are as yet incomplete: in comparison with those 

effortlessly provided by our eyes they are rather impoverished. By exploiting a 

previously untapped visual cue—specular reflection—the methods developed in 

this thesis enrich the surface descriptions available to machine vision systems. 

Although specular reflections are not guaranteed to be present in every image, 

they are the norm, rather than the exception, for a robot manipulating metal 

parts. 
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The methods developed in this thesis—where possible—accord with the 

principles of machine vision et down by Man in his book Vision [83], i.e: 

• The descriptions that they provide degrade fairly gracefully in adverse 

conditions 

• They adhere to the principle of least commitment: preferring, in the face 

of uncertain cues, to register a description as uncertain rather than risk a 

false one. 

• They are fairly robust to variations in lighting conditions, viewing geom-

etry, surface properties and noise levels. 

In the past, specularities have themselves, been regarded as a variety of noise, 

because: 

They create prominent features in unpredictable positions upon otherwise 

recognizable objects. 

They disrupt an existing method (binocular stereo) that estimates the 

depth of surfaces. 

The best that was hoped for was that some method of detecting and excising 

the "specular-noise" would be found. The specularity detector developed in 

this thesis creates descriptions that can be used for this purpose. They are the 

same descriptions as are used to infer surface shape. They can also be used 

to identify surfaces that are glossy: glossiness is after all a useful recognizable 

surface property. 

The task of detecting specularities is harder than it seems at first sight: 

their characteristics—shape, size and "brightness" are not always the same. 

Physical models exist that predict their characteristics, for some surfaces of 

known material and known shape, lit by a known illumination. Without detailed 

knowledge of the surface and lighting conditions, a general-purpose specularity 

detector cannot make direct use of these models. In any case, physical models 
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do not exist for all common surface materials. The detector developed in this 

thesis is based on a much simpler model: that of a completely matt (non-

specular) surface. By establishing constraints on the images that such a surface 

forms, specularities are detected at image locations where they are seen to be 

violated. In this way three different tests for specularities are developed: a test 

for the specularities that: 

• are too "bright" to be matt. This test requires the image to be pre-

processed through a retinex: a process that effectively removes gradual 

illumination variations. 

• have peaks that are too "sharp" to be matt. 

• have edge-contrasts that are too great to be matt. 

The specularity detector is essentially a low-level autonomous process, able to 

extract concise 2-D descriptions of the specularities present in 'raw' images. In 

this respect, it fits into the lower level of the hierarchical structure, proposed by 

Marr [83] for the purpose of obtaining 3-D descriptions of surfaces. This hierar-

chy consists of a set of modular processes—each of which is self-contained and 

only communicates with the others via the descriptions created. 3-D surface 

descriptions cannot be created directly from the "raw" images. However, by 

applying a set of low-level autonomous processes to the "raw" images, concise 

2-D descriptions—or base representations (BR's)—of image features, conveying 

various visual cues, can be extracted. These BR's can then be read by higher-

level processes—or knowledge sources (KS's)—to create 3-D surface descrip-

tions. The advantage of this Marriam approach is that individual modules can 

be designed independently—simplifying the substantial task of machine vision 

into more manageable sub-tasks. Figure 1-3 shows how both the specularity 

detector and the shape-from-specularity modules, developed in this thesis, fit 

into this structure. The specularity detector, the edge detector and the retinex 

are all autonomous, low-level processes that create BR's. The specularity de-

tector reads the other two BR's in order to create its own. The binocular 
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Three-dimensional surface descriptions 

From other KS's 
Shape-from-

specularity KS 

Light source KS 	 Binocular Stereo 

Specularity detector( 

itetinex process I 	I 	I Edge detector 

Stereo-pair of images 

Figure 1-3: How the 3pecularzty detector and the shape-from-specularity mod-

ule fit into a hierarchical structure. 
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stereo and shape-from-specularity KS's read certain BR's and create 3-D surface 

descriptions. Binocular stereo is integrally linked to the processes concerning 

specularities—it uses the detector's BR to excise unwanted specular features 

and creates a depth map that is used by the shape-from-specularity module. 

Note: shape-from-specularity is not an autonomous process—it requires access 

to a KS that reasons about the light sources that illuminate the visible surfaces. 

A variety of KS's have been designed to exploit the different visual cues, e.g: 

shape-from-shading can exploit matt shading variation and shape-from-texture 

deals with texture variations. No KS on its own will always provide the complete 

3-D surface description. Binocular stereo, for example, only estimates depths 

along contours visible in the image—and certainly not at specularities. The 

shape-from-specularity module helps fill in gaps in the description, by providing 

curvature information at points in regions between the contours. 

A shape-from-specularity module was first proposed by Blake [13,15]. The 

scheme developed in this thesis represents a significant refinement of Blake's 

original ideas. The scheme is essentially an extended application of established 

geometrical techniques. 

1.1 Organisation of the rest of this thesis 

Chapter 2: provides an extensive review of the process of the reflection of light 

by surfaces. Both the geometrical aspects (e.g: the BDRF) and the physical 

processes are considered. Conclusions pertinent to the detection of specularities 

are provided. 

Chapter 3: reviews previous work done into detecting specularities. It also 

considers the current work that is being carried out that exploits colour cues—

unlike the detector in this thesis. Also described is the retinex process, that 

was mentioned above. 
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Chapter 4: presents the specularity detector: its development from the matt-

world constraint, the formulation of the three tests, a description of a scheme 

that combines the evidence provided by each test and creates the descriptions 

of specularities. Finally, there is an evaluation of the descriptions provided by 

the scheme for a test set of images. 

Chapter 5: reviews previous work done into the inference of surface shape 

concentrating particularly on the role of specularities. Included is a description 

of the binocular stereo process, mentioned above. It ends with an extensive 

review of Blake's ideas for inferring shape from spècularities. 

Chapter 6: presents new work on shape-from-specularity. This includes the 

development of both monocular and stereoscopic inferences and ends by describ- 

ing the scheme that combines them, in order to extract curvature information. 

Chapter 'T: describes the implementation of the shape-from-specularity scheme 

as a user-friendly interactive computer program. A step-by-step "walk-through" 

of the the program, analysing the specularities present in a real stereo pair of 

images, is provided. Readers eager to get a flavour of this scheme, might start by 

browsing this section. The chapter concludes with an evaluation of the results 

obtained by applying the scheme to a substantial set of images. 

Appendices of particular interest are appendix J that details the software 

implementation of the detection and inference schemes and appendix K that 

contains a published paper [22] describing the implementation of the retinex 

process, as employed by the specularity detector. 



Chapter 2 

Surface reflection 

2.1 Introduction 

A substantial body of knowledge exists concerning the reflection of light by 

surfaces—consisting of both theoretical models and experimental data. This 

chapter reviews the state of this knowledge. Emphasis is placed on those aspects 

that are directly relevant to the tasks of this thesis: specularity detection and 

shape inference from specularities. The review splits into two distinct parts: 

. Consideration of the geometrical aspects of surface reflection. This ends 

in a discussion of the highly applicable concept of the reflectance map. 

. Consideration of the physical processes involved when light interacts with 

different surface materials. 

First, a description of surface reflection in terms of ray optics is given. In this 

way the basic concepts and problems involved are introduced in an informal 

manner that is familiar to most readers. Later it proves necessary to introduce 

some formal definitions of the concepts. 



Chapter 2. Surface reflection 	 10 

Figure 2-1: When an incident ray impinges upon a surface, rays can be re-

flected in many different directions. 0, is the angle of incidence and ñ is the 

local surface normal direction 

2.2 Description of reflection in terms of ray op-

tics 

2.2.1 Introduction 

The light incident on and reflected by a surface can be considered in terms 

of light rays—i.e. beams of infinitesimal width. Consider the case shown in 

figure 2-1. An incident ray impinges upon a surface along a direction at angle 

Oi with the local surface normal vector ñ. As a result of reflection processes on 

or just below the surface new rays are reflected back into the environment. The 

reflection of light by a surface can be separated into two different processes: 

1. specular reflection—in which the incident light is reflected back into the 

environment without entering the surface. 
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Figure 2-2: In the specular case an incident ray is reflected as a single ray—in 

the direction of mirror reflection. The angle of incidence, 9, is equal to the angle 

of reflection, 9r• 

2. diffuse' reflection—in which the light enters the surface material and is 

scattered so as to reemerge back into the environment. 

The case of completely specular and completely diffuse reflection can be consid-

ered in terms of rays. The specular case is described as a mirror-like reflection 

in which a single ray is reflected—as shown in figure 2-2. The reflected ray lies 

in the same plane as both the incident ray and the local surface normal ñ. The 

angle of reflectance °r  is the same as the angle of incidence 9. In the diffuse case 

rays are reemitted in many directions contained within the hemisphere above 

the surface point—as depicted in figure 2-3. In both the specular and diffuse 

cases the irradiance' that is measured along the reflected rays depends upon 

'Later it is shown that diffuse reflection can occur when rough surfaces reflect in a 

specular manner. So this type of reflection is better termed subsurface scattering or 

volume reflection. 

2 lrradiance is a precise term for brightness or intensity—it is defined in appendix A. 
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f, p4 

Figure 2-3: In the diffuse case an incident ray is reflected in many different 

directions. 

the angle of incidence 9,. Below simple examples of both cases are reviewed, 

before considering the problems introduced when they both occur at once. 

2.2.2 A simple specular case 

In the most simple specular case that of an optically smooth surface the 

angular dependence is in accordance with the Fresnel relations. This results in 

an attenuation of the reflected light by a factor F which depends explicitly on 

the angle of incidence 9. Figure 2-4 shows typical F(9,) distributions. So for 

a smooth surface illuminated by a single ray the irradiance 3  ES  is: 

E5(9) = E0F(81 ) along the direction of mirror reflection 9,. 	
(2.1)  

0 	for any other direction. 

E0  is the irradiance of the incident ray. 

31n fact an infinitesimal ray strictly contains no energy and thus has irradiance 

zero [62]. Irradiance is defined over finite solid angles. For present purpose it is rea-

sonable to assume that the ray occupies a small finite solid angle and has a non-zero 

cross-section. 
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Figure 2-4: Typical F(9) distributions for a metal and a non-metal. 

Reflection by rough specular surfaces is more complicated. However for 

these surfaces the 9, dependence is still present—see section 2.4. 

2.2.3 A simple diffuse case 

For the most simple case of diffuse reflection the irradiance measured along all 

directions of reflection is proportional to cos 9 1—in accordance with Lambert's 

Law (see section 2.4). In this case the image irradiance along all directions of 

reflection is uniform and given by: 

Ed(92) = E0pd cos(9), 	 (2.2) 

where P20  is the irradiance or the incident ray and Pd 1S a constant of the ma-

terial, known as albedo (or the diffuse reflection coefficient). It represents the 

proportion of incident light energy that is reflected by a Lambertian surface. 

In theory it can range from zero to one. When albedo is small a surface ap-

pears dark, and when it is large a surface appears light. In many practical 

circumstances albedo has a limited dynamic range. This fact is important in 
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the development of one of the tests designed to detect specularities, described 

in chapter 4. 

2.2.4 Composite surfaces 

A composite surface is one that reflects light in both a specular and a diffuse 

manner. A question of immediate interest in this thesis is whether a composite 

surface can be conveniently characterised by the ratio of the amount of light 

flux it reflects specularly to that which it reflects diffusely. If this were the case, 

this ratio would provide an attractive constant of the surface material—which 

a specularity detector might attempt to estimate. In short the answer is that 

no such characterisation is possible. The bidirectional reflectance distribution 

function (BRDF) in general is required to properly define the ratio. It describes 

how the ratio varies with direction of incidence and reflection and is discussed 

further in section 2.3.2. 

However it is useful to continue the discussion in terms of ray optics, and 

consider a simple composite surface. It soon becomes clear .why the BRDF must 

be defined. Consider again the single ray incident upon a surface. 

• This time a ray of irradiance E0  is incident upon the surface. At the surface 

a ray is immediately specularly reflected. Its irradiance is E0F(9) in accordance 

with equation (2.1). The remainder E0 (1 - F(8)) penetrates into the surface 

layer and may be diffusely scattered—in accordance with Lambert's law. In 

this case the overall irradiance' distribution is: 

E(0) = E0F(0) + [E0 - EOF(OI)]pd cos O, 	 (2.3) 

along the direction of mirror reflection, and 

E(81) = [E0 - E0F(91)]pd  cos Oj , 	 (2.4) 

4See previous footnote. 
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Figure 2-5: For a composite surface an incident ray, (a), is partially specularly 

reflected, (b) and partially diffusely reflected (c). 

along any other direction. Figure 2-5 depicts how the two different processes 

combine. The effect of the term F(8) in these two expressions ensures that 

the ratio of reflected to incident flux depends upon the angle of incidence. 

So even for this relatively elementary composite surface, this ratio is not a 

simple constant of the surface material—it also depends both upon the beam 

geometry and the material constants. It should be noted that this ratio has 

been extensively used as a parameter for reflectance models used in computer 

graphics [31,20]. These models have been used to synthesise some very realistic 

looking images of composite surfaces. However two points must be made about 

these images: 

An image made by chosing an arbitrary 'ratio-parameter' is not guaran-

teed to correspond to any real world surface. 

Only a small subset of the real images of composite surfaces is available by 

variation of the 'ratio-parameter'. Many real surfaces are not represented 

by this model. It is thus unsuited for use in detecting real specularities. 

The next section discusses the geometrical and radiometrical concepts in-

cluding the BRDF. The BRDF provides a much more precise definition of the 

invariant surface properties than the 'ratio-parameter' discussed above. 
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2.3 Geometrical considerations 

2.3.1 Introduction 

The equations (2.1), (2.2), (2.3) and (2.4) provide some geometrical character-

isations of surface reflection. They are of limited use for two reasons: 

they concern very special cases. 

they apply only to narrow rays. 

Equation (2.5), below, provides a generalisation of these descriptions which also 

encompasses the reflection of incident light beams (many rays). As such, this 

expression provides a suitably complete specification for surface reflection, upon 

which the specularity detector, developed in chapter 4, can be based. Although 

the expression has a simple form, its derivation [85,61] is not trivial. The beam 

geometries must be precisely defined and many R.adiometrical concepts must 

be introduced. The beam geometries are defined using polar coordinates solid 

angles and infinitesimal directional quantities. The Radiometrical concepts are 

precisely defined measures of light —such as radiant flux, irradiance, radiance, 

reflected radiance, incident radiance, scene radiance and the bidirectional re-

flectance distribution function. Rather than delaying the reader by stopping 

here to introduce so many new terms, their precise definitions are given in ap-

pendix A. From the informal definitions given in the main text the reader should 

be able to glean their meanings. Wherever a precise definition is in doubt the 

appendix should be consulted. 

2.3.2 The image irradiance equation 

The precise radiometrical term for the brightness of the light recorded by an 

imaging device is image irradiance. This quantity is of prime importance in ma- 

chine vision as it is the only information that is directly available from a camera. 
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Figure 2-6: (a) The normal direction ñ to the local tangent plane of the surface 

can used be to specify the local surface orientation. (b) As orientation varies so 

does image irradiance. The local reflectance map specifies this variation. 

The image irradiance, Ep measured at a point P in an image is determined by 

the image irradiance equation [85,61]: 

Ep = aR(ñ), 	 (2.5) 

where a c  is a known constant of the camera—see (A.5). R is a function known as 

the reflectance map. Its parameter ñ denotes a dependence on the local surface 

orientation. This orientation is conveniently specified by the direction of the 

local surface normal vector ñ with respect to the view vector—see figure 2-

6 (a). The reflectance map describes the reflection at the surface point within 

the scene that is imaged at P. The image irradiance Ep varies as the orientation 

of the surface at this point is changed—as in figure 2-6. The reflectance map 

specifies this variation. It is a function that combines two separate kinds of 

information: 

1. information that quantifies the local reflectance properties of the surface 

material, in different directions. The bidirectional reflectance distribution 

function (BRDF), denoted f,., allows a complete specification of these 

properties. Basically the BRDF says how bright the surface appears in 
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an arbitrary viewing direction when illuminated along another arbitrary 

direction. See section A.1.2 for more details. 

2. information about the local distribution of illumination over all the differ-

ent directions of incidence. The incident radiance distribution L i  provides 

the appropriate specification in this case. See section A.1.2 for more de-

tails. 

Each value, R, in the reflectance map, the BRDF and the incident radiance 

distribution are related. The precise relationship is provided by equation (A.16) 

in the appendix. Briefly R is determined by integrating the appropriate product 

fL, cos Oi  over a hemispherical solid angle'. Once determined, values of R, can 

be used to predict the image irradiance via the image irradiance equation (2.5). 

Machine vision has frequently used the image irradiance equation to provide 

a constraint for computational schemes. These schemes often rely on explicit 

knowledge of the reflectance map. The shape from shading schemes proposed 

by Horn [67,60] are typical examples. However, from the discussion above, it is 

clear that the reflectance map is only known if both the BRDF and the incident 

irradiance distribution, L, are known. A practical vision system must be able 

to deal with a variety of different surfaces under a variety of illuminations. So it 

is unrealistic to expect such a system to know the BRDF and L 1  for the surfaces 

that it views. 

Horn's schemes have usually been tested using simple models of reflectance 

maps. Below some of these simple models are considered. They provide some 

useful insights into the forms that reflectance maps assume. For example fig-

ure 2-7 shows that specular and diffuse processes can produce characteristic 

'Again Oi is an angle of incidence. L i  is incident radiance, which roughly describes 

the amount of light incident along a given direction. More details of radiance are given 

in appendix A. 



Chapter 2. Surface reflection 	 19 

R(p,q) 
	

Jtq 	 (a) 

Figure 2-7: A reflectance map made from a simple model of a directionally lit 

glossy surface. The contours link orientations of equal values of R. (a) and (b) 

mark the orientations corresponding to peaks in specular and diffuse reflection 

respectively. 

peaks in the reflectance map' . Lambertian reflectance maps prove to be par-

ticularly simple to analyse. Under many realistic illuminations it transpires that 

they are restricted in their dynamic range. This restriction provides a useful 

constraint which is later used to detect specularities. 

2.3.3 Constraints on reflectance maps 

The form of a reflectance map—like that depicted in figure 2-7— depends on 

both the reflecting properties of the surface (through the BRDF) and the local 

6Figure 2-7 is depicted using the (p, q) coordinates of orientation defined in sec- 

tion A.2.3. 
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illumination distribution (through L 1 ). Theoretically the BRDF and L i  might 

take on any distribution. However not all the possible distributions are realised 

in reality. The physical surface properties constrain the form of real BRDFs, 

while many of the possible distributions of L 1  are very unlikely to occur in 

natural circumstances. So the reflectance maps encountered in the real world 

are constrained in their form. For Lambertian surfaces the BRDF is particu-

larly simple—it is constant ( see equation (A.10))—and so the constraints are 

determined by the L, distribution. The next sections examine constraints on 

the reflectance maps of Lambertian surfaces. These constraints are useful when 

developing the specularity detector in chapter 4. Reflectance maps for non-

Lambertian surfaces involve some specular reflection and are more difficult to 

analyse —see section 2.4. 

2.3.4 Lambertian reflectance maps 

Lambertian reflectance maps describe surfaces that reflect no light specularly 

and reflect in accordance with the cosine law. Under realistic illumination con-

ditions their forms are constrained—as examples show below. These constraints 

for Lambertian surfaces do not necessarily hold for other surfaces that reflect 

some light specularly. The specularity detector developed in chapter 4, looks 

for image features that break constraints that hold for Lambertian surfaces. 

For a given Lambertian surface the BRDF, f, has a constant value, Pd/7r, 

where Pd  is the surface albedo. This makes the reflectance map, RL particularly 

simple: 

J Li cos Odw. 	 (2.6) 
7r  

The derivation of this equation is discussed in appendix A. This expression 

shows that .RL,  at a given point on the surface, only varies with the incident 

radiance distribution, L. The value of this integral has been found for a few 

relatively simple L i  distributions. As a result a variety of Lambertian reflectance 

maps have been derived. These maps provide a useful insight into the kind 
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Figure 2-8: For collimated illumination, light is incident along only a single 

direction. 

of constraints on Lambertian reflectance maps that are likely to hold under 

realistic illumination conditions. The next sections review these maps. 

2.3.5 Collimated sources 

A collimated beam propagates light energy along a single direction. When it il-

luminates a point on a surface the light is incident only along that direction—see 

figure 2-8. This is analogous to the single incident ray discussed in section 2.2. 

In this case the reflectance map can be shown [61] to be: 

Pd 
R(n) = 

Eo
max(O,cosO(iI)) 	 (2.7) 

where E0  is the irradiance measured perpendicular to the collimated beam, and 

Pd the albedo. The dependence of R on the local surface orientation (n) lies 

entirely within the last term. The angle of incidence Oi implicitly depends on 

the normal direction ii. The 'max' term ensures that R is zero along all normal 

directions pointing more than 90 degrees away from the incident beam, i.e. 

where the surface shadows itself. 

The expression (2.7) introduces two important quantities—the maximum, 

Rm a  and minimum, R,, values of the reflectance map. For the collimated 
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R(p,q) 

MMaximiim 

Self Shadow  

Figure 2-9: The reflectance map for a collimated source illuminating a Lam-

bertian surface. Its maximum is along the direction of the incident light. It is 

minimum in the self shadow region. 

beam 	corresponds to the surface normal being oriented along the direc- 

tion of incidence and Rmin corresponds to the value in the self-shadow region. 

Figure 2-9 shows the reflectance map and marks these two features. That Rm*n 

is zero for (A.9) is an indication of the deficiency of a collimated source model. 

In real circumstances self shadow regions, although dark, are never completely 

black. Interreflection between surfaces in a real environment acts to scatter 

light into the self-shadow regions. This scattered light is often called ambient—

because it falls on to surfaces from all directions. In reality interreflection gives 

rise to very complex effects and it usually accounts for 30 percent of the total 

illumination [86]. Workers in computer graphics [31] have improved the degree 

of realism of the images that they synthesise by modifying equations like (2.7) 

to include a term for the ambient light: 

R(ñ) - EOPd 
[A+ (1– A)max(O, cos (ft))]. 	 (2.8) ir 
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The effect of ambient light is approximated by introducing the constant term A. 

In theory A may range between zero and unity, in practice a value of A = 0.3 

achieves realistic results. 

For this modified reflectance map, 	need no longer be zero. In fact for 

the typical case, when A = 0.3, the dynamic range of R, i.e. Rmax/R m jn , is 

roughly 3r, where r,, is the dynamic range of Pd  which is considered later. This 

constitutes a simple constraint on this particular Lambertian reflectance map. 

The limitations of the reflectance map described by (2.8) are twofold: 

complex interreflections are not modelled. 

the distribution of illumination corresponds to a single distant point light 

source. A real light source extends over a finite solid angle. It is reasonable 

to expect the whole sky to contribute to the illumination. 

In the next sections both of these limitations are discussed. 

2.3.6 Complex interreflection 

The so called Radiosity Method, adapted from techniques of thermal engineer-

ing [42], has recently been used in computer graphics to account for both ex-

tended light sources and complex interreflections [29,86]. The needs of archi-

tects and designers, to realistically simulate the lighting conditions within spec-

ified environments, both indoors and outdoors, motivated this approach. The 

method imposes the Law of Conservation of Energy for the light interreflected 

within a closed system, using BRDF and other Radiometrical concepts. The 

method is capable of simulating images containing very realistic lighting ef-

fects [29,86]. However to do this the BRDF of each surface must be specified as 

well as the shape size and location of each light source. This thesis seeks a low-

level process able to detect specularities in a variety of different circumstances. 

It is unrealistic to expect this process to have a comprehensive knowledge of 

the BRDF and lighting conditions within an arbitrary view. So the Radiosity 
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Figure 2-10: For a uniform hemispherical source the incident radiance is 

equal along all directions within the hemisphere. 

method is not particularly useful when developing such a process. In this the-

sis interreflection between surfaces is approximated using a constant isotropic 

ambient illumination. Section 2.3.5 proposed that this approximation was rea-

sonable when considering a highly directional illumination, i.e. a collimated 

source. Below it is proposed that it is also reasonable when considering more 

widely distributed illuminations. 

2.3.7 Extended illumination distributions 

The illumination from the sky provides a commonly encountered example of an 

extended illumination distribution. This provides a complementary example to 

the highly directional collimated source discussed in section 2.3.5. A uniform 

hemispherical source is a first approximation to the illumination from the sky. 

It can be shown [61] that for such a source the Lambertian reflectance map is: 

R(n) = PdLO(1 + 
fi . ), 	 (2.9) 

2 

where L0  is the uniform incident radiance provided along each direction within 

the hemisphere of the source. The vector 2 points to the zenith of the hemi-

sphere. The vector ii is, as before, the local surface normal. 
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R (p, q) 	 q 

 6II:7 

Figure 2-11: The Lambertian reflectance map for a uniform hemispherical 

source. (a) marks it maximum and (b) marks its minimum. 

This reflectance map is depicted in figure 2-11. Near the maximum, the 

map is similar in form to (2.8)—the map for the collimated source plus ambient 

light. Away from the maximum this is not true. In fact R falls to zero when 

the surface normal points directly away from the zenith of the hemispherical 

source—i.e. again R i,, = 0. Thus this hemispherical illumination model, has 

the same deficiency as the collimated source model—the ambient light due to 

interreflection unrealistically drops to zero. This is the case for any purely hemi-

spherical source. Indeed, illumination engineers [56,87] who use sophisticated 

non-uniform hemispherical models of both overcast and clear skies also find it 

necessary to take into account the light scattered from below the horizon. They 

add a term that they call 'ground reflectance'. Figure 2-12 shows how this 

'ground reflectance' arises. This term ensures that R, ,, i,, is non-zero and again 

in typical cases the dynamic range of R is 3r. 

To summarise the image irradiance measured by a camera is determined by 
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(a) 

Figure 2-12: A illumination distribution consisting of both (a) a non-uniform 

hemispherical source and (b) light reflected from the ground ('ground re-

flectance'). 
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local surface orientation and the reflectance map. Reflectance maps are in gen-

eral difficult to analyse. Lambertian surfaces have a particularly simple BRDF 

and as a result Lambertian reflectance maps are easier to analyse. Consider-

ation of the Lambertian reflectance map for both a highly directional and a 

widely distributed illumination indicates that it typically has a dynamic range 

of roughly 3r. Where r is the dynamic range of albedo—which is discussed in 

section 2.4. 

2.4 Physical processes of surface reflection 

2.4.1 Introduction 

In the sections above the reflectance map R was introduced and it was noted 

that R determines image irradiance and is itself determined by the illumination 

and the BRDF of the surface material. Although a range of realistic illumi-

nation distributions was considered, the discussion was restricted to a BRDF 

corresponding to a Lambertian surface: f,-,d-  In this section the BRDF of real 

materials are examined. Of particular interest is the extent with which they 

depart from the form of f,-,d. Any significant departures ought to correspond 

to significant specular reflections if the Lambertian constraints used to detect 

specularities in chapter 4 are to be widely applicable. Only a partial assessment 

of their applicability is possible because the interaction of light with matter is 

only partially understood. Table 2-1 provides a summary of the various phys-

ical processes involved along with their associated BRDFs (when known). In 

order to make any assessment it is not sufficient to know the BRDF of each 

component process, in addition the following must be known: 

the surface roughness and the material constants. 

• the way that the component processes combine for real materials. 
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Reflection BRDF Examples 

Perfect mirror f,-,j, 	= polished metals 

surface -O,.)S(4j - q,. ± ir)/[cos Oi  sin 9] (approx) 

Smooth surface F(8, ii)f, smooth glass 

metals & plastic 

Rough surface GD(a)F(&, 	)/[cos Oi sin O] Rough metals, 

or MgO ceramic, 

Unknown paper & wood 

Lambertian Pd /-7r MgO powder 

sub-surface (approx) 

Real Unknown fibres, wood, paints 

sub-surface plastics & oxides 

Table 2-1: Symbols are defined in the text below. 

Before considering these aspects a summary is given for each component process. 

Readers not interested in these details may skip to the summaries provided in 

section 2.4.7 and the end of section 2.4.8. 

2.4.2 Perfect mirror surface 

A perfect mirror reflects each incident ray as in figure 2-2 (page 11), so that 

Oi = 6,. and so that the energy in the reflected ray is that of the incident ray. 

This implies [85] a BRDF of 

fr,:a = 5(6 - 0r)8( 5 i - r ±7r) / [cos  G  sin 9]. 	(2.10) 

The Dirac delta functions ensure each incident ray produces a single pulse in the 

direction for mirror reflection. The term [cos Oi sin 6] stems from the definition 

of the BRDF in terms of solid angle. The smooth silvered surface of a mirror 

approximates this theoretical special case. 
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2.4.3 Smooth surfaces 

Surface materials fall into two types: metallic (conducting) and dielectric (non-

conducting). The surface reflection processes for the two classes differ but are 

covered by the same laws as long as the surfaces are smooth. 

Dielectrics—transparent 

Most readers will be familiar with the laws of reflection for a transparent di-

electric such as glass. Wave theory describes how light is both reflected by and 

transmitted through such a medium. When rays are drawn perpendicular to the 

incident, reflected and transmitted waves Snell's law specifies their direction: 

Oi =O; 1 j  sin O= sin O, 	 (2.11) 

where all the rays lie in the same plane and °s,9r  and Ot  are the angles of in-

cidence, reflection and transmission respectively. The refractive indices of the 

environment and the medium are 77 i  and ig  respectively. In practical circum-

stances relevant to this thesis the environment in question is air so that ij 1 

and 77t will be simply denoted i. The proportions of energy in the incident wave 

that are reflected and transmitted are determined by the Fresnel function F as 

was discussed in section 2.2. So for a transparent dielectric the BRDF is 

fT = F(O,ii)f, 3 , 	 (2.12) 

where fr,js  is as defined above in (2.10). The precise form of F depends on the 

polarisation of the incident wave—as shown in figure 2-13. If—as is typical—the 

wave is unpolarised F is determined solely by 77 and 8.  In other circumstances 

(e.g. light incident fromspecular reflections) the degree of polarisation may be 

high but unknown and so the form of F is uncertain. The two arguments of F 

specify two distinct variations: 

• Gj specifies only geometrical variations. 

• t7 is a material constant. Different materials have different values of i. 

However ri can vary with the wavelength A of the incident light so it is 
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F Fresnel distribution: F plotted against 
ii 	angle of incidence, for glass (n-1.55). 

I 	unpolarised 
I • parallel polarisation 

0.6-I 	perpendicular polarisation 

0.4 

0.2 

-------.--- U - 

0 	 30 	 60 	 90 
angle of incidence / degrees 

Figure 2-13: Fresnel function for glass. 

better denoted as h•  For an optical glass 	typically has a value 1.5 to 

within 2% over the visible spectrum. 

Later it transpires that a transparent dielectric is a simple special case: in 

general it is harder to isolate the geometrical and material variations of fr. 

Dielectrics—opaque 

Associated with every dielectric is an absorption band—a range of wavelengths 

at which it absorbs electromagnetic radiation'. For transparent materials this 

absorption band lies outside the visible spectrum (330nm-770nm). Some ma-

terials (e.g. coloured glasses) have absorption bands that span only part of 

the visible spectrum, others are completely opaque. Equation (2.12) extends 

to describe absorbing dielectrics provided that a complex refractive index ij  is 

substituted for i: i.e. 

fr 	F(9, 11)fr,is,  ii, = i + ik, 	 (2.13) 

7Via dipole interactions—see [54]. 
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where ?), and /c are the real and imaginary parts of is—both are wavelength 

dependent. k\ is often called the extinction coefficient. The Fresnel relations in 

terms ofi and k,, are given in appendix B.. Figure 2-4 (page 13) show a typical 

distribution for the dielectric MgO. Note in this case two material constants are 

required to specify f,.. Values of k,, are almost zero except within absorption 

bands where they are larger. Transparency only occurs for very small values 

of kA.  For example when 1c = 0.001 the transmissivity of a dielectric 1 mm 

thick is still remarkably low (0.001), [62]. Extensive tables of Ic,, and' for  77  real 

dielectric materials are given in [4]. 

Metals 

The high conductivity of metals means that the reflection process differs from 

that of the dielectrics described above. As a result the characteristic absorption 

bands of dielectrics are not present. In addition most incident light is reflected. 

This gives most metals a characteristic colourless silver grey appearance. Again 

equation (2.13) describes the BRDF incorporating a complex refractive index. 

Typical values of Ic,, for metals are much larger than for dielectrics. This ensures 

that the incident light penetrates no more than a few hundred angstroms into 

the surface leaving little opportunity for any sub-surface scattering. In general 

is fairly constant over the visible spectrum. For some metals the variation is 

significant enough to produce a characteristic colour, e.g. copper. Tables ofif,, 

and k,, for many metals are also given in [4]. 

2.4.4 Rough surfaces 

The reflectance properties of rough surfaces (both metallic or dielectric) de-

pend on their rms roughness a m  : the root-mean-square deviation of the rough 

surface from a plane representing its mean height. For most surfaces m  is com-

parable to the wavelength A of visible light, so that interference and diffraction 

occurs. When am /A ' 1 there is no simple theory that predicts the form of 

'Electrons rather than ions or atoms are involved. 
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the BRDF [62]. Surfaces for which CTm/.\ <C 1 are known as optical surfaces. 

Their BRDF can occasionally be predicted by Fourier analysis of measured sur-

face profile data [35]. However no simple generalisations can be made about 

these BRDFs. Surfaces where orm/A 0 are effectively smooth and the laws 

described in the previous section apply. 

For surfaces where orm /A >> 1, e.g. rough paper, useful predictions of the 

BRDF can be made. At a microscopic scale these surfaces can be modelled as 

many small randomly oriented micro-facets. Adjacent incident rays are reflected 

by adjacent facets in different directions. This surface scattering results in 

a BRDF that is no longer a single pulse, but is spread across a finite solid 

angle as depicted in figure 2-14. The precise distribution depends not only on 

the material constant ij but also on the statistical properties of the surface. 

All of the various models used to predict the BRDF of such surfaces, [11,104, 

105], assume that the statistical properties are directionally uniform' over the 

area of interest. Under this assumption the BRDF is characterised by a facet 

distribution function D(a)—where a is an angle that specifies the direction of 

the spread relative to the direction of mirror reflection. As figure 2-14 (b) shows 

cos a f. 11, where ii is the direction of the (macroscopic) surface normal and 

where f1 is the direction that bisects the vector of incidence, f, and the view 

vector, V, i.e.: 

	

- 

	

(2.14) 

The function D describes the relative amount of micro-facet area oriented in any 

given direction, or equivalently the probability density of a facet being normal 

to that direction. Beckmann and Spizzichino [11] show 1° if the surface height 

9This is not true for surface roughness that is described by a periodic function. Such 

surface are not considered here. 

'°In fact [11] page 193 gives a 1-D version of D—the extension for 2-D surfaces is 

straight forward and Cook and Torrance [31] provide it. 
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I 

Figure 2-14: For a rough surface specular reflected light forms a finite beam, 

spread around the direction of mirror reflection (a). (b) shows vector h that 

bisects the view vector, cT  and the vector of incidence, L. 

deviation from the mean plane is in a gaussian distribution then 

D(a) = 	
1 
	 exp (_[(tano)/m]2), 	 (2.15) 

JTM 2  cos4  

where m is the rms slope distribution defined: 

T2  
M =—. 

2 
(2.16) 

Here the surface roughness is characterised by two surface constants: T the 

autocorrelation length" and the rms roughness °m•  Although the gaussian 

assumption seems plausible, it is not known to which materials it is applica-

ble. Other ad-hoc functions have been used in Computer Graphics to render 

artificial images with varying degrees of success [20,105,90]. However no facet 

distribution function is capable of fully accounting for off-specular glints. These 

are specularities occurring at large angles of incidence for which the peak in 

their BRDFs is not along the direction of mirror reflection (i.e. at c 0), as 

shown in figure 2-28 on page 47. Torrance and Sparrow [104] provide a model 

"the distance over which the correlation between surface heights drops to e. 
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of the masking and shadowing processes between adjacent micro-facets that 

predicts off-specular glints. This model incorporates a geometrical attenuation 

function C into the expression for the BRDF: 

= min
(1.0, 2(ñ. li)(ñ. T)  2(ñ.fi)(ñ. L) 	(2.17) 

Vh 	V•ñ I 

where all vectors are as were defined for figure 2-14 (b). In this case the final 

form of the BRDF is: 

fr= 
GD(a)F(ib, i) 

cos ei sin oi (2.18) 

where F is again the Fresnel function and cos 0 = V. ii. 

2.4.5 Sub-surface scattering 

In addition to the various types of surface reflection described above, any light 

that penetrates into the volume of a material can be scattered back into the 

environment: Figure 3-7 on page 71 depicts this process. Sub-surface scattering 

only occurs in significant amounts for inhornogeneous dielectrics, e.g. paint, 

cloth, wood and oxides. Inhomogeneities (pigment particles, fibres or grains) 

within such materials scatter and absorb light. Lambertian surfaces provide a 

simple model of the BRDF in this case: 

. 	Pd 
Jr - -. (2.19) 

This distribution is constant for all orientations and only varies when surface 

albedo Pd  changes. It corresponds to the theoretical situation in which a volume 

of material absorbs radiation and maintains radiative equilibrium by re-emitting 

isotropically—as a black body would. This model greatly simplifies the treat-

ment of many problems in radiative transfer and has been widely applied both 

in engineering [62] and Computer Graphics [20,90,31,29,42]. However real sub-

surface scattering is not perfectly Lambertian. In general it is so complicated 

that no adequate general model exists to describe it. Below a few of the factors 

involved are outlined—more details can be found in Hottel [62]. 



Chapter 2. Surface reflection 	 35 

Isotropic scattering (Hottel) 
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Figure 2-15: Theoretical prediction, of BRDF for an isotropic scatterer. • 

Lambertian surface would produce a horizontal line for all angles of incidence. 

The precise form of the curves depends on the value of scattering coefficients 

defined for the medium. 

Even for an isotropic scatter the BRDF need not be Lambertian. Typically 

the deviation from fr,d  increases with angle of incidence —see figure 2-15. To 

obtain the BRDF of a specific isotropic scattering medium the size, shape, re-

fractive index and cross-section of the scattering particles must be known. In 

addition sc.ttering theories make use of the coefficients of absorption, scatter 

and extinction of the material. The form of the BRDFs depends greatly on the 

size r of the particles [107]. For small particles Rayleigh scattering occurs [62]. 

For particles in the size range 0.6 < 27rr/) < 5 the Mie equations [62,26,27] 

are applicable if their size is roughly spherical. For other shapes rigorous solu-

tions of Maxwell's Equations are required but are usually intractable. Further 

complications are introduced by interference effects that occur if the particles 

in the medium are separated by less than about 3r. 

