1,665 research outputs found

    A luminance-contrast-aware disparity model and applications

    Get PDF
    Binocular disparity is one of the most important depth cues used by the human visual system. Recently developed stereo-perception models allow us to successfully manipulate disparity in order to improve viewing comfort, depth discrimination as well as stereo content compression and display. Nonetheless, all existing models neglect the substantial influence of luminance on stereo perception. Our work is the first to account for the interplay of luminance contrast (magnitude/frequency) and disparity and our model predicts the human response to complex stereo-luminance images. Besides improving existing disparity-model applications (e.g., difference metrics or compression), our approach offers new possibilities, such as joint luminance contrast and disparity manipulation or the optimization of auto-stereoscopic content. We validate our results in a user study, which also reveals the advantage of considering luminance contrast and its significant impact on disparity manipulation techniques.National Science Foundation (U.S.) (CGV-1111415

    The use of cues to convergence and accommodation in naive, uninstructed participants

    Get PDF
    A remote haploscopic video refractor was used to assess vergence and accommodation responses in a group of 32 emmetropic, orthophoric, symptom free, young adults naĂŻve to vision experiments in a minimally instructed setting. Picture targets were presented at four positions between 2 m and 33 cm. Blur, disparity and looming cues were presented in combination or separately to asses their contributions to the total near response in a within-subjects design. Response gain for both vergence and accommodation reduced markedly whenever disparity was excluded, with much smaller effects when blur and proximity were excluded. Despite the clinical homogeneity of the participant group there were also some individual differences

    Motion Parallax in Stereo 3D: Model and Applications

    Get PDF
    Binocular disparity is the main depth cue that makes stereoscopic images appear 3D. However, in many scenarios, the range of depth that can be reproduced by this cue is greatly limited and typically fixed due to constraints imposed by displays. For example, due to the low angular resolution of current automultiscopic screens, they can only reproduce a shallow depth range. In this work, we study the motion parallax cue, which is a relatively strong depth cue, and can be freely reproduced even on a 2D screen without any limits. We exploit the fact that in many practical scenarios, motion parallax provides sufficiently strong depth information that the presence of binocular depth cues can be reduced through aggressive disparity compression. To assess the strength of the effect we conduct psycho-visual experiments that measure the influence of motion parallax on depth perception and relate it to the depth resulting from binocular disparity. Based on the measurements, we propose a joint disparity-parallax computational model that predicts apparent depth resulting from both cues. We demonstrate how this model can be applied in the context of stereo and multiscopic image processing, and propose new disparity manipulation techniques, which first quantify depth obtained from motion parallax, and then adjust binocular disparity information accordingly. This allows us to manipulate the disparity signal according to the strength of motion parallax to improve the overall depth reproduction. This technique is validated in additional experiments

    Engineering data compendium. Human perception and performance. User's guide

    Get PDF
    The concept underlying the Engineering Data Compendium was the product of a research and development program (Integrated Perceptual Information for Designers project) aimed at facilitating the application of basic research findings in human performance to the design and military crew systems. The principal objective was to develop a workable strategy for: (1) identifying and distilling information of potential value to system design from the existing research literature, and (2) presenting this technical information in a way that would aid its accessibility, interpretability, and applicability by systems designers. The present four volumes of the Engineering Data Compendium represent the first implementation of this strategy. This is the first volume, the User's Guide, containing a description of the program and instructions for its use

    Change blindness: eradication of gestalt strategies

    Get PDF
    Arrays of eight, texture-defined rectangles were used as stimuli in a one-shot change blindness (CB) task where there was a 50% chance that one rectangle would change orientation between two successive presentations separated by an interval. CB was eliminated by cueing the target rectangle in the first stimulus, reduced by cueing in the interval and unaffected by cueing in the second presentation. This supports the idea that a representation was formed that persisted through the interval before being 'overwritten' by the second presentation (Landman et al, 2003 Vision Research 43149–164]. Another possibility is that participants used some kind of grouping or Gestalt strategy. To test this we changed the spatial position of the rectangles in the second presentation by shifting them along imaginary spokes (by ±1 degree) emanating from the central fixation point. There was no significant difference seen in performance between this and the standard task [F(1,4)=2.565, p=0.185]. This may suggest two things: (i) Gestalt grouping is not used as a strategy in these tasks, and (ii) it gives further weight to the argument that objects may be stored and retrieved from a pre-attentional store during this task

    Depth from HDR: Depth Induction or Increased Realism?

    Get PDF
    Many people who first see a high dynamic range (HDR) display get the impression that it is a 3D display, even though it does not produce any binocular depth cues. Possible explanations of this effect include contrast-based depth induction and the increased re-alism due to the high brightness and contrast that makes an HDR display “like looking through a window”. In this paper we test both of these hypotheses by comparing the HDR depth illusion to real binocular depth cues using a carefully calibrated HDR stereo-scope. We confirm that contrast-based depth induction exists, but it is a vanishingly weak depth cue compared to binocular depth cues. We also demonstrate that for some observers, the increased con-trast of HDR displays indeed increases the realism. However, it is highly observer-dependent whether reduced, physically correct, or exaggerated contrast is perceived as most realistic, even in the pres-ence of the real-world reference scene. Similarly, observers differ in whether reduced, physically correct, or exaggerated stereo 3D is perceived as more realistic. To accommodate the binocular depth perception and realism concept of most observers, display technolo-gies must offer both HDR contrast and stereo personalization
    • …
    corecore