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ABSTRACT 

Fan, Deliang. Ph.D., Purdue University, August 2015. Boolean and Brain-Inspired 

Computing Using Spin-Transfer Torque Devices. Major Professor: Kaushik Roy. 

 

 

 

Several completely new approaches (such as spintronic, carbon nanotube, graphene, 

TFETs, etc.) to information processing and data storage technologies are emerging to 

address the time frame beyond current Complementary Metal-Oxide-Semiconductor 

(CMOS) roadmap. The high speed magnetization switching of a nano-magnet due to 

current induced spin-transfer torque (STT) have been demonstrated in recent 

experiments. Such STT devices can be explored in compact, low power memory and 

logic design. In order to truly leverage STT devices based computing, researchers require 

a re-think of circuit, architecture, and computing model, since the STT devices are 

unlikely to be drop-in replacements for CMOS. The potential of STT devices based 

computing will be best realized by considering new computing models that are inherently 

suited to the characteristics of STT devices, and new applications that are enabled by 

their unique capabilities, thereby attaining performance that CMOS cannot achieve. The 

goal of this research is to conduct synergistic exploration in architecture, circuit and 

device levels for Boolean and brain-inspired computing using nanoscale STT devices. 

Specifically, we first show that the non-volatile STT devices can be used in designing 

configurable Boolean logic blocks. We propose a spin-memristor threshold logic (SMTL) 

gate design, where memristive cross-bar array is used to perform current mode 

summation of binary inputs and the low power current mode spintronic threshold device 

carries out the energy efficient threshold operation. Next, for brain-inspired computing, 

we have exploited different spin-transfer torque device structures that can implement the 

hard-limiting and soft-limiting artificial neuron transfer functions respectively. We apply 



 

 

xiv 

such STT based neuron (or ‘spin-neuron’) in various neural network architectures, such 

as hierarchical temporal memory and feed-forward neural network, for performing 

“human-like” cognitive computing, which show more than two orders of lower energy 

consumption compared to state of the art CMOS implementation. Finally, we show the 

dynamics of injection locked Spin Hall Effect Spin-Torque Oscillator (SHE-STO) cluster 

can be exploited as a robust multi-dimensional distance metric for associative computing, 

image/ video analysis, etc. Our simulation results show that the proposed system 

architecture with injection locked SHE-STOs and the associated CMOS interface circuits 

can be suitable for robust and energy efficient associative computing and pattern 

matching. 



 

 

1 

1. INTRODUCTION 

1.1. Introduction 

 The scaling of Complementary Metal-Oxide Semiconductor (CMOS) transistors 

brings a lot of issues, such as short channel effect, large leakage current and so on. 

Considerable research efforts has started in earnest to explore new devices that can 

potentially replace CMOS. Several completely new approaches (such as spintronic [1]-

[7], TFETs [8][9], etc.) to information processing and data storage technologies are 

emerging to address the time frame beyond current CMOS roadmap. These emerging 

devices have unique characteristics that set them apart from traditional MOS transistors. 

In order to attain performance that CMOS cannot achieve, new computing models that 

are uniquely suited to the characteristics of these emerging devices are required to be 

explored. 

Recently, it was experimentally demonstrated that the spin polarized currents can 

switch nano-scale magnets due to spin-transfer torque (STT) [4][5]. Compared with 

CMOS transistors, STT devices have the characteristics of non-volatility, zero current 

leakage and high integration density, which make them promising candidates for 

designing compact, low power memory and Boolean logic [13]-[24]. It is well accepted 

that STT devices are suitable in on-chip memory design, while the suitability of spin-

transfer torque devices for logic applications is debatable [24]. In this dissertation, we 

focus on a wider perspective on the application of STT devices involving exploring 

combination of spin and charge devices and searching for computation models enabled 

by their unique capabilities.  

1.2. Spin Devices 

Every atom is composed of a nucleus and one or more electrons, where electrons are 

orbiting around the nucleus. Thus electron has an orbital angular momentum. However, 
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the experimental evidence suggests that an electron has an intrinsic angular momentum, 

which comes from the spin of the electron. Electrons with unidirectional electron spin 

moment results in magnet with non-zero moment, or in other words, electron is a magnet. 

Some atoms, such as Fe2+, Co3+, Mn2+, have oxidation states with incomplete electronic 

sub-shells, occurring in the 3d shells of the transition elements. These elements can 

produce magnetic moments. The electron spin can be manipulated using external 

magnetic field or spin-transfer torque effect [1][2]. In the following subsections, we will 

discuss the magnet switching energy and the above two magnet switching mechanisms. 