Anisotropic scattering is poorly understood. Radiation-transfer engineers 

have predicted the BRDFs for some anisotropic scatters using multi-flux meth- 
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ods [68,84]. These methods describe the radiation transfer process at each point 

within the medium in terms of two or more first order differential equations. 

The simultaneous solution of these equations requires specification of boundary 

conditions. Solutions have been obtained for volumes of scatterers bounded be-

tween parallel planes. Kubelka-Munk theory (a two-flux method) provides no 

prediction of directional flux distribution. The six-flux methods do—but only 

for specific cases. Multi-flux methods suggest no useful general forms for the 

BRDFs of anisotropic scatters. 

2.4.6 Combining component BRDFs 

From the discussion above it is clear that not all the component BRDFs listed in 

table 2-1 are well understood. However it is still useful to consider how those 

that are understood can combine in real materials. First consider a smooth 

surface of a dielectric—possibly porcelain-enamel or paint. In this case only 

two components are involved: 

• for the smooth" surface: fr,,ur = F(9, 17) Oj-9r)6(cbj—q! r±i)/[cos Oi sin 9]. 

This component describes the reflection at the surface. 

• for the sub-surface scattering: fr,j—which for the moment will be consid-

ered Lambertian (f,.,, = pd/7r). This component describes the reflection 

by the volume under the surface. 

Making a further assumption (relaxed somewhat later) that the combined 

BRDF, fr  is a linear combination of 	and 	then 

I,. = a 
F(9, i)5(9. - Or)S(q5j Or  ± 	+ bLd 	(2.20) cos Oi sin Oi 	 7r  

where a and b are constant over all orientations (9, 4); 8,., 4),.). In this case 

fr is constant for all (9, 4)j; 9,., 4),.) except at directions of mirror reflection: 

"Rough surfaces that produce specularities spread over larger solid angles will be 

considered later. 
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(0,, qSj; 8, qf j  ± ir) where specular pulses occur. The data obtained for porcelain 

enamel by Hunter [63] and reproduced in figure 2-17 (page 42 approximates 

this case. [As in all the data-graphs that follow, figure 2-17 depicts the relative 

value of the BRDF in the plane of incidence: fr(Oj, qi; Or, q'j ± ir) for fixed 0 

over a range of 8r.] 

In terms of the reflectance map R: 

fr,sur may result in sharp specular pulses or the superposition of many 

pulses if the light sources are extended and surfaces gently curving. 

• A.,,,:—the constant component—results in slowly varying features cor-

responding to the slowly varying incident radiance distribution L 1—as 

discussed in section 2.3. Discontinuities are only created across material 

boundaries where Pd  and b may change. 

The basic premise on which the specularity detector in chapter 4 is based is 

that specular features in R are readily distinguishable by the rapid variations 

and large magnitudes induced by fr,aur.  However it is impractical to do this 

by identifying these features using specific instantiations of the model (2.20) 

because, among other things, the constants, a, b, Pa  and t are unknown. Instead 

constraints are formulated, which when broken indicate specularities. The basic 

formulation is as follows: 

R is assumed to be due solely to the Lambertian component fr,i  at all 

non-specular orientations. 

Consequently over these orientations the magnitude and derivatives of R 

depend only on L1, b and Pd  and thus are constrained. Tests are proposed 

to detect specularities in unconstrained regions. 

Where the test requires a choice of an upper bound on a physical constant 

such as Pd  it is made conservatively to ensure that: 

• a wide range of different materials can be encompassed. 
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• the constraints may still apply when 	deviates from a constant. 

As occurs even for the porcelain enamel—see figure 2-18 (page 42). 

Precisely which materials are encompassed by the constraints is uncertain. Be-

low the shortcomings of the model (2.20) are discussed. Some are not serious: 

so the constraints may well apply to a wider range of materials than the model 

strictly suggests. 

Deviation from Lambertian : fr,j isotropic 

Sub-surface scattering for real inhomogeneous dielectrics deviates from the Lam-

bertian distribution. Measured data (figures 2-19-2-22, pages 43-44) and theo-

retical models (figure 2-15, page 35) suggest that for isotropic scattering where 

9, <70°, varies by less than a factor of 2. Such variations are unlikely to 

be confused as specular features. However for 8i  > 700  figure 2-15 shows that 

fr,vol can become very large as 9,. —+ 90 0  and may result in specular-like features. 

However it is precisely at these orientations (glancing angles) that any smooth 

surface component (fr,aur) becomes large. This is a consequence of the Fresnel 

function—see figure 2-4 (page 13). So it is uncertain that the data obtained for 

pressed barium sulphate—figure 2-23 (page 45)—becomes large at 9,. = 70° due 

to an increase of either or both of f,.,r and  f,.,,. In any case the specular-like 

feature created is likely to be detected rightly or wrongly". 

Non-linear combinations 

In fact as glancing angles are approached 	reflects more of the incident 

light and thus less enters the surface. Consequently the fraction available for 

sub-surface scattering b is not a constant—but is better expressed as a function 

b(f,.,3,.). So near glancing angles f, should be considered a non-linear combi-

nation of f,., and  f,.,0i—at  odds with the model (2.20). However for smooth 

surfaces significant non-linearity only occurs at orientations where domi-

nates the behaviour of f,. and so should have negligible effect. 

13The chromatic methods reviewed in chapter 3 could in principle determine whether 

fr,sur of 	is primarily responsible. 
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Deviation from Lambertian: fr,,i anisotropic 

For anisotropic sub-surface scattering the deviation of 	from a constant 

cannot be easily predicted. One example where the deviation appears to be a 

factor of 3 is shown in figure 2-24 (page 45). If this data is typical then the 

constraints may well extend to cover some anisotropic scatters. 

Smooth metals 

The model (2.20) extends to cover smooth metals by setting b = 0. In terms of 

the constraints: the constant (zero) value of the sub-scattering component 

. ensures that constraints based on the derivatives of R still apply. 

• disrupts constraints based on the magnitude range of R. 

Rough surfaces—metals and dielectrics 

For rough surfaces the specular component fr,$ur is distributed over a finite 

solid angle. Even for a fairly smooth surface like the porcelain enamel, this 

spread is measurable —see figure 2-17 (page 42). In fact the quality of mirrors 

is assessed by the narrowness of the spread of their BRDFs. However as long 

as fT,8 retains a sharp peak flanked by steep sides it will still create specular 

features that violate the Lambertian constraints. For a wide-spread 

in figure 2-25 (page 46)—the surface scattering is so diffuse that it is similar 

to that produced by sub-surface scattering. This occurs for the rough surfaces 

investigated by Torrance and Sparrow—figures 2-26-2-28 (pages 46-47) provide 

more examples. Notice how the off-specular glints appear as O i  increases. These 

examples are for a metal where the sub-surface scattering is negligible: in effect 

any prominent off-specular glint is likely to violate the Lambertian constraints 

while the remainder of the spread is not. Essentially the same is true for a 

dielectric—see figures 2-29-2-32 (pages 48-49) except in this case: only at 

off-specular glints is it possible to distinguish fr,sur from fr,vol. 

The data for some other rough surfaces shown in figures 2-33-2-37 (pages 50-

52) indicate some more BRDFs that the specularity detector is likely to en- 

counter. 
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(a) 

Air 

Varnish 

Opaque medium 

Figure 2-16: A surface coated with a layer of varnish may have three compo-

nents of reflection: (a) at the surface of the varnish, (b) at the surface of the 

opaque medium and (c) sub-surface scattering by the medium. 

Varnish layers 

Many common materials, such as varnished wood are coated by a thin dielectric 

layer. As figure 2-16 shows, more than two processes may be involved in surface 

reflection in this case. However the model (2.20) can still extend to cover 

this case". The specular component is considered to be a combination of two 

sub-components—one for the smooth reflection at the surface of the varnish 

and one for reflection at the top of the opaque surface. For angles of incidence 

up to about 70° only about 5% of the incident light is specularly reflected at 

the surface of the varnish". In effect this superimposes a specular pulse onto 

the existing 	of the lower surface. At higher angles of incidence the smooth 

surface reflection of the varnish begins to dominate the form of 	In either 

"For a detailed analysis of dielectric overlayers see Elson [34]. 

1 '5 In accordance with Fresnels law—see figure 2-13 (page 30). 



Chapter 2. Surface reflection 	 41 

case the effect of the varnish layer is to make it more likely that the surface will 

violate the Lambertian constraints. 

2.4.7 Summary: aptness of the Lambertian model 

From the discussion above the following important conclusions can be made: 

• Surfaces that reflect light solely by isotropic sub-surface scattering are not 

Lambertian. 

• Theory and experimental data indicate that in most circumstances the 

Lambertian model provides a good approximation to such surfaces. In 

all but a few special cases, e.g. at glancing angles, the model predicts 

image irradiance to within a factor of 2. Proviso: existing theory and 

data although abundant is incomplete. 

• The same approximation holds for specular materials at non-specular ori-

entations. Note figures 2-17, 2-23, 2-27, 2-28, 2-32 and 2-36. 

• Off-specular glints, of the type shown in figures 2-23, 2-27, 2-28, 2-31, 2-

32 and 2-34. should not be used by the shape inference method described 

in chapter 6. 
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Figure 2-17: Porcelain enamel: Oi = 450 [63]. 

Figure 2-18: Detail of porcelain enamel: Oi = 450 [63]. 
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Figure 2-19: MgO contact coating: Oi = 450 [94]. 

Figure 2-20: Barium sulphate (pressed): Oi = 600 [12]. 



Chapter 2. Surface reflection 
	

44 

Figure 2-21: Bible paper: Oi = 450 [52]. 

Figure 2-22: M/F cartridge paper: Oi = 45 [52]. 
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Figure 2-23: Barium sulphate (pressed): Oi = 700 [12]. 

Figure 2-24: Soot on brass: Oi = 450 [521. 
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Figure 2-25: Aluminium (roughened): Oi = 100 [1041. 

Figure 2-26: Aluminium (roughened): 6, = 30° 11041. 



Figure 2-27: Aluminium (roughened): Oi = 600 [104]. 

Figure 2-28: Aluminium (roughened): Oi = 750 [104]. 
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Figure 2-29: Magnesium oxide(roughened): Oi = 100 11041. 

Figure 2-30: Magnesium oxide (roughened): Oi = 450 [104]. 
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Figure 2-31: Magnesium oxide (roughened): Oj = 600 f101. 

Figure 2-32: Magnesium oxide (roughened): Oi = 750 [iO]. 



Figure 2-33: Aluminium (sand-blasted): Oi = 450 [94]. 

Figure 2-34: Aluminium (sand-blasted): Oi = 65 0  [94]. 
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Figure 2-35: Grease-proof paper: 0. = 450 152J. 

Figure 2-36: Chromo paper: Oi = 450 [52]. 
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Figure 2-37: Mimeograph paper: Oi = 450 f63J. 
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2.4.8 Constraint on albedo 

In chapter 4 the retinex-based test for specularities is introduced: it assumes a 

dynamic range for the BRDF of a Lambertian surface r < 10. For real surfaces 

encompassed by the model in equation (2.20) this test should still apply as long 

as effective albedo, bpd varies by less than a factor of 10 within the scene. Below 

the validity of this assumption is discussed. 

Metals 

Polished metals form mirror images of the surfaces that surround them. Thus 

the apparent effective albedo of a point on a metal surface is that of the point 

in the scene which it is reflecting. This is true even though b and thus effective 

albedo, bpd,  is almost zero for most metals. So as long as the point in the scene 

that is being reflected has an effective albedo within the 10:1 range then the 

metal also appears to do so. However, if the metal surface is reflecting a light 

source its effective albedo may appear to exceed this range. In this case the 

specularity so formed can be detected. Effectively the same argument holds for 

rough metal surfaces. 

Dielectrics 

For dielectrics a value of r can be estimated by considering the range of effective 

albedo: bpd for real surfaces. The maximum and minimum values of this range 

define r. For this purpose measurements of bpd are considered below. 

Ideally if a dielectric conforms to the model in equation (2.20) its effective 

albedo can be directly estimated from its BRDF measured at any non-specular 

angle. However the angular variation of fT,  (the sub-surface scattering com-

ponent) makes this impractical for real dielectrics. In this case an estimate of 

effective albedo is provided by the ratio of flux reflected into the hemisphere 

above the surface to that within a beam at normal incidence. This measure is 

correctly termed normal directional-hemispherical reflectance [85] and denoted 

p(O; 27r). This measure has two advantages 16: 

an obvious disadvantage: it measures fr,surthe specular component as well 
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it is an average over all angle of reflection for a fixed direction of incidence 

and so is insensitive to angular variation in fr,1• 

its value has been measured for many materials. 

Coblentz [28] was first to measure p(O; 27r). He invented the Coblentz Hemi-

sphere to do so. The values that he obtained for a large variety of materials are 

summarised in [55]. However these values are for light of a single wavelength 

and are not suitable for estimating r. For this purpose values of p(O; 27r) 

obtained for 'white' light" are necessary. Table 2-2 summarises the ranges 

of p(O; 27r) measured for a variety of materials by various researchers. [Note: 

extensive data obtained by Krinov [74] and Gordon [43,44,45,46] are not di-

rectly applicable as they are hemispherical-directional reflectances.] Taking the 

maximum and minimum values of p(O; 2ir) in the table provides a very large 

dynamic range: r = 98%/0.3% 3000. However if some of the materials such 

as chemical powders, carbon black and black velvet are discounted upon the 

basis that they are very rarely encounted then a much lower value prevails: 

r = 90%/5% 18. Using this value the retinex-based test ought to work for a 

large variety of scenes. The results shown in figures 4-13-4-19 (pages 110-116) 

demonstrate that it is safe to use a lower value, r = 10 in restricted industrial 

scenes. 

Conclusion: An ordinary spread of materials has (effective) albedo in a 10:1 

range which provides a useful constraint for the Lambertian model. 

as fr,vot.  However 	is typically at minimum for normal incidence seefigure 2-4 
(page 13)—so its contribution should be small. 

17, White' light contains wavelengths from all parts of the visible spectrum. The 

retinex-based test is suitable only for 'white' light—as is provided by the sun, the sky 

or a tungsten lamp. Variation of r, in general are much greater for narrow wave-bands. 
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Material p(o; 21r) References 

Pure powders (e.g. MgCO3) 98-80% [38] 

Sugar, Flour, Talc., Starch 90-80% [38,55] 

White paint, papers, cloth 80-60% [38,55,94 1 50] 

Coloured pigments: 80-8% [81] 

..Chrome  yellow 80% 

• .TJltramarine 8% 

Building Materials: 90-9% [38,55] 

..Clays 90-11% 

• .Concrete 35-9% 

.Slates 20-10% 

..Roofing Materials 78-11% 

..Bricks 64-11% 

.Pine Wood 40% 

Peach, Pear (ripe or green) 40-20% [55] 

Coloured porcelain-enamel 70-20% [55] 

Black papers 6-5% [55] 

Black velvet 0.4% [55] 

Carbon black in oil 0.3% [55] 

Table 2-2: Summary of measured values of p(O; 27r) for various non-metallic 

materials. 



Chapter 3 

Detecting specularities: background 

3.1 Introduction 

This chapter surveys previous attempts to detect specularities. Previous work 

on shape inference is left until chapter 5. The work discussed here falls into two 

distinct categories: chromatic approaches and achromatic approaches. Chro-

matic approaches attempt to exploit colour differences between specularly and 

diffusely reflected light. They are reviewed in section 3.4. An achromatic ap-

proach is designed to succeed in the absence of colour cues. So it is in a sense 

more fundamental than a chromatic approach. Often complementary evidence 

for specularities is provided by the two approaches. So a fully rounded vision 

system might make good use of both. 

The only predecessor to the achromatic approach developed in this thesis 

is Ullman's S operator. It is described and evaluated in section 3.3. Before 

proposing the S operator Ullman [106] made various attempts to explain the 

perception of bright non-matt image regions, as are produced by specularities. 

One of the explanations that he considered was a search for image regions with 

irradiances that could only correspond to surfaces that were 'brighter than matt 

white'. More precisely the search was for surface regions that appeared to have 

albedoes exceeding unity', when modelled as entirely matt. It was proposed 

'For entirely matt surfaces albedo is surface reflectance and has a legal range of zero 

to unity. 

56 
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that an existing computational method, known as lightness computation, could 

provide the estimates of albedo. But because lightness computation could only 

provide estimates of relative, rather than absolute albedo, Ullman abandoned 

this approach. Since then, Land [78]. has proposed a method that attempts 

to estimate absolute albedo—see section 3.2.2. However, Land was more inter-

ested in predicting perceived surface colour than accurately estimating absolute 

albedo. So it is unlikely that this method would be applicable to Uliman's ap-

proach. One of the tests for specularity developed in this thesis avoids the need 

to estimate absolute albedo, by considering a constraint on its dynamic range. 

In this way only estimates of relative albedo are required. 

The next section briefly describes lightness computation and explains how 

it can be used to estimate albedo. It also serves to introduce the concept 

of the mondrian world—the reflectance model upon which Ullman based the 

S operator. Discussion of the S operator itself, is included in section 3.3. 

3.2 Lightness computation 

3.2.1 Introduction 

Regardless of the kind of light illuminating it, an object tends to appear the 

same colour. For instance a green book remains green under natural daylight 

or under artificial tungsten lighting, even though the spectral composition of 

the light differs. This phenomenon is known as colour constancy. It poses a 

computational problem that any vision system which sees in colour must tackle: 

the problem of recovering spectrally invariant reflectance properties of object 

surfaces under varying lighting conditions. 

An elegant solution to the problem, proposed by Land and McCann [76], is 

known as lightness computation. It involves applying a computational process, 

called a retinex, independently to three separate colour channels. For example 

the red, green and blue colour channels provided by a colour camera. By ap- 
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plying the retinex, three different fields of lightness values are produced. By 

suitably combining these fields useful predictions of perceived surface colour can 

be made [78]. In effect the retinex estimates the relative albedo corresponding 

to the wave-band of its colour channel. 

3.2.2 The retinex 

The retinex was developed by considering a simplified model of the real world. 

This model is known as the mondrian world because of its similarity to some 

of the paintings of Piet Mondrian. In the mondrian world surfaces are purely 

matt, so a Lambertian surface model like (A.10) is appropriate. The spatial 

variation of the surface properties is also restricted. Specifically it is assumed 

that: 

albedo Pd  is piecewise constant, varying only in steps—see figure 3-1 (a). 

• total illumination, I, vary smoothly across the scene/surface—see fig-

ure 3-1 (b). 

• surface normal direction with respect to the viewer is constant everywhere. 

This corresponds to viewing a plane from a large distance. The upshot 

of this constraint is that there are no shading variations introduced by 

surface shape. 

Under these assumptions, the image irradiance, E, measured by a camera at 

any point x in the image is: 

E(x) = acpd(x)I(x). 	 (3.1) 
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Pd(x) 

 

distance x 

1(z) 

 

distance x 

(c) 

Figure 3-1: Profiles through a mondrian world. (a) Albedo, Pd, is piecewise 

constant. (b) Total illumination, I, varies smoothly everywhere. (c) Image 

irradiance, B, is essentially the product of albedo and illumination. 
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where Pd 1S piecewise constant albedo and I is the smoothly varying total 

illumination? a is the camera constant—see equation (A.5). Figure 3-1 (c) 

shows an example of a profile through such an image. 

The retinex process consists of two stages: 

distinguishing between the steps in E due to the steps in Pd,  and the 

smooth variations in the illumination function I. This is essentially edge 

detection—achievable by thresholding the gradient field of E. 

finding a global solution that reconstructs the original piecewise constant 

albedo function across the entire image, given only the height and location 

of the steps detected in 1. 

The retinex recovers the albedo function Pd  up to a multiplicative constant, k. 

So each lightness value E, represents relative rather than absolute albedo: 

E,(x) = kpd(x). 	 (3.2) 

Land [78] uses a normalisation procedure to estimate the value of k, and thus 

estimates absolute albedo. This procedure uniformly scales the lightness val-

ues, so that their average value over the image corresponds to a mid-grey 

albedo. The resulting sets of values from all three of the independent colour 

retinexes are then combined to predict perceived surface colour. Although Land 

demonstrates that these scaled values are useful for predicting perceived surface 

colour, it is not claimed that they are accurate estimates of absolute albedo. 

So they cannot be reliably used for the purpose of detecting specularities-

via the retinex-based approach that Ullman considered—see section 3.1. The 

'This expression is the image irradiance equation (2.5) for a Lambertian reflectance 

map (2.6). Thus I is properly defined as: 

1(x) = 
	

L(O,q;x) cos 91dw1 
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retinex-based test for specularity developed in this thesis needs no normalisa-

tion process, as it uses relative rather than absolute albedo. The estimates of 

relative albedo are provided directly by a retinex process applied to a single 

achromatic channel. Blake's retinex algorithm 3  [14] was used for this purpose. 

Appendix K describes in detail how it was implemented [22]. 

3.3 Achromatic approaches 

3.3.1 Introduction 

Motivation for an achromatic approach is provided by the apparent ease with 

which human subjects recognise specularities in achromatic photographs (i.e. 

'black and white' stills). Seemingly, sufficient evidence is available even in the 

absence of colour or disparity information. Chromatic approaches, that use 

colour are reviewed in section 3.4, while the disparity information is discussed 

briefly in chapter 5. 

Ullman [106] proposed a computational method to detect light sources in 

achromatic images. Forbus [37] later demonstrated that the same method could 

detect certain kinds of specularities. This method is described below, however 

it turns out to be unsuitable as a general specularity detector. 

3.3.2 The work of Ullman 

Ullman's work on detecting light sources consisted of three parts: 

1. an experimental investigation into human perception of light sources, 

3Hurlbert [64] provides an extensive survey of existing algorithms developed for the 

retinex. Blake's is unique in its correct treatment of the image boundaries. 
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ON 

 

Figure 3-2: An achromatic mondrian image. It consists of various patches of 

uniform aThedo. Variations of illumination across the image are smooth—this 

makes them difficult to see. 

a discussion of factors that might account for his experimental findings, 

and 

the development of a computational method to detect light sources—

known as the S operator. 

His experiments consisted of disguising a light source as a patch within an 

achromatic mondrian image—an achromatic version of the type of image dis-

cussed in section 3.2. Figure 3-2 depicts such an image. Ullman varied the 

radiant intensity of the light source patch, and thus investigated under what 

conditions it was perceived—as a light source. He found that the thresholds of 

the perception were determined to some extent by the following variables: 

the strength of the illumination that lit the mondrian, 

the strength of the light source patch, 
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. the albedo of the patches within the mondrian. 

His results confirmed that the perception was not simply a matter of recognising 

the brightest regions within an image. 1n fact Ullman concluded that no one of 

a list of six of the most plausible explanations of the perception was individually 

sufficient. 

The explanations that he sought had also to be applicable to machine vision. 

This meant they involved only the information available to such a system, i.e. 

the image irradiances provided by an achromatic camera. The same informa-

tional restriction is placed upon the achromatic approaches developed in this 

thesis. The approaches developed in this thesis however, do employ two of the 

explanatory factors that Ullman dismissed. These factors are high local con-

trast and lightness computation. Use of these factors is justifiable, because they 

are not used to provide the complete answer by themselves. Rather they each 

provide partial evidence—which when combined produces an improved overall 

result (see chapter 4). 

3.3.3 The S operator 

The S operator is the computational method designed by Ullman [106] to de-

tect light sources. It has been used to detect specularities by Forbus [37]. A 

specularity is essentially the virtual image of a light source, so the two detection 

processes ought to be closely related. However it transpires that the S operator 

can only distinguish specularities in very limited circumstances. Section 3.3.5 

and 3.3.6 detail its limitations. 

The S operator was not directly based on Ullman's experimental findings. 

Rather it was designed by considering the image irradiance equation for the 

achromatic mondrian images that constituted his experimental stimuli: 

E(x) = I(x)pd(x) + L(x). 	 (3.3) 
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This equation is a simple extension of that describing the mondrian world (3.1). 

The additional term L(x) is added to account for contributions to the image 

irradiance provided by the light source patch—introduced in section 3.3.2. The 

constraints of piecewise constant albedo, Pd,  and smoothly varying illumination, 

I, are as described for the mondrian world in section 3.2.2. In addition L, is 

constrained to be constant within the light-source patch, and zero elsewhere. 

For this modified mondrian world model, discontinuities in E with respect 

to x are due either to step changes in albedo or a light source edge. The 

S operator was designed specifically to distinguish between these two types of 

edge. Figure 3-3 shows how this can be done: an irradiance step accompanied 

by a change in irradiance gradient E indicates a step in albedo; however when 

there is no change in E the edge is due to a light source. This is a direct 

consequence of the modified mondrian world model [106]. It constitutes a simple 

test that can be implemented on any irradiance profile by: 

Identifying each step edge. 

Measuring the value of E on either side of the step and comparing them 

to see if they are approximately equal. 

The S operator combines both steps in a single operation to produce a scalar 

response at each point along the profile. It is defined as: 

S(x 1 , x 2 ) = E(xi) - E(x2)E1) - E(x1)d, d = 	- x 1 . 	 ( 3.4) 
Ex(X 2 ) 

S is computed for each pair of points, x 1 ,x 2 , separated by interval d, along the 

profile'. Large positive peaks in S correspond to light source boundaries, indi- 

cates a light source edge between x 1  and x 2 . An example is shown in figure 3-4. 

'The camera constant a is assumed to be unity here. This makes no difference to 

the arguments that follow. 

'The last term in (3.4) simply adds linear correction—which allows a small compo-

nent to the step edge due to the prevailing irradiance gradient. 
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(a' 

X2 	X 

(b 

XI 	 X2 	X 

Figure 3-3: Cross-section through the image irradiance field E. (a) At a 

discontinuity due only to a light source edge the gradient is unchanged. (b) At 

a discontinuity due only to a change in albedo the gradient changes. 

The two step test above can be implemented by running the S operator, and 

marking peaks, except that: 

• Ascending steps (i.e. where E(x 2 )>E(x i )) are ignored. This means that 

the operator must be run in both directions (i.e. with d +ve and —ye) in 

order to detect all light source boundaries along a profile. 

• Locations where the ratio E(x1 )/E(x 2 ) is not well defined are ignored. 

This case is rather restrictive as it occurs any where that E 0—which 

which need not be uncommon when the illumination gradient is small. 

3.3.4 The S operator as specularity detector. 

Forbus [37] shows examples of the S operator detecting specularities on some 

glossy planar surfaces. However no detailed study of its performance is given. 
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(a) 

X 

(b) 

X 

Figure 3-4: An image irradiance profile (a) over which the S operator has 

passed. (b) is the operator's response. Note the large positive peak corresponding 

to a light source edge—a step across which the gradient is unchanged. 

Neither is it claimed that the S operator is suitable for curved surfaces. As a 

large proportion of the specularities in the real world lie on curved surfaces [73], 

this places a serious limitation on the applicability of the S operator as a spec-

ularity detector. These limitations stem from that fact that the extended mon-

drian world model, upon which it is based does not model: 

• curved surfaces. 

• depth variations. 

These limitations will be discussed in turn below. 
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3.3.5 Curved surfaces 

Smoothly curved surfaces produce smooth variations in image irradiance—often 

referred to as shading. The reflectance map discussed in chapter 2 formally 

specifies the nature of the local shading. For some materials and under some 

illuminations the shading is mostly due to specular reflection—e.g. as in fig-

ure 3-5 (a). In other conditions diffuse reflection dominates g. see figure 3-

5 (b). A practical specularity detector must distinguish between specular and 

diffuse shading. The S operator as it stands is unable to do this. Of course the 

response obtained from the S operator depends on the value of the sampling 

interval d employed. Nevertheless a value of d cannot be selected so that the 

resulting S operator can distinguish between the smooth specular and smooth 

diffuse shading shown in figure 3-5: 

• An S operator with a small sampling interval, d, always produces a small 

response on any smooth profile, specular or .diffuse—E(x i ) E(x2 ) and 

so that S(x 1 ,x 2)-Ed---.O as d--+O. 

• So a larger value of d is required to detect a smooth profile (such as that 

through figure 3-5 (a)) as a specularity. However running an S operator 

with the same value of 4 over a region of diffuse shading—like that in 

figure 3-5 (b)- results in an equally strong response. Simply thresholding 

the response cannot distinguish the two cases. 

The S operator is not able to distinguish between specular and diffuse shading 

variations. However the cylinder test proposed in chapter 4 often provides a 

practical way of making this distinction successfully. 
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(a) 

Figure 3-5: (a) An image of a glossy cylinder. (b) An image of a cylinder 

in which the shading is due to diffuse reflection. (c) Image irradiance profiles 

through both (a) and (b). 
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Figure 3-6: A simple image of a three dimensional scene. (a) The surface of 

the pyramid occludes the block behind. (b) The other block casts a shadow on to 

the pyramid. Everywhere but over occluding boundaries and cast shadows the 

illumination varies slowly. 

3.3.6 Depth variations 

The mondrian world for which the S operator is designed is flat. So the depth  

does not vary across a mondrian image. However depth can and does vary 

across an image of a three-dimensional scene. Figure 3-6 depicts such a scene. 

The depth varies smoothly across the smooth surfaces and abruptly at occlud-

ing boundaries. In addition objects in three dimensional scenes can also cast 

shadows upon each other. As a result of both occluding boundaries and cast 

shadows, discontinuities are introduced into the otherwise smooth illumination 

function, denoted as I in equation (3.3). These discontinuities, when large 

enough, produce strong responses as the S operator passes over them. As a 

6The viewer-to--surface distance 
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result the S operator will perform badly as a detector either of light sources or 

of specularities. 

These 'rifts' in the illumination field also pose problems for retinex processes 

that run on real images—see chapter 4. 

3.4 Chromatic approaches 

3.4.1 Introduction 

Recently two different chromatic approaches to detecting specularities have been 

introduced: 

Shafer's dichromatic reflection model approach, [72]. 

Gershon's colour shift approach, [39,40]. 

As mentioned in section 3.1 a chromatic approach can complement an achro-

matic approach, when colour information is available. A chromatic approach 

relies on colour differences in specularly and diffusely reflected light. When no 

colour differences are present  for many metals, or when white light falls on 

a grey surface—an achromatic method is essential. 

The chromatic approaches are variations on the same theme. Below the com-

mon aspects of both are discussed before examining the individual approaches. 

3.4.2 Aspects common to the chromatic approaches 

Both chromatic approaches were developed to be applied to opaque inhomoge-

neous dielectric materials, such as paints and plastics—see section 2.4. These 

types of material reflect a proportion of the incident light by sub-surface scatter-

ing. Inhomogeneities or pigments in the scattering material selectively absorb 

light at certain wavelengths. As a result the scattered light reemerges out of the 
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Figure 3-7: The spectral composition of specularlj, reflected light (a) is similar 

to that of the incident light. While the scattered light's composition (b) depends 

upon the selective absorption of pigment particles within the surface. 

surface with a transformed spectral composition. In sharp contrast, any light 

that is specularly reflected before it has chance to enter the scattering medium, 

has substantially the same spectral composition as the incident illumination. 

Any spectral transformation that does occur is due to quite different physical 

processes g. the Fresnel relations (see section 2.4). Figure 3-7 depicts the 

two processes involved. Both of the chromatic approaches exploit the above-

mentioned spectral (colour) difference to detect specularities. They do this in 

four basic stages. 

1. A colour camera provides three images of the same view. Each of the 

three image irradiance patterns is formed by a separate red, green or 

blue—wave-band in the visible spectrum. 
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The image is segmented into regions of roughly the same colour. This seg-

mentation must separate specularities from surràunding regions of diffuse 

shading—if the method is to work. 

The spectral composition of the light for the points within each region 

is examined. At each pixe1 7  the amount of red, green and blue light 

constitutes a colour triplet. A colour triplet defines a unique coordinate 

in a three-dimensional colour space —see figure 3-8. A plot of the colour 

triplets at each pixel within a given region is made. 

The colour space plots for each region are analysed in turn, for character-

istic features that indicate specularities. If the colour triplets are clustered 

into a two-line 'dog-leg' feature a specularity is present [72,39]. 

3.4.3 The dichromatic reflectance model approach 

Shafer's approach is based on a simple mathematical model of reflectance called 

the dichromatic reflection model. Basically this model equates reflected radi-

ance L,. (equivalent to image irradiance via (2.5)) to a sum of a specular and a 

diffuse component: 

Lr(fl, A) = m,(ñ)c 3 X) + md(n)cd(A), 	 (3.5) 

where A denotes a wavelength dependence, and ñ denotes a dependence on 

the viewing, lighting and surface geometry—c.f. R(ñ) defined in (2.5). The 

subscripts s and d respectivelj'denote terms of the specular and diffuse compo-

nents. Each component is decomposed into independent geometrical and colour 

terms—in and c respectively. 

The discussion in chapter 2 makes clear that models like (3.5) are an over-

simplification for real surfaces. They can describe only a small subset of real 

7Pixel: picture element or digitised image location. 
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Green 

Blue 
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Black 

Red 

Figure 3-8: A three-dimensional colour space. A colour triplet defines a 

unique coordinate within this space. 

world surfaces. However as this approach does not strongly impose this model, 

it is still able to detect specularities on a variety of opaque dielectric materials. 

Finally this approach does not address the non-trivial problem of the image 

segmentation. A segmentation is assumed to be available. 

3.4.4 Gershon's colour shift approach. 

Although Gershon's approach [39] is motivated with reference to the Cook and 

Torrance reflectance model (see section 2.4) it avoids explicit assumptions about 

surface reflectance. So unlike Shafer's approach, this approach permits any 

colour shifts caused by specular as well as diffuse reflection. 

Gershon's approach differs from Shafer's in two other important respects: 

1. it addresses the image segmentation problem. It proposes a practical 
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if incomplete solution, in terms of a split-and-merge spectrally based 

scheme [39]. 

2. it employs colour constant coordinates with which to define the three-

dimensional colour space. This allows the scheme to deal simultaneously 

with the illumination from many light sources —so long as each shares the 

same spectral power distribution. Details of the transformation into the 

colour constant space are as yet unpublished. However this transformation 

must be in many respects similar to the lightness computation described 

in section 3.2—as both aim to recover a colour constant image description. 



Chapter 4 

Detecting specularities: new work 

4.1 Introduction 

A new approach to detecting specularities is proposed in this chapter. A detec-

tion process is sought that is to be of immediate use to a practical vision system. 

Thus processes that require high-level knowledge of the scene such as details of 

the surface properties and lighting conditions are not considered. A low-level 

autonomous process that uses only the information provided by the camera is 

desirable. Here it is assumed that the camera provides an achromatic' ('black 

and white') image. Other approaches that use colour imagery are also being 

developed—see section 3.4. However these (chromatic) approaches are yet to 

produce fully autonomous detection processes. If and when such processes are 

achieved they will be complementary to the approach proposed here—as they 

tap a different source of information. 

Section 4.2 discusses the informational constraints upon a low-level au-

tonomous specularity detector. This leads to the approach based on a Lamber-

tian surface model described in section 4.3. Using this approach three different 

tests are developed to detect specularities. These tests are based on constraints 

established by considering the prominent distinguishing features of speculari-

ties. The first test assesses whether a region is too bright to be Lambertian. 

The second if shading gradients are too steep. The third determines if a peak in 

'Registering light at all visible wavelengths. 

75 	 -. 
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shading is too sharp. None relies upon explicit models of specularities—which 

is a great advantage as was shown in the previous chapters. 

Each of the three tests provides evidence for specularities. In section 4.6 a 

scheme for combining this evidence is proposed. This scheme and the accompa-

nying tests constitute a prototype low-level autonomous process for detecting 

specularities. The entire process has been implemented by the author as a 

software system—the details of which are given in appendix J. The results of 

running this system on a variety of real images are shown in section 4.7. 

4.2 A low-level autonomous process to detect 

sp ecularit ies 

Low-level autonomous processes already play important roles in practical vision 

systems. Edge detection is a typical example. A description of a scene is 

produced, using only the information within the image that the camera provides. 

Because this process needs no high-level knowledge of the scene it is able to run 

autonomously. The edge map that it produces is two-dimensional and so is not 

in itself a complete description of a three-dimensional scene. It does however, 

provide a usefully compact intermediate description. This is a description which 

other higher level processes in the vision system can conveniently use to create 

fuller descriptions of the scene. David Marr in his book Vision [83] expounded 

this use of intermediary levels-of scene description. 

A low-level process that derivesa convenient description of the specularities 

is also required by practical vision systems, for two pressing reasons: 

1. Specularities are virtual images (of light sources), not artifacts of the 

surfaces upon which they lie. They confuse other visual processes such 

as those concerned with stereo, motion and recognition—because these 

processes expect all surface features to lie on real surfaces. If they were 
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provided with a description of the specularities, they could treat specular 

features as special cases and thus improve their'performance. 

2. Local surface shape can be inferred from the description of specularities. 

This can be done by a higher level process like that described in later 

chapters. 

The specular detection process is to be low-level and autonomous so it needs 

no scene-specific information. Any process that made direct use of the models 

of specularity described in section 2.4 would require scene-specific information. 

For example, if the smooth surface model described by equation (2.20) were 

used to recognise the image irradiance distribution of a specularity, then the 

following information would be required: 

the surface orientation at the specularity. 

the lighting geometry. 

the refractive index of the surface: i. 

the proportions of surface and sub-surface reflection: a and b. 

For rough surfaces even more information would be required. Without this 

information, a low-level process cannot make direct use of these models. The 

next section proposes an alterative approach that does not use explicit models 

of specularities. 
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4.3 Constraints on Lambertian surfaces 

Intensity profiles on surfaces that reflect light diffusely are subject to certain 

constraints. A specularity in an image may be recognised because it is not thus 

constrained. This is the essence of the approach used in this thesis to detect 

specularities. This approach involves two steps: 

establishing the constraints. 

developing tests for violation of the constraints, to indicate the presence 

of a specularity. 

The constraints are established using a model of a diffusely reflecting surface—

the Lambertian model. Sections 2.3 and 2.4 show that these constraints use-

fully apply for a range of real materials. The reflectance map, described in 

chapter 2, provides the geometrical description of the light reflected by a sur-

face. For a Lambertian surface the reflectance map RL is particularly simple—

see (2.6). Constraints established on RL provides constraints on the images 

formed by Lambertian surfaces, via the image irradiance equation (2.5). A 

previous example of an image irradiance equation for Lambertian surfaces was 

that describing the mondrian world, (3.1). In section 3.4 it was shown that 

the mondrian world is an unsuitable model upon which to base a specularity 

detector—because it does not model curved surfaces. Here a less restrictive 

approach is made—constraint are sought on the two factors which combine to 

determine RL: illumination and effective albedo. For example one constraint re-

stricts the dynamic range that these two factors can induce into RL.  In this case 

the test for violation of the constraint corresponds to a search for image regions 

that are 'too bright' to have been formed by Lambertian surfaces. Other tests 

correspond to searches for other features of specularities that are characteristi-

cally non-Lambertian. In all, three different tests are presented here. Table 4-1 

summarises the features associated with each. Details of the constraints used 
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Name of test Non-Lambertian feature sought 

Retinex-based test Region 'too bright' to be Lambertian 

Local contrast test Shading contrast 'too great' to be Lambertian 

Cylinder test Peak in shading 'too sharp' to be Lambertian 

Table 4-1: 

by each test are given in the sections that follow. The summary below lists the 

main assumptions involved in establishing these constraints. 

