31 research outputs found

    Energy-efficient memcapacitor devices for neuromorphic computing

    Get PDF
    Data-intensive computing operations, such as training neural networks, are essential for applications in artificial intelligence but are energy intensive. One solution is to develop specialized hardware onto which neural networks can be directly mapped, and arrays of memristive devices can, for example, be trained to enable parallel multiply–accumulate operations. Here we show that memcapacitive devices that exploit the principle of charge shielding can offer a highly energy-efficient approach for implementing parallel multiply–accumulate operations. We fabricate a crossbar array of 156 microscale memcapacitor devices and use it to train a neural network that could distinguish the letters ‘M’, ‘P’ and ‘I’. Modelling these arrays suggests that this approach could offer an energy efficiency of 29,600 tera-operations per second per watt, while ensuring high precision (6–8 bits). Simulations also show that the devices could potentially be scaled down to a lateral size of around 45 nm

    Memristors for the Curious Outsiders

    Full text link
    We present both an overview and a perspective of recent experimental advances and proposed new approaches to performing computation using memristors. A memristor is a 2-terminal passive component with a dynamic resistance depending on an internal parameter. We provide an brief historical introduction, as well as an overview over the physical mechanism that lead to memristive behavior. This review is meant to guide nonpractitioners in the field of memristive circuits and their connection to machine learning and neural computation.Comment: Perpective paper for MDPI Technologies; 43 page

    Low Power Memory/Memristor Devices and Systems

    Get PDF
    This reprint focusses on achieving low-power computation using memristive devices. The topic was designed as a convenient reference point: it contains a mix of techniques starting from the fundamental manufacturing of memristive devices all the way to applications such as physically unclonable functions, and also covers perspectives on, e.g., in-memory computing, which is inextricably linked with emerging memory devices such as memristors. Finally, the reprint contains a few articles representing how other communities (from typical CMOS design to photonics) are fighting on their own fronts in the quest towards low-power computation, as a comparison with the memristor literature. We hope that readers will enjoy discovering the articles within

    BOOLEAN AND BRAIN-INSPIRED COMPUTING USING SPIN-TRANSFER TORQUE DEVICES

    Get PDF
    Several completely new approaches (such as spintronic, carbon nanotube, graphene, TFETs, etc.) to information processing and data storage technologies are emerging to address the time frame beyond current Complementary Metal-Oxide-Semiconductor (CMOS) roadmap. The high speed magnetization switching of a nano-magnet due to current induced spin-transfer torque (STT) have been demonstrated in recent experiments. Such STT devices can be explored in compact, low power memory and logic design. In order to truly leverage STT devices based computing, researchers require a re-think of circuit, architecture, and computing model, since the STT devices are unlikely to be drop-in replacements for CMOS. The potential of STT devices based computing will be best realized by considering new computing models that are inherently suited to the characteristics of STT devices, and new applications that are enabled by their unique capabilities, thereby attaining performance that CMOS cannot achieve. The goal of this research is to conduct synergistic exploration in architecture, circuit and device levels for Boolean and brain-inspired computing using nanoscale STT devices. Specifically, we first show that the non-volatile STT devices can be used in designing configurable Boolean logic blocks. We propose a spin-memristor threshold logic (SMTL) gate design, where memristive cross-bar array is used to perform current mode summation of binary inputs and the low power current mode spintronic threshold device carries out the energy efficient threshold operation. Next, for brain-inspired computing, we have exploited different spin-transfer torque device structures that can implement the hard-limiting and soft-limiting artificial neuron transfer functions respectively. We apply such STT based neuron (or ‘spin-neuron’) in various neural network architectures, such as hierarchical temporal memory and feed-forward neural network, for performing “human-like” cognitive computing, which show more than two orders of lower energy consumption compared to state of the art CMOS implementation. Finally, we show the dynamics of injection locked Spin Hall Effect Spin-Torque Oscillator (SHE-STO) cluster can be exploited as a robust multi-dimensional distance metric for associative computing, image/ video analysis, etc. Our simulation results show that the proposed system architecture with injection locked SHE-STOs and the associated CMOS interface circuits can be suitable for robust and energy efficient associative computing and pattern matching