 

Fig. 1.1 Nano-magnet with uniaxial anisotropy and corresponding energy landscape 

1.2.1. Magnet Switching Energy 

In a nano-magnet, up-spin (0º) and down-spin (180º), as shown in Fig. 1.1, are used 

to denote two stable states. The anisotropy barrier is introduced to stabilize the magnetic 

moment along one direction as illustrated in Fig. 1.1. The information can be encoded as 

nano-magnet magnetization directions. Note that, nano-magnets can be used as non-

volatile bi-stable elements due to the fact that the anisotropy barrier exists without the 

need for an external power supply. The information retention time (Trt) of a nano-magnet 

is expressed as follow: 
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0 exp( )u
rt

B

K V
T T

K T
  

(1.1) 

where, T0 denotes the characteristic time, Ku is the magnetic anisotropy, V represents 

the nano-magnet volume, KB is the Boltzmann’s constant and T is the temperature in 

Kelvin [27]. Typically, around ten years of retention time can be achieved when the 

energy barrier (EB=KuV) is around 40KBT.  

1.2.2. Magnetic Field Switching 

One way of manipulating the magnetization direction of a nano-magnet is using an 

external magnetic field generated by a current-carrying wire. The minimum magnetic 

field required to switch the magnet is called critical magnetic field (Hc), which can be 

expressed as: 

2 u
c

s

K
H

M
  

(1.2) 

where, Ms denotes saturation magnetization. For example, if we want to switch the 

magnet from up-spin (0º) to down-spin (180º), in general, there are two scenarios to 

switch the magnet using external magnetic field. In the first scenario, a critical magnetic 

field (Hc) is first applied perpendicular (90º) to the easy-axis, namely along the hard-axis. 

Then a small bias field (Hbias), which can be ~10%Hc, is applied along the easy-axis 

(180º). When the 90º Hc magnetic field is removed, the magnet can be switched from up-

spin (0º) to down-spin (180º).  

The layout of two orthogonal wires generating two orthogonal fields are shown in 

Fig. 1.2a. The relationship between the current and the generated magnetic field can be 

described by Biot-Savart law: 

0

2

sin

4

dl
B I

r

 


   

(1.3) 

 where, as shown in Fig. 1.2b, I is the current flowing through the wire, l is the 

distance from the point-current element to the closest point of the wire to the nano-

magnet, r is the distance from the point-current element to the nano-magnet.  
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Fig. 1.2 (a) Two orthogonal wires generate two orthogonal fields HHARD and HEASY (b) 

magnetic field generation using current carrying wire 

In the second scenario of magnetic switching, the critical magnetic field is directly 

applied along the easy-axis (180º). Compared to the first scenario, it only requires one 

magnetic field. However, the nano-magnet switching time is slower than that of first 

scenario. In both scenarios, the magnetic field is not localized and is energy inefficient. In 

addition, the magnetic field switching method is also not scalable for applications that 

require high density of on-chip nano-magnets. 

1.2.3. Spin-Transfer Torque Switching 

A more efficient way to switch a nano-magnet involves exploiting the current 

induced spin-transfer torque effect as we will describe next. 
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Fig. 1.3 Slonczewski torque and field-like torque on the nano-magnet due to the flowing 

of spin-polarized current 

The behavior of the magnetization of the nano-magnet can be modeled using the 

Landau-Lifshitz-Gilbert equation with other terms describing the interaction between 

spin current and nano-magnets [1][2][23]: 

d d

dt dt
       

eff

m m
m H m  

(1.4) 

where m is a unit vector pointing to the magnetization direction of nano-magnet, γ is 

the gyromagnetic ratio, Heff denotes the effective magnetic field, and α is the Gilbert 

damping factor. τ represents the current induced torques that we will describe in details in 

this subsection. 

ani noise    eff exch ext MH H H H H H  (1.5) 

The first term in equation-1.4 describes the magnetization precession resulting from 

effective magnetic field, which may include anisotropy field (Hani), exchange magnetic 

field (Hexch), external magnetic field (Hext), magneto-static field (HM) and thermal noise 

term (Hnoise), as shown in equation-1.5 [115]. Anisotropy field comes from the anisotropy 

effect observed in ferromagnetic bodies resulting from the lattice structure and the 

particular symmetries in certain crystals. The easy directions in this dissertation are 

certain energetically favorable directions in a given magnetic materials without external 
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magnetic field. The exchange field arises from the exchange phenomenon (i.e. 