• albedo is piecewise constant—as it was modelled in the mondrian world. 

This is a reasonable assumption: the reflectance properties of a homo-

geneous surface are relatively invariant [58]. A notable exception is a 

'shaded' drawing, in which the artist mimics chiaroscuro (shape-shading) 

with extended smooth variations of albedo. 

• albedo within the Lambertian model has a dynamic range r 	10. The 

validity of this figure is discussed in section 2.4.7. 

• The presence of ambient light ensures that the dynamic range of the Lam-

bertian reflectance map due to directional variations of illumination is no 

more than 3 e section 2.3.4. 

Finally it should be noted, that not every specularly reflecting surface can be 

detected using the three tests listed in table 4-1. Only specularities with promi-

nently non-Lambertian features can be identified. Other specularities that do 

not produce such features are missed. Thus there is a fundamental difference 

between this approach and the chromatic approaches described in section 3.4. 

Those approaches attempt to solve a much more difficult problem: the com-

plete separation of the diffuse and specular components of image irradiance. So, 

in addition to specularities having prominent features, they are also trying to 

detect barely visible low-levels of gloss: e.g. those produced when an overcast 

sky illuminates lightly varnished timber. In general low levels of gloss are both 

more difficult and less useful to detect. Only prominent specularities can be 
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confidently used to infer surface shape. And only prominent specularities will 

cause significant disruption to other visual processes (stereo, motion and recog-

nition). In fact for edge-based visual processes (e.g. stereo matchers [91,921), 

only those specularities that create edge features cause problems. 

4.4 The retinex-based test 

4.4.1 Introduction 

Specularities can be very bright' compared with even the lightest matt surfaces. 

For example specular reflections from a chrome door-handle are often an order 

of magnitude brighter than the light reflected by the matt white paint covering 

the rest of the door. However, specularities are not always so prominent.-

e.g. those on an old bronze drawing pin stuck into the door, may be darker 

than the surrounding paint. In this section a test is developed for detecting 

those specularities that are 'too bright' to be matt. Other tests, like those 

described in later sections, are needed to detect the darker specularities. The 

test described here, involves more than identifying specularities that exceed a 

certain fixed brightness value—chosen to represent the brightest matt surface. 

This is because the appropriate value will vary with the level of illumination—

which in turn varies widely from image to image and even across a single image. 

By dealing with relative rather than absolute image brightness the test described 

below is able to cope with the' image-to-image variations of illumination level. 

Variations within an image itself, are tackled by applying a retinex process, like 

that described in section 3.2.2. The next section shows how the test evolves 

from the constraints on the dynamic range of Lambertian reflectance maps. 

'Throughout this introductory section the familiar terms bright and brightness will 

be used. Strictly speaking the discussion should be in terms of image irradiance. 
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4.4.2 The constraint 

The image irradiance equation describes local variation in image irradiance 

due to variations in surface orientation (denoted by n), via the Lambertian 

reflectance map function RL(ñ). In general, the function RL(ñ) varies with 

location, X. So, to express the irradiance distribution within an image the 

equation (A.18) must be extended to include the x dependence 3: 

E(x) = RL(fl(x) , x). 	 (4.1) 

Variations in RL are of two different types: 

local variations due to variations of local surface orientation, ñ or changes 

in aibedo. 

spatial variations due to variations in the level of illumination, with re-

spect to x. 

As established in chapter 2 and summarised in section 4.3, local variations in 

RL can be reasonably expected to have a limited dynamic range. In particular, 

the dynamic range due to albedo variations (assumed to be less than 10) and 

that due to the local directional distribution of the illumination (assumed to be 

less than 3), combine to give an overall upper bound of 30. In the absence of 

the spatial variations in RL,  the same bound would hold for image irradiance, 

via (4.1). In this circumstance, this Lambertian constraint on dynamic range 

could be used to detect specularities: in an image with a dynamic range exceed-

ing 30 the bright regions are likely specularities. But, because illumination levels 

often do vary significantly with respect to x this constraint cannot be generally 

applied. However, the retinex process described in section 3.2.2 is specifically 

3The sensitivity of the camera, described in (2.5), as a is also a function of x. 

The attenuation due to this function can be nullified by a once-and-for-all camera 

calibration. The expression here, assumes that the calibration has been made. 
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designed to remove such variations. The test proposed here, preprocesses the 

image irradiance signal through a retinex before applying the dynamic range 

constraint. Figure 4-1 shows schematically how the retinex is used. The details 

are given in the next section. 

The test can be summarised as two stages: 

apply the retinex to remove gradual variations in illumination levels. The 

modified image irradiance signal is denoted E1. 

mark candidate specularities where: 

Ez(x) > 30 
minx  E, (4.2) 

Where the minimum is that of the entire image. Note this test assumes that only 

bright regions, such as specularities are responsible for breaking the dynamic 

range constraint—not dark regions. The only phenomenon likely to produce 

a darkened region is a cast shadow. But ambient illumination 4  falling within 

these shadows acts to limit how dark they can become. In the unlikely case, 

that ambient illumination is in places very small the test will be unreliable—e.g. 

for a view containing an aperture into a very dark cavity. 

4.4.3 Retinex preprocessing 

This section discusses the retinex process that is applied to an image before the 

test for specularities (4.2) is made. Section 3.2 describes the retinex process and 

how it can account for colour constancy. For that task the retinex was employed 

to eliminate image irradiance variations due to changes in levels of illumination. 

Here, the retinex is used for the same purpose. Although, originally designed to 

perform in the flat mondrian world , , Land [78] shows that the retinex usefully 

4See section 2.3.5. 

5 See section 3.2 for a description of the mondrian world. 
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Figure 4-1: (a) Illumination levels often vary significantly across an image. 

Retinex preprocessing aims to eliminate these spatial variations. After pre-

processing the dynamic range of the image signal, E1 , is that of the local re-

flectance map RL(ñ).  Consequently, at all points within the image E1 lies be-

tween the two extreme values of RL(ñ): R max  and RmM—as  shown in profile (d). 

Before preprocessing the image signal E is not 30 constrained because RL 

varies spatially. So, only after preprocessing can the dynamic range constraints 

be applied uniformly throughout an image. 
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eliminates illumination variations present in images of real scenes–which contain 

curved surfaces. As the specularity test sought here thust be able to cope with 

curved surfaces, it employs a similar retinex process. 

Curved surfaces, however, introduce a problem for the retinex that does not 

exist in the flat mondrian world: 

• In the mondrian world it is simple to distinguish and remove image 

irradiance variations due to changes of illumination level. A threshold 

value can be chosen, below which all the illumination gradients lie. 

• Curved surfaces introduce additional small gradients into the image ir-

radiance signal. These gradients are not caused by changes in illumination 

levels—but are due to local variations in surface orientation, i.e. shape-

shading. So it is no longer possible to completely isolate the changes due 

to the variations in the illumination level. 

Land [78] proposed a practical solution to the problem: he used a gradient 

threshold large enough to eliminate any gradual variations in illumination level 

and accepted that some small shape-shading variations will also be lost. In 

terms of the dynamic range test, (4.2): 

• overestimating the threshold unnecessarily contracts the dynamic range 

and so reduces the test's potential to detect specularities—see figure 4-2. 

• underestimating the threshold will mean not all the illumination varia-

tions are eliminated. As a result the dynamic range of the modified signal, 

E,, will be left erroneously large. Consequently false detections are likely 

if the test (4.2) is applied. 

On the whole, it is better to overestimate the threshold and accept a few missed 

specularities, rather than use an underestimate and risk false detections. Those 

specularities missed due to the contraction of the dynamic range might be de-

tectable using the other tests. The contraction will be severest in images con-

taining extended regions of gentle shading variations. In these regions image 
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Threshold level -- - - - 
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Figure 4-2: (a) the irradiance profile through a glossy sphere. (b) Overesti-

mating the threshold for the retinex unnecessarily contracts the dynamic range 

and so a specularity may be missed. 

irradiance gradients are small and thus are likely to fall below threshold. The 

contraction is less of a problem for images in which most of the shading variation 

is concentrated into small regions. In these regions image irradiance gradients 

are large and thus likely to exceed the threshold. In many images the shad-

ing variations are concentrated into small regions so it is usually worthwhile 

applying the test. The extremal boundaries of the handle of the mug shown 

in figure 4-15 (page 112) provide a typical example of how shading gradients 

concentrate into small image regions. Such regions are likely to occur anywhere 

that surface orientation, ñ varies rapidly with respect to x. 

For images of real curved surfaces, Land [77] established a practical choice 

of the threshold that eliminated any small variations due to illumination while 

usefully retaining significant shading variations. He chose a threshold on the 

magnitude of the image irradiance gradient that corresponded to a six percent 

local contrast between adjacent image locations', x 1 , x 2 : i.e. if 

E(x2 )/E(x i ) 1.06 	 (4.3) 

6In  Land's experiments image dimensions where roughly 3 or 4 feet and the contrast 

was measured over a distance of about a third of an inch. 
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the threshold is exceeded. The retinex process used here, for the purpose of 

detecting specularities uses the same choice of threshold. However, to ensure 

that the retinex is robust to noise the image is smoothed before applying the 

retinex. 

As figure 4-3 shows smoothing reduces the magnitude of the signal's gradients—

so that the threshold must be reduced as well. Appendix C describes in detail 

how this is done.. Figure 4-15 (page 112) shows that specularities can be de-

tected by applying the retinex followed by the test, (4.2)—more details are given 

in section 4.7. 

The performance of the retinex is impaired in some circumstances. The next 

section describes these circumstances and the effect on the performance of the 

test for specularities. 

4.4.4 The retinex: associated problems 

In most circumstances, the retinex process described in the section above use-

fully eliminates image irradiance variations corresponding to changes in the level 

of illumination. However two problems that can arise when using the retinex 

ought to be considered: 

1. Abrupt changes of illumination level that occur at cast shadow 

boundaries or over occluding edges" are not eliminated by the retinex. 

These changes remain in the image irradiance signal after retinex processing-

and-so may extend its dynamic range causing false detections. In theory, 

these changes should be identified separately and eliminated. Witkin [110] 

suggests how they might be identified. In practice, the presence of ambi-

ent illumination should ensure that the extension of the dynamic range is 

insignificant compared with that produced by prominent specularities. 

7Figure 3-6 (page 69) depicts these two phenomena. 
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Figure 4-3: (a) A step, height h, in signal 1 creates (c) an impulse of mag-

nitude t 1  in the gradient function 11. (e) The retinex reconstructs the step by 

employing threshold t = t1 . (b) The smoothed signal i creates a wider pulse of 

smaller gradients (d). (f) In this case, a lower threshold t = t3  usefully pre-

serves most of the step height while removing small illumination gradients. For 

more details see appendix C. 
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Figure 4-4: (a) A profile through an image containing a rare combination of 

steep and gentle gradients. (b) Thresholding preserves only the large gradients 

(marked as solid lines). (c) The signal after retinex-processing actually has an 

increased dynamic range. 

2. In a few somewhat pathological circumstances' combinations of 

steep and gentle gradients cause the retinex process to actually increase 

the dynamic range of the image irradiance signal. Figure 4-4 shows an 

example of how this can arise. In these circumstances the retinex-based 

test is unreliable as a specularity detector. 
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4.4.5 Imaging considerations 

Before applying the retinex-based test described above, the characteristics of 

the image irradiance signal provided by the camera should be considered. For 

example, the original signal must be capable of exceeding the dynamic range 

limit, before any specularities will be detected. And it should also be propor-

tional to image irradiance. In this section these imaging factors are considered 

and practical suggestions are made on how the available signal can be used. 

The signal provided by a conventional T.V. camera often is not directly 

related to image irradiance. There are three common reasons for this 

Some T.V. cameras contain built-in circuitry that automatically controls 

the gain of the signal. Dark images are made lighter and light images 

are made darker by an automatic gain control (a.g.c). This is achieved 

by adding or subtracting a constant value c to the signal received by the 

camera—over the whole image. The appropriate value of c is selected 

for an arbitrary image by histograming the irradiance values within it. 

Although a.g.c. is useful for many applications, it results in a signal with 

an unknown correspondence to image irradiance. So it is necessary to 

disable the a.g.c. before the retinex-based test can be applied. 

Some T.V. cameras have non-linear responses. Sometimes the non-linearity 

is an inherent property of the imaging device g. a vidicon tube. At 

other times it is introduced artificially, to make the camera compatible 

	

with a display device that it is designed 	to feed 	g. some C.C.D. cam- 

eras. In both cases the non-linearity can be approximated by a power law. 

So the signal g can be expressed as 

	

g = E1 , 

	 (4.4) 

where E is image irradiance and y is the index of the power law. So before 

applying the retinex-based test to the signal, it ought to be processed to 

eliminate the non-linearity (i.e. g -+ g11-Y). 
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3. It is conventional photographic practice to use an aperture stop that sat-

urates the signal at specularities. Although this technique often results 

in images containing a more interesting range of tones, it truncates the 

dynamic range of the signal. This truncation reduces the potential of the 

retinex based test to detect specularities. In order to avoid this problem, 

a smaller aperture should be used, so that specularities do not saturate, 

even if the rest of the image does appear rather dark. 

Although the signal provided by a conventional T.V. camera is represented 

with 8 bit precision, its dynamic range is typically no better than 6 bits, (64). 

The retinex-based test only requires a signal capable of exceeding a dynamic 

range of 30. So it is just feasible to apply the test and detect specularities in the 

image provided by conventional T.V. cameras. The result shown in section 4.7 

demonstrate that this is often a practical proposition. In practice a dynamic 

range greater than 6 bits is desirable because: 

• noise often corrupts the lower bits in the image. 

• specularities will often be saturated if only 6 bits are used. 

the figure 30 applies to the signal after retinex processing. 

One way of obtaining a signal with an extended dynamic range would be to 

combine the signal provided by two images of the same view taken at different 

aperture stops. The upper end of the dynamic range would be supplied when 

the aperture is narrow, the lower end when it is wide. A practical vision system 

could acquire the two images in rapid succession using a motorised stop adjuster. 

Another possibility would be to take control of the a.g.c. and adjust the signal 

electronically. 

Results for the retinex-based test are shown later (section 4.7, pages 110-

116). 
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4.5 Local tests 

4.5.1 Introduction 

Both the local contrast test and the cylinder test, mentioned in Table 4-1 are 

local tests for specularities. Below the notion of a local test is introduced and 

the differences between a local and a global test (like the retinex based test, 

above) are described. Both local tests are based on a similar principle: they 

look for shading variations that are inconsistent with the Lambertian shading 

model (see section 4.3). Section 4.5.3 describes where and in what direction 

specularities produce the greatest inconsistencies. It transpires that the tests 

are best applied to one-dimensional profiles extracted from the image, along 

straight lines. The straight lines that intersect local shading maxima are used. 

Details of how the local contrast test and the cylinder test are applied along 

these profiles are left until sections 4.5.4 and 4.5.5 respectively. 

4.5.2 Local and global tests 

The retinex-based test described in section 4.4 is a global test because 

• the retinex process itself involves a global minimisation—see appendix K 

for details. 

• the dynamic range test (4.2) requires the quantity min E1—to be com-

puted this involves the signal over the entire image. 

As such, it combines information from all parts of the image when deciding 

which regions to mark as specular. The tests described below are local tests: 

when deciding whether a region is specular they use only the shading infor-

mation in the local neighbourhood of the region. Local tests are 

limited in what they are able to achieve. For example they cannot be expected 
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to confidently detect any specularity that loses its specular appearance when 

most of the surrounding image is masked out. The ;dimmer, crescent-shaped 

specularity in figure 4-13 (page 110) is of this type: seen out of context of 

the rest of the image it might well be Lambertian shading. Consequently it is 

best to treat a local test as providing somewhat incomplete and inconclusive 

evidence for specularities. But, by combining the evidence provided by both 

local tests and the global retinex-based test, a more complete, more certain 

description of the specularities within an image can be obtained. Section 4.6 

proposes a scheme to do this. 

4.5.3 Local tests on shading variations 

A glance at figure 3-5 (page 68) shows that the shading variation over specular 

and Lambertian surfaces can differ significantly —even if the surfaces are the 

same shape. Profiles through these shading variations—like those shown in 

figure 3-5 (c)—can be used to distinguish the specular and Lambertian cases. 

The two local. tests exploit the information provided by such profiles, in order to 

provide evidence for specularities. The local contrast test assesses whether the 

contrast over each edge in the profile is consistent with that of a Lambertian 

surface—while the cylinder test assesses whether a profile's peak is 'too sharp' 

to be Lambertian. It does this by measuring the second derivative at the peak. 

For both tests the best evidence of specularity is available from profiles along 

the direction in which the image irradiance varies most rapidly. Figure 4-5 

depicts some typical specularities and indicates the profile-lines which provide 

the best evidence. It shows the two most common forms of specularities: 

1. an elongated blob containing a spine of local maximal. For this form, the 

'One might imagine that a distributed, fairly uniform light source like the sun would 

produce a specularity containing maxima extended in two dimensions—rather than a 

spine. However this is only the case if the surface is planar and viewed along its normal 
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Figure 4-5: Two forms of specularity: (a) An elongated blob containing a 

spine of local maxima. In this case the best evidence of specularity is obtained 

along the perpendiculars to the spine (shown as dashed lines). (b) A compact 

blob containing a single local maximum. In this case the best evidence is obtained 

along the radial lines shown. In both cases the profile is characterised as a local 

maximum flanked on each side by steep edges—as in (c). 
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tests should be applied along profiles that intersect the spine perpendicularly—

as in figure 4-5 (a). 

2. a compact blob containing a single local maximum. This form can be 

produced by highly curved and specular surfaces. In this case, a set of 

evenly spaced radial profiles are appropriate as in figure 4-5 (b). 

For both forms of specularity the profile will be characterised—like that shown 

in figure 4-5 (c)—as having a local maximum flanked on both sides by steep 

edges. These edges correspond to the sudden drop off in the specularly reflected 

light occurring at the border of the virtual image of the light source. Often these 

edge features are sufficiently prominent to be marked by an edge detector. So 

they may consequently disrupt other visual processes that use edges—as men-

tioned in section 4.3. The specularities that create such prominent edge features 

are the most important to detect —so that the disruption that they cause can 

be avoided. In fact, the method used in this thesis, to extract profiles along 

which the local tests are applied, actually uses the output of an edge detector. 

Profiles are extracted by following certain paths between edge locations in 

the image—as outlined in figures 4-6 and 4-7. Full details of the method used 

are given in Appendix D. The section below describes the local contrast test 

which measures the contrast over these edges in order to provide evidence for 

specularities. 

4.5.4 The local contrast test 

The local contrasts across the edges of specularities can be much greater than 

those produced by Lambertian shading variation. This fact is exploited by the 

local contrast test to provide evidence for specularities. Again the test uses 

the model of Lambertian surface reflection, equation (4.1). For this equation 

direction. Otherwise the effects of foreshortening and surface curvature combine to 

create spine maxima. 
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Figure 4-6: Extracting profiles from an image: (a) A path is initiated from 

an edge location in the direction of greatest ascent. (b) If the next edge point 

encounted is in the opposite direction then the profile along the path is extracted. 

The profile's specification consists of the path's direction and the location of the 

maximum signal along the path (c). 
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Figure 4-7: To make the profile extraction method noise resistant a beam of 

paths rather than a single path is initiated from each edge point. The beam is 

centred about the direction of the original path. 

only the local variations—due to surface orientation and albedo—produce sig-

nificant local contrasts, so only they are considered by the test. Again the local 

variations in RL can expected to have a dynamic range with an upper bound 

of 30 (10 for albedo and 3 for' illumination). These bounds are used to help 

distinguish the different types of edges that can occur in image profiles. Fig-

ure 4-8 shows a profile through a shading maximum. This might be due to 

a specularity—like the profiles discussed above in section 4.5.3—or it may be 

due to Lambertian shading. The contrasts across the edges of the profile are 

marked. Edges over which the local contrast c> 30 are inconsistent with the 

Lambertian shading model—they are candidate specularities. Edges over which 

c> 3 are only consistent with the model if albedo differs on either side. Across 

a homogeneous surface albedo is constant 9  so only values of c 3 are consistent 

with the model. In fact this upper bound of 3 is more useful than the higher 

bound of 30. Very rarely does local contrast exceed 30 and in such cases the 

9See section 4.3. 
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Figure 4-8: Contrasts over edges in a profile. Over edge 1 contrast is 

	

cl - 	 - E(x3)-E(x4) 

	

- 	 E(x1) , and over edge 2 it is c2 - 	E(x4) 

retinex-based method is likely to be triggered' 0. On the other hand values of 

c> 3 are quite common: so the local contrast test is based on this upper bound. 

So the test provides circumstantial evidence for specularities across an edge 

in a profile for which c > 3. The evidence is only circumstantial because other 

phenomena, such as cast shadow, occluding and material boundaries can also 

create local contrasts exceeding 3. However this circumstantial evidence is used 

to reinforce the evidence provided by other tests—as described in section 4.6. 

Finally, it should be noted: that as for the retinex-based test, the image 

signal has been assumed to be directly proportional to image irradiance. In 

order to ensure that this is so, consideration of the imaging process should be 

made—as described in section 4.4.5. 

'°Indeed none of the real images obtained for this thesis contained local contrasts 

exceeding 30. 
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4.5.5 The cylinder test 

In general a profile produced by a specularity is more likely to have a sharp 

peak than that produced by Lambertian shading. An example of this is shown 

in figure 3-5 (page 68). The cylinder test attempts to distinguish the profiles 

produced by smooth specular shading from Lambertian shading. If the magni-

tude of the second derivative at the shading maximum exceeds an upper bound 

then smooth Lambertian shading is unlikely—there is evidence for a specular-

ity. The upper bound itself is computed from the gross properties of the profile 

as described later. However there are two limitations to this approach: 

Not all specularities create profiles that have sharp peaks. In particu-

lar, specularities produced by slowly curving surfaces and extended light 

sources can produce rather flattened peaks. So the cylinder test will not 

detect these specularities. They might be detected using other tests that 

exploit different specular features. 

Other phenomena can also create profiles with sharp peaks. Indeed even 

purely Lambertian surfaces can do so. For example.a thin white line on a 

dark background will produce a very sharp peak. But this can be easily 

discounted because of the narrowness of the profile. Consequently the test 

is used only where the profile is wide enough for its shape to be effectively 

resolved by the image array. 

Despite these limitations the cylinder test—as formulated below—provides a 

useful contribution to the evidence collated by the scheme for detecting specu-

larities. 

Like the other two tests the cylinder test is based on the Lambertian surface 

model. However in this case, additional assumptions are added to the model. 

Specifically it is assumed that: 

1. a profile produced using the model has uniform albedo between its two 

flanking edges. So that all variations between the edges are due to changes 
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of surface orientation. This is not an unreasonable assumption: albedo is 

fairly constant over the surface of a homogeneous material"—at a mate-

rial boundary the abrupt change in albedo ought to create a detectable 

edge in the profile. 

the illumination is modelled using the collimated-source-plus-ambient-

light model, (2.8). This model provides a worst case: the sharpest Lam-

bertian profiles are produced by highly directional illuminations. Conse-

quently an upper bound on the sharpness of the peak established using 

this illumination model will apply for other more distributed illuminations 

(like those described in section 2.3.7). 

the shape of the surface is assumed to be locally cylindrical. On the 

face of it, this is a rather restrictive assumption: in many circumstances 

other surface shapes occur. To formulate a reasonable constraint on the 

sharpness of a profile produced by an unconstrained shape is very difficult. 

The formulation below, that uses the cylindrical assumption is at least 

tractable. Scope exists for further work in this area. Some justification 

for the cylindrical assumption is provided by the facts: 

• The test is only applied to profiles through spine maxima—as shown 

in figure 4-5 (a). The presence of a spine, is itself a strong indication 

of approximate local cylindrical shape". 

• The dominant curvature of the surface is therefore orthogonal to the 

spine. Since the test requires only a bound on, rather than an accu-

rate estimate of shading gradient, it is robust to modest curvature 

along the spine. 

See section 4.3. 

12 seesection 5.1.3. 
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For the Lambertian surface model embodying all three of the above assump-

tions, the following simple constraint on the sharpnesg of a peak in Lambertian 

shading can be derived. The magnitude of the second derivative of the irradi-

ance signal at the peak in a profile has an upper bound: 

= E(xp) 
r1r2 

(4.5) 

where E is the image irradiance andas shown in figure 4-9—xp is the peak 

location and r1 and r2 are the distances in the image from XP to the two flanking 

edges. The derivation of this constraint in appendix E shows that it applies for 

all: 

• viewer-sources geometries. 

• cylinder radii. 

. levels of ambient illumination. 

• size of patch—regardless of whether it is a whole cylinder, or just a little 

piece. 

Profiles with a second derivative D at xp, such that 

D > U 
	

(4.6) 

are inconsistent with the model and are thus likely to be specularities. An esti- 

mate of D can be obtained directly from the profile using the second difference: 

D = (1/h2)(G1  + C2 ), where C1  = E(xp + h) - E(xp), 	
(4.7) 

and G2  = E(xp - h) - E(xp). 

h is the sampling interval of the profile. For profiles along oblique directions 

within the image, values of D can be obtained by interpolation 13 . 

13lnterpolation involves averaging which can significantly reduce the peak value of D 

for a narrow profile. To avoid this problem profiles were obtained only along 12 special 

directions, at well spaced orientations—those associated with the 3,4,5 triangle. 
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Figure 4-9: The cylinder test is applied to an image irradiance profile E(x) 

through a spine. xp is the peak location and r1  and r2  are the distances in the 

image from Xp to the two flanking edges. These quantities are used to evaluate 

the upper bound on the second derivative at the peak, (4.5). 

For flattened peaks, the value of D estimated using (4.7) becomes unreliable. 

The reason for this is that T.V. cameras quantise their signal into a limited 

number of grey-levels (usually 256), so when the differences G 1  and G2  are of 

the order of one grey level, large errors are introduced into the value of D. In 

this case, it is safest not to apply the test and accept that some wide-profile 

specularities will be lost, rather than risk marldng Lambertian profiles as likely 

specularities. For the results obtained in this thesis the test is suppressed for 

any profile in which G 1  or 02 is less than 6 grey levels. In general, the method 

of suppression should depend on the noise-levels in the imaging process. 

For very narrow profiles the estimates of the image distances r1 and r2 are 

prone to relatively large errors. So the test is also suppressed for profiles in 

which r1 or r2 are less than a minimum width r 0 . For the results obtained in 

this thesis a value of 3 pixels was used for r0 . (In general the value of r0  

should depend on the scale of the specularities sought.) 
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4.6 Combining the evidence 

4.6.1 Introduction 

A variety of tests for gathering evidence for specularities can be developed by 

establishing constraints on Lambertian surface reflection, using the approach 

proposed in section 4.3. A specularity detector of the type described in sec-

tion 4.2 must combine the evidence provided by each test to create descriptions 

of the likely specularities in an image. By itself, no single test can provide a 

complete description because it only exploits one particular characteristically 

specular feature. This feature need not be present in all specularities. For ex-

ample the retinex-based test detects only very bright specularities. In addition, 

some tests are more reliable than others because some characteristic features 

provide better evidence than others. Thus in order to create useful descriptions 

of the likely specularities the detector must take into account the quality of the 

evidence provided by each test. In some cases the evidence provided by one test 

reinforces that provided by another. Ideally the specularity detector should: 

Gather the evidence from a large number of different tests. 

Simultaneously, feed the evidence provided by each test into an inference 

scheme, tailored to combine the evidence in the most efficacious manner. 

4.6.2 A scheme to combine the evidence 

Described below is the prototype scheme used to combine the evidence for 

specularities gathered by the retinex-based, local contrast and cylinder tests. 

The end product of the scheme is a map of the specular regions within an 

image. Section 4.6.3 discusses how this specularity map can be adapted for use 

by other visual processes. Two classes are used to describe points in the map 

where there is evidence for specularities. These classes are called good evidence 
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and some evidence. Where the scheme indicates good evidence it is usually 

safe to apply the shape inference techniques described in chapter 6. Where 

only some evidence is indicated it is unwise to rely on the image region for 

stereo, motion or recognition processes. This classification scheme is shown in 

the table below and was arrived at by observing the performance of the tests 

when applied to a variety of different images. 

condition inference 

Retinex-based test passed 

Cylinder test passed 

- 	 good evidence of specularity 

- 	 good evidence of specula.rity 

Local contrast test passed 

at a very narrow profile 

- 	 some evidence of specularity 

Any other results - 	 no evidence of specularity 

Both the retinex-based test and the cylinder test were found to provide 

what is called good evidence—while the evidence provided by the local contrast 

test proved more circumstantial. So it is only used at very narrow profiles 

where the cylinder test is inapplicable due to insufficient image resolution (see 

section 4.5.5): even there it provides only what is called some evidence. 

Evidence is collected in this way at local maxima in the image. For the local 

contrast and cylinder tests these are the peaks in the profiles. For the retinex-

based test they are the local maxima of the regions that pass the dynamic range 

test. To obtain a specularity map, the evidence obtained at the local maxima 

should be associated with the blobs that surround them. In the ideal situation, 

depicted in figure 4-10, each blob issimply defined by a closed contour in the 

edge map. So the evidence can be propagated from a local maximum to all 

points within the contour. If the contour contains maxima with both good and 

some evidence the classification good predominates. 

In reality however, the edge contours are usually broken for a variety of 

reasons: image noise and the confusion of the edge detector by surface features in 

the neighbourhood of specularities. A practical method is required to determine 

the extent of the blob surrounding each local maximum where there is evidence 
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Figure 4-10: (a) Evidence is combined at the local maxima within each blob. 

Ideally the extent of each blob is defined by a closed contour. (b) So the evidence 

can be simply propagated throughout the blob. If the contour contains both good 

and some evidence, then the classification good predominates. 
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of specularity. Once the extent is determined the evidence can be propagated 

as discussed above. Where an edge contour is missing the image irradiance 

distribution may be used to determine a blob's extent. To obtain the results 

in this thesis a very simple method was used. This method involved both the 

image irradiance distribution and any remnants of the edge contour that were 

available. At each local maximum where there was evidence for specularity, the 

following process is initiated: 

• The image location is marked as being within the blob. 

• The process is then recursively applied to any adjacent image location 

which is not a part of the contour and at which image irradiance exceeds 

2/3T13 of the peak value. 

Although this purely empirical method often produces reasonable results—see 

section 4.7—there is scope for developing a method on a more principled basis. 

For example the broken contours might be connected up in some way. This 

might be achieved by extending the existing contour fragments in a manner 

that minimises a combination of the contour's length and the tangent gradients 

around it. Another approach might be to fit a quadratic patch to the image 

irradiance distribution in the neighbourhood of a maximum. In this case the 

contour would be determined by the perimeter of the best fitting patch. 

4.6.3 Specularity descriptions 

/ 

The scheme described above provides a map of likely specularities within an 

image. At each point in the map there is good, some or -no evidence of specu-

larity. This description is in a form that can be used directly by some visual 

processes—for others a more compact description is appropriate: 

• For an example of its direct use, consider a binocular stereo process— 

as used in chapter 6. It establishes correspondences between edge maps 

extracted from a right and left view. Once the correspondences are found 
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the depth of the lines represented by the edge maps can be determined. 

An edge of a specularity creates a false depth estimate and should be 

excluded from the edge maps. It can be, by masking out any edge in the 

neighbourhood of a point marked in the specularity maps. Figure 4-20 

shows this being done for a real stereo-pair. 

. A compact description is required by the shape from specularity scheme 

described in chapter 6 for two reasons: 

So that monocular inferences can be made. 

So that the specular blobs in a stereo pair can be matched—only 

then can the stereo inferences be made. 

Details of both monocular and stereo shape inferences are given in chapter 6. 

The format used to describe the specular blobs is as below—appendix F gives 

details of how it is obtained from the specularity map. In addition to its evidence 

class (good or some) each blob in the map is described using the following 

parameters (some of which are shown in figure 4-11): 

• the image coordinates of its centroid, (x e , Yc). 

• its approximate dimensions: height h and width w. 

e if it is elongated, the direction of its major axis, 8. 

• a boolean variable e, that is set if the blob's shape is approximately 

elliptical—see figure 4-12. 	
/ 

Note: for compactly shaped blobs h w, and the information represented by 

0 is not needed. 
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Figure 4-11: Parameters used to describe a blob: (x,, y,)—the location of its 

ceniroid, h and w its dimensions and C the direction of its major axis. 
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Figure 4-12: Fitting an ellipse: an ellipse with semi-major and semi-minor 

axes of lengths a and be  respectively is fitted so that its origin coincides with the 

centroid of the blob (Xc,yc).  (x,y) are the global image coordinates and (X c ,yc ) 

are the ellipse's local coordinates. The ellipse's major axis is oriented at angle 

0 to the global x-axis. 
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4.7 Results 

4.7.1 Introduction 

Figures 4-13 - 4-19 show how the prototype specularity detector, described 

above, performs on a set of real images. The sections below detail both how the 

images were obtained and how the various stages of the scheme were applied. 

The results are discussed in section 4.7.8. 

4.7.2 Image acquisition 

Each image was represented as a 256 square matrix of elements each themselves 

represented as an 8 bit grey-level. Care was taken to ensure that the image signal 

was a good approximation to relative image irradiance —so that the tests could 

be applied directly. This was achieved by using a camera with a linear response, 

no a.g.c. and by avoiding saturation of the specularities 14. Real images were 

acquired in two ways: 

A Link-Electronics 109 vidicon camera was used for images in figures 4-

13 - 4-19. These images suffer a slight distortion: 'vertical banding' near 

the left borders. However, this does not unduly hamper the specularity 

detection process. 

A stereo rig containing two Panasonic WV-CD50 CCD cameras was used 

for the stereo pair of images, in figure 4-20. All other real stereo pairs 

shown in this thesis were obtained using the same rig. 

In both cases the dynamic range of the signal was about 6 bits. 

14 Note: the photographs of these image shown in the figures have been enhanced for 

display purposes—the tests were applied to the unenhanced signal. 
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Figure 4-13: (a) An image of an anglepoise lamp. (b) The edge map—edges 

in black. Regions (in white) where the prototype scheme finds evidence for 

specularities: (c) good and (d) good plus some evidence (after propagation). 

Local maxima (in white) where tests are passed: (e) cylinder, (f) retinex-based 

and (g) local contrast test. 
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Figure 4-14: (a) An image of an industrial casting. (b) The edge 

map—edges in black. Regions (in white) where the prototype scheme finds 

evidence for specularities: (c) good and (d) good plus some evidence (after 

propagation). Local maxima (in white) where tests are passed: (e) cylinder, (f) 

retinex-based and (g) local contrast test. 
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Figure 4-15: (a) An image of a mug. (b) The edge map—edges in black. 

Regions (in white) where the prototype scheme finds evidence for specularities: 

(c) good and (d) good plus some evidence (after propagation). Local maxima 

(in white) where tests are passed: (e) cylinder, (f) retinex-based and (g) local 

contrast test. 
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(1)) 	 (c) 	 (d) 

(e) 	 (f) 	 (g) 

Figure 4-16: (a) An image of an industrial plug. (b) The edge map—edges 

in black. Regions (in white) where the prototype scheme finds evidence for 

specularzties: (c) good and (d) good plus some evidence (after propagation). 

Local maxima (in white) where tests are passed: (e) cylinder, (f) retinex-based 

and (g) local contrast test. 
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(a)  

(b) 	 (c) 

(e) 	 (f) 	 (g) 

Figure 4-17: (a) An image of a jumble of parts. (b) The edge map—edges 

in black. Regions (in white) where the prototype scheme finds evidence for 

specnlarities: (c) good and (d) good p1v some evidence (after propagation). 

Local maxima (in white) where tests are passed: (e) cylinder, (f) retiriex-based 

and (g) local contrast test. 
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(a) 

H 

(b) 	 (c) 	 (d) 

(e) 	 (f) 	 (g) 

Figure 4-18: (a) An image of a teapot. (b) The edge map—edges in black. 

Regions (in white) where the prototype scheme finds evidence for specularities: 

(c) good and (d) good plus some evidence (after propagation). Local maxima 

(in white) where tests are passed: (e) cylinder, (1) retinex-based and (g) local 

contrast test. 
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(1)) 	 (d) 

(e) 	 (f) 	 (g) 

Figure 4-19: (a) An image of a clamp stand. (b) The edge map—edges 

in black. Regions (in white) where the prototype scheme finds evidence for 

specularities: (c) good and (d) good plus some evidence (after propagation). 

Local maxima (in white) where tests are passed: (e) cylinder, (f) retinex-based 

and (g) local contrast test. 
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4.7.3 Profile extraction 

The profiles along which it was appropriate to apply local tests were extracted 

from each image using the method detailed in appendix D. This method must 

be supplied with a description of the locations and directions of the edges in 

each image. A local implementation of the Canny operator was used for this 

purpose. Details of the Canny operator are given in [24]: here only the pa-

rameters employed are listed. The smoothing width was a = 1 and hysteresis 

thresholds corresponded to 20% (high) and 2% (low) contrasts between adja-

cent pixels. The edges obtained using these parameters correspond roughly to 

those visible in the images. In each of figures 4-13 - 4-20, (b) shows the edge 

map used. 

4.7.4 Retinex preprocessing 

Before applying the retinex-based test, each image was preprocessed using a 

retinex - as described in section 4.4.3. Details of the scheme used are given 

in the paper in appendix K. The threshold operation used by the retinex is 

detailed in appendix C. 

4.7.5 The tests 

The following three tests were applied to each image: 

The cylinder test—as in equation (4.6). 

The retinex-based test—as in equation (4.2). 

The local contrast test—as in section 4.5.4. 

The local maxima at which each of these tests fired are shown respectively in 

(e), (f) and (g) of figures 4-13 - 4-19. 
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4.7.6 Combining evidence 

The scheme described in section 4.6.2 was used to combine and propagate the 

evidence gathered by each test. In figures 4-13 - 4-19 (c) shows regions where 

this scheme indicates good evidence for specularities and (d) where either good 

or some evidence is indicated. 