    Cryogenic Neuromorphic Hardware

    Full text link
    The revolution in artificial intelligence (AI) brings up an enormous storage and data processing requirement. Large power consumption and hardware overhead have become the main challenges for building next-generation AI hardware. To mitigate this, Neuromorphic computing has drawn immense attention due to its excellent capability for data processing with very low power consumption. While relentless research has been underway for years to minimize the power consumption in neuromorphic hardware, we are still a long way off from reaching the energy efficiency of the human brain. Furthermore, design complexity and process variation hinder the large-scale implementation of current neuromorphic platforms. Recently, the concept of implementing neuromorphic computing systems in cryogenic temperature has garnered intense interest thanks to their excellent speed and power metric. Several cryogenic devices can be engineered to work as neuromorphic primitives with ultra-low demand for power. Here we comprehensively review the cryogenic neuromorphic hardware. We classify the existing cryogenic neuromorphic hardware into several hierarchical categories and sketch a comparative analysis based on key performance metrics. Our analysis concisely describes the operation of the associated circuit topology and outlines the advantages and challenges encountered by the state-of-the-art technology platforms. Finally, we provide insights to circumvent these challenges for the future progression of research

    Phase Noise Analyses and Measurements in the Hybrid Memristor-CMOS Phase-Locked Loop Design and Devices Beyond Bulk CMOS

    Get PDF
    Phase-locked loop (PLLs) has been widely used in analog or mixed-signal integrated circuits. Since there is an increasing market for low noise and high speed devices, PLLs are being employed in communications. In this dissertation, we investigated phase noise, tuning range, jitter, and power performances in different architectures of PLL designs. More energy efficient devices such as memristor, graphene, transition metal di-chalcogenide (TMDC) materials and their respective transistors are introduced in the design phase-locked loop. Subsequently, we modeled phase noise of a CMOS phase-locked loop from the superposition of noises from its building blocks which comprises of a voltage-controlled oscillator, loop filter, frequency divider, phase-frequency detector, and the auxiliary input reference clock. Similarly, a linear time-invariant model that has additive noise sources in frequency domain is used to analyze the phase noise. The modeled phase noise results are further compared with the corresponding phase-locked loop designs in different n-well CMOS processes. With the scaling of CMOS technology and the increase of the electrical field, the problem of short channel effects (SCE) has become dominant, which causes decay in subthreshold slope (SS) and positive and negative shifts in the threshold voltages of nMOS and pMOS transistors, respectively. Various devices are proposed to continue extending Moore\u27s law and the roadmap in semiconductor industry. We employed tunnel field effect transistor owing to its better performance in terms of SS, leakage current, power consumption etc. Applying an appropriate bias voltage to the gate-source region of TFET causes the valence band to align with the conduction band and injecting the charge carriers. Similarly, under reverse bias, the two bands are misaligned and there is no injection of carriers. We implemented graphene TFET and MoS2 in PLL design and the results show improvements in phase noise, jitter, tuning range, and frequency of operation. In addition, the power consumption is greatly reduced due to the low supply voltage of tunnel field effect transistor

    Techniques of Energy-Efficient VLSI Chip Design for High-Performance Computing

    Get PDF
    How to implement quality computing with the limited power budget is the key factor to move very large scale integration (VLSI) chip design forward. This work introduces various techniques of low power VLSI design used for state of art computing. From the viewpoint of power supply, conventional in-chip voltage regulators based on analog blocks bring the large overhead of both power and area to computational chips. Motivated by this, a digital based switchable pin method to dynamically regulate power at low circuit cost has been proposed to make computing to be executed with a stable voltage supply. For one of the widely used and time consuming arithmetic units, multiplier, its operation in logarithmic domain shows an advantageous performance compared to that in binary domain considering computation latency, power and area. However, the introduced conversion error reduces the reliability of the following computation (e.g. multiplication and division.). In this work, a fast calibration method suppressing the conversion error and its VLSI implementation are proposed. The proposed logarithmic converter can be supplied by dc power to achieve fast conversion and clocked power to reduce the power dissipated during conversion. Going out of traditional computation methods and widely used static logic, neuron-like cell is also studied in this work. Using multiple input floating gate (MIFG) metal-oxide semiconductor field-effect transistor (MOSFET) based logic, a 32-bit, 16-operation arithmetic logic unit (ALU) with zipped decoding and a feedback loop is designed. The proposed ALU can reduce the switching power and has a strong driven-in capability due to coupling capacitors compared to static logic based ALU. Besides, recent neural computations bring serious challenges to digital VLSI implementation due to overload matrix multiplications and non-linear functions. An analog VLSI design which is compatible to external digital environment is proposed for the network of long short-term memory (LSTM). The entire analog based network computes much faster and has higher energy efficiency than the digital one