ferromagnetism and anti-ferromagnetism) observed in a large magnet composed of many 

smaller ferromagnetic particles. Unlike the exchange fields coming from the nearest 

neighbor coupling between magnetic particles, the magneto-static field (i.e. 

demagnetizing field) represents the long range coupling. It comes from the fact that the 

magnetic particle in a ferromagnetic body can be affected by the magnetic fields 

generated from the rest of the magnetic particles. Thermal effects are modeled using a 

stochastic Gaussian magnetic field, Hnoise= (Hnoise-x, Hnoise-y, Hnoise-z,). The mean of this 

Gaussian distribution is zero, while the standard deviation is  [127], 

where KB is Boltzmann’s constant, T is temperature in Kelvin, Ms is the saturation 

magnetization, V is the volume of free layer and Δt is the time step used in solving LLG 

equation.   

The second term, called Gilbert damping term, describes the nonlinear spin 

relaxation phenomenon due to spin-orbit coupling [147]. It represents the damping rate at 

which m reaches equilibrium.   

In general, the last term τ represents current induced torques that take Slonczewski 

(i.e. spin-transfer torque) term and field-like term as shown in Fig. 1.3. Spin-transfer 

torque effect was theoretically predicted by Slonczewski1 [1] and Berger [2]. It comes 

from the interaction between spin current and a nano-magnet. Since a nano-magnet has 

unequal up-spin and down-spin density of states, the currents flowing through a nano-

magnet is spin-polarized. Thus, a nano-magnet can act as a spin-polarizer whose direction 

is determined by the magnetization. The non-collinear spin-polarized electrons 

experience an exchange field trying to align the electron spins in the same direction of the 

nano-magnet, when they flow through the nano-magnet. This exchange field is the same 

field that aligns all the spins in the nano-magnet. Correspondingly, due to angular 

momentum conservation, the nano-magnet also experience a torque of equal magnitude 

but opposite sign at the same time. This torque is called spin-transfer torque (STT), 

which can be employed to switch the magnetization. It can be expressed as follows: 

( )
2

STT s

seM V


    m m I  

(1.6) 
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where, ħ is the Plank’s constant, e is the electron charge, Ms denotes the saturation 

magnetization of the magnet, and V represents the volume of the magnet. The spin current 

(Is) is determined by the device geometry and materials combination, which will be 

described in the next chapter. 

Generally, a field-like torque is also generated in asymmetric layered systems shown 

as follows: 

2
fl s

seM V


   m I  

(1.7) 

where, β is the ratio of this field-like torque strength to the Slonczewski torque. The 

magnitude of these two torques is dependent on the material and the device structures. 

Note that, for giant-magneto resistance (GMR) devices, the field like term is typically 

negligible as transverse spins dephase rapidly [184]. While for tunneling magneto 

resistance (TMR) devices, besides the in-plan torque predicted by Slonczewski, this field-

like (out of plane) torque is proven significant in modeling the dynamics of magnet [187].  

Following the recent discoveries of various physical phenomena involved in the 

current induced switching of nano-magnets, there have been various devices based on 

spin-transfer torque for memory and logic applications. In next chapter, we will discuss 

various spin-transfer torque devices that are employed in our research.  

1.3. Organization 

This dissertation conducts synergistic exploration in architecture, circuit and device 

levels for Boolean and brain-inspired computing using spin-transfer torque devices. 

Compared with state of the art CMOS designs, the spin based Boolean threshold logic 

design and brain-inspired computing can achieve ultra-low energy consumption. The 

remaining part of this dissertation is organized as follows. 

Chapter 2 reviews several spin-transfer torque devices, including vertical spin value, 

lateral spin valve, magnetic domain wall strip and spin-orbit torque devices. The 

associated underlying physical phenomena in these STT devices are also described in this 

chapter. 

Chapter 3 explores the spin based Boolean computation in threshold logic design. 

Memristive cross-bar array is employed to perform current mode summation of binary 
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inputs in the proposed spin-memristor threshold logic gate design. The low power, 

current mode spintronic threshold device is used to carry out the energy efficient 

threshold operation. Compared with state of the art CMOS threshold logic design, the 

proposed spin-memristor threshold logic achieves around two orders of magnitude lower 

energy consumption. 

In chapter 4, we propose an energy efficient hardware mapping of a novel brain-

inspired computing scheme - Hierarchical temporal memory (HTM) that tries to mimic 

the computing in cerebral neocortex. In HTM design, ultra-low power, magneto metallic 

hard-limiting spin-neurons combined with memristive cross-bar array (MCA) are 

explored in the dot product based pattern matching, which is the core computing block in 

HTM hardware. Such a direct mapping of the core-computing primitive of the cortical 

computing system can be very attractive for large-scale and energy efficient design. 