4.7.7 An application: masking out specular edges 

Figure 4-20 shows an example of the direct use of the specularity maps obtained 

using the scheme. For the reasons described in earlier it is useful to mask out 

the specular edges from the edge map. This was achieved by simply masking 

out any edge located within 4 pixels of any detected specularity. Figure 4-20 

shows a stereo pair (a), its edge maps (b) it specularity maps (c) and the edge 

maps after masking (d). Figure 4-21 shows the improvement in depths (near 

the large specularity) obtained by binocular stereo after excising known specular 

features. The apparent fragmentation of the smooth surface is eliminated. 

4.7.8 Evaluation of the results 

The images shown in figures 4-13 - 4-19 are fairly representative of those viewed 

by an industrial vision system. The results obtained for theses images provide 

an indication of how the detection scheme is likely to perform in an industrial 

scenario. Ideally the scheme ought to be implemented as part of a real time 

vision system's and tested for a wider variety of environments. However it is 

still useful to evaluate how the scheme and its constituent tests perform for the 

limited image-set to which it has been applied. Three criteria are used when 

making the evaluation: 

1. Are genuine specularities detected? 

"like that proposed in [18]. 
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Figure 4-20: (a) A stereo pair of images (aligned for cross-eyed viewing). (b) 

The edge maps—edges in black. (c) Detected specularities—in white. (d) The 

edge maps with specular edges removed. 

Draft, March 6, 1988 
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(a) 

Erroneous depths at 

specular features 

Figure 4-21: Surface plots of part of the sparse depth map from the previous 

figure, (a) before and (b) after excising the specular features. 
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Are genuine specularities missed? 

Are false specularities detected? 

For prominent specularities and dark matt regions there is often little doubt 

what constitutes a genuine specularity. The distinction is more difficult to 

make for other image regions. Two factors confound a naked-eye comparison of 

the image to the results obtained: 

The human interpretation of images is subjective. 

The interpretation of specularities depends critically upon the method 

used to display the images. In particular, when photographs are used—as 

in this thesis—the interpretation may differ from that obtained using a 

correctly calibrated T.V. monitor 16 . 

Ideally aiYobjective method of comparison should be used—one possibility could 

be to use the polarisation of light to distinguish specular regions in a test control. 

Here, as no such method is available, the comparison has been made as objective 

as possible. 

The figures 4-13 - 4-19 show that all three tests can and often do detect 

genuine specularities. No single test detects all the genuine specularities in 

any of the images—this is to be expected, as the specular feature exploited 

by any individual test need not be present in every specularity. Neither the 

retinex-based test nor the cylinder test create any false speculariies. However 

the local contrast test does: notably on the handle of the mug in figure 4-

15 and perhaps also on the plastic cord in figure 4-13. This reinforces the 

interpretation—already justified—of the local contrast test as providing only 

partial evidence for specularities and being susceptible to false alarms. 

16 See [25] for a discussion of monitor calibration. 
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On most occasions the evidence is satisfactorily propagated from the lo-

cal maxima into the surrounding blobs—using the method described in sec-

tion 4.6.2. Occasionally the evidence is propagated too far: e.g. at the top of 

the object in figure 4_1917.  This occurs where the edge contour surrounding 

the specularity is incomplete. Some remedies for this problem were suggested 

in section 4.6.2. 

Barring this problem, the scheme successfully combines the evidence pro-

vided by the tests and creates a specularity map. However the maps obtained 

for each image are all incomplete: at least one genuine specularity is missed 

in each case. Thus there is room for improvement. The specularities that are 

missed are often both too dim for the retinex-based test and too narrow for the 

cylinder test g. those on the left spoke of the casting in figure 4-14. New 

tests need to be developed in order to detect these specularities. In some special 

environments the upper bounds imposed by some of the existing tests may be 

found to be too conservative. For example, if the dynamic range of albedo is 

less than 10 then the bound used by the retinex-based test may be reduced to 

detect more genuine specularities without introducing any false ones. 

17 The largest blobs in figures 4-14 and 4-18 may also be regarded as overspilling 

their bounds—although this is a more subjective judgement. 



Chapter 5 

Inferring surface shape: background 

5.1 Introduction 

The task of inferring the shape of a surface from visual cues is 'complex. It 

often requires the combination of disparate kinds of information. For example: 

binocular stereo, silhouettes, texture and shading each supply some—but sel-

dom all—of the necessary information. For a glossy surface, specularities are 

often a powerful cue. The scheme described in chapter 6 infers surface shape 

using specularities. In this chapter existing approaches to the inference of shape 

are reviewed—concentrating in particular on the role of specularities. To begin 

with basic representations for surface shape are introduced. 

5.1.1 Surface depth 

A surface may simply be represented by the depth of each point visible upon 

it. Traditionally a depth map z(x, y) has been used for this purpose. Depth 

maps have direct application in robotics tasks such as path planning and colli-

sion avoidance. However further processing is necessary to obtain more concise 

descriptions if they are to be used for more complex tasks such as object recog-

nition. If the depth map is sparse (as is typical of those obtained from binocular 

stereo), further processing may also be necessary—in the form of interpolation 

or surface reconstruction. Specularities appear to lie above or below but gen-

erally not on the reconstructed surface. In chapter 6, a formula for surface 

depth at a specularity is obtained, relative to the depth of a nearby point. For 

123 
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Figure 5-1: Surface depth may be defined using both the camera coordinate 

system (x, y )  z) or the local surface system (x )  y, z n). The z-axis lies along 

the local surface normal ft. 

this purpose depth estimates are provided by binocular stereo—see section 5.2. 

Figure 5-1 depicts the two different 3-D right-handed cartesian coordinate sys-

tem used to define depth: 

The (x, y, z) camera system for which the z-axis along the optical axis of 

the camera. The x and y axes are horizontal and vertical respectively. In 

this system the visible surface is a function z(x, y). 

The (x, y, z) local system for which the z,,-axis is along the local surface 

normal ñ. In this system the visible surface is a function z(x, y). 

Both are used below. 
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5.1.2 Surface orientation 

Local surface orientation is defined using ii: the normal direction to the local 

tangent plane —shown in figure 5-1. Surface orientation is only an applica-

ble representation for smooth' surfaces with well defined tangent planes. Two 

different specifications of ñ are used below: 

• Angles of slant o and tilt r which are defined: 

cos a = ñ. '(T; 0 < a < ir/2, 
 

tanr=n/n; 0<7- < 27r, 

where n and n are the x and y components, in the camera frame 2 , of ñ 

respectively and '(r  is the viewing direction. 

• Gradients p and q which are defined as: 

= (Oz o  a\ 	 (p,q,-1) (p, q) 	a, ay, -, -) and ñ = 	i, (ne , n )  n) = (5.2) 
4 	 s/1+p2 +q2  

Both specifications have been applied to a variety of problems: e.g. (a, r) for 

texture analysis [109] and (p, q) for shading analysis—discussed later. Surface 

orientation data by itself can be used to identify known objects in cluttered 

scenes g. bin picking [59]. Used in conjunction with other information it 

can produce surface descriptions suitable for more difficult model matching 

tasks. For known source position, surface orientation can of course be obtained 

directly from an observed specularity. 

'Here smooth means smooth at a macroscopic scale, so it applies to the microscop-

ically rough surfaces referred to in section 2.4.4. 

2Slant is traditionally defined for parallel projection where V is aligned with the 

camera's optical axis (e.g. [109]). 
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Figure 5-2: Geometry used to define local curvature at point A on a smooth 

surface. 

5.1.3 Surface curvature 

Here curvature is introduced with reference to a simple shape: a sphere. Every 

point on the surface of a sphere lies at the same distance (radius r) from the 

centre of curvature (the centre of the sphere). The radii of curvature at any 

point on the sphere are simply r and the magnitude of curvature is k = 1/r. The 

sign of the curvature depends on whether the sphere appears convex or concave. 

Curvature is positive for a convex surface and negative for a concave one 4 . In 

the limit as r -+ oo, k -' 0 and the surface is locally planar. The local curvature 

of an arbitrarily shaped, smooth surface at any point A upon it, is defined by 

the rate at which it slopes away from the local tangent plane. To make this 

3For a more formal introduction in terms of differential geometry see [32,79]. 

'Some texts define curvature with the opposite sign used here. 
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more precise, consider a slice through the surface at A—as shown in figure 5-2. 

This slice is a curve in space, along which the surface intercepts a plane —a 

plane that passes through A and contains ñ, the local surface normal. The 

orientation of the slice is defined by the angle 6—i.e. that between the tangent 

vector of the slice curve at A and the axis. Thus 9 quantifies the rotation' of 

the slice about ñ. 

If the surface is locally spherical at A, it slopes away from the tangent plane 

at a constant rate k, in all directions (all 6). So that k(9) is constant. In 

general, surfaces are not locally spherical and k(9) is not constant. Neverthe-

less, k(9) is constrained for locally smooth surfaces. It varies monotonically 

between a maximum and minimum value: k 1  and k2  respectively. These values 

lie along orthogonal directions, i.e. if Ic1  = k(00) then k2  = k(60  ± 7r/2). In fact 

local curvature upon any smooth surface is defined by the three parameters 

(k 1 , k27  6). 

The hessian matrix H provides a concise description of curvature which is 

directly related to (k 1 , k2 , 6). it is of particular use in the analysis of shape 

from specularities described in section 5.6 and chapter 6. Expressed in terms 

of (k 1 , k2, 00)? 

H = R(60) 

( ' k2 ) 
R(-90), 	 (5.3) 

where R(b) is the matrix describing a rotation through 'çb about ñ: 

R(0) — 

(

Cos & sin& 
(5.4) 

sin& cos;,J —  

H is also the matrix the 2nd partial derivatives of surface function z(z, yb): 

	

1 8z 	02z,, \ 
H=' I 

	

82  Z 	82 	J 	 (5.5) 

	

\aa 	
.L / 

Although, in this form H has four elements there remain only three unknowns 

of curvature because, by definition, ', = The principal curvatures 

Ic1  and k 2  are intrinsic surface properties independent of any particular viewing 

geometry. As such they are particularly useful for model matching. Table 5-1 
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Condition Classification Example surface 

sign(k 1  )=sign( k2 ) elliptic ellipsoid 

sign(k1 ) 	sign( k2 ) hyperbolic saddle 

Ic 1  = 0 or Ic2  = 0 parabolic cylinder 

Table 5-1: 

Parabol 

Figure 5-3: A torus consists of one elliptic and one hyperbolic region separated 

by parabolic lines. 

shows a classification of local surface shape in terms of the signs of Ic 1  and k2 . 

Smoothly curving surfaces are tessellated into regions containing either only 

elliptic or hyperbolic points (elliptic or hyperbolic regions). These regions are 

separated by closed curves of parabolic points (parabolic lines). Parabolic lines 

and the classification into elliptic and hyperbolic regions provide an attractive 

representation of the surface structure of an object. For example a torus can 

be represented by a graph consisting of one elliptic and one hyperbolic region 

separated by parabolic lines —see figure 5-3. Such a representation provides a 

useful framework with which to fit surfaces to model surfaces. The curvature 

at all points on the model need not be specified—rather a range of permissible 

curvatures within each region might be used. So that when visual cues provide 

some curvature information, even if only at a single point within the region, the 

fit of surface to model can be evaluated. For example: the curvature information 
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provided by a single specularity can be enough to determine whether an elliptic 

region is convex or concave. 

Koenderink and van Doom [73] provide an analysis of the surface represen-

tation described above. They relate it to shading features that are invariant 

with change of viewing and lighting geometry. In particular they note that: 

• Specularities 5  are a particular type of singularity of the shading field which 

tend to cling to surface points of high curvature. 

• As viewing or lighting changes specularities are created or annihilated in 

pairs on parabolic lines. At the moment of their creation or destruction 

they move transversely to such lines. 

These observations constitute qualitative constraints on the formation of spec-

ularities. Such constraints might be exploited by specularity detection schemes. 

Indeed the fact that specularities cling to 'spines' of high curvature is already 

used by the detector described in chapter 4. 

5.2 Obtaining surface depth 

5.2.1 Introduction 

Existing methods to estimate surface depth fall into two categories: 

• passive methods that estimate the depth from conventional imagery. 

• active methods which bombard the scene with a signal and then measure 

its position (e.g laser [97]) of time of flight (e.g. sonar). 

51teferred to in [73] as brilliant points. 
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Here, only passive methods are considered: active methods can provide dense 

depth maps for specific robotics tasks [36,49]. Most passive methods require two 

or more images of a scene in order to operate g. binocular stereo. However 

monocular depth cues do exist and have been investigated, e.g: focus-blur [89], 

texture gradients and perspective [41]. Binocular stereo estimates depth using 

two views of a scene (a stereo-pair)--with similarities to human vision. Other 

methods that use three or more images have also been developed [ 5,88]. The 

scheme in chapter 6 employs an existing binocular stereo algorithm to estimate 

surface depth at specularities. It is reviewed below. Note however, the depth 

is estimated for surface features nearby each specularity, because the method is 

unsuitable for specular features. 

5.2.2 Binocular stereo 

Seen from two different vantage points the same scene forms two similar images. 

Similarities arise because the two images are the projections of roughly the same 

set of surface points. Differences are due to separation of the vantage points. 

Binocular stereo uses the differences to estimate surface depth. It consists of 

two steps: 

Identifying pairs of points in the left and right images that correspond to 

the same physical locations. This is the correspondence problem and the 

matched points are called conjugate pairs. 

Using triangulation to estimate the depth of the surface point that they 

represent. This requires the camera geometry to be known. 

The correspondence problem: The first step is the hardest. Two cameras 

may be positioned in many different ways in order to produce two images suit-

able for binocular stereo processing. However, as long as their relative position 

and orientation are known the images can be rectified [59] so that a standard 

simple. camera geometry is applicable. This geometry is shown in figure 5-4: 

the optical axes of the left and right cameras are parallel. In this case conjugate 
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Figure 5-4: Standard rectified camera geometry for binocular stereo. Optical 

axes of left and right cameras are parallel, with a base-line separation b. Both 

cameras have focal length f. Surface point (x, y, z) projects onto left and right 

images at (XL, YL) and (ZR, YR)  respectively. 



Chapter 5. Inferring surface shape: background 	 132 

pairs have identical vertical coordinates in their respective images—i.e. they lie 

on the same raster. This is the epipolar constraint'. It simplifies the correspon-

dence problem by reducing the search for each match. It has become 1-D rather 

than 2-D. Algorithms have been developed to provide global solutions to this 

problem [8,10]. In generally only prominent surface features can be identi'fied 

and matched. The PMF algorithm [91,92] used in this thesis matches edge 

segments. The density of the depth map obtained is limited by the density of 

prominent edges. For a smooth untextured surface patch, depth estimates are 

only obtained at the edges that bound it. To obtain surface descriptions within 

such a patch another approach is necessary—see sections 5.3 and 5.4. 

Triangulation: The geometry in figure 5-4 shows how depth is estimated from 

a matched conjugate pair. A point (x, y, z) on a surface7  projects onto the left 

image at (XL, YL) and onto the right image at (XR, yR). 

Simple trigonometry provides: 

. The epipolar constraint: 

YLY 	YR Y - = - and - = - therefore 	YL—I/R = 0, 	(5.6) T z 	f 

where f is the focal length of both cameras. 

• The depth, z: estimated using XL-XR,  the horizontal disparity: 

5L X 	SR x - b 	 bf 
T = - and - = 	therefore z = 	 (5.7) z 	f 	z 	 XLXR 

6For parallel cameras. 

TUsing the (x, y, z) coordinates originally defined for figure 5-1 (page 124), choosing 

the focal point of the rectified left camera as the origin. The horizontal and vertical 

coordinates of the rectified left image are 5L, 7Th respectively. The optical axis of the 

left camera passes through their origin. The horizontal and vertical coordinates of the 

rectified right image are XR, YR respectively. The optical axis of the right camera passes 

through their origin. Note: below subscripts R and L are used for rectified images only. 
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where b is the base-line separating the focal points of the two cameras. 

As figure 4-20 (page 119) demonstrates, specularities produce prominent edge 

features but they should not be used to estimate depth because: 

/ 
They are virtual images reflected by the surface. Thus they produce 

horizontal disparities corresponding to depths lying above or below the 

actual surface. 

They can create vertical disparities, where YL - YR 0. An example is 

shown in figure 7-23 (page 199). So the epipolar constraint does not hold 

for specularities. 

Consequences of these facts are: 

. A separate matching process is necessary for specular features. The shape 

inference scheme of chapter 6 employs a simple process that matches spec-

ularities using the blob-like descriptions introduced in section 4.6.3. 

• Features that violate the epipolar constraint are very likely to be specu-

lar. This fact remains untapped by the current specular detection scheme 

(chapter 4)—i.e. the scheme is merely tolerant of vertical disparity, but in 

principle vertical disparity could be used as an indicator for specularity. 

5.3 Obtaining surface orientation 

5.3.1 Introduction 

A variety of techniques exist for estimating local surface orientation. If a dense 

depth map z(x, y) is available then estimates can be obtained simply by nu-

merically differentiating z with respect to x and y—see equation 5.2. In many 

circumstances only sparse depth maps or monocular imagery are available and 

other techniques are necessary. These include shape from contour [3,21,69], 
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shape from texture [2,65,70,71,109], shape from shading and photometric stereo. 

The latter two are considered in more detail below, as specularities play an im-

portant role in them both. The surface orientation at a specularity is more 

easily obtained when both lighting and viewing geometries are known—it is 

simply the local mirror-like orientation—see later. Buchanan [ 23] proposes a 

method to determine surface orientation when the light source geometry is un-

known. It requires constraints both on the ratio of the viewing to light source 

distance and on the surface roughness. The same criticism that applied to the 

work of Healey, reviewed later, applies here, as it is assumed both that the 

"specular" component of the light is isolated and that the degree of roughness 

of each surface is known. 

5.32 Shape from shading 

Horn [57,67,60,59] and others [101,82] have developed methods that exploit 

the shading variations over smooth surface patches to recover surface orienta-

tion. The methods are based on the image irradiance equation (equation (2.5), 

page 17): 

E(x, y) = R(p, q), 	 (5.8) 

rewritten' here using the (p, q) notation to emphasise that two unknowns are 

involved. This equation provides only a single constraint—another is required 

to fully determine surface orientation. Several different constraints have been 

proposed embodying the fact that neighbouring points on a smooth surface 

cannot assume arbitrary orientations —somehow the surface must fit smoothly 

together. The constraints usually result in a large set of 1st order partial dif-

ferential equations which when solved yield values of (p, q) across the surface. 

Parallel algorithms have been developed to provide efficient solutions to these 

equations. 

8Strictly, this formulation assumes orthographic projection: i.e. a distant viewer. 
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The major drawback of shape from shading is that it can only be applied 

when the reflectance map R is known. Chapter 2 shows that this is not practical 

in all but very controlled circumstances. Most results have been obtained by 

assuming Lambertian reflectance maps. Babu et a1 [6] determine surface ori-

entation for some specular surfaces assuming particular models of R. However 

the models contain many unknowns and their method works only for planar 

surfaces. 

5.3.3 Photometric stereo 

If the same view is imaged under two different lighting conditions then two 

image irradiance equations are obtained for each image point (x, y): 

EA(X, y) = RA(p, q) and EB(Z, y) = RB(P, q), 	 (5.9) 

where EA and EB are the irradiances in the two images and RA and RB are 

the reflectance maps corresponding to the two lighting conditions. In this case 

the two equations provide sufficient constraints to recover both p and q at 

each point (x, j). This method of obtaining (p, q) is called photometric stereo. 

Woodham [lii] demonstrates that the method can be made to work in real-time 

using controlled lighting conditions. In order to simplify the computation three, 

rather than two, reflectance maps are used. Each reflectance map corresponds 

to a Lambertian surface illuminated by a collimated source in a particular direc-

tion. Ikeuchi [66] demonstrates that the method works with specular surfaces if 

distributed light sources are used. Coleman and Jam [30] show that when four 

reflectance maps are employed specularities can be identified by the photomet-

ric system while simultaneously estimating (p, q). More recently Sanderson et 

al* [96] show that solder inspection tasks, involving the estimation of that local 

surface height and orientation from specularities, can be achieved by more elab-

orate control of the lighting. Photometric stereo requires careful regulation of 

the illumination and knowledge of the surface properties, thus it is only suitable 

for precisely controlled environments. 
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5.4 Integrating shading with stereo 

Feature-based binocular stereo cannot estimate the depth across an untextured 

surface patch. Shape from shading can only do so if the reflectance map )? is 

known. Various approaches have been made to overcome these two problems 

by integrating the shading and stereo information. The obvious approach is 

to apply binocular stereo to match irradiance within the right and left images 

of the patch. This is ineffective for Lambertian surfaces and—as Grimson [48] 

shows—it is unstable when there are specularities. Another approach: area-

correlation [7], first creates a skeleton of edge features enclosing patches—using 

traditional stereo methods—before matching irradiance gradients within each 

patch. Blake [16] demonstrates that this approach is only good for short range 

viewing. Unacceptable errors accumulate at large viewing distances. 

Until fairly recently monocular shape from shading schemes could only be 

applied to patches enclosed by extremal contours. Ikeuchi [67] modifies the 

scheme so that any 3-D contour (obtained from binocular stereo) can be used. 

Nevertheless, knowledge of R is still required. 

Grimson [47] and Terzopoulos [102] developed a scheme to reconstruct depth 

over smooth surface patches. The scheme involves fitting a thin plate of mini-

mum energy to the depth—estimated at features by binocular stereo. Shading 

information is used only to ensure that the surface is smooth where it appeared 

to be so. No explicit knowledge of R is needed. Blake and Zisserman [19] show 

that Grimson's scheme provides solutions even where the combined stereo and 

shading information is ambiguous. Clearly it is dangerous to use such solutions. 

Blake and Zisserman argue that explicit depth reconstruction is often inappro-

priate and suggest [16] a qualitative approach—as in figure 5-3, page 128—when 

information is ambiguous. 

9Edges along which the surface slant is 90 degrees 
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5.5 Obtaining curvature 

5.5.1 Introduction 
/ 

Woodham [112] used the Hessian to describe the curvature of Lambertian gen-

eralised cylinders. Work on the direct inference of surface curvature is scarce. 

That which has been done exploits specularities. Thrift and Lee [ 103] establish 

curvatures of some simple surface shapes such as spheres, cylinders and gener-

alised cylinders, using specularities. However their method requires the class of 

	

shape to be known beforehand and it does not extend to determine curvatures 	- 

of arbitrary shaped surfaces. For instance locally elliptical regions are not dealt 

with. Neither are stereoscopic cues considered. The work reviewed in the rest 

of this chapter attempts to solve more general problems. 

5.5.2 The work of Healey and Binford 

Healey and Binford [ 53] estimate surface curvature at specularities using monoc-

ular shading analysis. They employ an image irradiance equation (for the spec-

ular component only): 

E3(x,y) = E0 exp[—a 2(x,y)/m 2 ]. 	 (5.10) 

Here, image irradiance E3  is defined with respect to the nearest specularity. E. 

is the irradiance at the peak of the specularity, m specifies surface roughness 

and the half-angle ce parameterises local surface orientation at an arbitrary 

image point (x, y). The expression is based on the micro-facet model of a 

rough surface —equation (2.18), page 34. The formulation requires seven main 

assumptions: 

1. The specular component of image irradiance E. has been extracted at 

all points in the image, beforehand. The chromatic specularity detection 

methods (see section 3.4) aim to achieve this. 
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The illumination is collimated along a single known direction—like that 

of a distant point source. 

The surface is rough enough to employ the micro-facet model. 

/ 

An ad-hoc micro-facet model D(cc) = exp(—a 2 /m 2 ) adequately represents 

the surfaces. 

The roughness parameter m is known for each surface material in view. 

Off-specular glints can be identified and avoided. This permits the factors 

G and F in (2.18) to be set to unity. 

The surface depth at the specularity is known. The task of estimating this 

depth is not broached. The same information is needed by the scheme 

described in chapter 6—where a solution is proposed. 

When all the above assumptions are valid g. for a roughened metal under 

special lighting conditions—then equation (5.10) can be inverted to estimate 

IaI in the vicinity of each specularity: 

IaI = m/lnE3 (x,y)/E0 . 	 (5.11) 

This value is computed along radial lines passing through each specular peak. 

The magnitude of curvature is estimated along each radial line using: 

Ilc(9)I = 81o1/Os, 	 (5.12) 

where 3 is the arc length. along the radial line and 0 parameterises its orientation 

as in figure 5-2 (page 126). The greatest and least values of Ik(8)I provide 

estimates of the magnitude of the principal curvatures at each specular peak. 

This method has been shown to work for metal spheres and cylinders of various 

radii. 

Healey's work provides a different approach to that proposed in this thesis. 

His inference of surface curvature is based on precise measurements of image 
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irradiance at each specularity rather their positions and approximate shape. In 

principle, the two approaches are complementary and one of them might be used 

to confirm the other's results. However, in practice, the approach described in 

this thesis can be applied under much more general conditions. This is because: 

. It is not restricted to collimated illumination. 

• It is not restricted to surface materials of a known roughness parameter. 

. It does not require the specular component of image irradiance to be 

measured. Specularities need only be marked. 

5.6 The work of Blake 

5.6.1 Introduction 

Blake [13,15] introduces a theory for inferring constraints on surface curvature 

using specular imagery. The scheme described in chapter 6 builds on his orig-

inal theory. His linear formulation aids an investigation of some important 

problems: e.g. focusing effects. However, it also introduces an unnecessary 

assumption: that of a short stereo base-line, which is discarded in the simpler 

formulation in chapter 6. Below the basic theory is reviewed. Details of the 

linear formulation are restricted to major results. The basic theory investigates 

a number of different questions: 

• How do the stereo disparities of a specularity constrain the curvature of 

a surface? 

• Under what conditions do the focusing effects disrupt the constraints? 

• How are constraints obtained from a stereo-pair, assuming a distant point 

source? 
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Lef 
Right eye 

Figure 5--5: A smooth patch of surface is illuminated by a distant point source 

along vector L. Light striking point A is specularly reflected along vector V 

into the left eye. Similarly, light incident at B traverses W into the right eye. 

Surface normals at A and B are ii and it respectively. Vector r separates A and 

B. The stereo base-line lies along vector d. A surface marking lies nearby A 

at C. 

• How are constraints obtained from a stereo-pair, assuming a point source 

at a known finite distance? 

• How are constraints obtained from a single image, assuming a distributed 

light source of known silhouette-shape? 

• When can local curvature be fully inferred? 
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5.6.2 The viewing geometry 

Figure 5-5 shows the stereo viewing geometry used by Blake—it is essentially 

the same as the one used in chapter 6. A smooth surface patch is illuminated 

along a single direction specified by the light source vector L. At point 4' the 

surface specularly reflects incident light along vector V and into the left eye. 

At B the reflection is along W and into the right eye. Surface normals at A 

and B are h and ñ respectively. Vector r describes the displacement from A 

to B. The stereo base-line lies along vector d. 

Before curvature can be constrained the surface orientation at A must be 

estimated. This is done using the equation of mirror alignment: 	 - 

n=h= 	. 	 (513 
IV+LI 

In general this calculation needs A's position to be estimated. The estimate is 

provided by binocular stereo. The estimate must be obtained from a nearby 

marking. In figure 5-5 C represents such a point. As long as C lies approxi-

mately in the tangent plane of A the estimate is good. An iterative technique 

for refining the estimate is described in chapter 6. 

The relative orientation of the left and right eyes remain unspecified in 

figure 5-5. "Left eye" and "right eye" labels refer to positions of respective 

optical centres. For instance they need not be configured with parallel optical 

axes—as they are in figure 5-4, page 131. Care must of course be taken to 

express the depth estimates in the original (unreciified) left eye coordinate frame 

when estimating A's position. 

5.6.3 Equation for a smooth surface 

The surface passing through point A is locally described by a Taylor series 

written in terms of the 2-D vector in the tangent plane at A, x: 

f(x) = (1/2)x. (Hx) + O(IxI), 	 (5.14) 
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where H is again the hessian matrix and x = ( R 1 , 
R2)T  where'° r = ( R 1 , R2 , R3 )T .  

The smoothness of the surface is assumed to be such that the higher order terms 

O(ix1 3) can be ignored. In this case: 

(Srji,&12)T —Hx where 5 = ( 1,2,3)T = ii_ ñ. 	(5.15) 

5.6.4 Linear equation 

A linear equation is derived that relates curvature (H) to stereo disparities 

(via x). The derivation [13] combines equation (5.15) with the law of mirror-like 

reflection (5.13), expressed at both A and B and the vector cycle V+d—W—r= 0. 

The latter is apparent from figure 5-5. The stereo base-line is assumed to be 

short, (Idi << IV  cos o) and the surface assumed not to focus light to a point 

or line near the viewer. The result for a point source at a finite distance is: 

2V(MH - ICVLO)X = w, 	 (5.16) 

where 	 / 

I sec o, 	0 
M= 	 , 	 (5.17) 

0 	Cos 0' 

kVL = ( 1/2)(1/V + ilL), 	 (5.18) 

w = (— d1  +d3 tan cr,—d2) T , 	 (5.19) 

v=ivi, L=lLi and o is surface slant at A—defined by equation (5.1), page 125. 

Equation (5.16) can be inverted under circumstances described below. The 

inverted equation: 

	

Hx = M' ((1/2V)w + kVLX) 	( 	
)T 	 (5.20) 

10Here vectors are expressed in the local coordinate frame using three orthogonal 

components subscripted by 1, 2 and 3. The 3rd  component lies along the surface 

normal, while the 1" lies along the projection of view vector V onto the tangent plane. 
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provides two constraints on curvature. Curvature is specified by H which has 

three unknowns—see equation (5.3). Thus another constraint is required to 

infer curvature in full. Blake's suggestions for augmenting equation (5.20) to 

obtain more information are discussed later. Equation (5.16) inverts only if 

det(M) 0. This is guaranteed by a short stereo base-line, where Idi :5 V/2. 

When focusing effects occur no useful curvature information is provided by 

equation (5.20). Blake shows that these effects occur rarely: only on non-convex 

surfaces where det(MH—ICVLI) = 0. In these cases a specularity is either focussed 

outside of the bounds of the image or at more than one point. In the latter case, 

a line specularity occurs when the rank of (MH—ICVLI) is 1 and an extended blob 

when the rank is 0. This analysis applies only for point light sources. Blobs 

and lines are more usually consequences of distributed light sources. 

In practical circumstances when the illumination is provided by a distributed 

source the same equation can be usefully applied at the central peak of the 

specularity 

5.6.5 Measuring x 

To obtain constraints on H using (5.20) an estimate of x is required. Blake 

indicates that it can be estimated from measurements of the "angular position" 

of the specularity and a nearby reference point in the left and right images: 

x = VP5 where 

(seca 0 

0 	
(5.21) 

and the vector 6 compares the "angular positions". To be precise: 

Ar 	 (5.22) 

where Aj, 	, j and 	are the "angular positions", respectively, of the spec- 

ularity in the left image, the specularity in the right image, a nearby reference 

point in the left image and the reference point in the right image. Each of 

these "angular positions" can be measured using the same method—that which 
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is described for the quantity V in chapter 6. There, the simpler formulation 

of the stereo analysis demonstrates this way of measuring x to be unnecessar-

ily complicated". However an analogue of vector 6 still proves useful in the 

monocular analysis. 

5.6.6 Monocular analysis 

Another approach is adopted for distributed sources that exploits the shape of 

the specularities. The analysis is again based on the constraint equation (5.15), 

—(Sn, 8n2)T.  The only difference between this monocular approach 

and the stereoscopic approach is the way in which the measurements of x 

and (&i, &12)T are obtained. In the stereoscopic case two views of the point 

on a light source are required while in the monocular case a single view of two 

points on a distributed light source (figure 5-6) is used. Two different analyses 

are possible: 

• An analysis based on two points on the source separated by a known 

baseline (similar to the stereoscopic analysis). 

• An analysis based on the distortion of the shape contour of the light source 

in the reflected specularity. 

Both analyses use the same monocular linear constraint equation: 

2L(MH - lcVL)X Wm. 	 (5.23) 

This is identical to the stereo linear constraint equation (5.16), except that the 

viewer and light positions are interchanged. The switch from a baseline between 

two eyes to one on the source alters the definition of the w term to become w m : 

wm  = LPa, 	 (5.24) 

The reference point is really only needed for estimating depth. 
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Figure 5-6: Monocular analysis: A distributed light source of known shape 

is reflected by a curved surface as a specular image region. Surface curvature 

information may be inferred by measuring the shape in the image. A point on the 

the source, transforms to a point on of the specularity. The angular separation 

of two such points is specified using c and 5m  of the source and specularity 

respectively. 
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where a is the angular separation of one point on the source from another. The 

expression for x also changes to: 

X = VPSm , 

	 (5.25) 

where 5m  is the angular separation of the two reflected points on the speculaity. 

P is the projection matrix (5.21). Before going into more details the assumptions 

underlie this monocular approach will be clarified: 

The formulation of equation (5.23) requires the light source's dimen-

sion s to be small compared to its distance from the surface L, more 

precisely: L cos o,  > s. 

Curvature is assumed to be constant over the region of surface covered by 

the specularity. This might not hold for a widely distributed source or a 

broken surface patch. 

The contour of the specularity is assumed to be the mirror-reflection of the 

contour of the light source. Two processes can undermine this assumption: 

Focusing effects - that cause blob-like specularities where a point is 

otherwise expected. 

• Rough surfaces—with wide spread functions that extend the contour 

beyond mirror-like orientations. The effect of a surface with a wide 

spread function reflecting a point source is equivalent to that of a 

smooth surface reflecting a distributed source. However the monoc-

ular analysis is unable to disambiguate these two effects. 

The shape of the light source, as seen from the surface is assumed to be 

known. If it is to be approximated by the shape as seen from the viewer 

then the light source must be relatively distant—as required in 1 above. 

5. The monocular analysis assumes that the viewing distance V is known. 

However, if the analysis is to be truly monocular then binocular stereo 
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will not be available to estimate this depth. But as monocular analysis 

is chiefly intended to supplement the stereoscopic an estimate is usually 

available. 

Two point monocular analysis 

Blake omits a discussion of the two point monocular analysis mentioned above. 

It is in fact much less applicable than the contour shape based analysis because 

of its requirement for detailed knowledge of the light source: 

• Two points must be unambiguously identifiable on the source. This is 

only feasible for sources of a certain shape  the two vertices on the 

crescent of the moon might be used. Additionally the reflections of each 

point must also be unambiguously identifiable on the specularity. 

• The baseline vector s between the two points on the source must be known. 

For the stereo analysis it was reasonable to assume that the interocular 

baseline was known—it is after all an integral and often fixed part of 

the viewing apparatus. However it is unreasonable to expect knowledge 

of s for any particular source involved, except under carefully controlled 

lighting conditions. 

When detailed knowledge of the source is available equation (5.23) can be ap-

plied to provide two constraints on curvature—just as in the stereoscopic case. 

To avoid the short baseline assumption required by the linear formulation a new 

formulation, given in appendix H, can be used. 

Source contour shape transformation 

Blake does discuss the contour shape based analysis mentioned above. He de-

scribes the linear transformation T' of the shape of the light source into the 

shape of the specularity by: 

Tt5m  = 	 (5.26) 

where an arbitrary point on the contour of the light source is specified by a— 

its angular position with respect to a reference point on the source (say the 
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centroid). The point specified by a is reflected at a point on the specularity's 

contour, specified by6,,—its angular position with respect to the image of the 

reference point. Figure 5-6 illustrates the case for a circular contour. From 

equations ( 5.23), (5.24) and (5.25) the expression for T is obtained: 

T = 2VP1MHP - 2VPC VL O. 	 (5.27) 

The shape of the specularity is simply the transformed shape of the the light 

source. The particular transformation depends on both the viewing and lighting 

geometry (via V, P, M and nVL)  and the surface curvature (via H). In general 

the transformation may be a combination of a scaling and a rotation. 

Here are some special cases: 

• When the surface is planar, H = 0 so that T = — 2VIcVLe. The transfor-

mation is simply a shape preserving, isotropic scaling. The scaling factor 

is —(2VIvL) 1 . For a very distant source for which V < L, the scaling 

factor is simply —1, (a mirror inversion). 

• When the surface is curved and it is orientated at zero slant (a =0) then 

T = 2V(H - icvl. Which is again a simple scaling transformation. The 

scaling factors aligned along the surface's principal curvature directions 

are —(2V(k 1 — 
'cvL))' 

 and —(2V(k2— iVL))1.  For example, a cylindri-

cal surface for which (k 1 , k 2 ) = (k, 0) and k, > IcVL squashes the shape 

by a large amount in the direction perpendicular to the cylinder's axis—

corresponding to a small scaling factor —(2Vk) 1 . In the axial direction 

the scaling factor is as for a plane —(2VtC VL ) 1 . A characteristically elon-

gated specularity is guaranteed, as long as the light source is not elongated 

itself. In this case, an elongated specularity is monocular evidence that 

the surface has one large and one small principal curvature. 

• When the surface is curved but a 0 then the transformation generally 

involves a rotation as well as a scaling. The nature of such a transfor- 

mation is further investigated in chapter 6, where the circumstances are 
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discussed in which the axis of elongation of a specularity can be inter-

preted as the projection of one of the principal curvature directions. This 

direction might then be used in combination with stereoscopic constraints 

to infer full curvature, as described in the next section. 

• When the shape of the light source is circular—as is often the case, 

e.g. the sun or a spot lamp—then the shape of the specularity is an 

ellipse. By measuring the length and direction of the ellipse's axes, T and 

hence H—full curvature—can be found. Exactly how this can be achieved 

is described in chapter 6. Because of the symmetry of the circular source 

it transpires that there is a fourfold ambiguity of the inferred curvatures. 

5.6.7 Inferring curvature 

Equation (5.20) provides two constraints on the three unknowns of local surface 

curvature. In the absence of other information these constraints ensure that the 

principal curvatures (k 1 , k 2 ) lie in a restricted space—which can be represented 

graphically, see chapter 6. Often however, additional information is available 

and curvature can be obtained in full. There are four situations: 

A locally spherical surface: There is only one unknown k3  = k 1  = k 2 . 

From (5.3), H = kJ so that equation (5.20) supplies two estimates of 

= —6ii i 1R 1  and Ic 3  = —&i 2 /R 2 . (As before i5n = (6n1,6n2&i3)T  and 

x (R1, R2)T.)  A least-squares combination of these provides a more 

robust measure: 

k 3  = —(R i Sn i  + R26n2)/(R 2 + R). 	 (5.28) 

A locally cylindrical surface: There are two unknowns—one principal 

curvature is known to be zero, the other has an unknown value k. The 

remaining unknown is the axial direction of the cylinder 9. In this case 

equation (5.3) simplifies so that equation (5.20) gives 

tan O = 8n2 /5n1 , k = &i1 /(R 1  sin2  9 + R 2  sin 9  cos  9). 	(5.29) 
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Known orientation of principal axes: This case corresponds to know-

ing 00  in equation (5.3). Chapter 6 discusses how 0 0  can be estimated from 

the shape of some specularities. The remaining unknowns k 1  and k 2  are 

obtained by rotation of the local coordinate frame, i.e. 