    High-Performance and Low-Power Magnetic Material Memory Based Cache Design

    Get PDF
    Magnetic memory technologies are very promising candidates to be universal memory due to its good scalability, zero standby power and radiation hardness. Having a cell area much smaller than SRAM, magnetic memory can be used to construct much larger cache with the same die footprint, leading to siginficant improvement of overall system performance and power consumption especially in this multi-core era. However, magnetic memories have their own drawbacks such as slow write, read disturbance and scaling limitation, making its usage as caches challenging. This dissertation comprehensively studied these two most popular magnetic memory technologies. Design exploration and optimization for the cache design from different design layers including the memory devices, peripheral circuit, memory array structure and micro-architecture are presented. By leveraging device features, two major micro-architectures -multi-retention cache hierarchy and process-variation-aware cache are presented to improve the write performance of STT-RAM. The enhancement in write performance results in the degradation of read operations, in terms of both speed and data reliability. This dissertation also presents an architecture to resolve STT-RAM read disturbance issue. Furthermore, the scaling of STT-RAM is hindered due to the required size of switching transistor. To break the cell area limitation of STT-RAM, racetrack memory is studied to achieve an even higher memory density and better performance and lower energy consumption. With dedicated elaboration, racetrack memory based cache design can achieve a siginificant area reduction and energy saving when compared to optimized STT-RAM

    Memristor: Modeling, Simulation and Usage in Neuromorphic Computation

    Get PDF
    Memristor, the fourth passive circuit element, has attracted increased attention from various areas since the first real device was discovered in 2008. Its distinctive characteristic to record the historic profile of the voltage/current through itself creates great potential in future circuit design. Inspired by its high Scalability, ultra low power consumption and similar functionality to biology synapse, using memristor to build high density, high power efficiency neuromorphic circuits becomes one of most promising and also challenging applications. The challenges can be concluded into three levels: device level, circuit level and application level. At device level, we studied different memristor models and process variations, then we carried out three independent variation models to describe the variation and stochastic behavior of TiO2 memristors. These models can also extend to other memristor models. Meanwhile, these models are also compact enough for large-scale circuit simulation. At circuit level, inspired by the large-scale and unique requirement of memristor-based neuromorphic circuits, we designed a circuit simulator for efficient memristor cross-point array simulations. Out simulator is 4~5 orders of magnitude faster than tradition SPICE simulators. Both linear and nonlinear memristor cross-point arrays are studied for level-based and spike-based neuromorphic circuits, respectively. At application level, we first designed a few compact memristor-based neuromorphic components, including ``Macro cell'' for efficient and high definition weight storage, memristor-based stochastic neuron and memristor-based spatio temporal synapse. We then studied three typical neural network models and their hardware realization on memristor-based neuromorphic circuits: Brain-State-in-a-Box (BSB) model stands for level-based neural network, and STDP/ReSuMe models stand for spiking neural network for temporal learning. Our result demonstrates the high resilience to variation of memristor-based circuits and ultra-low power consumption. In this thesis, we have proposed a complete and detailed analysis for memristor-based neuromorphic circuit design from the device level to the application level. In each level, both theoretical analysis and experimental data versification are applied to ensure the completeness and accuracy of the work

    Electronic Nanodevices

    Get PDF
    The start of high-volume production of field-effect transistors with a feature size below 100 nm at the end of the 20th century signaled the transition from microelectronics to nanoelectronics. Since then, downscaling in the semiconductor industry has continued until the recent development of sub-10 nm technologies. The new phenomena and issues as well as the technological challenges of the fabrication and manipulation at the nanoscale have spurred an intense theoretical and experimental research activity. New device structures, operating principles, materials, and measurement techniques have emerged, and new approaches to electronic transport and device modeling have become necessary. Examples are the introduction of vertical MOSFETs in addition to the planar ones to enable the multi-gate approach as well as the development of new tunneling, high-electron mobility, and single-electron devices. The search for new materials such as nanowires, nanotubes, and 2D materials for the transistor channel, dielectrics, and interconnects has been part of the process. New electronic devices, often consisting of nanoscale heterojunctions, have been developed for light emission, transmission, and detection in optoelectronic and photonic systems, as well for new chemical, biological, and environmental sensors. This Special Issue focuses on the design, fabrication, modeling, and demonstration of nanodevices for electronic, optoelectronic, and sensing applications
    corecore