= _(n1 ,n2 ) T . 	 (5.30) 

where 

k 1  
A = F-90)HR(90) = 
	 ' 	

(5.31) 

= (Al ,A2 )T' = R(—Oo )x, 	 (5.32) 

= R(_60)[((5n1,&12)T]. 	 (5.33) 

Now 

(k 1)  k2) = —(n1/11,n2/12). 	 (5.34) 

Three cameras: Two stereo pairs obtained from a set of three cameras 

provide four constraints on local curvature. So it can be recovered in full. 

The process works best for roughly orthogonal stereo base-lines—see [13] 

for the mathematical details. This approach is pursued no further in this 

thesis. 
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Inferring surface shape: new work 

6.1 Introduction 

The new work presented below refines and extends the work of Blake that was 

reviewed above. It exploits specularities to infer local curvature information 

on smooth surfaces. To do so, it requires descriptions of specularities within 

images. The specularity detector presented in chapter 4 is able to provide these 

descriptions. This chapter provides the theory—which when implemented as 

a computational scheme (in chapter 7) produces useful curvature information. 

The theory divides into four sections: 

Stereo analysis: a simple formulation of the constraints obtainable from 

a stereo-pair, a graphical method of representing the constraints and two 

new ways to interpret them. 

Stereo measurement: how to obtain the positional and angular mea-

surements required as input to the stereo analysis. This section includes 

a treatment of the errors and ends by summarising the various inferences 

to be drawn from the stereo analysis. 

Monocular analysis: Analysis for a distributed light source with a cir-

cular contour and a discussion of the conditions necessary for inferring a 

principal curvature direction from a specularity's axis of elongation. 

Combined inference: how the stereo and monocular analyses can com-

bine to infer fuller curvature information. 

151 
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6.2 Stereo analysis 

6.2.1 Simple formulation 	 / 

Here the Taylor series expansion, in the form of equation (5.15), is again used 

to represent a smooth surface. In place of Blake's linear formulation a simple 

formulation is presented using vector algebra. As a consequence, no assumption 

of a short stereo base-line is required. Both formulations assume the same 

information to be initially available, i.e: 

• V—the view vector, with respect to the left eye. The vectors V as well as 

W, d and S, defined below are all shown in figure 6-1. This is estimated 

from the position of a marking near to the specularity. Section 6.3.3 

describes how the estimate is obtained and refined. 

• *—the direction (angular position) of the the view vector, with respect 

to the right eye. Section 6.3.2 describes how specularities are identified, 

matched and their angular positions estimated. 

• d—the stereo base-line vector. This describes the displacement between 

the two eyes. It is reasonable to assume that d is known. 

• S—the position of the particular light source that creates the specularity. 

It is less reasonable to assume that S is known. There may be may 

- different light sources to choose from. A high level process that infers and 

reasons about the positions of the possible light sources might be used to 

supply S. Scope exists for further work in this area. 

Again a specular ray is incident at a point A when viewed from the left eye 

and at point B when viewed from the right. 
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Left 

t source 

Right eye 

Figure 6-1: Geometry for the simple formulation of the stereo analysis (c.f. 

figure 5-5, page 140). A specularzty appears to lie at point A when viewed from 

the left eye and at point B when viewed from the right. The vectors marked are 

used in the accompanying analysis. 
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The formulation is as follows. The surface normal at A is given by the law 

of mirror-like reflection: 

	

11 =(+L)/I+LI. 	 (6.1) 

where L = V + S. The angular position of the specularity in the right image-

is transformed into the left-eye coordinate frame by a simple transformation 

matrix T...,, which depends only on the known camera geometry. The partic-

ular form of the Tv...,, appropriate for the camera geometry used in this thesis 

is described in appendix 1.1. The magnitude W of W is obtained from the 

following vector equality: 

i.e. WW =V+d—r 

W =V+d—r, 	
(6.2) 

—apparent from figure 6-1 . Now taking the scalar product of both sides with 

11, observing that r - ñ 0 and rearranging, the magnitude is obtained: 

(6.3) 
Wñ 

Now vector W = W* is used to derive r, 

	

rV+d—W 
	

(6.4) 

and n—the surface normal at B (again using the law of mirror-like reflection): 

= (* + I)/l* + I, (6.5) 

where t W—d+S. This is apparent from figure 6-1. Finally, the formulation 

of equation (5.15), page 142 is: 

Hx = - (5 1,2 )T ,  

where (& 11, &12 )T  = ((_n),I,(i_ IA) 
T 	(6.6) 

and 	x 	= (r.i, r.j) 

where 01  i) are the component unit vectors along the axes of the local coor-

dinate frame at A. They are defined in terms of vectors readily available in the 

left-eye frame: 

I = 	 (6.7) 

3= ixI. 
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The methods of inferring curvature listed in section 5.6.7 also apply for this new 

formulation. Below, in sections 6.2.3 and 6.2.4 two new methods are added to 

the list. 

Note however, whenever a component of x is zero (i.e. R, = 0 or R2  = 0) 

then one of the two curvature constraints embodied by (6.6) is lost. Information 

is not available along the direction of the missing component. For example: 

when there is no vertical disparity then curvature is often undetermined in the 

vertical direction. The sphere shown in figure 7-27 (page 212) shows such a 

case. 

6.2.2 Constraint graphs 

The constraints (6.6) can be represented graphically—below it is shown how. 

This representation is used in chapter 7 in the absence of additional constraints. 

Two of the three elements of the hessian matrix can be obtained by rotating' 

the local coordinate frame (in 2-D) through an angle a such that: 

R(a)x = (lxi, Ø)T 	
(6.8) 

In this new frame the hessian becomes: 

11 

H = R(a)HR(—a) 	 (6.9) 

or expanding in terms of (k1 , Ic2 , O)  via equation (5.3), (page 127): 

Ic1 	0 
= R(ç) 

(

0 Ic2 
) R(-), 	 (6.10) 

where ço = Oo + a. In the new frame the constraint equation (6.6) becomes: 

((ixl,o)T - (fñ15j2)T 
 

where (M,,& 2 )T = R(a)(&zi ,5n2 )T. 

1 R is the rotation matrix—see equation (5.4) on page 127. 
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Denoting the hessian as follows: 

11 H 
H = ( 

H 	
(6.12) 

\ 	) 
equation (6.11) supplies the two elements: 

/ 

= &1i/IxI, 	
(6.13) 

H 

which are related to (k 1 , Ic2 , 8) by equation (6.10), so that: 

Hxr  = Ic1  cos2  V + k2  Sin2  (, 
(6.14) 

Hxv  = (k 2  - ki ) cos ço sin  p. 

Now the values of 	and H, obtained from equation (6.13), restrict the per- 

missible values of the principal curvatures Ic 1 , k2  to lie upon a right-rectangular 

hyperbola in (k 1 , k2 ) space. This follows from the observation that: 

—Hxv 
2 

- - (k2  - Ici ) 2  cos2 sin2 ,  - 

= 	(k 1  sin  ço - Ic2  si112  cp)(k 2  cos2  y - k 1  cos2 ), 
(6.15) 

= 	(k 1  - k 1  cos2  çô - k2  sin2  ço)(1c2  - k 1  cos2  ç' - Ic2  sin  ), 
= 	(k1 - H)(k2 - H) 

is the equation of a hyperbola. As figure 6-2 (a) shows the hyperbola has its 

origin at Note: by definition k1  ~: Ic2  so the permissible values 

of Ic1  and k2  are restricted to one curve of the hyperbola. In chapter 7 the 

constraints are represented using the directly measurable quantities r1  = 11ici 
and r2  = 1/k2  rather than k 1  and k2 . It is easily shown (see appendix G) that r1  

and r2  are similarly restricted to a right-rectangular hyperbola in (r 1 , r2 ) space: 

- B2 = (' - A)(r 2  - A), (6.16) 

where A = Hxr/(Hxx 2  + H 2 ) and B = H/(H 2  + H 2). As figure 6-2 (b) 

shows this hyperbola has its origin at (A, A) and as r1  :5 r2  the permissible 

values of r1  and r2  are restricted to its upper curve. 

When uncertainties exist in the values obtained for H_-., and H.,y  then r1  

and r2  are restricted to a set of hyperbolae. This is true of the graphs presented 

in chapter 7 so they show zones rather than lines of permissible values. 
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Figure 6-2: (a) Stereo analysis constrains the principal curvatures k1  and k2  

to one curve of a hyperbola in (k 1 , k2) space. Its origin is at (b) 

Similarly the radii of curvature r1  = 1/k1 , r 2  = 1/k2  lie on the upper curve of a 

hyperbola in (r1 , r2 ) space. Its origin is at (A, A) where A = 

6.2.3 Locally hyperbolic surface (k 1  = — k2 ) 

Two new ways of interpreting the curvature constraints (6.6) are considered in 

the following sections. Curvature can be obtained in full for surfaces known 

to be locally spherical or cylindrical—see section 5.6.7. This is also true for a 

locally hyperbolic surface with principal curvatures k 1  and k2  such that k 1  = 

kh, k 2  = — kh. When monocular analysis suggests that Ik i  I = 1k 2 1 both this 

hyperbolic case and the locally spherical case should be considered as possible. 

In this hyperbolic case the hessian matrix H, expressed using equation (5.3), 

simplifies to 

'\ 
H = R(Oo)kh I 

1 
0 ( R(-00 ) 	 ( 6.17) 

( 

—1) 

which expands (see appendix G.2) as: 

( cos 200  — sin 2O0  
H=khl 	 ( 	 (6.18) 

\ — sin 290  — cos 2O0 ) 
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and this expression in conjunction with the constraint equation (6.6) provides 

an estimate of the orientation 9h = Oo: 

Oh 
lfön 2 Ri +&ii R2 \ 

= tan1 
2Sn 2 R2  - &iiRi) 	

(6.19) 

and two estimates of the magnitude kh: 

kh = &z 1 /(R 2  sin 20h - R 1  cos 20h), 	 (6.20) 

kh = 6n2 /(R i  5fl 29h + R2  cos 20h). 	 (6.21) 

A least squares combination of the latter expressions produce a more robust 

estimate: 

&ii (R2  5fl 20h - 	cos 20h)+ 5n2 (R 1  Sfl 20h+ R2 cos 29h)  
kh 	 (6.22) = 

6.2.4 Non-spherical test 

The non-spherical test is again based on equation (6.6)—it determines when a 

surface is not locally spherical. Whenever the test indicates a surface is not 

locally spherical the interpretation as a sphere (via equation (5.28), page 149) 

need not be considered. 

If a surface is locally spherical then the hessian matrix is H = k,1, where k 3  is 

the magnitude of curvature. In this case-k 3x=(Snj , Sn2)T,  i.e. x and (Sni, S 2  )T 

are parallel. So when measured in any coordinate frame: -k, = Sn 1  /R1  = 6n2 /R 2 . 

If this equality holds (to within calculated error bounds) then the surface might 

be locally spherical. If it does not then the surface is not locally spherical. It is 

simplest to check if the equality is broken in the frame in which x and (Sn i , 5n2  )T 

are readily available—i.e. the local coordinate frame. 
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Figure 6-3: Stereo viewing geometry: In the left and right images the specular-

ity appears at points (x1 , yg) and (Xv, Yr) respectively. In general the optical axes 

of the camera need not verge at a point equidistant from their focal point—even 

though they do for the geometry of the implemented system. 
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6.3 Stereo measurement 

6.3.1 Stereo viewing geometry 	
/ 

Before the constraint equation (6.6) can be used to infer curvature, the four 

quantities listed in section 6.2.1: V, W, d and S must be supplied. Methods 

to determine these quantities depend on the particular stereo viewing geom-

etry. Although the stereo analysis, described above, does not preclude other 

geometries, that used in this thesis was chosen as it is both convenient and 

fairly general. It is as shown in figure 6-3: the cameras are oriented so that 

their optical axes verge at a point equidistant from their focal points while their 

vertical axes are perpendicular to the plane containing the optical axes 2 . The 

position of the light source S is likely to be known with a degree of uncertainty. 

How uncertainties in the quantities V, W, d and S results in uncertainty in 

the constraint equation is discussed in section 6.3.4. In the next two sections, 

the methods used to obtain * and V are described. 

6.3.2 Obtaining W and V 

To obtain * and '(7  involves four basic stages: 

Detecting specularities in both left and right images: the scheme described 

in chapter 4 is used for this purpose. 

Matching specularities detected in the left image to those in the right. A 

method to do this is described below. 

'In this case the appropriate baseline vector d and transformation matrix T r i, 

that takes a vector in the right camera coordinate frame into the left, are given in 

appendix 1.1. 
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Using the location of the specularities in the left and right image: (x i , yE) 

and (x v , yr) respectively, to provide the two directions: 

1 V = 	 (x 1  yt, 11)T, w= 	1 
iX+y+f2 	

y', 
f,.)T (6.23) 

I.  

where f, and fr  are the known focal lengths of the left and right camras 

respectively. 

Transforming W into the left camera coordinate system: W = Tr...j*. 

In theory 'T  and iW can be evaluated and the constraint equation applied for 

every appropriate specular pair of image points, (xi, yi)  and (xv , Yr).  However, 

rather than attempting to identify every available specular pair it is more useful 

to use a few readily identifiable pairs—those with constituent points lying at 

the central peaks of specular blobs. Descriptions of specular blobs are delivered 

by the specularity detector. The central peaks are particularly suitable because: 

• They are the most noise-resistant specular features and thus the most 

likely to be detected. 

• Their image locations are identifiable and matchable. Points at the pe-

riphery of specular blobs formed by distributed light sources have am-

biguous matches—in general there is no way to distinguish which source 

point matches to which specularity point. 

• They are the most likely points to give specular reflection at a mirror-

like orientation as required by stereo analysis. Points at the periphery 

of specular blobs are often part of an extended spread function—see sec-

tion 2.4.4—where reflection is not mirror-like. In the rare circumstance 

when the central peak is an off-specular glint it should not be used. 

When a specular blob is distorted by the focusing effects discussed in sec-

tion 5.6.4, it should not be used to infer curvature. However, there is no way 

to tell whether focusing has occurred. The scheme in chapter 7 infers curvature 

for all available blobs and accepts an occasional false inference due to focusing. 
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The uncertainty in locating (x,, yg) and (x e , 
yr)  depends upon the size and 

shape of the matched pair of specular blobs: 

. The specularity matcher—described below—matches only blobs of ap-

proximately the same size, shape and orientation. This simplifies the task 

of locating (x 1 , Yt)  and (xv , y,.). Gross errors only occur if bad matches are 

made. No such gross errors occur in the results in chapter 7. 

• When a blob is small its centroid and peak tend to coincide and (x i , yz) 

and (z,., !Jr)  can be located to within half a pixel [75]. 

• When a small blob contains rival peaks the scheme in chapter 7 chooses 

those closest to the centroid. So again (xi, yj) and (x v , 
Yr) 

 can be located 

to within half a pixel. 

• Elongated blobs present problems. For example the elongated specularity 

in figure 7-31 page 216 has several peaks along its spine. Ideally each 

peak along the spine should be matched in two images to produce a set of 

• (xi, yg), (xv , 
yr)  pairs. Then local stereo analysiscould be applied to each. 

Scope exists to extend the scheme in chapter 7 to do this. The current im-

plementation treats all blobs alike: applying the stereo analysis only at the 

peak closest to the centroid. However the ends of an elongated specularity 

are difficult to locate—as figure 7-31 demonstrates: it is hard to pin-point 

exactly where the specularity stops and conventional shading starts when 

irradiance falls off gradually. So the centroid—somewhere mid way be-

tween the two ends—has an added uncertainity in its location along the 

axis of elongation. The uncertainty tends to increase with blob length h. 

This is incorporated into the scheme by assigning an uncertainty to the lo-

cation of the centroid, e. Accurately estimating e is impractical—both the 

surface curvature and light source characteristics are influencing factors. 

A very rough estimate is selected in chapter 7 where E=max(1/2,5% of h). 

This uncertainty is then propagated through the scheme to determine the 

uncertainty in the results—as described later. 
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Matching specularities 

The blob-like descriptions provided by the detector (section 4.6.3) are used to 

match specularities into pairs suitable for stereo analysis. Each pair consists of 

one blob from the right image and one from the left. The following matching 

criteria are employed: / 

• Size and shape: The images of the same light source reflected by two 

adjacent points on a smooth surface tend to be similar in size and shape. 

So a pair of similar specularities are likely to be a good match. The 

height h, width w and orientation 6 of blobs in the left and right images 

are used as a measure of their likeness. In particular the absolute difference 

in their heights3  D,,,. = 1h1 - h,.t, aspect ratios A1,,. = 1h11w1 - h,./w,.I and 

orientations 01,, = IOz-OrI are used. 

• Relative position: A gross disparity occurs between the image loca-

tions of a surface obtained for the left and right view points. Surfaces at 

different depths result in different disparities. Relative to the surface it 

lies on, a specularity has an additional disparity determined by the local 

curvature. Convex and concave regions result in relative disparities in 

opposite directions. In theory, the disparity of each pair of specularities 

could be entirely independent. In practice, it is profitable to match sets 

of pairs that have similar disparities because: 

- Specularities tend to cling to small regions where the local curvature 

is high. Thus their relative disparities are usually small compared to 

the gross disparities of the surface regions. 

- The surfaces of interest usually lie at similar depths and so tend to 

have similar gross disparities. 

3Again subscripts 1 and r are used to denote quantities in the left and right images 

respectively 
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The difference in centroid locations: PI,r = 	- Xc,r) 2  + (yc,! - yc,r) 2  

provides the measure of the disparity employed below. 

• Unpaired specularities are rare: A specularity in the right image 

need not correspond to one in the left (and vice versa). There are various 

reasons for this: 

- Local surface orientation may be at a mirror-like alignment for only 

one view point'. The specularity on the handle of the mug in figure 7-

31, page 216 provides a typical example. 

- Large disparities in image location may displace a specularity out 

of one of the images. For cylinders specularities often traverse very 

large distances in the direction of zero curvature. 

- Failure of the specularity detector can result in individual unpaired 

specularities. 

When there are only a few unpaired specularities, it is beneficial to favour 

sets of matched pairs over unmatched sets. The matching scheme below 

allows this possibility through its penalty term U. 

Global solutions to the matching problem encompassing all three of the above 

criteria can be obtained by minimising the following quantity (over all possible 

matches): 

wUU + EIERE1EL M1, 

where M,,,. = WDDj, + WAAI,r + wpPj ,,. + WO°1,r, 

L is the set of specularities in left image, 

R is the set of specularities in right image and, 

U is the no. of unmatched specularities in both images. 

(6.24) 

4E.g: two entirely different sets of specularities can be seen by closing each eye in 

turn when viewing a sunlit choppy sea. 
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The w's are weighting constants' and D, A, P and 0 are as defined above. A uni-

form set of constants were applied to match each stereo-pair shown in chapter 7: 

WD = 1001image-size, Wp = 100/image-size, wo = 50/7r, wu = 10,000/number-

of-blobs. However, these images represent fairly simple matching problems—in 

more difficult circumstances different weightings may be appropriate. The thin-

imisation of equation (6.24) is implemented as a pruned 6 , depth-first search. 

6.3.3 Obtaining V: depth estimatiOn 

The direction of the view vector, \ is obtained from equation (6.23). Its mag-

nitude (the depth) remains to be determined. Binocular stereo can be applied 

to estimate surface depth but not at specularities (section 5.2.2). Instead the 

depth of a surface marking near the specularity is determined. The vector of 

the marking, F, thus obtained, is used as a first approximation to V. This 

approximation is then refined using an iterative process. In all, estimating V 

consists of eight stages: 

Edge detection: Edges of both surface markings and specularities are 

extracted from the left and right images. The same process is used by the 

specularity detector—a Canny operator followed by hysteresis threshold-

ing. 

Pruning: Any edges corresponding to specularities are removed. The 

masking technique described in section 4.7.7 achieves this. 

51n fact wo is not strictly constant: orientation is made to carry less weight when 

it is known to be uncertain—i.e. for specularities with small aspect ratios. 

6  B maintaining a minimum score so far, any search paths exceeding the current 

minimum are pruned. 
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Rectification: The remaining edge segments are rectified to obtain the 

standard parallel geometry —shown in figure 5-4, page 131. An epipolar 

based matcher can now by used. 

Matching: The PMF matcher [91,92] is used to match corresponding 

edge segments in the left and right images. The horizontal disparity of 

each match is provided. 

Triangulation:. The disparity is converted into an estimate of depth—

using equation (5.7), page 132. 

De-rectification: The rectification process is reversed so that each depth 	- 

estimate is associated with its location in the original left image. The 

estimate is then adjusted so that it applies to the unrectified left eye. 

Extraction: The edge segments of the left image are searched. Those. 

closest to each specularity are extracted. Their depth and image location 

are used to estimate the view vector F. Horizontal edge segments provide 

unreliable depth estimates so they are not used. 

Iterative refinement: An estimate of V is made from T,  F and S—the 

position of the light source. 

Iterative refinement 

The view vector, F to a near-by surface point C, is used to estimate the view 

vector, V at the specularity, A. Figure 6-4 shows the geometry involved. The 

problem is: to use the known quantities F, and S to obtain reasonable and 

consistent estimates of depth, V = IVI and surface orientation, ñ. For any value 

of V the orientation must be consistent with mirror-like reflection. If C is close 

to A then it will almost lie on the tangent plane of the surface at A. Here, an 

estimate is obtained by assuming that C lies in the tangent plane. Under this 

assumption two equalities hold: 

F•ñ V•ñ and 11= (V + L)/IcT + LI. 	(6.25) 
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it source 

Figure 6-4: Geometry for iterative refinement. The unknown quantities: 

V = 11, L are obtained from the knowns: F, V, S. The specularity lies 

at A and the surface marking at C. 

The first expresses the tangent-plane-assumption and the second the law of 

mirror-reflection. They are simultaneously satisfied by a unique pair of the 

quantities V and ii. These quantities are estimated using the iterative' scheme 

shown in the box below. 

i=O , v(')=IFI. 

repeat 

i 	= i+1, 
V(i) = 

= 

WO  

while lV-V"I > 0 .01 IFI. 

v=V(O, 	L = L(*). 

7Superscript i denotes the step of iteration. 
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Tangent plane 

Figure 6-5: Point C lies on the surface at a little distance from A. Along 

this distance the surface curves gently out of the tangent plane. So the "tangent 

plane assumption" is only an approximation. 

As the schemes iterates V moves from C to A along a curve lying in the tangent 

plane at A. In the absence of other information—the assumption that the 

point C lies in the tangent plane is a useful first approximation. However, it 

is in fact inaccurate for any curving surface. Consider the example shown in 

figure 6-5: the point C lies on the surface at a little distance from A. Along 

this distance the surface curves gently out of the tangent plane. The departure 

of C from the tangent plane introduces an error into the curvature information 

inferred by stereo analysis. The magnitude of this error is proportional to 

the magnitude of curvature of the actual surface. This is of course unknown, 

before the analysis is applied. In consequence uncertainty exists in the inferred 

curvature information. 

8Simply checking that the relative error e= IV(')-v('-') I has dropped to 1% of IFI, 
as done above, does not necessarily guarantee 1% accuracy in the estimated value of V. 

A more rigorous condition for terminating the scheme is to check when an estimate of 

absolute error i7i drops below a specified value. Often the relative error decays such 

that e=c0a so that i7=Ci(1 - a) (see [99]). So if a is first estimated from the first 

few iterations an estimate of t, is readily available for the rigorous test. Note however, 

the test on relative error proved sufficient to analyse the images in this thesis. 
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The scheme shown in chapter 7 does not cater for this uncertainty—it as-

sumes the error is small. However, an intriguing possibility exists: the error 

might be estimated from the inferred curvature as follows. The patch of surface 

around A might be modelled using the inferred curvature. This model could 

then be used to estimate the actual position of C. Then the departure of C 

from the tangent plane could be estimated and corrected for before running the 

stereo analysis again. 

6.3.4 Error treatment 

Each measured quantity input to the stereo analysis has uncertainty associated 

with it. This uncertainty can be quantified using error bounds. By combining 

the errors it is possible to quantify the uncertainty of the quantities in the con-

straint equation (6.6), i.e. R1 ,R2 ,&21  and 5n2 . This can be done by applying the 

appropriate error combination formula at each step in the analysis. Porrill [93] 

and Durrant-Whyte [33] provided some principles for doing this. The scheme in 

chapter 7 it is done using gaussian error combination [100]. This method strictly 

only applies when combining independent sources of uncertainty. As the uncer-

tainties involved here are unlikely to be completely independent, room exists 

for improving the treatment of errors by the scheme. Table 6-1 summarises 

the sources of uncertainty and indicates how they are quantified by the scheme. 

Table 6-2 lists the six applications of the constraint equation, previously dis-

cussed in isolation. All are used by the scheme in chapter 7. The first three 

estimate the curvature which would be consistent if the surface were locally 

spherical, cylindrical or hyperbolic (k 1  = — k 2 ). The fourth decides whether the 

constraints are inconsistent with a spherical surface. The fifth estimates param-

eters used by the constraint graph. The last combines the constraint equation 

with the known direction of curvature in order to obtain both principal curva-

tures. The uncertainties in the constraint equation, i.e. in R1 ,R2 ,5n1  and 6n2 , 

create uncertainties in the outcomes of all six applications. These uncertainties 
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Source of uncertainty Input Status Used by scheme 

Image measurement 'çr (x1, yz) Known e (page 162) 

Image measurement W (Xr, yr) Known e (page 162) 

Camera base-line d Known. 0 

Light source position S Unknown' 0 

Depth estimation (PMF) V Known: 1% (PMF) 

Tangent plane assumption V Unknown+ 0 

* Depends on other knowledge sources. + Depends on curvature. 

Table 6-1: Uncertainties of the quantities input to the stereo analysis. 

Application Outcome Reference 

If locally spherical 1c8  (5.28) 

If locally cylindrical (k, 9) (5.29) 

If locally hyp.(k1  = —k 2 ) kh, 9h (6.19) (6.22) 

Non-spherical test pass/fail Sec 6.2.4 

Constraint graph (6.13) 

Known direction, 00  k 1 , k 2  (5.34) 

Table 6-2: The six applications of the constraint equation. 
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are estimated by using the same step-by-step error treatment as is applied to 

the stereo analysis itself. 

6.4 Monocular analysis 

6.4.1 Introduction 

In most circumstances specularities are formed by distributed light sources so 

that the monocular approach introduced earlier can be used to infer curva-

ture. Although the monocular approach can, by itself, provide useful curvature 

information when applied to a single image, it is most profitable to use it in con-

junction with the stereo approach, described above. Often the two approaches 

provide complementary information and full curvature information can be in-

ferred by combining them. For example: the monocular approach can provide 

the principal curvature direction so that equation (5.34), page 150, can be 

used to estimate both principal curvatures from the stereo analysis. Below the 

monocular analysis, reviewed in section 5.6 is expanded. As indicated in that 

section, an analysis based on two known points on the source requires rather 

too detailed a knowledge of the lighting conditions to be usefully applicable 

in general circumstances. Nevertheless, a formulation of this analysis, which 

avoids the short baseline assumption, is given in appendix H. Two more useful 

questions of monocular analysis are tackled below: 

How is curvature inferred, up to a fourfold ambiguity when the light source 

is circular? 

When are conditions suitable for inferring a principal curvature direction 

from a specularity's axis of elongation? 

In both cases the linear transformation, equation (5.23), on page 144, is used 

and the five assumptions listed in section 5.6 are required. 
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6.4.2 Monocular analysis for a circular source 

Points on the contour of a circular source satisfy: 

aTa = p2 , 	 (6.26) 

where p is the source radius and a specifies an arbitrary contour point—as 

defined on page 144. A specularity formed by this source has an elliptical con-

tour. Figure 5-6, on page 145, illustrates this case. The position of an arbitrary 

point on this contour, specified by Sm  (also defined on page 144) is determined 

by TSm  = of where T is the transformation defined (in equation (5.27)) in terms 

of the lighting and viewing geometry and the surface curvature. Equation (6.26) 

now becomes: 

.çTr2ç - 2 

	

"me "mP, 	 (6.27) 

where T2  = T T  T as T is symmetric. 

When the source radius p is known, T 2  can be fully determined by measuring 

the ellipse. (Its eigenvalues A 1  and A2  are determined by p and the lengths of 

principal radii of the ellipse and its elgenvectors are aligned with the direction of 

ellipse's principal axes.) T 2  then determines T itself, up to a fourfold ambiguity. 

The eigenvectors of T and T 2  share the same directions. The fourfold ambiguity 

occurs because the signs of the two eigenvalues of T, A 1  and A2  are unknown, 

i.e: 

(A 1 ,A2)= (±,±/x). 	 (6.28) 

For each of the four possible transformations T the interpretation in terms of 

the surface curvature can be obtained by inverting equation (5.27), on page 148, 

to compute H 

H = MP ((1/2V)T + IcvLI) P 1 	 (6.29) 

In general, four different interpretations are possible, each may have principal 

curvatures of different magnitudes and in different directions. The four possible 

directions can collapse down to two. This occurs as slant, o -+ 0—in this case 

both M and P are I and (6.29) is simply H=((1/2V)T+ICVLI). It also occurs, as 
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illustrated in Figure 6--6, when principal curvatures are not small and are not 

of approximately the same magnitude, i.e. IIklI - 1k211>> 2kvL sec  a. 

When the source radius is unknown T can still be determined but only up 

to an arbitrary multiplicative constant. In this case either the surface is locally 

approximately planar—i.e. both principal curvatures are of the order of ICV1L or 

less—or else at least one principal curvature Ic 1  is large (Ici  >> ?CVL sec a) and H 

can be computed up to a fourfold ambiguity and an arbitrary multiplicative 

constant. 

Allowing for polar projection 

Equation (5.26) describes the transformation of a circular contour into an el-

liptical specularity in polar projection. In polar projection the image is formed 

on a plane, shown in figure 6-7, perpendicular to '(r  (the direction of mirror 

reflection for the centre of the source), at a distance V from the surface. For 

conventional cameras the image plane is perpendicular to the direction of the 

optical axis k not V. Nevertheless, the analysis can still be applied, as long 

as the points on the specularity are transformed into polar projection before 

applying (5.26). Transformation Q takes an arbitrary image point X into polar 

projection: 

m = QX. 	 (6.30) 

Q accounts for both foreshortening (via F) and rotation (via R, see equa-

tion (5.4)): 

Q=R(—/3)[F]. 	 (6.31) 

Angle 8 and the foreshortening transformation F are defined in terms of two 

directions that lie in the image plane: 11 and '. The former is the projection 

of cr onto the image plane and the latter is the orthogonal direction, i.e: 

1k = Ix(Ex'cT), 

=Exü. 
(6.32) 

Now f3 = cos (r.3) where 1 is the direction defined in equation (6.7). Also 

F = ( 
u cos 'y u COS 7 	

(6.33) 
Va, 	Vy 	

) 
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(a 

Figure 6-6: Fourfold ambiguity: (a) A monocular image of a convex sphere 

and a convex ellipsoid. Observation of the specularity on the sphere determines 

the light source direction (a= 450).  Observation of the specularity on the ellip-

soid fixes the curvature parameters (k 1 , k2 ,90) up to a fourfold ambiguity and 

an arbitrary multiplicative constant k. Plots (b)(c)(d)(e) depict the four 

possible local surface interpretations. 
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Figure 6-7: By transforming each point on the contour of the specularzty in 

the image into polar projection the correct shape of the ellipse can be measured. 

Transformation Q takes a point on the image plane into polar projection, for a 

particular specularit!,. 
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where ü = (ux ,u y )T, ' = (vx , vy )T and angle y = cos'( T.K) is the off-axis 

angle. 

The shape on the image plane is obtained using the transformation (6.30): 

Sm=QX 

XTQTT2QX = p2 . 	 (6.34) 

Measurements made within the image plane can provide T Q  = (QT T2Q), the 

shape transformation so that T 2  can be computed: 

T2 = (QT) TQQ 1 . 	 (6.35) 

6.4.3 Monocular inference of principal curvature direc-

tions 

When the source is known only to be compact—i.e. not elongated—then if it 

forms an elongated specularity the direction of least' curvature can be estimated 

in the following manner. Identify the specularity's axis of elongation and project 

it back onto the surface tangent plane. This estimate might then be used to 

complement stereoscopic constraints to estimate full curvature—as described in 

section 5.6.7. The estimate of least curvature direction obtained by this method 

is only an approximation. For locally almost flat surfaces'° the approximation 

is unreliable. As the surface curvature increases the approximation improves. 

As it does also as slant a–+ 0,  as the source becomes more compact and as the 

blob becomes less compact. 

Three factors influence the quality of the approximation: 

9The least absolute principal curvature. 

10Stereoscopic measurements, when available can be used to distinguish such 

surfaces—as very small values of I(öni, 52)T1 will be computed via equation (6.6). 



Chapter 6. Inferring surface shape: new work 
	

177 

The eigenvectors of T do not lie exactly in the same direction as the 

specularity's axis of elongation. However, it has been shown" [17] that 

the angular error in assuming the two directions are the same does not 

exceed: 

tan- ' JK 
( 

K 2  1 1/2 

a2 K4) } 	
(6.36) 

where K quantifies the compactness of the source as the ratio of the 

maximum to minimum distance from the source's centre to its bounding 

contour. The aspect ratio of the specularity is a. Note: a> K2 . 

Equation (5.27) on page 148 can be restated as: 

T = 2VP_ 1 MH*P 	H = H - ISVLM. 	 (6.37) 

Now if u is an eigenvector of T, then in the limit when its eigenvalue 

tends to zero, it can be seen that Pu is an eigenvector of H*.  But, when 

its eigenvalue is non-zero u is only approximately an eigenvector of H*. 

However, it has been shown [17] that the angular error in assuming Pu to 

be in the direction of an eigenvector of H*  does not exceed: 

min Isin- ' Isino,(1—sec'a 
K )-112}, sin- ' f tano,(COS2a a  _ j )-1/2}] 

(6.38). 

3. Even if the eigenvectors of H*  are correctly estimated, they are only 

approximately equal to the eigenvectors of H. However, it has been 

shown [17] that the angular error in assuming that H*  is H does not 

exceed: 

	

+8 —sec 
 JkmaxI 	a 	

2)  I. (6.39) sin-1 
 { 	

I' 

	

sina 

3  I1Cmjn I 	K 	1/2 

In the three expressions below the surface is assumed locally non-planar such 

that Ikmax l > 5kVL sec cr where the principal curvatures are km a  and kmin,  defined 

so that Ikmaxl>I1CminI. 
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6.5 Combined inference 
More curvature information can be inferred by combining stereo and monocular 

measurements than can be inferred from them individually. Several methods to 

combine the measurements were given in sections 5.6.7 and 6.2. In this section 

these methods are brought together in a single inference scheme. It infers the 

fullest possible curvature information from the available stereo and monocular 

measurements, while ensuring an interpretation consistent with both—as shown 

in the table below. 

COMBINED INFERENCE 

Source12  shape 

MONOCULAR 

Specularity shape13  

STEREO 

Yes14  No 

Circle Circle or ellipse 

(not elongated) 

Source radius known A B 

Source radius unknown C D 

Other shape E None 

Compact 

(including circle) 

Elongated Conditions reliable15  F (Full) G 

Conditions unreliable E None 

Not elongated E None 

Other shape E None 

For each pair of monocular and stereoscopic conditions a key letter A to C 

provides a reference to the appropriate combined inference in the list below. 

For instance, if the light source is a circle of known radius and the specularity 

12 For all monocular analysis the source dimension is assumed to be small, i.e. s << 
L cos o. 

in polar projection. 

occasions, special alignments occur, e.g. when there is no vertical disparity. In 
such cases one of the two stereoscopic constraints has an infinite uncertainty associated 
with it. Consequent combined inferences may have a large or infinite, uncertainty 
associated with them. 

"Reliable enough to estimate the direction of least curvature in accordance with the 
bounds (6.36) and (6.38). 
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is an ellipse and stereoscopic evidence is available then A is the appropriate 

combined inference. 

Key to table: 

A (Fourfold ambiguity) Full curvature cannot be inferred. However, monoc-

ular analysis constrains the surface to be one of only four interpretations, 

(section 6.4.2). Each interpretation can be checked in turn to see if it is 

compatible with the two constraints that stereo has provided. This is done 

by extracting the direction of least curvature for the monocular interpreta-

tion and using it in conjunction with the stereo constraints to re-estimate 

the principal curvatures, (equation (5.34)). If this re-estimate disagrees 

with the original monocular interpretation's estimate of the principal cur-

vatures then the interpretation can be discounted. All this can be done 

in addition to the first five "stereo-only" applications listed in table 6-2 

(page 170), i.e. the locally spherical, cylindrical and hyperbolic (k 1  = — k 2 ) 

interpretations, the non-spherical test and the constraint graph. 

B (Fourfold ambiguity) In the absence of stereoscopic constraints, monoc-

ular evidence alone constrains the surface to be one of only four interpre-

tations, (section 6.4.2). 

C (Fourfold ambiguity) Full curvature cannot be inferred. However, monoc-

ular analysis constrains the surface to be one of only four interpretations. 

In each interpretation the principal curvatures is only determined up to an 

arbitrary multiplicative constant, because the source radius is unknown, 

(section 6.4.2). This constant k can be usefully eliminated using the 

stereoscopic constraints as follows. Extract the principal curvature di-

rections for each monocular interpretation. Rotate the stereoscopic mea-

surements,-(r i ,r2 )T and (&ii,5n2)T  in 2-D, so that the r1  component is 

aligned along the direction of greatest curvature. In the new frame the 

measurements are (11,12)T  and (ni,n2)T.  Now the constant k= 
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All this can be done in addition to the first five "stereo-only" applications 

listed in table 6-2. 

D (Fourfold ambiguity and an arbitrary multiplicative constant) In the 

absence of stereoscopic evidence, monocular analysis alone constrains the 

surface to be one of only four interpretations. In each interpretation the 

principal curvatures is only determined up to an arbitrary multiplicative 

constant, because the source radius is unknown, (section 6.4.2). 

E (Stereo constraints only) In the absence of monocular evidence, the first 

five "stereo-only" applications listed in table 6-2 can be used. 

F (Full curvature) Full curvature can be inferred. Monocular analysis pro-

vides an estimate of the direction of least curvature (section 6.4.3), which 

can be used in conjunction with the stereoscopic constraints to obtain 

both principal curvatures (equation (5.34)). The stereo measurements can 

also be used to check that the surface is not locally planar—in this case 

the above procedure is invalid. The check is simply whether I(&i, &12  )TI 

is not too close to zero. Finally another check should be made: that 

the bound (6.39) is not exceeded when evaluated using the newly in-

ferred principal curvatures. Only if the bound is exceeded do the first five 

"stereo-only" applications listed in table 6-2 provide more information. 

G (Direction of least curvature) In the absence of stereoscopic evidence, 

monocular analysis alone provides an estimate of the direction of least 

curvature (section 6.4.4 

6.5.1 Implementation of combined inference 

The next chapter presents a computational system that partially implements 

the combine inference scheme described above. The system applies a full stereo 

analysis and all the "stereo only" interpretations listed in table 6-2. The monoc-

ular analysis for a compact source is fully implemented with the exception of 
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checking the bounds (6.36), (6.38) or (6.39). Uncertainties in the computed cur-

vatures are calculated from the uncertainties in the stereoscopic and monocular 

measurements using the step-by-step gaussian error treatment, as was done for 

the stereoscopic analysis (section 6.3.4). The monocular analysis for a circular 

source is implemented in a reduced form: no fourfold ambiguities are consid-

ered. However, a circular source is still exploited by estimating the absolute 

ratio of principal curvatures Ik i /k 2 1 when slant is close to zero. In this case it 

is easy to show (from equation (5.27), page 148), that lci/ 1c21 .../, where a is 

the aspect ratio of the specular ellipse in polar projection and where k 1  >> tCVL 

and k 2  >> 'VL. The system delivers the ratio without checking the latter condi-

tion. When the system indicates that 1k 1 /k 2 1 1 the stereoscopic interpretation 

for a locally spherical and hyperbolic (Ic1  = — k 2 ) surfaces are presented. The 

former being omitted if the non-spherical test was passed. Further details of 

the implementation of the combined analysis are given in appendix 1.2. 



Chapter 7 

S hap e-from-sp ecularity: a 

computational scheme 

7.1 Introduction 

An implementation of the shape-from-specularity inference scheme described in 

the previous section, is presented in this chapter. It consists of two parts: 

A suite of programs that extract the low-level image descriptions that are 

used by the inference scheme. 

An interactive, user friendly program (tool) that applies the inference 

scheme to the low-level descriptions and infers curvature information. 

Figure 7-1 is a diagram showing the way in which information flows through 

the entire system: starting from a stereo image pair of a 3-D scene and ending 

with resultant curvature information. The thick line on the diagram marks 

the dividing line between the suite of programs and the interactive tool. The 

former all lie above the line: edge detection, specularity detection, specularity 

description, edge pruning, specularity matching, binocular stereo and depth 

extraction. These processes have all been discussed at length earlier in this 

thesis—details of how the programs are executed are given in appendix J. Below 

the line on the diagram are the constituents of the tool: an interactive choice 

of light source and specularity, iterative refinement of the depth data, and the 
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estimate Pi 

DATA BASE 
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ñ: 	 correspondences 

Stereo measurements - I 
	

I Monocular measurements I 

	

STEREO INFERENCE- . I 	MONOCULAR INFERENCE-1 

COMBINED INFERENCE'! I 
RESULTS. 

Figure 7-1: Information flow in the entire system. Beneath the thick line lie 

the elements of the interactive tool. 
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stereo, monocular and combined inference schemes. All these processes were 

described in detail in the preceding chapter. 

Both the suite of programs and the interactive tool are written in the "C" 

programming language and run on a SUN-3 mini-computer under the UNIX 4.2 

operating system. A description of the tool and an example of it in action are 

given below. Following that, are a presentation and evaluation of the results 

provided by the scheme, when it is applied to a set of stereo image pairs. The 

scheme performs robustly and well for a wide variety of shapes. 

7.2 The interactive tool 

The interactive tool runs in the SunView colour graphics environment, so the 

Suntools window system must be invoked before it can be used: 

'I. suntools 

Once the window system is ready and a sheiltool is available, the user runs 

the tool by typing the following into the shelitool: 

%tool picture/tv/scene 

The program tool takes as its argument one or more Unix directories. Each 

directory contains all the files—created by the suite of programs—necessary to 

apply the inference scheme. In this case the directory picture/tv/scene is 

specified. 
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Figure 7-2: 

After a while two new tools appear on the window system: 

A "displaytool". 

The shape-from-specularity tool itself. 

The displaytool displays the original stereo image pair from which the spec-

ularities have been detected and from which the inferences are to be made. 
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Three different modes' of display are available: 

The grey-level images themselves 2 . 

The grey-level images with red blobs superimposed where specularities 

have been detected. 

An anaglyph image that facilitates direct depth perception when viewed 

through special glasses—a red filter is placed over the right eye and green 

over the left. 

A single region of the tool provides control over the display options. The panel 

[Magnify] FColour] Contrast 	 ii 

Figure 7-3: 

titled colour allows any of the three display modes to be selected. The slider 

titled contrast allows the distribution of grey tones in the images to be altered—

in case the images appear too light or too dark. In the first two display modes 

a green cursor is drawn on each image to show the current point of interest. A 

blow-up of the region around each cursor is also drawn. The user can adjust 

the magnification of the blow-up using the magnify panel. 

The interactive tool is simple to use. For example, the mouse is placed 

within the box in the tool's lower right corner, clicked (using the left button) on 

top of a marked specularity (here number 2 is used) and the combined inference 

is selected (through the right button). 

'Users with only a monochrome screen can switch off the displaytool using the 

option -n—the binary images at the bottom of the tool provide sufficient spatial 

information by themselves.. 

2The right image is placed to the left of the left image to facilitate "cross-eyed" 

stereo depth perception. The same is done for the binary images in the tool. 
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Immediately the results are displayed: 

Figure 7-4: 

• The word matched is written to confirm that the chosen specularity matches 

with one in the opposite image. The numbers next to each marked spec-

ularity indicate a matching pair. 

The nearby surface marking (reference point), at which depth was ex-

tracted is marked on the displaytool as a yellow square. In addition the 

depth is written out. 

• The depth estimate after iterative refinement is added in brackets. 

The iterative refinement was applied using the light source position with the 

(x,y,z) coordinates indicated. By clicking the right mouse button on top of the 

light source panel, lights of different positions and shapes can be selected from 

the data-base. Iterative refinement also estimates the local surface orientation. 
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[Light source] ::.. 	y:-C'.20 	Z 	 - 	[ shãi] Spherical 

0.00)  
( 	 0.00, 1.50, 0.00) Irregular 

( 	 0.00, 1.50, 1.00) Irregular 

Figure 7-5: 

The box at the lower left of the tool depicts this orientation. The ellipse- 

and-arrow diagram provide the user with a direct perception of the computed 

values of slant and tilt. The monocular inference depends on the shape of the 

Slant: 12 deg 
Tilt : 350 deg 

2 1 
Figure 7-6: 

specularity. A brief description is given: elongated blob—pressing the right 

mouse button provides the details: The outcome of the monocular inference is 

IMONOC' 	EVIDENCE: Elongated blob INFERENCE: 	: 

Angle: 	86.37 degs 
Size: 	35.05 pixels 
Aspect ratio: 11.45 

Figure 7-7: 

indicated in two ways: 

The long straight line on the arrow-ellipse diagram marks the projection 

of the direction of least curvature (magnitude) onto the (left) image. 

A rough estimate of the absolute ratio of the principal curvatures is written 

as the ratio. 
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Stereo inference provides its own constraints. Their existence is indicated by 

the word constrained. Use of the mouse reveals the estimated values of two of 

STEREO' EVIDENCE: Constrained 	I cases LNOT sphericalrGrapJ I 
Hxx - (9 +- 6) 

HXY - (-ii +- 7) 

Figure 7-8: 

the hessian's elements. The panel marked cases shows the parameters obtained 

if the local surface shape is known. In this case only the cylindrical case is 

relevant. The words not spherical show that the non-spherical test was passed. 

STEREO' EVIDENCE: Constrained 	[çases1 NOT spherical [Iorih1 

r 
Spherical : then CONVEX 	(12 +- 9)E-2m 

Figure 7-9: 

The graph panel initiates a graphtool which depicts, in grey, the region of 

(ri , r2 ) space' in which stereo inference constrains the surface to lie. 

r7(m) 

0.868 

0.434  

0.868 	-0.434 	0 	0.434 	0.868 

-0.434 

-0.868 

Figure 7-10: 

3Recall r1  and r2  are simply the reciprocals of the of principal curvatures k 1  and k2. 
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Applying the combined inference scheme constrains the surface to lie in 

a small zone within the existing region. The lower graph panel creates a 

graphtool that shows this zone in solid black. The word hyperbolic provides 

r2(m) 

0.868 

0.434 

L —=-±------r-----4s?)  I  -0.434 	0 	0.434 	0.868 

-0.434 

_O . 868J 

Figure 7-11: 

a general description of the local shape of the surface. The estimates of the 

principal radii of curvature are also available: they can be either read off the 

graphtool or revealed using the right mouse button. These radii are consis- 

[bMBINED EVIDENCE: Hyperbolic - _- 	-- 	 LGraph ] 

ri : concave (4 +- 2)E-lm 

r2 : Convex (5 +- 3)E-2m 

Figure 7-12: 

tent with the real 3-D surface: the mug has a radius (r2 ) of about 4 cm. The 

other radius of curvature, r1  is estimated to be an order of magnitude larger—

so although technically the surface is locally hyperbolic, it is locally close to 

cylindrical. 

Running the system on the other pair of specularities (number 1), provides 

another example. This time, monocular inference for a circular source fails' 

4A fourfold ambiguity would be obtained in this case. 
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because the slant is too large. Monocular inference for a compact source fails 

as the specularity is not elongated—as indicated by the inscribed ellipse on the 

ellipse-and-arrow diagram. 

Interactive Tool 
Press RIGHT BUTTON for explanation of each panel 

[Table 	[Prunej (Library J dir: picturesItvIscene 

{Maqnify] [Colour] contrast 	 IJJ[Canera Info] 

[Light source) x : 0.30k 	y 	-0.20 	z : 0.00 	[pg] Circle 

REFERENCE 	POINT: Depth : 0.845 	(0.845) 	[1] Matched 

MONOC' 	EVIDENCE: Circular blob 	INFERENCE: 

STEREO' 	EVIDENCE: Constrained 	[çesJ Sphere Test N/A 7raph] 

COMBINED EVIDENCE: 

Slant: 	13 deg 

Tilt : 334 del 

Figure 7-13: 

However, the stereo analysis constrains the allowable (grey) region in (r1 , r2 ) 

space. 

0.258 

0.172 

ri(m) 

172 -0.0861 	 0.0861 	0.172 	0.258 

-0.0861 

-0.172 

Figure 7-14: 
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As the source is circular and the specularity has an aspect ratio around 1, the 

user might suspect that ir, I 12. This would certainly be true if slant were zero. 

Pressing the Cases button reveal the two possible surface interpretation when 

Iril 1r21: locally spherical or hyperbolic (ri =—r2 ). However the parameters 

[asj 

EITHER CONVEX Spherical, (6 +- 4)E-21n 

OR 	Hyperbolic r1--r2 BUT r_j-O 

Figure 7-15: 

accompanying the latter are unavailable because the vertical disparity is too 

small to permit accurate computation. For the same reason the non-spherical 

test could not be applied. In fact the surface is part of the lip of the mug and 

is hyperbolic. 

A few panels on the tool remain to be explained. Camera info when pressed 

Fl 

Focal length: 0.018 in 

Field of view: 227 227 nirad 

Baseline : 	0.150 in 

Vercience: 	175 mrad 

Figure 7-16: 

gives the stereo viewing geometry. At the top of the tool is the black name 

banner. Below that, messages are written to aid the user. Through the library 

Figure 7-17: 

panel new stereo pairs can be selected for inference. The dir panel indicates the 

current directory from which input data is read. The prune panel allows the 
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user to switch the binary images in the boxes at the bottom of the tool into the 

edge maps, pruned of any specular edges. By pressing table the tool goes into 

"auto-pilot" applying the inference scheme to all available specular pairs and 

prints out a table of the results. 

7.3 Results: presentation 

The inference scheme was applied to the set of images shown of figures 7-19-

7-31. These figures also show the results obtained in the form of aconstraint 

graph for each specularity. A constraint graph represents (r1 , r2 ) space. It 

indicates the regions in which the stereo and combined stereo and monocular 

analyses compute the radii of curvature to lie. Also shown on each figure are 

the slant and tilt values and an edge map upon which the detected specularities 

are labelled. Both "real" and "artificial" images were processed: 

• Images of specular surfaces of realistic appearance, artificially generated 

using the IBM CAD body modeller Winsom [95], are shown in figures 7-

19-7-26. These images are useful for verifying the results of the inference 

scheme because: 

- They are noiseless so the scheme can be assessed independently of 

the noise characteristics of any particular imaging device. 

- The position and shape of the light sources, corresponding to each 

specularity, are precisely known and can be easily controlled. 

- The stereo viewing geometry is also precisely known. The same 

geometry—indicated in figure 7-18—applies for all these images. 

- Accurate values of the radii of curvature, extracted from the surface 

models, can be checked against the results obtained. On each (r i , r2 ) 

graph, the principal radii extracted from the model surface are marked 

with a white cross. An indication of the scheme's success is a white 

cross marked in the region it has inferred -'Of course, if either r1  or r2  are 
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0 Camera parameters 
Focal length: 10.000 in 

Field of view: 100 100 inrad 

Baseline : 1.100 in 

Vergence: 105 mrad 

Figure 7-18: Camera parameters for the CAD model generated images. 

infinite (as for cylinders), the white cross cannot be marked. Instead 

a white box is marked at the closest available spot. 

Note: figures 7-23-7-26. do not show the surface markings at which 

depths were estimated. For these images estimates were extracted directly 

from the CAD model. 

• Images of real surfaces, acquired using a stereo camera rig, are shown in 

figures 7-27-7-31. Figure 7-18 shows the camera parameters correspond-

ing to these images. The cameras are as described in chapter 4. The 

curvatures inferred by the scheme are compared with estimates measured 

from the real surfaces. Again these measurements are marked as white 

crosses or boxes on the (r i ,r2 ) graph. 
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Figure 7-19: Top: Stereo-pair of convex ellipsoid (CAD model)—arranged for 
binocular fusion. Centre: Edge map with superimposed, labelled specularity. 
Bottom: The system restricts principal curvatures to the grey region of the 
graph by stereo analysis alone and to the black region by combining stereo and 
monocular analyses. Actual curvatures are indicated by the white cross. 
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Figure 7-20: Top: Stereo-pair of concave ellipsoid (CAD model)—arranged 
for binocular fusion. Centre: Edge map with superimposed, labelled specularity. 
Bottom: The system restricts principal curvatures to the grey region of the 
graph by stereo analysis alone and to the black region by combining stereo and 
monocular analyses. Actual curvatures are indicated by the white cross. 
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Figure 7-21: 	Top: 	Stereo-pair of inner surface of torus (CAD 
model)—arranged for binocular fusion. Centre: Edge map with superimposed, 
labelled specularity. Bottom: The system restricts principal curvatures to the 
grey region of the graph by stereo analysis alone and to the black region by com-
bining stereo and monocular analyses. Actual curvatures are indicated by the 
white cross. 
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Figure 7-22: Top: Stereo-pair of hyperbolic surface (CAD model)—arranged 
for binocular fusion. Centre: Edge map with superimposed, labelled specularity. 
Bottom: The system restricts principal curvatures to the grey region of the 
graph by stereo analysis alone and to the black region by combining stereo and 
monocular analyses. Actual curvatures are indicated by the white cross. 
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-143-a 	 J 
Figure 7-23: Top: Stereo-pair of convex cylinder (depth estimated from CAD 
model)—arranged for binocular fusion. Centre: Edge map with superimposed, 
labelled specularities. Bottom: The system restricts principal curvatures to 
the grey regions of the graphs by stereo analysis alone and to the black re-
gions by combining stereo and monocular analyses. Actual radii of curvature 
are (0.4, oc). Continued over page. 
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Specularity No 3 

o  

51. 

-102 	-51.1 	0 	51.1 	102 

H-102  

Figure 7-23 cont. Convex cylinder. The system restricts principal curvatures to the 
grey regions of the graphs by stereo analysis alone and to the black regions by combining 
stereo and monocular analyses. Actual radii of curvature are (0.4, oo). 
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Figure 7-24: Top: Stereo-pair of concave cylinder (depth estimated from 
CAD model)—arranged for binocular fusion. Centre: Edge map with .superim-
posed, labelled specularilies. Bottom: The system restricts principal curvatures 
to the grey regions of the graphs by stereo analysis alone and to the black re-
gions by combining stereo and monocular analyses. Actual radii of curvature 
are (-0.4 ±cx). Continued over page. 
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Specularity No 3 
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Figure 7-24 cont. Concave cylinder. The system restricts principal curvatures to the 
grey regions of the graphs by stereo analysis alone and to the black regions by combining 
stereo and monocular analyses. Actual radii of curvature are (-0.4, ±oo). 
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Figure 7-25: Top: Stereo-pair of convex ellipsoid (depth estimated from CAD 
model)—arranged for binocular fusion. Centre: Edge map with superimposed, 
labelled specularities. Bottom: The system restricts principal curvatures to 
the grey regions of the graphs by stereo analysis alone and to the black regions 
by combining stereo and monocular analyses. Actual radii of curvature are 
indicated by white crosses. Continued over page. 
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Figure 7-25 cont. Convex ellipsoid. The system restricts principal curvatures to the 
grey regions of the graphs by stereo analysis alone and to the black regions by combining 
stereo and monocular analyses. Actual radii of curvature are indicated by white crosses. 
Continued over page. 
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Figure 7-25 cont. Convex ellipsoid. The system restricts principal curvatures to the 
grey regions of the graphs by stereo analysis alone and to the black regions by combining 
stereo and monocular analyses. Actual radii of curvature are indicated by white crosses. 
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Figure 7-26: lop: Srco-pL7 U] cu7tvez sphere (depth estimated from CAD 
model)—arranged for binocular fusion. Centre: Edge map with superimposed, 
labelled specularities. Bottom: The system restricts principal curvatures to the 
grey regions of the graphs by stereo analysis alone. Monocular analysis fails. 
Actual radii of curvature are indicated by white crosses. Continued over page. 
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Figure 7-26 cont. Convex sphere. The system restricts principal curvatures to the 
grey regions of the graphs by stereo analysis alone. Monocular analysis fails, except 
for specularity No 5, where combining it with stereo restricts curvatures to the black 
regions. Actual radii of curvature are indicated by white crosses. Continued over 
page. 
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Figure 7-26 cont. Convex sphere. The system restricts principal curvatures to the 
grey region of the graph by stereo analysis alone. Monocular analysis fails. Actual radii 
of curvature are indicated by white cross. 
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7.4 Results: evaluation 

The results in figures 7-19-7-31 show the scheme successfully detecting, match-

ing and using specularities to infer curvature information, for a variety of surface 

shapes, at a variety of surface orientations. For these figures the detection and 

matching tasks were not difficult —so the evaluation below chiefly concerns the 

quality of the inferences. Some conditions prove more favourable for making 

inferences, than others, e.g: 

• When the disparity of the specularity between left and right images, rel- 

ative to the gross disparity of the surface, can be accurately measured. 

When the specularity has a shape suitable for monocular inference. 

In such conditions both radii of curvature, r1 , and r2  can often inferred with 

relatively little uncertainty—e.g. to within the black box in the (r i , r2 ) graph 

shown in figures 7-19-7-22. In adverse conditions the scheme's performance de-

grades gracefully—it assigns appropriate uncertainities to the inferred values 

of r1  and r2 , to account for the prevailing uncertainties. This is made pos-

sible by the propagations of uncertainty through the scheme as described in 

chapter 6. For example: 

• There is almost no vertical disparity of the specularity No 1 on the ellipsoid 

in figure 7-25. Thus the uncertainty in its measurement is very large. As 

a result, one of the inferred radii of curvature is assigned a very large 

uncertainty. For this reason the (r i , r2 ) graph contains an elongated black 

line5 . 

5 The switch of direction of the black line at the origin is only due to definition of r 1  
and r2 being such that Ti < 
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• In the same figure, specularity No 2 is the wrong shape to make an monoc-

ular inference: it is neither circular nor sufficiently elongated. In this 

case, stereo analysis alone restricts the curvatures to lie within a region 

of (r i , r2 ) space, depicted in grey on the graph. This is a much weaker 

curvature constraint because a much larger region of (r 1 , r2 ) space is in-

dicated. However, it has the benefit of not being wrong. 

There are uncertainities present in the measurements used for both the monoc-

ular and stereo inferences. Those in stereo measurements produce the most sig-

nificant effect because—as mentioned above—monocular inferences are avoided 

when large uncertainties exist. Table 6-1 on page 170 lists the various un-

certainties in the stereo measurements. Of these, the most significant are the 

uncertainties in of the positions of the specularity in the left and right images. 

The uncertainty assigned to both of these measurements is e as specified on on 

page 162. Consequently the uncertainty assigned to the relative disparity of 

a specularity is approximately one pixel —except for an elongated blob when 

the motion in the direction of elongation is assigned an uncertainty of roughly 

5% of the blob's length. What really matters is the uncertainty of the rela-

tive disparity along the principal directions of curvature (as projected onto the 

image): 

• When the relative disparity significantly exceeds e along both principal 

directions then strong constraints on curvature are obtained. This is the 

case for figures 7-19-7-22 

• When the relative disparity is insignificant in either direction then a large 

uncertainty is obtained along that direction. 

- This is apparent for the following specularities: 

figure 7-25 Nos :6,10, and to a lesser extent for figure 7-25 Nos 1,3,4,8,11. 

- It also occurs for specularities that are elongated along one of the 

principal directions. E.g: figure 7-23, figure 7-24, and figure 7-

30. 
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• When the relative disparity is insignificant in both directions both prin-

cipal radii are highly uncertainty. E.g: figure 7-25:Nos 9,10. 

When the source is circular, slant is zero and a circular specularity has been 

detected the monocular inference Jr1j - 1r21 is made. Specularity No 5 on the 

sphere in 7-26 provides an example. It is also instructive to apply the local 

spherical interpretation. Note that: 

• The most precise estimates or spherical radius are obtained at small slants, 

e.g: figure 7-26 specularity No 5 the radius = 0.6 ± 0.7 m, c.f. the actual 

value: 0.5 m. 

• At large slants the shape of the specularities distort so that no monocular 

inference can be made. 

• Despite the fact that the relative disparity of specularity No 5 in fig-

ure 7-26 is entirely in the horizontal direction, the local spherical inter-

pretation still functions. This is a consequence of its robust, least-squares 

formulation—equation (5.28). 
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Figure 7-27: Top: Real stereo-pair of a /ah bail —ur;a;rd fur binocular 
fusion. Centre: Edge map with superimposed, labelled specularities. Bottom: 
Stereo analysis alone restricts principal curvatures to the grey regions of the 
graph. Monocular evidence correctly indicates principal curvatures of similar 
magnitude. The locally spherical interpretation then restricts the curvatures to 
the black regions. Actual radii of curvature (both "-j  12 cm) are indicated by a 
white cross. 
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Figure 7-28: Top: Real stereo-pair of a beach ball—arranged for binocular 
fusion. Centre: Edge map with superimposed, labelled specularities. Bottom: 
The system restricts principal curvatures to the grey regions of the graph by 
stereo analysis alone. Monocular analysis fails. Actual radii of curvature (both 

12 cm) are indicated by a white cross. 
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Figure 7-29: Top: Real stereo-pair of a beach ball—arranged for binocular 
fusion. Centre: Edge map with superimposed, labelled specularities. Bottom: 
The system restricts principal curvatures to the grey regions of the graph by 
stereo analysis alone. Monocular analysis fails. Actual radii of curvature (both 

12 cm) are indicated by a white cross. 
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Figure 7-30: Top: Real stereo-pair of a metal waste basket—arranged for 
binocular fusion. Centre: Edge map with superimposed, labelled specularities. 
Bottom: The system restricts principal curvatures to the grey region of the 
graph by stereo analysis alone and to the black region by combining stereo and 
monocular analyses. Actual radii of curvature are (13.5cm, ±co), i.e. locally 
cylindrical. 
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Figure 7-31: Top: Real stereo-pair of a cluttered scene—arranged for binoc-
ular fusion. Mug has a 4  cm radius. Centre: Edge map with superimposed, 
labelled specularities. Bottom: The system restricts principal curvatures to 
the grey region of the graphs by stereo analysis alone and to the black region 
by combining stereo and monocular analyses. For specularity No 1 monocular 
analysis failed. 
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Real images 

Figures 7-27-7-29 show the curvature inferred frm three stereo-pairs of a 

beach ball. In each figure the specularity lies at a different surface orientation. 

The depth is estimated at the nearest available point on the border of the ball's 

white logo-band. The stereo inference made at each orientation is similar to 

that made from the artificial sphere: 

• For figure 7-27 slant is zero and so the (ri , r2 ) graph 	resembles that 

at specularity No 5 in figure 7-26. 

For figure 7-28 and figure 7-29 the (r1 , r2 ) graph resembles that at spec-

ularities No 4 in figure 7-26. 

For the real images the relative disparity is more certain than for the artificial 

ones. Consequently the relative uncertainties reported for the local spherical 

interpretations are also less. However, the monocular inferences made from the 

real images are worse than for the artificial ones. The monocular inference In I 
1r21 can be made only where slant is zero, i.e. for the specularity in figure 7-27. 

Figure 7-30 shows a stereo pair of a convex cylindrical surface. The depth 

estimate is obtained from a point on the cross painted on the surface close to the 

elongated specularity. This specularity has a large horizontal relative disparity 

between the left and right images. Consequently the cylinder's radius 13.5 cm 

is accurately inferred to be 16 ± 4 cm. An infinite "radius" of curvature in 

the cylinder's axial direction is also correctly inferred. However, because the 

uncertainty in the vertical disparity is very large the inference has a very large 

uncertainty associated with it. This results in the long black line on the (ni , r2) 

graph, resembling that for specularity No 4 on the convex cylinder in figure 7-

23). 

Figure 7-31 shows a stereo pair of a cluttered scene containing a mug of 

radius 4 cm. For both specularities lying on the mug, the depth was estimated 

from near-by points on surface pattern. At the elongated specularity (No 2) 

one principal radius is correctly inferred to be 5 ± 3 cm. However, it appears 
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that the mug is not exactly cylindrical—but has large finite concave radius 

of curvature along its axial direction. A rigorous evaluation of this finding is 

not possible—without a special measuring device a large and an infinite radii 

of curvature can be indistinguishable: Note however, some doubt should be 

placed on this particular inference because the specularity covers such a large 

distance on the surface. It is likely that the local-surface-patch-assumption is 

being violated. At the other specularity (No 1) the monocular inference fails. 

and the only useful information is provided by the constraint graph. 



Chapter 8 
F' 

Conclusions and scope for further 

work 

This thesis has shown that specular reflections can be successfully detected and 

used to infer surface curvature. The main conclusions that have been drawn are'  

detailed below, with some suggestions for further research. From the review óf 

surface reflection in chapter 2 the following conclusions were drawn: 

• Image irradiance is related to local surface orientation through the local 

reflectance map. The form of the reflectance map depends on the surface 

material and both the directional and spatial distribution of illumination. 

• In general reflectance maps are very complicated functions. 

• Perfectly matt surfaces have Lambertian reflectance maps— which are 

much simpler to handle. 

• Theory and experiment strongly suggest that the reflectance maps of real 

surfaces are roughly Lambertian—except in regions corresponding to spec-

ular reflection. 

• An upper bound (30) on the dynamic range of Lambertian-like regions 

of real reflectance maps can be established—and later exploited to detect 

specularities. This is achieved by considering the two independent factors: 

219 
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realistic distributions of illumination which account for a factor of 3, and 

realistic variations in (effective) albedo which a<count for a factor of 10. 

From the specularity detector developed—in chapter 4—the following conclu-

sions were drawn: 

. Of the three tests for specularity—based on the Lambertian constraints—

two proved usefully reliable: the retinex-based and cylinder tests. The 

third: the local contrast test is only marginally useful. 

• A useful line of work would be the generalisation of the cylinder test, so 

that its initial assumption—that the surface is approximately cylindrical—

can be relaxed. 

• The retinex-based test could be made more secure by developing a retinex 

process which operates sensibly in the rare adverse circumstances men-

tioned in chapter 4. 

• The results show that the scheme used to combine and propagate the 

evidence of the three tests, delivers useful descriptions of the prominent 

specularities in each image. 

• The current method of propagation might be made more robust by devel-

oping a method based on function-fitting. 

Methods might also be developed to provide more comprehensive descrip-

tions of the shapes of specular blobs that are detected. 

From the work on shape-from-specularity developed and described—in chap-

ters 6 and 7—the following conclusions can be drawn: 

• Both monocular and stereoscopic cues present at specularities can be used 

to partially infer the local curvature. 

• The new formulation of the stereoscopic analysis clarifies aspects of Blake's 

original (linearised approximate) scheme. 
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• By consistent treatment of the uncertainties occurring in the stereoscopic 

and monocular cues, the uncertainity of the inferred curvature can be 

assigned. It would be interesting to see how quantitative error bounds 

would change if a more principled error combination method [33,931 was 

used, in place of the current gaussian based system. 

• Stereoscopic and monocular analysis of specularities are complementary 

and can be combined to improve the quality of the inferred curvature. 

Often local curvature can be inferred in full. Results with assigned error 

bounds were obtained by applying the combined analysis to a variety of 

test images. 

• The incorporation of the (fourfold ambiguous) monocular analysis for a 

circular source into the inference scheme would be a useful extension. 

Some interesting questions remain: 

• Is it practical to use vertical disparity as an additional cue for detecting 

specularities? Indeed, is it used by human vision? 

• Does the mathematical framework for machine inference of surface cur-

vature have its parallel in human vision? For example, is the predicted 

fourfold ambiguity actually perceived? 

• How can the inferences obtained from specularities be integrated with 

other sources of visual information? Is the scheme to do this outlined in 

chapter 1 feasible? 

• Does the shape inference scheme easily extend to cope with extended 

viewer motion? Stereoscopic analysis is after all a special case of motion 

analysis. 
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Appendix A 

Geometrical and Radiometrical 

concepts 

A.1 Introduction 

In 1977 the concepts of the geometrical specification of surface reflectance were 

rationalised and made into a single unified system [85]. This specification is in 

terms of both incident and reflected beam geometries. The standard nomencla-

ture and symbols introduced by this system are adhered to within this thesis, 

wherever they prove convenient. 

This appendix provides their precise definitions—as promised in section 2.3.2. 

The concepts are defined in sequence, with the later definitions depending on 

those that precede them. The most important concepts with respect to this the-

sis are the bidirectional reflectance distribution function, the incident radiance 

distribution, the reflectance map and the image irradiance equation. 

A.1.1 Radiometrical concepts 

The polar coordinate system shown in figure A–i is used to define directions 

within the hemisphere above a surface point, 0. The pair of angles (0, q) 

231 



Appendix A. Geometrical and Radiometrical concepts 	 232 

FA 

Figure A-i: A polar coordinate system, is used to define an arbitrary direc-

tion (9, 4) with respect to the local surface normal ñ. 9 is the polar angle and 

0 is the angle of azimuth. 

defines an arbitrary direction with respect to the local surface normal ñ. 9 is 

the polar angle and 0 the angle of azimuth relative to a fixed x-axis. 

A beam emanating from point 0 to form an area A on the hemisphere that 

lies at unit distance above 0 occupies a solid angle 

=JL sin od9 
	

(A.l) 

as marked in figure A-2. Solid angle is measured in steradians (sr). 

The power propagated by a beam of light is called radiant flux and denoted 

by . Radiant flux is measured in watts (W). 

Irradiance, denoted E is the density of flux incident upon a surface. It has 

units Wm -'. Image irradiance is the quantity measured by a camera. Image 

irradiance is commonly referred to as intensity or brightness. 

Radiance, denoted L, is defined with respect to an element of surface, and 

an arbitrary direction in the hemisphere above it. It is the flux propagated 
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Figure A-2: The solid angle occupied by a beam is defined in terms of an 

integral over an element of area A on the hemisphere at unit distance. 

along the direction per unit solid angle per unit foreshortened surface area. So 

it has units Wsr'm 2 . The radiance reflected by a surface L r  is an important 

quantity: it is proportional to the image irradiance measured by a camera—see 

section A.1.3. 

Directional quantities in radiometry are denoted using the infinitesimal no-

tation. This is in keeping with the notion that a. ray in any single direction 

occupies only an infinitesimal solid angle dw. So for example the reflected ra-

diance along an arbitrary direction is denoted dLr . 

Integration over a solid angle w involves the infinitesimal notation. For a 

general quantity X the integration in terms of the polar coordinates is: 

J Xdw = j f X sin OdOdç/. 	 (A.2) 

A.1.2 The BRDF and reflectance 

The bi-directional reflectance distribution function (BRDF), denoted f,. d 

scribes, for a given surface the ratio of reflected radiance dLr  along an arbitrary 
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N 

Figure A-3: The BRDF is defined in terms of incident and reflected directions. 

These directions are defined using the local polar coordinate system. They are. 

respectively (O s , çb) and (Or, q5r). 

direction to the amount of incident irradiance dE1 along another arbitrary di-

rection: i.e. 

f(O 4; Or , 4'r) = dLr (Oi , 4; 0r r; Ej/dE,(02 , c) 	(A.3) 

where (Os , sq5.) and (9r,  4) represent the directions of incidence and reflection 

respectively'. Figure A-3 helps to clarify the geometry of this definition. 

The definition (A.3) is applicable wherever the interaction of light with the 

surface material is such that the scattering properties are locally uniform and 

isotropic. In broad terms this means all surfaces that do not change their re-

flective properties by merely rotating them. A few unusual materials such as 

diffraction gratings, iridescent feathers and special minerals (e.g. tiger eye) are 

not uniformly isotropic. These materials cannot be specified by a BRDF—in 

1 subscripts i and r denote the incident and reflected quantities, respectively. 
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terms of this thesis diffuse reflections from them might be mistaken for specu-

larities. 

The BRDF permits a precise expression for reflectance of a material in terms 

of arbitrary beam geometries. Reflectance is the ratio of reflected to incident 

flux. It is defined [85] as: 

CUr ;  L 1) = d4r - fwr J.,, fr(Oi, gb; 0,-, 4 r)Lj(Oj, 4j) cos 0, cos Odwdw,. 

- f,. L(0, 4) cos O,dw 	
(A.4) 

where L(0, 5) represents the directional distribution of the incident radiance. 

For example it might represent the light from the whole sky. Equation (A.4) 

makes it clear that the ratio of reflected to incident flux is not a simple constant 

of the surface material—it does indeed depend on the illumination conditions, 

r.e. section 2.2.4. 

A.1.3 Image irradiance 

Horn and Sjoberg [61] derive an expression for image irradiance the radio-

metrical quantity measured by a camera. The expression is derived using the 

radiometrical terms defined above. For a camera with focal length f and aper-

ture diameter d, image irradiance Ep at a small area on the image P, is: 

' '2 

Ep 	 4 = acL r, a 	
7r (d\ 

= lj) cos r 	 (A.5) 

where L r  is the reflected radiance passing on to area P from the scene, and 

is the angle between the camera's optical axis and the image forming light 

beam—as shown in figure A-4. 

The derivation of (A.5) involves the following assumptions 

. that the camera is properly focused. 

. that there is no vignetting of the aperture. 

. that the lens diameter is small relative to the viewing distance. 
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Figure A-4: Image formation for a simple camera. Light reflected by a surface 

enters the lens aperture and is focused on to the image plane. The lens has 

diameter d, and focal length f. i'  is the angle between the image forming beam 

and the optical axis. 

In most practical circumstances equation (A.5) provides a good approximation 

to image irradiance. Note than the camera's sensitivity is constant for a given 

image location, P, but is non-uniform over the image. This non-uniformity is 

due to the cos 4  'y  off-axis term. Table A—i shows that for fields of view less than 

twenty degrees the sensitivity varies by less than ten percent. For larger fields 

of view the camera should be calibrated to nullify the effects of these off-axis 

variations. 

70  cos 4 7 

o 1.00 

5 0.98 

10 0.94 

15 10.87 

20 0.78 

30 0.56 

Table A—i: The cos 4  7-attenuation for small off-axis angles . 
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A.1.4 Reflected radiance 

Equation (A.5) shows that image irradiance, E, is proportional to reflected 

radiance, L,.. The expression for L, in terms of the BRDF [85] is: 

Lr = 4 frL j  cos Odw 1 , 	 (A.6) 

which when expressed in terms of the local polar coordinates (via (A.2)) be-

comes: 

ir
ir  

L,.(9,., (I),.) 
= Tr j fr(Oi , çb; 8,., q,.)L(8 1 , 0j ) cos 8, sin 8d81d0. 	(A.7) 

This expression predicts the image irradiance measured by a camera along direc-

tion of reflection (8,., cf',.), from the BRDF, fr and the incident radiance distribu-

tion L 8 . The BRDF contains only information about the reflectance properties 

of the material, while L 1  describes only the illumination falling on the surface. 

Thus equations (A.5) and (A.7) provide the complete geometrical model of the 

image formation of a surface point imaged by a camera. The advantage of 

this model is that it leaves nothing unspecified—unlike the ray optics model of 

section 2.2. 

A.1.5 A perfectly diffuse (Lambertian) surface 

The simple special case of a perfectly diffuse, or Lambertian surface is of partic-

ular importance in this thesis. It is used to develop an approach for detecting 

specularities. 

In this special case all the light is scattered diffusely, resulting in an isotropic 

reflected radiance distribution—regardless of the form of the illumination. In 

terms of equation (A.7) this means that Lr, is a constant over all directions (8,., 

This corresponds again to the situation shown by figure 2-3. It can be shown [85] 

from equation (A.7) that this case can only occur if f, is a constant (de- 
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noted f,,4. For a lossless2  Lambertian surface it transpires that 

fr,d(Oi, &; 9r 'f-'r) = 1/7, 	 (A.8) 

and thus (via (A.6)) the reflected radiance is 

L,d = 	LcosOdw 1 . 	 (A.9) 
IT L 

This expression is a generalisation of the form of Lambert's cosine law, previ-

ously discussed in section 2.2.3—for the single incident ray L 1 (O, qj) was only 

non-zero along one direction. Thus L r  was simply proportional to cos 0. And 

this in turn was proportional to the image irradiance (via (A.5)). 

For a surface that is not lossless but still an isotropic scatterer, the reflected 

radiance is 

L r d = Li L, cos Odw,
IT   

where albedo Pd is the ratio of the reflected flux to that which is incident. For 

diffuse reflectors albedo is equivalent to reflectance. For other surfaces the more 

complicated expression (A.4) is needed to define reflectance. Note: albedo is 

defined only for isotropic scatterers. 

A.1.6 A perfectly specular surface 

The incident flux along any direction is reflected by a perfectly specular surface 

along the corresponding direction of mirror reflection. In terms of radiometric 

directions, this means that if (Or, q,.) is the direction of reflection then the 

incident direction was (Gd , cbt) = (Or, Or + IT). 

For a perfect lossless specular surface the reflected radiance is simply 

Lr,is(Or, Or) = L(O, 4 + IT) 	 (A.11) 

2Lossless surfaces reflect all the incident light, absorbing none. 
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and it can be shown [85] that the BRDF must be expressed as a product of 

Dirac delta functions: 

fr,s(Oi,4i;0r,ctr) = 8(O - 	- 0,- +ir)/(sin9 cos Oj. 	(A.12) 

Real surfaces, however, are never totally lossless. For an optically smooth 

surface this means that the expression (A.11) must be modified to: 

L,-, 3  = F(0)L1 (8,, çb + it-), 	 (A.13) 

where F(8) is the Fresnel attenuation term, introduced in section 2.2.2. The 

corresponding expression for the BRDF is 

f,-, 3(O, 4'i; Or, 4',-) = F(O1)5(9 - 	- 0,- + ir)/(sinO 1  cos O). 	(A.14) 

In actuality, real specular surfaces spread the reflected light into a narrow beam, 

rather than a single pulse as is suggested by the delta functions in (A.14). 

The width of this beam is determined by properties of the surface material. 

Section 2.4 discusses this in more detail. 

A.2 Scene radiance and reflectance maps 

A..2.1 Introduction 

Up to now the incident and reflected radiance distributions have been specified 

with respect to a locally defined direction—that of the surface normal ñ. So 

expression (A.7) is only in a useful form for local analysis. A new coordinate sys-

tem is required in order to investigate the dependence of reflected radiance, L,., 

on the direction of ii. Horn and Sjoberg [61] coined the term scene radiance 

for L,- expressed in terms of the normal direction. The term reflectance map is 

also used—however this usually refers to the case where the parameters (p, q) 

are used to specify the normal direction. The definition of direction (p, q) is 

given in section A.2.3. As L r  is proportional to the image irradiance, via (A5), 
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Figure A-5: The new polar coordinate system in which an arbitrary direction 

(a,,6) is defined with respect to the view vector, a is the polar angle and /3 is 

the angle of azimuth. 

the reflectance map is also. This relation is known as the image irradiance 

equation: 

Ep = aR(ñ). 	 (A.15) 

This is equation (2.5). 

A.2.2 The viewer-centred coordinate system 

Horn and Sjoberg [61] introduced a viewer centred coordinate system—as shown 

in figure A-5. They did this so that reflected radiance could be expressed in 

terms of the surface normal direction. In this system an arbitrary direction 

(a, /3) is defined with respect to the view vector, a is the polar angle and 0 is 

the angle of azimuth. The surface normal direction is denoted as (a s , i3), and 
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r 	
,-. ------------' 

Figure A-6: Scene radiance depends on the direction of the local surface nor-

mat vector ñ, with respect to the view vector. Its direction is defined as (as , /3). 

(a",8.) is an arbitrary direction of incidence. 
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an arbitrary direction of incidence is denoted as (os,, f3)3.  In this new system 

the incident and reflected irradiance distribution are parameterised as L(a3 , /3) 

and L r(an, /3) respectively. Figure A-6 shows the geometry. Now (A.7) can be 

rewritten to give an expression for the-scene radiance or the reflectance map: 

R(ñ) = L(a, 13n) = J j fr(Oi, çb;  Or, cbr)Li(os, ) cos O sin OdOdq51 . 

(A.16) 

The integration is still over all directions of incidence but the source direc-

tion (oc,, 13) must be calculated for each of these directions. This can be done 

using the trigonometrical relations provided by Horn and Sjoberg [61]. These 

relations relate (c, /3) and (an , j9) to (Of , 4j) and (Or, çbr). 

In the case of a Lambertian surface, f, is constant, see section A.1.5 so that 

a Lambertian reflectance map RL is: 

RL(ñ) = 	I [Lj(a3,fl3) cos Oj sin  OjdOjdct., 	(A.17) 
ir J-Jo 

or more compactly: 

RL(n) = 	I LcosO 1dw. 	 (A.18) 
7r J c&,8  

A.2.3 Partial derivatives of smooth surfaces, (p, q) 

Scene radiance is reflected radiance expressed as a function of the local surface 

normal direction. The distribution of scene radiance is called a reflectance map, 

strictly,4  only when the normal direction is specified by the partial derivatives 

of the surface (p, q). Definitions of p and q ares given in section 5.1. Horn and 

Sjoberg [61] provide the an expression for (p, q) in terms of the  

(p, q) = (cos /3,, tan a,,, - sin 13,, tan a,,). 	 (A.19) 

'This thesis introduces the notation (a,/3) to avoid any unnecessary confusion. 

Horn and Sjoberg do not use this notation. In their notation (9,,, c5,,)  

and (98 ,c53 ) = (a3 , /34. 

'Reflectance map is also used loosely to mean scene radiance in this thesis. 
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Figure A-4 shows the particular (x, y) coordinates used to obtain this expres-

sion. Figure 2-7 (page 19) shows part of a typical reflectance map, R(p, q). 

It represents a directionally lit surface that reflects light both diffusely and 

specularly. 



Appendix B 

The Fresnel relations 

The Fresnel relations concern the fraction, F, of incident flux that is reflected 

by an optically smooth surface of a dielectric or a metal. This appendix gives 

these relations. These relations demonstrate—as was indicated in section 2.4— - 

that it is not simple to predict the brightness of a specularity. F varies with 

both the angle of incidence and the polarisation of incident light. FS is used to 

denote F for plane polarised incident light with its plane of polarisation normal 

to the plane of incidence. FD denotes the orthogonal component, i.e. when the 

two planes are parallel. For light incident at angle O, as shown in figure 2-2, 

then (quoted from [94]) 

F5(O,)
= 

a2  + b 2  - 2a cos Oi + cos2  9 	
(B.1)  

a2 + b2  + 2a cos 8 + cos2  8' 

FD(O1) = F(81) a
2  + b2  - 2a sin 9 tan 8 + sin2  O tan2 	

(B.2) 
a2  + b2  + 2a sin 8 tan 8 + sin  0,  tan2  O 

where 

2a2 = [(,2 - k2  - sin2 9)2 + 4772k2]4  + (2 - k 2  - sin2  e1), 	 (B.3) 

and 

2b2 = [( 2 - k 2  - sin2 9)2  +4 2k2]4 - (2 - k2  - sin2  9.). 	(B.4) 

The optical constants of the material are described by the the complex index 

of refraction q = 4 + ilc, in which the quantities are wavelength dependent. 
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Appendix C 

Choosing a threshold for the 

retinex-based test 

C.1 Introduction 

In section 4.4.3 a six percent local contrast threshold is chosen for the retinex 

process. This choice is only appropriate for images not corrupted by noise. In 

all practical circumstances noise in the imaging process superimposes random 

gradients into the image irradiance signal—so applying the threshold to these 

noise corrupted gradients produces unreliable results. The thresholding oper-

ation can be made noise resistant if the signal is first smoothed. Smoothing 

not only counteracts the effects of noise, it also reduces the size of the genuine 

irradiance gradients in the signal (see figure 4-3, page 87). Consequently the 

value of the threshold ought to be reduced to compensate for this. As different 

imaging processes incur different noise levels they require different amounts of 

smoothing. In each case, the appropriate reduction in the threshold value should 

be determined by the amount of smoothing applied. A practical suggestion of 

how an appropriate threshold can be chosen is made below. 
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(b). 

t=o 

t=t;1 

RA 

Figure C—i: (a) A smoothed signal I a  creates a wide pulse of smaller gradients. 

(b) In this case, the height of the reconstructed step varies with value oft. 
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C.2 Choosing a threshold for a smoothed im- 

C.2.1 The noiseless case—no smoothing 

In this case the threshold operation is made clearer by considering the logarith-

mic signal: 1 = log g. This simplifies the expression (4.3) to a simple difference 

threshold: i.e. the threshold is exceeded if 

Il(xi) 
- I(X2)1 ~! h, 	 (C.i) 

where h corresponds to a 6% local contrast (h = I log 1.06 1). This is equivalent 

to thresholding the gradient 1' of the signal 1: i.e. the threshold is exceeded if 

11 , 1 ~! t1 , 	 (C.2) 

where t 1  corresponds to a gradient produced by the step of height h—see fig-

ure 4-3 (a) and (c). Using this threshold the retinex will preserve all steps in 

the signal exceeding the 6% local contrast----see figure C.1 (b). It will remove 

illumination variations that produce smaller contrasts. 

C.2.2 The noisy case —smoothed images 

As figure 4-3 (b) and (d) show smoothing widens the pulse of gradients corre-

sponding to the step of height h. As a consequence, the pulse peaks at a lower 

gradient, t2—so the step would be missed if a threshold t 1  were used. For a 

smoothed signal l the threshold value must be reduced to t i 2  before the 

retinex starts to preserve the step. In order to avoid unduly contracting the 

dynamic range of the signal, the retinex ought to preserve as much of the step 

as possible. In this way the dynamic range test (equation (4.2)) maintains its 

potential for detecting specularities. Figure C.1 shows how much of the step 

height is preserved for various values of t: 
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• if t = t2  only a tiny step height is preserved—so dynamic range is severely 

contracted. 

. if i = 0 the entire step height h is preserved. However in this case the 

retinex will not fulfill its task of removing the illumination variations. 

A compromise can be made by choosing a value of t = t3  : 0 < t3 < t2—see 

figure C.1. In this way a large part of the step height can be preserved while the 

illumination variations are eliminated. An appropriate value of t3  can be chosen 

empirically to suit the circumstances. The appropriate value will depend on the 

amount of smoothing applied. A convenient way to specify t3  for an arbitrary 

amount of smoothing is given below: 

Smooth by convolving the image signal 1 with a 2-D gaussian G (l = 

® 1). The width of the gaussian o determines the amount of smoothing:: 

the larger o the greater the smoothing. A value of u just large enough to 

counteract the effects of the noise should be chosen. Using a width any 

larger unduly reduces the accuracy with which large gradients [24] can be 

located. 

C. 
Select a threshold t3  corresponding to the gradient, 1', at distance d from 

the peak due to the step—as shown in figure C.1 (a). By specifying d in 

units of o an appropriate value of t 3  can be selected when an arbitrary 

amount of smoothing is applied. 

The results in this thesis were obtained using parameters c = 1 pixel and a 

value of t3  at distance d.= lo. 



Appendix D 

Extracting profiles for the local tests 

D.1 Introduction 

This appendix describes the method used to extract, profiles along which the 

local tests can be applied. These are the profiles that were discussed in sec-

tion 4.5.3. Figure 4-5 (page 93) depicts an example of one. Each such profile 

is specified completely by 

The image location of the local maximum that it intersects. 

Its direction in the image. As indicated in figure 4-5 the appropriate 

direction is perpendicular to a spine of maxima contained by an elongated 

blob, or radially through the maximum of a compact blob. 

From this specification -each profile can be extracted, by starting at the max-

imurn and tracking in a straight line through the image in the two opposite 

directions. This is shown in figure D-1. So the extraction of profiles can be 

achieved in three stages: 

Locating each local maximum. 

Calculating the appropriate directions. 
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(a) 

Spine 

(b) 

(c) 	 E(X) 

distance x> 

Figure D-1: Profiles are extracted by tracking in the appropriate opposite 

directions, starting at the local maximum. (a) For a blob containing a spine the 

appropriate directions are along its perpendicular. (b) For a blob containing a 

single maximum, radial directions are tracked. (c) A typical profile extracted. 
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3. Tracking through the image along those directions to extract the profile. 

Only profiles that produce significant edges will be considered here'. These 

edges correspond to the borders of the blobs depicted in figure 4-5. An edge 

detector, the Canny operator [24] is used to mark the locations of edges in 

the image. This operator also provides an estimate of the direction of greatest 

ascent' at each edge location. Both the location and direction of the edges is 

used to initiate the search for appropriate profiles along which to apply the 

local tests. This is done as follows. From each edge location a straight path 

is followed through the image in the direction of greatest ascent —see figure 4-

6 (a) (page 95). If the next edge location encountered along this path has a 

direction (of greatest ascent) approximately opposite to the path's direction (as 

in figure 4-6 (b)) then the profile along the path is suitable for the local tests. 

The profile's specification consists of the path's direction and the location of 

the maximum signal along the path. 

By itself, this method often fails to extract profiles through many of the 

local maxima with spines. This is likely to occur when image noise corrupts 

the edge data. When this happens some of the edges surrounding a blob may 

be missing or the edge direction information may be poor. The method can be 

made noise-resistant by a slight modification: the single path initiated at each 

edge location is replaced by a narrow beam. Each beam, contains a set of paths 

centred about the original path direction—as shown in figure 4-7 (page 96). For 

the images shown in this thesis, it was found that a beam of width 10 degrees 

provided adequate noise resistance. In noiser circumstances a wider beam may 

be necessary. In general the narrowest beam that the noise-level permits should 

be used. In this way the number of paths that need to be tracked is kept to a 

minimum, so that the method is not unduly slow. 

'See section 4.5.3 for reasons why. 

2 Greatest ascent in the image irradiance signal. 
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cKI 
athl 	Terminating 

edge point 

OP 

Edge 	 .1 
Figure D-2: A path with direction q5p is terminated by an edge that has a 

direction of greatest ascent OT- 

D.2 Selecting profiles from paths 

Often more than one path intercepts a given local maximum. This is especially 

true when beams are used—as described above. Rather than extracting every 

profile along these paths, the most appropriate can be selected. This is done by 

considering the direction Op of each path that intercepts the local maximum. 

The path that is terminated by an edge in the 'most opposite' direction is chosen. 

The profile is extracted along this path. More precisely the path selected is that 

which minimises 

	

7r—IP--TI, 
	 (Di.) 

where 4T  is the direction of greatest ascent of the terminating edge—as shown 

in figure D-2. 

Another consideration should be made choosing the path: any profile con-

taming more than one local shading maxima is unsuitable for applying the 

local tests—and should be discounted. However, because noise often corrupts 

the image signal and creates spurious local maxima, additional care is needed. 
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Genuine shading maxima can be identified if the signal is smoothed before ex-

tracting the profile. This smoothing can be achieved'by convolving the image 

with an appropriate gaussian—see appendix C. But smoothing, distorts the 

characteristic specular features that the local tests are looking for—i.e. local 

contrasts are reduced and sharp peaks are flattened. For this reason it is best 

to use the smooth signal for locating the local maxima, and the unsmoothed 

signal for extracting the profiles to which the test are applied. 

It should be noted that other methods for identifying local maxima in im-

ages exist—notably Haralick's [51]. There is scope for improving the method 

described above by incorporating the more formal ideas of scale and smoothing 

that these other methods provide. 



Appendix E 

Derivation of the upper bound for the 

cylinder test 

E.1 Introduction 

In this appendix the upper bound U, on the second:derivative of image irradi-

ance at the peak in a profile is derived. The expression obtained for U is quoted 

in the discussion of the cylinder test in section 4.4.5. The derivation is in two 

parts: 

1. deriving the upper bound corresponding to a profile through a whole cylin-

der. 

2. evaluating the bound for an arbitrary portion of a cylinder. 
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- 	 II 

r 

Figure E-1: A cross-section through a cylindrical surface, with radius r. View-

ing is along the vector . The surface is lit along the vector L. The local surface 

normal at an arbitrary point along the cross-section is 11. 
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E.2 Derivation for a whole cylinder 

Here, an image irradiance profile corresponding to a cross-section through a 

Lambertian cylinder is considered. As shown in figure E—1, the cross-section 

is taken in, a direction perpendicular to the cylinder's axis—so that the profile 

captures the most rapid shading variations—in accordance with the principle 

discussed in section 4.5.3. x and y are image coordinates under parallel projec-

tion while z is depth. The view vector 1V is as shown. In general V can lie out 

of the plane of the profile (the x-z plane). However as Lambertian shading is 

the same for all V—it is convenient to choose it as shown. The local surface 

normal il, at an arbitrary point along the profile has components: 

11 = (sin O,O, cos O), 	 (Ed) 

where 0 is the angle shown. The direction of the illumination' is specified by 

vector 1,. In general £ can lie out of the x-z plane, so it is represented as: 

1 =(y ,+r2)_(rsin Op, yp , rcos Op) , 	 (E.2) 

where r is the radius of the cylinder and length yp and angle Op are as shown 

in figure E-1. 

The collimated-plus-ambient illumination model assumed in section 4.5.5 

results in an image irradiance equation along the Lambertian profile described 

by: 

E(x) = Emar[A+(l —A)max(0,ñ.L)]. 	 (E.3) 

This is obtained by combining the expressions (4.1) and (18). Again, E is image 

irradiance, A is the constant ambient term (A: 0 < A < 1, typically A = 0.3). 

Emaz is the maximum value of E produced by the homogeneous Lambertian 

surface. For the purposes of deriving the upper bound on the second derivative 

'The assumption of a directional illumination is discussed in section 4.5.5. 
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at the peak, only the image irradiance signal near the peak need be considered. 

Thus (E.3) simplifies to 

E(x) = Emaz[A + (1 - Á)ñ U. 	 (E.4) 

The dot product: 

ii. L = (y+ r2)_r  cos(O - Op), 	 (E.5) 

derived from (E.1) and (E.2), is substituted into (E.4) to obtain: 

E(x) = Emax [A + (1 - A)(y + r2)_rcos(O - Op)]. 	(E.6) 

The second derivative of E at an arbitrary point x along the profile is obtained 

using the chain rule: 

&Ed?E (do) 2
dE&9

(E.7)
=-- 

 

and the relationship between x and 8: 

x = rsinO. 	 (E.8) 

The various terms in (E.7) are easily shown to be: 

dO 	1 
TX r cos O' 	 (E.9) 

d20 	tan  
dx 2  - r2cos20' 	 (E.10) 

dE 

	

Emaj(1 - A)(y, + r2)_rsin(O — Op), 	(E.11)dO  

Emax(1 - A)(y + r2)- 2 r 	- Op). 	(E.12) 

So that: 

I cos(O - Op) + sin(O — Op) tanO 
= Emar(1 — A)r(y + r2) 	

r2  cos2  o 	). (E.13) 

At the profile's peak, 8 = Op and x = Xp, so: 

	

I&E1dx 2 I = 	= Emax (1 - A)r(y p  + r2)_/(r  COS  Op)2, 	
(E 14) 

= Emax(1 — A)r(y, + r2)_/fr2 - 4). 
This expression is maximum when yp = 0 and A = 0. So the upper bound on 

I&E1dx 2 1 at the peak xp in a profile through a Lambertian cylinder of radius 

r is: 
E(xp) 

r2 — X2 	 (E.15) 
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(a) 

> 
I 	 0 	Zp 

X 

(b) 

.4- 	 2r 	 MP 

Figure E-2: (a;) An example of an image irradiance profile corresponding to 

a portion of the cross-section through a Lambertian cylinder (b). 

E.3 Evaluating the upper bound for an arbi-

trary portion of a cylinder 

The cylinder test applies not only to a whole cylinder but also to smaller por-

tions. Consequently, the upper bound (E.15) is not directly applicable, because 

the values of r and Xp cannot be measured from a profile. However the upper 

bound can be extended so that it is specified using parameters that can be 

measured from a profile. These parameters are the distances from the peak to 

the two flanking edges, r1  and r2  - as shown in figure E-2. The upper bound 

is extended by considering the largest value it can assume with respect to Xp 
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and r. From figure E-2 it can be seen that r1  + r2 	2r so that Xp is thus 

constrained: 

fr - IxpI ~: rnin(ri ,r2 ). 	 (E.16) 

So the upper bound (E.15) is largest when 

Xp = r - min(ri ,r2 ). 	 (E.17) 

In this case the upper bound can be expressed as 

E(XP) 	
(E.18) 

min(r1 , r2 )[2r - min(ri , r2 )] 

Again, from figure E-2 it can be seen that this upper bound is a maximum 

value, U, when 2r = r1  + r2 , so that 

U = E(xp)/(min(r i , r2)[ri  + r2  - min(ri , r2 )1), 

= E(xp)/(niin(r1 , r2 ) max(r i , r2 )), 	 (E.19) 

= E(xp)/(ri r2 ). 

It is this latter expression that is quoted as equation (4.5) in the cylinder test. 



Appendix F 

Obtaining a compact description of 

sp ecularities 

F.1 Introduction 

This appendix shows how the compact description of specular blobs—defined 

in section 4.6.3—is extracted directly from the specularity map. A blob's de-

scription contains the parameters shown in figure 4-11 (page 107): the image 

coordinates of its centroid, (x e , 
yc), 

 its approximate dimensions: height h and 

width w and the direction of its major axis, 0. In addition there is a boolean 

parameter e, that is set if the blob's shape is approximately elliptical. 

Although the above description often provides enough information for shape 

to be successfully inferred, some specularities are not well represented by it. For 

example the curving nature of the crescent shaped specularities in figure 4-13 

(page 110) is not represented. Scope exists for extending this scheme to provide 

more accurate compact descriptions for a greater variety of specularities. 

Each parameter listed in the description above is obtained by a statistical 

measure involving the image location of each pixel within the blob'. Here, each 

'The statistical measures are based purely on position. An improved description 
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location is denoted (xi, ye),  where the index i is an integer in the range 1 to 

n—the total number of pixels in the blob. The centr&d of each blob is located 

at its centre of gravity: 

(Xc,yc) 
= 	

s, (1/n)E p1). 	 (F.i) 

The parameters h,w and 8 are estimated using the principal axes method (see 

next section) while e is obtained by a least-squares fit of an ellipse to the blob's 

perimeter (see section F.3) 

F.2 Principal axes method 

The parameters h, w and 9 are estimated using the principal axes method. A 

detailed description of the method is given in [9] page 486: in this section only,  

the basic steps are outlined. These steps are 

Construct the scatter matrix M3 . 

Compute the eigenvalues and eigenvectors of M3 . 

Use the eigenvectors to obtain the direction of the major axes of the blob 8. 

Use the eigenvalues to obtain the blob dimensions h and w. 

M3  is constructed as follows: 

where 

M 3  
(a3  b8 ) 

	
(F.2) 

b, c3 	 - 

n 
a3  = (1/n) > (x1 - x) 2 , 	 (F.3) 

i=1 

might be obtained if the irradiance signal within the blob were also exploited—perhaps 

by fitting a patch to the irradiance function at the blob. 
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b3  = (1/n) 	(x - Xc)(Yj tic), 	 (F.4) 

and 

C., (1/n) > (Yi - 	 (P.5) 

The eigenvalues of M3  can be shown to be: 

A 1  = (a3  + c3  + r9)/2, A 2  = (a3  + c3  - 	 (F.6) 

where 

= 	- c3 )2  + 4b. 	 (F.7) 

The corresponding (unnormalised) eigenvectors are then: 

= 
I 	—2b 3 	I 	—2b 8  

\ a3_c3_r3), X2 
= 

a3—C3+r3) 

The x and y components of X1 are used to obtain the direction 9: 

ía, - c, - 
= tan 	= 	

— 2b8 	
(P.9) 

The estimates of h and w can be shown to be: 

h = 1 ± 2j5 = 1 + 12(a, + c, + r,) pixels, 	 (F.10) 

w = 1 + 2VA2 = 1 + f2(a, + c, - r,) pixels. 	(P.11) 

For the purposes of error analysis the values of h and w may be regarded as 

accurate up to ±1 pixel. 
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F.3 Ellipse fitting 

The boolean value e is computed for each blob by measuring how well an ellipse 

fits the blob's perimeter. The dimensions and orientation of the ellipse to be 

fitted are determined using the parameters h, w and 6, provided by the principal 

axes method, above. The length of its semi-major and semi-minor axes are 

ae  = h/2 and b = w/2 respectively. The major axis makes an angle 6 with 

the direction of the x-axis in the image—as shown in figure 4-12 (page 108). 

The ellipse is fitted so that its origin coincides with the blob's centroid (xe, yc). 

The fitting process involves computing an error measure e that represents the 

deviation of the blob's perimeter from the ellipse being fitted. The equation of 

an ellipse: 
X 2 	2 

(F.12) 

is used to derive the expression for e. Equation (F.12) is expressed in the ellipse's 

local coordinate system: Xe and I/c  are measured along the semi-major and semi-

minor axes respectively—see figure 4-12 (page 108). The square deviation for 

each pixel located on the blob's perimeter 2 , y,j) is 

( 22 

	)2. 	
(F.13) 

a2 	be2 e 

The mean square deviation for all m pixels on the perimeter is 

m 

= (i/in) 
	

d. 	 (F.14) 

in order to compute e the local coordinates (x, 1 , Ye,i)  must be derived from the 

global image coordinates (xi, y 1 ). This is done by a coordinate frame transfor-

mation T: 

(X e,i, Ye,i) = T ( 
X1 - XC 	

(F.15) 
YiYc ) 

2 For practical purposes a pixel lies on the perimeter if some, but not all of its 4 

nearest neighbours lie within the blob. 
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where 

( cos 0 sin  
Te1 	 I. 	 (F.16) 

—sinG cos8 ) 

Once computed e is thresholded against a chosen value, t in order to determine 

e for the blob: 

e= 1 if c t, 	i.e. ellipse description accepted, 	
(F.17)  

0 otherwise. 

For the specularities described in this thesis a value of t = 1.6 pixels was found 

to usefully indicate elliptical blobs. 



Appendix G 

Inferring surface shape: 

mathematical appendix 

G.1 Derivation of constraint in (rj , r2 ) space 

Restating equation (6.14) and substituting for r1  = 1/k1 , r2  = 1/k2 : 

= k1  cos2  cc, + k2  sin  ç = (r2  cos2  cc' + " 1 sin ço)/(rir2), 
(G.1) 

	

= (k2  - k1 ) cos  sin ço = 	(ri  - r2) cos p sin cp/(rjr2), 

gives: 

	

H 2  + H 2  = (r cos2  W+ r sin2  )/(rir2 )2 . 	(G.2) 

Defining 	
-  

A 	
(r2  cos2  + r1  sin2  )rir2 	

(G.3) 
= H 2  + H2 - r cos2  ço + r sin2  ço 

B 

	

___________ - ( r1  - r2 )r1 r2  cos cc slncp 	
(G.4) 

= H 2  + H,2 - r cos2  + r sin2  

gives 
r sin ço(ri  - r2) 

 (ri  - A) = 
r cos2  cc + r sin2  cc' 

(r2  - A) 
- r cos2  cc'(r2 - ri ) 

 
r cos2  cc + r? sin 

and 	

<p 

and so the equation of a right-rectangular hyperbola (6.16) is obtained: 

 (r 1  - r2)2rcos2osin2c
(ri - A)(r2 - A)

= 	

2 
fr 
	i 2  c)2 = —

B 2 . 	(G.7) 
rcos c + rsn 
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G.2 Locally hyperbolic surfacei derivations 

When /c 1  = kh and k2 = kh the hessian is given by equation (6.17) which is 

restated below: 

H = R(0o)kh 1 
	1 R(-80). 	 (G.8) 

The rotation R is provided by equation (5.4) so that 

	

H = 	R(0o)khl 	1 	I 
Cos 00 

 
 

sin 00 

R(O o)kh 
( Cos 00  

 

sin 00  

( 
kh 	

cos 00  sin 00 
	

( Cos 00  

	

= 	l 
\ sin 00  cos 00 	 sin 00  

— sin 00  

cos o ) 
— sin 00  

- cos o 
) 

- sin 00 

— Cos 00  

(G.9) 

From this expression equation (6.18) becomes apparent: 

Cos 2 0o  - sin200  —2 cos 0o sin 0 
H=khl 

( 
	 I=kh 

—2cos00 sin0o sin2 O0  - cos200 ). 

The expressions for orientation (equation (6.19)) and t 

and (6.21)) derive from the expression above and 

cos 200  - sin 200  

Sin 200  - cos 200  

(G.lo) 

nagnitude (equations (6.20) 

the constraint equation: 

(  
kh 	

cos 20 - sin 20 \ ) (R1 ) 

	 ) 

	

(&i 	
(0.11) 

- sin 28 - cos 28 	R 	 Sn 2   
This provides two equations: 

kh(Rl cos 29 0 R2  sin 290 ) = — Sn1, 	 (G.12) 

kh(Rl sin 29R2  cos 29) = Sn2. 	 (0.13) 

These rearrange to provide equations (6.20) and (6.21), while orientation is 

obtained by dividing the first by the second: 

(R2  sin 20o  — R 1  cos2Oo)/(R i  sin 28 + R2  cos 29) = (Sni/8n2), 	(G.14) 
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R2  tan 290  — R 1  = ( Sn i /6n2 )(R i  tan 290  + R2 ), 	(G.15) 

tan 200 
- R 1  + (Sn i /8n2 )R 2  - bn2R1  + &i1 R2  

(G.16) 
- 	- (6ni /8n2 )R 1  - &i2 R2  - Sn 1 R1  

Inverting this expression gives equation (6.19). 



Appendix H 

Monocular analysis: simple 

formulation 

As for the stereo analysis, a linearised approximation, in the form of equa-

tion (5.15), page 142, is again used to represent a smooth surface. For the 

monocular analysis the following information is assumed to be available: 

• V—the view vector. Binocular stereo cannot be used to estimate this in a 

purely monocular system, but in a mixed system employing both monoc-

ular and stereoscopic analysis, V is available as before (section 6.3.2). 

• S—the position of the origin of the particular light source that created 

the specularity. Some independent knowledge source is assumed to supply 

this. 

s—a light source "base-line" vector. This describes the displacement be-

tween a general point on the light source, relative to S. 

• LB—the direction of LB:  the vector shown on figure H–i. 

• V]3—the direction of VB:  the vector shown on figure H–i. 

The vectors V, $ and S, are also shown in the figure. A point on the distributed 

light source is specularly reflected at surface point A so as to traverse view 
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Surface patch / 

AA 

L / LB 	V 	13 

Eye 

Two points on a distributed light source 

Figure H-i: Geometry for the simple formulation of the monocular analysis 

(c.f. figure 5-6, page 145). A ray from a point on the distributed light source is 

specularly reflected at surface point A, with reflected ray along V. The ray from 

a point displaced from the first by the base-line vector s is similarly reflected 

at surface point B along vector VB. The vectors marked are used in the 

accompanying analysis. 

vector V. A point displaced from the first by the base-line vector s is similarly 

reflected at surface point B along view vector VB. 

The simple formulation is analogous to that given for the stereo analysis. 

Again the vector (Sni, 8n 2  )T is provided by considering the equations of mirror-

like reflection at A and B and x from a simple vector equality, so that: 

Hx = - (fini,5n2)T, 

where (&21,&2) T  = (6?1_ n),I, ( ii_ n) .3)T 	(11.1) 

and 	x 	= (r.i, r.j) 
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where (1, 	are again the unit vectors along the coordinate axes of the local 

frame, defined by equation (6.7). 

ñii = (+L)/I'cT ~LI_ (B+I'B)/J1fB+r.'BJ, 	(11.2) 

where L = V + S , and r=L+s—LB. The only complication is in obtaining the 

magnitude ILBI which is easily shown to be: 

ILBI = (L±s).iI 	
(11.3) 

LB 11 

The advantage of this formulation is that the short base-line assumption (i.e. 

Isl <<z ILicos o—analogous to Idi < IVicos o for the stereo analysis) is no longer 

required. The angular variables corresponding to 5m  and cr in the transfor-

mation equation (5.26) are VD - V and L"ij - L, respectively. In this form, 

the transformation is no longer linear and is much harder to apply. For the 

applications discussed below the earlier linear transformation is considered. 



Appendix I 

Implementation details 

1.1 Camera geometry 

The camera geometry used in this thesis is as shown in figure 6-3: the cameras 

are oriented so that their optical axes verge at a point equidistant from their 

focal points while their vertical axes are perpendicular to the plane containing 

the optical axes. In this case vector d is determined by the vergence angle O, 

and the base-line separation b, i.e. in the left-eye frame: 

d = (b cos 9/2, 0,—b sine0/2)T. 	 (1.1) 

In practice b and O  are usually fixed so that they can be accurately measured 

beforehand. 

For this camera geometry the transformation matrix T..,j—with which the 

angular position of the specularity in the right image is transformed into the 

left-eye is 

cos 	sin 0,, 

T..1= 
	

(1.2) 

sin 0,, . 

271 



Appendix I. Implementation details 	 272 

1.2 Combined inference 

For a small field of view (.# 100) measurements made in the image plane provide 

adequate approximations to those made in polar projection. This is the case 

for the images processed by the system. In such cases, the descriptions of 

specularities (section 4.6.3) —in terms of height h, width w, orientation 9 and 

boolean variable e—produced by the detector, are interpreted directly for the 

monocular analysis: 

. If the source is circular and slant less than 5 degrees and the specularity 

is an ellipse (i.e. e=1) then the ratio Ilc11k21 is estimated as 

. If a> 2  and the source is compact then the direction of least curvature is 

obtained as follows. 

Four steps are required: 

Angle 9 in the specularity's description provides the unit vector of the 

projection of 91e  in the image: X e  = (cos 9, sin 9). 

Using ke , the direction in the local surface frame is estimated: 

Omin = tan-' () e .J/)eI). Again the axes of the local coordinate frame 

lie along the unit vectors (1,3, I) - see page 154. 

Next equation (5.34) is used. The local coordinate frame is rotated 

through an angle 0m in +7r/2. Consequently the stereo measurements, ex-

pressed in the new.  frame: (En 1 , En2 ) and (1, J2),  supply estimates of the 

absolute values of the principal curvatures: kmax  and kmin (Ikmaxl> IlCminD. 

(k max , lCmin) = —( En,/R' I 6'n2 R2). 	 (1.3) 

Finally the principal curvatures are obtained: 

if kmin < kmax  then (k 1 , k2 , 9) = (k max , kmin, Om in +ir/2) 
(1.4) 

else (k 1 , k2 , Oo) = (kmin , kmax7 9min). 



Appendix J 

Software system 

J.1 Introduction 

The specularity detection and shape-from-specularity schemes are implemented 

as executable programs on a SUN-3 mini-computer under Unix 4.2. The pro-

grams are indicated in the figure as the straight-edged boxes in figure 7-1 on 

page 183. Some of these boxes represent more than one program: e.g. specu-

larity detection includes both the retinex preprocessing and the tests for spec-

ularity. Below, details of the programs associated with each box are given. In 

addition the format of the input and output of each program is specified. All 

the programs reside in the directory visionbin. 

J.2 Image file format 

Grey-level images consist of a byte (8 bits) per pixel. The 1FF image file format 

is used to represent them. In this format an image consists of: 

1. a 512 byte-long header that contains the height and width of the image in 

pixels and specifies the viewing geometry. 

273 
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2. A sequence of height xwi dth bytes representing the grey-levels at each pixel, 

in raster-scan order: i.e. from left to right then from top to bottom. 

An 1FF image, file.iff is displayed on the screen using 

% disp].aytool file.iff 

One way to produce an 1FF stereo image-pair: filel.iff and filer.iff, is to specify 

a stereo view using a WINSOM model file [95]: file.moclel and then run: 

% winsom -r file 

J.3 Edge detection 

Edge detection is achieved by convolving the derivative of a gaussian (width 

sigma—default 1 pixel) with the logarithmic (base 2) image signal: 

7. canlog f-ssigmaJ file.ifffile.canlog 

followed by hysteresis thresholding, to remove all but the prominent edge seg-

ments: 

'I. hyster f.-hhiJ [-llo] file.canlog file.hyster 

Both file. canlog and file. hyster are in the format described below. The lower and 

higher thresholds may be set using the optional parameters lo and hi. Their 

default settings correspond to a 2% and 20% contrast between neighbouring 

pixels, respectively. 
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J.4 Edge file format 

Both the canlog and hyster programs output edge segments in the following 

format': 

An 1FF header of type ED GEL, again specifying the image dimensions 

and viewing geometry. 

A 16 bit integer specifying the number of edge segments: n. 

A set of n edge segments: each represented by a quadruple of floating 

point numbers (4 bytes each). A quadruple describes (1) the row pixel 

coordinate (from the top), (2) the column pixel coordinate (from the left),. 

(3) the edge contrast and (4) the edge orientation (-180 to 180 0). 

The values of the quadruples of all the edge segments are printed out using: 

% predges file.edgel 

The edge segments are displayed on the screen using: 

% disp].aytool f-DJfile.edgel 

The -D option renders segments of opposite orientation in "opposite" colours. 

'The AIVRU format with added header [1] 
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J.5 Specularity detection 

J.5.1 The tests 

The three tests for specularity are applied using: 

'I, dotests [-r1] [-wu] [-lfiie.reiinex] fiie.hyster file.ifffiie.tests 

Unless specified, the maximum path length, 1 is 20 pixels and the beam width, w 

is 100.  The retinex-based test is only applied if the -1 option is specified 

and file.rctinex has been created using the retinex program—see below. The 

input file.liyster and file.iff are in the formats described above. The output 

in ASCII, in the Backus Naur form' is described below 

file, tests 	= [# An-optional-one-line-comment] 

{ column row evidence code a b } 

column, row = integer 

evidence 	= "Good" I "Some" I "No" 

code 	= { "r" I "c" I "1" I "ri" } 

a, 6 	= integer 

Thus at each (spine) point that the tests are applied, its image location (column, 

row) in pixels is written out, along with a code indicating the tests, if any, it 

has passed. The code  contains "r" if the retinex-based test is passed, "c" if the 

cylinder test is passed, "1" if the local contrast test is passed and "n" if none 

is passed. The evidence and the values of a and b are used by the dodescribe 

program. - 

'Enclosure within [ ... ] is a simple optional clause. Enclosure within {' . .} indicates 

a repeatable clause. Alternatives in a clause are separated by a I sign. 

3The code is case independent. 
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The format above can be converted into an image using showtests then 

displayed: 

'I. showtests f-rJ [-c] [-i] f-n] flle.hyster file.test file.showtests 

'1. displaytool flle.showiesis 

where options specify initials of which tests are to be displayed. The points 

where any of the specified tests are passed are marked in white upon a grey 

background. Spatial reference is provided by marking the edge segments in 

black. 

J.5.2 Retinex pre-processing 

Retinex processing is applied to the original grey-level image, file.iff. The output 

is in the form of another 1FF image, file.retinex: 

'I. retinex thresh-op zter_ops repori_ops file.ifffile.retinez 

The threshold stage is controlled through: 

thresh-op = [-ti] [-Cfile.retcan] 

Either a percentage local contrast threshold, I (default 6%) is specified or noise- 

resistant thresholding is achieved using file.reican, the output from the program: 

% retcan file.ifffile.reican 

The iterative scheme that follows thresholding is specified through 

iter_ops = f-uuJ f-hf [-eel f-jfl 

The scheme can be made to start with a retinex at a uniform grey-level, u vis 

the -u option, otherwise the logarithmic input signal is used. If -i is used 

the scheme stops after i iterations. If -e is used the scheme stops when the 

error-norm falls below 2. The acceleration parameter is specified using -j to 
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be 1 +j/16—by default j = 15. The progress of the scheme can be watched by 

using the report_ops = /-FfJ f-Dj A change in the errbr-norm is reported after 

every f iterations, if -F is specified. The retinex image-so-far is dumped out 

to file. reiinex.dump every time the error-norm halves, if -D is used. This last 

option allows the user to abort the program without losing the output-so-far. 11  

J.6 Describing Specularities 

The program dodescribe takes the output of dotests (file.test3) and creates 

a description of the specular-blobs: 

% dodescribe file. hyster file.iff file. tests file. desc 

The output (file. desc), in ASCII is described below in the Backus Naur form: 

file. desc 	 = size image-width image-height 

{ blob_st ructure} 

blob-structure 	 = blob id evidence n 

peak p_col p-row grey-level 

image-width, image-height 

evidence 

id, n, column, row 

p_co 1, p-row grey-level 

c_col, c-row, angle, width, height 

class 

centroid c_co 1 c-row 

angle height width 

(column row class} 

= integer 

= "Good" I "Some"  I "No" 

= integer 

= integer 

= float 

= evidence I "0" 

The first line specifying the image dimensions is followed by a sequence of 

blob-structures. Each of these consists of a unique id number, the evidence 

of specularity associated with it, the number of pixels within it: n, the image 
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location of its peak  (p_col,p_row), its peak grey-level, its centroid (c_col,c_row), 

its dimensions angle, column and height. Finally its constituent pixels are listed, 

giving their image location (column,row) and the evidence class. The latter 

is "0" if the pixel is not a spine point, otherwise it is the evidence obtained at 

it by dotests. Thus no information is discarded.. 

J.7 Edge pruning 

The edge segments associated with specularities are removed before they are 

used for binocular stereo. 

I prune file.hyster file.desc file.pruned 

The inputs are file.desc created by dodescribe and the edge-map file.hyster. 

The output is again in edge file format. 

0 

J.8 Binocular stereo 

The left and right pruned edge files are rectified prior to matching: 

I rectify -L filel.pruned fueL rectify 

I rectify -R filer.pruned filer.rectify 

In addition a reference file is created so that the de-rectification can be applied 

later: 

I rectify -r -L filel.pruned file.ref 

4In case of dispute, the peak nearest the centroid is used. 
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The PMF edge matchers reads as input the rectified edge files, filel.rcctifij, 

filer.reciify and outputs a description of the matches In ASCII, file.pmf. 

'I. pmf filel.rcctify filer.rectify> file.pmf 

in ASCII in the Backus Naur form described below: 

file.pmf 	 = { m row column d contrast orientation 3 
} 

m 	 = CCM77 1 "U" 

row, column, d 	= float 

contrast, orientation, s = float 

Each line in the file corresponds to an edge segment in the left-rectified edge file, 

at location (column, row) with its associated contrast and orientation. Only edge 

segments with m="M" match with ones in the right edge file. The horizontal 

disparity: d is in pixel units. The strength of the match 3 is also provided. 

Depth estimates are obtained from the output of pmf (file.pmf) by triangu-

lation and de-rectification. This is achieved by a single program: 

% threeD file.reffile.pmffile.Sd 

Where the input file, file.ref was created by rectify. The output, file.3d is 

in edge-file format. Again the first two fields in the quadruple of each edge 

segment are the row and column—in the unrectified left image. However the 

last two fields are now the depth and the disparity d. The nearest non-horizontal 

edge segment to each unmatched specularity in the left image is extracted from 

file. 8d as described below. 

'Code supplied by AWRU [1]. 
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J.9 Matching Specularities 

Specular blobs are matched using their descriptions in the left and right images-

obtained using dode scribe—filel. des c and filer.desc. 

'1. matcher [weights] [-3 file.Sd] f-rrJ filel.desc filer.desc file.rnatch 

Where weights = [-Dd] [-Aa] [-Pp] [-00] [-un]. Each of the default weights—

given in section 6.3.2—can be multiplied by a factor: d for WD,  a for WA, p for Wp, 

o for wo and u for wu.  The output, written in ASCII, to file. match is simply a 

set of pairs of numbers. Each pair consists of the id of the specular blob in the 

left image left -id, followed by that of the matching blob in the right right-id. 

If -3 is specified, a depth estimate depth is extracted from file.Sd for each pair 

and output with them. The complete Backus Naur form of output—as read by 

the tool—allows three optional fields accompanying each pair: 

file, match 	 = [# An-optional-one-line-comment] 

{ left-id right-id Id-field [i_field /a-field]]] } 
d_field 	 = depth column row depth 

1-field 	 = light light-id 

a-field 	 = answer r1 , r2  

column, row, depth 	= float 

left-id, right-id, light-id = integer 

r1 , r2 	 = "infinite"Ifioat 

The d_field describes the image position (column, row) and depth of the reference 

point. The 1-field allows a known light source to be assigned to the specularity. 

The light-id is an index to a data-base of light sources, stored in file.light—in 

the format described below. When the principal radii of curvature r1  and r2  are 

known, they can be supplied to the tool through the afield. The tool makes 

no use of these values other than to mark the white crosses or boxes on the 

(r1 , r2 ) graph, so that the result can be compared with the known answer. 



Appendix J. Software system 
	 282 

3.10 Light source data-base 

The light source data-base is specified in an ASCII file (file. light). The format 

of this file is: 

filc.light = { z y z [shape] } 

= float 

shape 	= "c" 

If the light source is compact then shape="c" and if it is circular then shape= "o". 

The position of the light source in the left camera frame is (x, y, z). Each light 

source can be accessed from the data-base using its light-id. The ith  light source 

in file. light has a light-id--i. Any file. light can be extracted directly from stereo 

winsom model file, file.model using: 

% modelig <file.model> file.light 

For a real scene, the file has to be created by hand from known measurements. 

J.11 The tool 

J.11.1 Start up 

The interactive tool that infers shape-from-specularity runs as follows: 

7. tool [-n] f-rn] {dir} 

Details of its use are given in chapter 7. The -n option runs the tool with-

out an accompanying displaytool—which has its advantages if space is at a 

premium. The -rn option starts up the tool in monocular-mod c—useful when a 

full stereo pair is not available. Every dir argument specifies a Unix directory 

containing the files required to apply the scheme to a given scene. Each dir 

is put into the tool's library list—for rapid access. The tool is started up 
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with the first in the list. Each directory accessed should contain the follow-

ingfiles: file.light, file.match, filel.desc, fller.desc, filel.iff, 

filer. iff, fuel .pruned, filer.pruned, filel.hyster, filer.hyster, 

filel.edgedisplay, filer.edgedisplay, filel.blob, filer.blob. 

The last four files are used by the tool purely for cosmetic reasons: a file: 

file. edgedisplay is generated using: 

Y. edgedisplay file.hyster file.desc file. edgedisplay 

and afile.blob by: 

% showbiobs file.iff file.desc file.blob 

When -n is specified it is possible to run the tool with a much reduced file set: 

file.light, file.match, filel.desc, filer.desc, filel.edgedisplay, 

filer. edgedisplay. 

In monocular-mode only the following files are needed: file. light, 

filel.desc, fuel. iff, filel..hyster, fil el. edgedisplay, fuel .blob. 

In this case, for stereo-mono compatibility, the tool does not distinguish be-

tween the root-name file or fuel. 

J.11.2 Linkable code 

The key computational modules used by the tool are available as "C" routine 

calls. These routines can be called from any other "C" program provided the 

source files specified below are loaded and included. All these source files are 

to be found in the directory toolsrc. All the routines require the include 

statements 

#include <math.h> 
#include "vecs .h" 
#include "XYZ . 
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The maths library must be linked using -lm during loading. Also the suite of 

vector manipulation routines must be linked from th&source file vecs . c. Each 

3-D vector is represented by three consecutive floating point numbers, e.g: 

float vector[3]; 

For vectors in the local surface frame (1.s.f.), the numbers are, in order, the 
th  and kth  components. For vectors in the left view frame (l.v.f.) they are the 

the x, y. and z components. All vectors are in the l.v.f unless otherwise stated. 

Iterative refinement of the depth data is carried out by the following routine, 

linkable from file refine C: 

mt iterative_refinement(F, unit-V, S, 	V, unit-n, L) 
float FC31, unit-V[31, S[3]; /* input vectors */ 
float V[3], unit-n[31, L[3]; 1* output vectors */ 

As input, F is F, unit_V is (' and S is S. As output, V is V, unit..n is ñ and L 

is L. The value 1 is returned, unless IVI <0.1 IFI when 0 is returned, or V•ñ < 0 

when -1 is returned. 

When V is known the orientation can be obtained using the following rou-

tine, linkable from file do orient. C: 

#include t 1 specstereo .h" 

mt orient(V, S, unit-n, L, slant, tilt) 
float V[3], S[3]; 1* input vectors *1 
float unit-n[31, L[3]; 1* output vectors *1 
float *slant,*tilt; 1* output angles (in degrees) *1 

As input, V is V and S is S. As output unit..n is ñ and L is L. The slant, o and 

tilt, r (in degrees) are also updated. The value 1 is returned, unless orient 

fails. The return codes defined in specstereo . h are FAILS_V..BEHIND..SURFACE 

if the surface is behind the camera, FAILS _V_TOO-CLOSE if IVI = 0, 

FAILSL_TOO_CLOSE if ILl = 0 and FAILS-NORMALISE if In! = 0. 
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Transformation of unit vectors from the l.v.f. into the l.f.s. is achieved 

by the routine Transform. Before it can be used a FRAME structure must be 

declared and assigned. The structure is defined in file frame. h as: 

typedef struct frame_struct{ 
float i[3] ,j [3] ,k[3]; 

}FRAME, *FRAMEP; 

This represents the unit vectors (i,j, i) defined in equation (6.7). The values of 

these vectors are assigned using the following routine, linkable from file frame . C: 

#include "specstereo.h" 
#include "frame. h" 

ink_frame (unit_n,, frame) 
float unit-n[31, unit-V[31; 1* input vectors */ 
FRAME *frame; 	 /* output frame *1 

Required as input are ñ, (unit -n) and 'O (unit -V). The contents of the frame 

structure are updated. Now this frame is used to transform a unit vector (u) 

in the l.v.f. into a unit vector (v) in the the l.s.f. via a call to Transform—also 

linkable from frame. C: 

#include "specstereo .h" 
#include "frame . h" 

Transforin(u, v ,frame) 
float uE31; 	1* input unit vector */ 
float vE31; 	1* output unit vector */ 
FRAME *frame; /* (input) frame 

The following structure is defined in monocular. h to represent a description 

of a specular blob. 

typedef struct desc_struct { 
float x,y,theta,h,v,aspect_ratio; 
char shape, state; 
short match-index; 

} DESC, *DESCP; 

The fields x, y, theta, h, 'v directly correspond to the parameter of the blob- 

description defined in section 4.6.3: x, y, 9, h and w. Four different shapes 
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of blob are supported. In monocular . h, BLOB-ELONGATED, BLOB-CIRCULAR, 

BLOB _NOT_ELONGATED_ELLIPTICAL and BLOB-NOT-ELONGATED-IRREGULAR define 

valid values of shape. If good evidence for specularity exists at the blob then 

state='G'. If only some evidence exists then state='S'. The match-index per-

mits matched blobs to be linked. 

Monocular analysis of a blob can be achieved by calling the following routine, 

linkable from files monocular. c and frame. C: 

#include "monocular. h" 
#include "frame. h" 

mt monocular_analysis(desc, frame, angle, err-angle, 
ratio, centre_x, centre_y, focal_length_in_pixels) 

DESC *desc; 1* input blob description *1 
FRAME *frame; /* local surface frame 
float *angle,*err_angle; 1* output angle (degs) *1 
float *ratio; 1* output 	ratio *1 
short centre_x,centre_y; 1* input image coords *1 
float focal-length-in-pixels; /* input *1 

As well as the description desc, some information about the (left) image must be 

supplied as input: the image coordinate at the optic axis (centre-x, centre-y) 

and the focali.ength..in_pixels. As output, are ratio: a rough estimate 

of 1r2/ri I and angle: an estimate of 81  in the l.s.f. (in degrees). A rough estimate 

of the uncertainty in 8 1  is provided by err-angle. The routine returns one of 

five values, each defined in monocular. h. If SUCCEED-CIRCULAR is returned 

then ratio 1 and angle is undefined. If SUCCEED-ANGLE-GOOD is returned 

then both ratio and angle are defined. If SUCCEED-ANGLE-BAD is returned then 

ratio is unreliable and angle is undefined. If FAIL-BLOB-SHAPE is returned then 

mono cular_analysis failed because the blob shape was irregular. If FAILS_Vi 

is returned then mono cular_analysis failed due to unfavourable circumstances. 
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To use the routine stereo _analysis the following files must be linked—in 

addition to those stipulated above: frame . c, vecerr c and specstereo . c. 

#include "specstereo .h" 
#include "frame. h" 

mt stereo_analysis(r. err-r, dN, err_d N, V, err-V, 
B_R, er r_B_R, S, err-S, b, theta-v, frame) 

float r[3], err-r[31, dN [3], err_dN [3:1; 1* output params *1 
float V[31, err-V[31, 	S [3], err_S [3]; /* input params *1 
float unit_W_B.[3], 	err_u nit_W_R.[3]; /* input params */ 
float b,theta_v; 
	 1* view params *1 

FRAME *frame; 
	 1* frame (input) *1 

Three inputs: V, S and unit_W..R represent respectively the vectors V, S and Wr. 

Two outputs: r and dN represent respectively the vectors r and Sn. The uncer-

tainty associated with each vector is accessed through the parameters with the 

prefix err_. Also required as input are b: the base-line separation in metres, 

theta-v: the vergence angle O  and frame: the local coordinate frame—as cre-

ated by ink_frame. When successful, stereo-analysis returns 1. If it fails the 

return codes (defined in specstereo . h) provide the reason why: FAILS_N indi-

cates a bad surface normal, FAILS_WR indicates a bad W, FAILS_WZ indicates 

that IWI = 0 and FAILS_Ni indicates a bad value of fi occurred. 

Once obtained the values of vectors r and Sn can be used to apply the six 

applications—listed in table 6-2. The routines for these applications, below, 

all take as input: r and dN. Again the prefix err_ denotes a corresponding 

uncertainty. For all these routines the file vecerr • c must be linked. 

#include "specstereo .h" 

mt do_cylindrical_case(r,  , err_r, dN, err_dN, 
r_c 1 err_r_c, theta-c) 

float r[3] ,err_r[3], dN[3] ,err_dN[3]; 1* input vectors 	*1 
float *r_c, *err_r_c; 	 1* output radius(m) */ 
float *theta_c; 	 1* output dir(degs) *1 

This routine resides in file cyl. c and outputs the cylindrical parameters: r 

(r_c) and 8 (theta_c). A value of 1 is returned unless the r oo when 

SPEC I AL-CAS E_INFINITE, defined in specstereo.h, is returned. 
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#include "specstereo .h" 

do_hyp_case(r, err_r, dN, err_dN, r_h, err_r_h, theta-h) 
float r[31,err_r[31, dN[3],err_dN[3]; 1* input vectors 	*1 
float *r_h, *err_r_h; 	 1* output radius(m) */ 
float *theta_h; 	 1* output dir(degs) *1 

This routine resides in file hyp. c and outputs the hyperbolic (r i  = —r2) param-

eters: rh (r_h) and 9h  (theta..h). A value of 1 is returned unless rh oo when 

the value is SPECIAL -CAS EJNFINITE. 

mt get_Hxx_Hxy(r, err_r, dN , err_dN, Hxx, err_Hxx, Hxy, err_Hxy) 
float r,err_r, 	dN,err_4N; 	 /* input params *1 
float *Hxx,*err_Hxx, *Hxy,*err_Hxy; 	1* output params *1 

This routine resides in file geth . c and estimates the values and uncertainities 

of (Hxx) and H.,y  (Hxy). These values can then be used to determine the 

constraint graph. The value 1 is returned unless division by zero has occurred 

when the value is 0. 

#inciude "specstereo . Ii" 

get_radii(code_rg,rg, err_rg, code_ri ,rl ,err_ri, 
r,err_r, dN,err_dN, angle,err_angle) 

mt *code_rg, *code_rl; 	 1* output codes 	*1 
float *rg,*err_rg, *rl,*err_rl; 	1* output params */ 
float r[3] ,err_r[33, dN[3] ,err_dN[3]; 1* input params */ 
float theta-1, err_theta_i;' 	 /* input dir (degs)*/ 

This routine resides in file getradii . c and estimates the values and uncertain-

ties of the greatest and least radii of curvature: r9,. (rg) and ri (ri). The direc-

tion of least curvature in the l.s.f. O (theta..].) must be supplied. The output 

codes code_rg and code..rl indicate whether the estimates rg and rl, respec-

tively, are good. The following values, defined in specstereo . h are possible: 

GOOD-RADIUS if the estimate is good, NEG_INFINITE..RADIUS if the radius= —oo, 

POS_INFINITEJ.ADIUS if the radius=oo and UNDETERMINED-RADIUS if the radius 

could not be determined. 
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#include "specstereo.h" 

mt non_spherical(r, err_r, dN , err_dN, R_i_j _zero) 
float r[3), err_rE31, dN[3], err_dN[3]; /* input params *1 
char R_i_j_zero; 	 1* input param */ 

This routine resides in file spheretest . c and applies the non-spherical test. 

The additional input parameter R...1...2...zero j should only be non-zero if R 1  O 

or R2  0. The return values defined in specstereo .h indicate the result: 

NOT.JLSPHERE, COULD-BE-SPHERE and CANT-APPLY-SPHERE-TEST. If the value is 

not NOT..A..SPHERE then the spherical interpretation, below can be made. 

#include "specstereo .h" 

mt do_sphericaL.case(r,err_r 1  dN,err_dN, r_s,err_r_s) 
float r[3],err...r[3), dN[3],err_dN[3]; 1* input vectors 	*1 
float *r_s, *err_r_s; 	 1* output radius(m) *1 

This routine resides in file sph. c and outputs the spherical parameter: r3  (r...$). 

A value of 1 is returned unless the r3  oo when the value is SPECIAL-CASE-INFINITE. 
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Published paper: Computing 

lightness 

This appendix consists of paper [22] published in Pattern Recognition Letters 5, 

in February 1987. It gives details of the implementation of the lightness com-

putation used by the retinex based test in chapter 4. 
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Abstract: Retinex theory predicts perceived colour. Each of its three retinex systems determines a field of lightness that directly 
corresponds to surface reflectance, for the class of images called Mondrians. We describe in detail and demonstrate a complete, 
noise-resistant computational scheme for the retinex. A local, parallel implementation is proposed. We investigate how the 
scheme might provide an image segmentation based on surface materials in the real world. 

Key words: Colour perception, retinex theory. 

Introduction 

The phenomenon of colour constancy demon-
strates that perceived colour of a point in a scene 
is not entirely determined by the spectral content 
of the light received locally on the retina. There is 
an additional global effect. 

Land's retinex theory (Land and McCann, 1971; 
Land, 1983) impressively predicts perceived colour. 
The retinex system that it employs, effectively con-
verts a field of monochromatic intensities into a 
field of lightnesses. The monochromatic scheme 
may be applied in each of the 3 colour channels to 
predict perceived colour. A single channel retinex 
is useful for estimating monochromatic surface 
reflectance. 

The first computational scheme of the retinex 
(Land and McCann, 1971) was developed to work 
on images called Mondrians where lightness corre-
sponds to relative reflectance of the surface being 
imaged. 

We are grateful to IBM and SERC for a CASE studentship for 
G. Breistaff, to SERC for support under grant GR/D 1439.6 
and to the Royal Society for the IBM Research Fellowship for 
A. Blake. Thanks are due also to A. Zisserman and J. Dow for 
invaluable assistance. 

Horn (1974) recognised that this method of re-
covering reflectance, might produce useful surface 
descriptions. He developed a local, parallel scheme 
to compute lightness, that was considered biologi-
cally feasible. However the scheme was incom-
plete, and Blake (1985a, b) modified it, by imposing 
formal boundary conditions at the image peri-
meter, to produce a complete, robust, local, 
parallel retinex scheme. This paper adapts this 
scheme for conventional images and demonstrates 
using a serial implementation that it can recover 
reflectance of Mondrians. For this we use an itera-
tive method (successive over-relaxation). 

A study of the effect of noise reveals that the 
initial stage of the scheme is in fact a very primitive 
edge detector. We describe how the Canny opera-
tor - a sophisticated edge detector - is integrated 
into a noise-resistant scheme. 

We find that lightness' does not generally cor-
respond to reflectance in real images. However it 
remains useful for predicting perceived colour and 
can sometimes provide an image segmentation 
based on surface material. This is illustrated using 

This is lightness as specified by Land's designators (Land, 
1983), not as in hue, saturation and lightness colour mixing 
systems. 
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Figure 1. A Mondrian image. (a) has intensity profile (c) along 

the line marked on it, (b) is the computed lightness, 

the lightness fields computed from some realistic 
images. We briefly outline a possible 'real-time' 
parallel implementation. 

2. Lightness computation 

Blake's reformulated lightness computation 
(Blake, 1985a, b) imposes formal boundary condi-
tions, so it can be applied to any Mondrian. He 
showed it to be a robust, locally parallel equivalent 
to Land's retinex. The 2D gradient operator V is  

applied to log-intensity p(x) to detect edges. A 
threshold operator T is defined for vector fields: 

T(A) = (( IA 12 - 
	 ( l 

where I is a smooth approximation to a step func-
tion, as in Figure 2, and A is a threshold. The for-
mal statement of Land and McCann's scheme is 
that lightness is 

I(x,y)=E. dr, 

where E= T(Vp), arbitarily assigning I at some 
point (x0,y0 ) and then integrating directly over 
paths P from (x0,y0 ) to each point (x,y). Blake 
has shown that this computation can be performed 
locally in parallel by minimising the functional 

F= 
im

(VI—E) 2 , 	 (2) 
age 

which is equivalent to solving 

17 21=17.E, 	 (3) 

under the boundary condition that n - Vl=n• Eon 
the contour C that surrounds the image. (Vector n 
is the unit normal to C.) 

3. A modified scheme for real images 

We have modified Blake's scheme for use on real 
images. The main considerations in doing this 
were: 
- real images conventionally have a rectangular 
picture structure, not hexagonal. 
- real images contain noise. 
- real images often break the rules of the Mon-
drian world (see Section 3.3). 

t(z) 

Figure 2. Blake's threshold function as in equation (1). 
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3. 1. Rectangular grid images 

Blake's formulation uses equilateral triangular 
elements, sampling intensities at the nodes of a 

 

A 	0r 

 

(C) 

Figure 3. The image is discretely sampled at each node (i,j) of 

a rectangular grid. (a) Triangular linear elements are used to 

estimate intensity gradients. (b) Each element is labelled by a 

boolean flag (c). 

hexagonal grid. However, conventional images 
produced by cameras, sample intensity at the nodes 
of a rectangular grid, having a standard aspect 
ratio A. We use right-angled triangular elements in 
a new tesselation Z - so that adjacent pairs of 
triangles cover a rectangular area - as shown in 
Figure 3. The set of vertices V of the triangles in 
Z is a rectangular grid of nodes, at which the inten-
sities are sampled. This is compatible with conven-
tional cameras and displays. 

Each vertex is indexed by coordinate (i,j) as in 
Figure 3 and has a set N(i,j) of up to 4 (fewer on 
the boundary) nearest neighbouring vertices. At 
each vertex, p,1  denotes the log-intensity and 1,. 
the estimate of lightness. 

The scalar fields are modelled using linear finite 
elements in the form of the right-angled triangles, 
so the gradient of a field B within an element 
having values a, b and c at its vertices, and aspect 
ratio A as shown in Figure 3, obeys: 

VB1 2  = g(a, b, c) = (a - b)'+ (b - c) 2 /A 2  

The function g is used to estimate jVpj within each 
triangle. So the edge detection stage consists of 
thresholding this value in the triangles above and 
below each vertex - i.e. by assigning the arrays of 
boolean flags u, and d,, 1  as below (see Figure 3). 

For (i,j)e U= (i,j): the triangle above (i,j) 
is in Z}, u 1  = I if g(p1,, pi_ i, ,  P— + i) >A2 

O otherwise. 
For (i,j)eD= {(i,j): the triangle below (i,j) (4) 
is in Z}, d11 = I if g(p 1 , p+ ,, p+ 

O otherwise. 
For convenience, we will define u=O, for 
(i,j)U, and d 1 =O, for (i,j)D. 

Using these flags the discrete version of the func-
tional (F in equation (2)) can be expressed in terms 
of the function g. 

F= E g(l, - 	l 	- u p_ , 
I,) EU 

+ I - up1_ + 

+ 	 1 —d, 1p 
i. j €D 

li +1 ,j _ 1 - di, jpi+ 1 , j_0 1  

which can be minimised by differentiating with 
respect to each liJ  by solving the sparse set of 

rRin 
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simultaneous equations 3F1311 =0, which are ex-
plicitly written below. 

V,,JE V 	E 	Ck,fl,fj.J,k,,71(Ij,J - 'k,,n) = r,, j 
k, m e N(i, I) 

where f,jk.=°,  I or 2 is the number of 
triangles in the tesselation on which both (i,j) 
and (k, m) are vertices, 
where N, V are as defined above, and 
where ck fl =l/A 2  if k=i, 1 otherwise, and 	(5) 

r,= (u 1,+ d,_ 	—p,_ 

+ (d,,+u1+  

± ((u, 	+ d_ 	 ) 

+ (u 	+ d1 _ 	 1 ))M 2 . 

Simultaneous over-relaxation (JOR) provides an 
iterative method to solve these equations, as shown 
below. Convergence is ensured by restricting the 
relaxation parameter w so that O<w< 1 (Blake, 
1983). 

I"=(l +a)lU 
41 	 41 

11n - 1) + rj.+ ü Ck,fjjkm 
(k,mcNU,j) 	

j) /M1, 1  

where M1, = 	 C, 	I. k.,,, - 	 (6) 
k. in c \'(i, j)  

Here M 1  is a normalising constant for the contri-
bution to the sum from each vertex, that takes into 
account how many of its surrounding triangles are 
in the tesselation Z. The log-intensities were used 
as the initial estimates of lightness: 1 (0) =p. 

3.2. Combating noise using the Canny operator 

There are two distinct stages to lightness com-
putation in Mondrians: 

identifying the borders of patches by thres-
holding. This is really a primitive form of edge 
detection. 

minimising the functional, constructed using 
the edges found (equation (2)). 

In principle noise can disrupt both stages. In 
practice however the second stage is robust to the 
fluctuations in the initial lightness field - their 
random effects averaging out when integrated over 
the whole image. In fact at low noise levels it is 
possible to choose a threshold that ignores gra-
dients due to noise, finding only those due to 
reflectance steps. So the minimisation produces 
patches of uniform lightness values almost iden-
tical to the noiseless case. 

The edge detection stage is more susceptible to 
noise. The random intensity fluctuations can make 

ligurc 4. A gap cause a local distortions in the tightness field. (a) is the intensity image. (b) is the edge map showing the gap, (c) and 
(d) are profiles of intensity and computed lightness along the line marked in (a) passing through the gap. 
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impossible to choose one threshold that sup-
resses noise within a patch while retaining the 
atch border. A gap in an otherwise complete edge 
igure 4), causes distortion in its vicinity. In the 

ext sections an improved edge detector is used to 
Dmbat the effects of noise that we have discussed 
ere. 

.2. 1. Criteria for edge detection 

The discussion above suggests the following 
riteria for the edge detector used by the scheme. 
'hey are in order of importance: 

patch boundaries should be detected as closed 
ontours. 

boundaries should be accurately located. 
spurious edge elements should be avoided. 

'he primitive edge detector so far described decides 
ihether each triangular element is an edge, using 
nly the three intensities sampled as its vertices. In 
ffect signal to noise ratio (SNR) is improved by 
sing an operator with a larger support as an esti-
date of I Vp, for use in place ofg( ... ) in equation 
1). The increased support reduces the accuracy 
vith which each edge element is localised but tends 
o avoid gaps in edges especially when hysteresis is 
sed. 

'.2.2. The Canny operator 

The Canny operator (Canny, 1983) is an edge 
letector designed to optimise the product of SNR 
md edge localisation. It applies a derivative of a 
D gaussian: 17G. Setting the width a of the gaus-
ian determines the SNR-localisation trade off. In 
in adaptive scheme the amount of noise in an 
mage might be estimated by its RMS value and 
ised to determine a. In our discrete scheme the 
perator is applied by locally convolving the image 

vith masks that approximate two orthogonal com-
)onents of 17G. At each sample point an edge 
trength is delivered. Local maxima of strength 
'epresent potential edge points. The operator also 
)roduces an estimated normal direction to the 
)otential contour, on which each edge point would 
ie. To ensure only one response per edge point, 
my strength that is not a local maximum along its 
iormal direction is suppressed. 

The Canny operator was incorporated, to im-
prove edge detection by applying it to the (log-
intensity) image beforehand - producing at each 
vertex a boolean flag C,,, that is set on, only if 
there is an edge in the rectangular element above 
and to the right of the vertex. Parameters including 
a determine the number and distribution of these 
edges in this case the basic scheme uses the follow-
ing assignments (using the same notation as equa-
tion (4)): 

For (i,j)eU, u,1=C1. 	
(7) 

For (i,j)ED, d1,=C1+1,_ 1 . 

An example lightness field produced by a noisy 
Mondrian by employing the Canny operator is 
shown in Section 4.2. 

3.3. Real scenes 

In real scenes, surfaces can be curved, creased, 
glossy, textured, lie at different depths, have non-
uniform reflectance, and be self-luminous. Al-
though radiated flux from illuminants usually 
forms a smooth, continuous field at any given place 
(hard-edged spot-lights are an exception), its inter-
action with some orientations of surface causes 
large discontinuities in illumination. So in general 
(unlike for Mondrians) the lightness field is not a 
reliable estimate of reflectance although it still 
predicts perceived colour. Below we discuss how 
useful is the description provided by a lightness 
field for a variety of real world features. 

3.3.1. Real world features 

Shading is caused by small orientation varia-
tions. Gentle shading results in small intensity gra-
dients. These can be ignored by using a suitable 
threshold and so produce a uniform region of com-
puted lightness values (as in Figure 5). This useful-
ly represents a single patch of material. However 
steeper shading gradients can make it impossible to 
choose a threshold that distinguishes the now larger 
intensity gradients from material boundaries. The 
resulting lightness distribution is less useful - it 
may be non-uniform over a patch of uniform 
reflectance. 

Surface orientation discontinuities (e.g. creases) 
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Figure 5. (a) is shaded matte sphere, (c) and (b) are profiles of 

intensity and computed lightness along the line marked in (a). 

Figure 6. (a) is a pyramid in front of a cube, containing bot 

orientation and depth discontinuities, (c) and (b) are profiles 

intensity and computed lightness along the line marked in (a 

cause large intensity gradients that thresholding 
cannot distinguish from material boundaries. The 
lightness field computed across the discontinuity 
will change - falsely indicating a material boun-
dary. The edge between the faces of the pyramid in 
Figure 6 demonstrates this. 

Depth discontinuities. Under normal viewing 
conditions depth variations produce only small 
intensity gradients. These can be successfully dis-
tinguished from material boundaries in the way 
gentle shading was. However, they are often ac- 

companied by an orientation discontinuity - e. 
the edge between the cube and pyramid in Figur 
6. In this case the edge falsely indicates a materi 
boundary as discussed above, unless, as is ofte: 
the case, it is a real one. 

Shadows. At a sharp shadow border the sam 
analysis holds as for a crease - it is misclassified a 
a material boundary. At a very gentle borde 
(penumbra) the illumination gradient is small ant 
can be ignored (as for gentle shading), to usefull 
indicate that it is not a material boundary. Figur 
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Figure 7. (a) is matte sphere with a shadow region, (c) and (b) 
are profiles of intensity and computed lightness along the line 

marked in (a). 

7 represents a case in between these two extremes, 
where the threshold used detected several edges 
across the border. The resulting lightness field 
varies smoothly so it does not usefully indicate the 
underlying uniform material. 

Light sources and fluorescent materials are self-
luminous surfaces, having large intensity gradients 
at their borders, which are material boundaries. 
Within their image region a uniform lightness field 
is computed, producing a useful segmentation in 
terms of surface material. 

Figure 8. (a) is glossy sphere with a specularity, (c) and (b) are 
profiles of intensity and computed lightness along the line 

marked in (a). 

Specularities are caused where a glossy surface 
is oriented to reflect light as a mirror does. The 
nature of the intensity gradients at their borders 
depend on the amount of gloss and the local sur -
face orientation. They are not caused by material 
boundaries. A specularity with a sharp border is 
treated as if it were a light source and erroneously 
segmented from the material that surrounds it. 
Figure 8 shows a specularity with a gentler profile. 
Two regions of uniform lightness that wrongly 
represent different materials are apparent. (The 
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smooth variation in the lightness field at the border 
is for similar reasons to that for the shadow.) 

Texture, is caused by local fluctuations of sur-
face orientation or reflectance. The intensity gra-
dients produced by it can be treated in the same 
way that noise was in Section 3.2. So in a region 
where these gradients are small enough to be dis-
tinguished from material boundaries, an average 
uniform lightness field can be computed, to cor-
rectly indicate a patch of a single material. For 
materials where texture is very prominent, the light-
ness field becomes distorted by the presence of 
extra edges and gaps - like the Mondrian in noise. 
Texture fluctuations persist in the lightness dis-
tribution resulting in a non-uniformity which no 
longer usefully describes a single material. An in-
termediate case is shown in Figure 9 which is a tex-
tured version of Figure 6. The lightness profiles 
across both images are very similar despite a con-
siderable amount of texture. The regions of uni-
form lightness that do persist, usefully indicate 
regions of uniform material. 

3.4. Serial implementation 

Ideally, to fully exploit our scheme, it should be 
implemented in parallel using special hardware - 
one possibility is described in Section 3.4.2. How -
ever, a serial computer (an Edinburgh University 
APM) was used to implement a successive over-
relaxation (SOR) method of solution - a serial ver-
sion of JOR, mentioned in Section 3.1. 

3.4.1. Basic schemne 

The program executed the following steps: 
I. Convert (I byte) input intensities into a (4 

byte) integer representing the log-intensity. 
Assign the values of Mid , by examining the 

number of triangles surrounding each vertex (i,j) 
- as in equation (6). 

Use the threshold operation to assign the 
boolean flags u,, and d, - as in equation (4) or 
using the Canny operator (see (7)). 

Use flags ui j  and d, with the log-intensities 
to compute r,, as (4 byte) integers - as in equation 
(5). 

Figure 9. (a) is a texture version of the scene in Figure 6, (c) and 
(b) are profiles of intensity and computed lightness along the 

line marked in (a). 

Use the log-intensities as the first guess at the 
lightnesses 1(n)  where n = 0. 

Use the formula given by equation (6) to com-
pute the value of l(n) given 	1) 

Repeat step 6 until the maximum individual 
change in lightness over the whole array is within 
a preset tolerance, or up to a maximum number of 
iterations. 

Note: in step 6, there is no need for two lightness 
arrays, (/ (t_) and l'), because the SOR scheme 
replaces ih l) as soon as it becomes avail- 11i 	 i1 
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.ble. The implementation required 68 bits per 	4. Results 
ixel. 

.4.2. A possible parallel implementation 

Special hardware such as the CLIP4 image pro-
essing system (Duff, 1978) could be used for a 
real time', locally parallel implementation of our 
ightness computation scheme. A conservative esti-
tate of the run time, calculated by considering the 
umber and type of operation required to execute 
tep 6 in the basic scheme (see Section 3.4.1), is 3 
ns, using 16 bit precision. (Assuming CLIP speci-
ication as originally published and with additional 
torage (128 rather than 32 plane)). Such an imple-
nentation directly driven by a camera would pro-
'ide an excellent test of the scheme on real images. 
t would be interesting to see whether the computa-
ion is in fact coordinate-frame-invariant as claim-
!d in (Blake, 1985a, b), by rotating the image in 
eal time and observing whether the lightness is 
Lltered. Note that speed increases could probably 
e achieved by multi-resolution techniques (Terzo-
)oulos, 1984).  

4.1. Mondrians 

Figure 1 shows the scheme has successfully com-
puted lightness for a (256 x 256) Mondrian image. 
The illumination varies linearly from 100 17o at the 
top left of the image, down to 50 076 at the lower 
right, causing small intensity variations. These are 
not easily seen, but are evident in the intensity pro-
file. Using a threshold equivalent to a 6% intensity 
ratio the computed lightness field consists entirely 
of uniform areas, corresponding to uniform reflec-
tance of each Mondrian patch. The lightness profile 
demonstrates that there is a global correspondence. 
The two lightest regions in the profile that are dis-
connected and assigned an equal lightness, are in 
fact of equal reflectance. A satisfactory rate of 
convergence was achieved using w0.5. 

4.2. Noise 

Figure 10 shows use of the Canny operator to 
combat the effect of noise on the lightness com-
putation. The image is a Mondrian (having a mini-
mum step between patches of 40 grey-levels) with 
added gaussian noise of RMS value 20 grey-levels. 

igure 10. Using the Canny operator on the noisy Mondrian (a) produces edge map (b), (c) and (d) are profiles of intensity and com- 

puted lightness along the line marked in (a). 
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The edge map obtained as stated in Section 3.2.2, 
using a a value of 2 pixels, is a significant improve-
ment on that obtained by the simple threshold 
method. The resulting lightness field is remarkably 
uniform within patches. The profile through it, 
shows that the large intensity variations have been 
averaged out by the minimisation stage as men-
tioned in Section 3.2. This is an advantage when 
lightness is being interpreted as reflectance. How-
ever observed noise features should be retained if 
the goal is to predict perceived colour. 

4.3. Features of real images 

Section 3.3 discusses how the lightness computed 
in images containing real world features, not found 
in the Mondrian world, can be used to both predict 
perceived colour and to segment images in terms of 
materials. Figures 5 to 9 illustrate this discussion. 
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