In chapter 5, we present a spin-transfer torque (STT) device based on Domain Wall 

Motion (DWM) magnetic strip that can efficiently implement a Soft-limiting Non-linear 

Neuron (SNN) operating at ultra-low supply voltage and current. In contrast to previous 

spin-based neurons that can only realize hard-limiting (i.e. step function) transfer 

functions, the proposed STT-SNN displays a continuous resistance change with varying 

input current, and can therefore be employed to implement a soft-limiting neuron transfer 

function. We also present an artificial neural network (ANN) hardware design employing 

the proposed STT-SNNs and MCA as synapses. The ultra-low voltage operation of the 

magneto metallic STT-SNN enables the programmable MCA-synapses, computing 

analog domain weighted summation of input voltages, to also operate at ultra-low 

voltage. We modeled the STT-SNN using micro-magnetic simulation and evaluated them 

using a feed-forward ANN for character recognition. Comparisons with analog and 

digital CMOS neurons show that STT-SNNs can achieve more than two orders of 

magnitude lower energy consumption. 

Chapter 6 shows that the dynamics of injection locked Spin Hall Effect Spin-Torque 

Oscillator (SHE-STO) cluster can be exploited as a robust primitive computational 

operator for associative computing. A cluster of SHE-STOs can be locked to a common 

frequency and phase with an injected AC current signal.  DC inputs to each STO from 
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external stimuli can conditionally unlock some of them. Based on the input DC signal, 

the degree of synchronization of the SHE-STO cluster is detected by CMOS interface 

circuitry. The degree of synchronization can be used for associative computing/matching. 

We present a numerical simulation model of SHE-STO devices based on Landau-

Lifshitz-Gilbert (LLG) equation with spin-transfer torque (STT) term and Spin Hall 

Effect (SHE). The model is then used to analyze the frequency and phase locking 

properties of injection locked SHE-STO cluster. Results show that associative computing 

based on the injection locked SHE-STO cluster can be energy efficient and relatively 

immune to device parameter variations and thermal noise. 

Finally, the concluding remarks are available in chapter 7. Spin-transfer torque 

devices are unlikely to be drop-in replacements for CMOS. They may be integrated with 

CMOS and other charge based devices to model energy efficient computing systems. The 

proposed new computing models in Boolean and brain-inspired computing are inherently 

suited to the characteristics of STT devices, thereby attaining performance that CMOS 

cannot achieve. 
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2. SPIN-TRANSFER TORQUE DEVICES 

In this chapter, we review several spin-transfer torque devices, including vertical 

spin value, lateral spin valve, magnetic domain wall strip and spin-orbit torque devices. 

The associated underlying physical phenomena in these STT devices are also described in 

this chapter. In the latter chapters of this dissertation, the fundamental STT devices 

described in this chapter will be employed as the building blocks in Boolean and brain-

inspired computing. 

2.1. Vertical Spin Valve 

The device structure of vertical spin valve is shown in Fig. 2.1. It consists of a fixed 

ferromagnetic layer (reference layer), a free ferromagnetic layer (free layer) and a spacer 

in between. Historically, this device structure is used as a sensor by exploiting the 

resistance dependence on the magnetic orientation in the vertical spin valve. In 1975, 

Julliere [6] discovered Tunneling Magneto-Resistance (TMR) effect when the spacer 

between two ferromagnetic layers is insulator. In such TMR vertical spin valve device, 

the resistance is higher when the magnetization of two ferromagnetic layers are anti-

parallel compared to the resistance of parallel magnetization configuration. The magneto-

resistance (MR) ratio defined as ΔG/GAP in percentage is used to characterize vertical 

spin value, where ΔG is the difference of the conductance between parallel (P) 

configuration and anti-parallel (AP) configuration and GAP is conductance of AP 

configuration. In Julliere’s work [6], MR is ~14% in a Fe/GeO/Co vertical spin valve at 

T=∼ 4.2K (T is the temperature). In 1988, Fert and Grunberg [7][29] discovered the 

similar resistance dependence on the magnetic orientation in a vertical spin valve with a 

metallic spacer, which is called Giant Magneto-Resistance (GMR). In Fert’s work [7], a 

vertical spin valve with Fe/Cr super lattices structure can achieve MR ratio ~80% at T 
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=∼ 4.2K. After these pioneering works, more works on GMR and TMR effects has been 

developed [10]-[12], [30]-[34].  

When the spin-polarized electrons travel through the vertical spin valve with metallic 

spacer, the spin scattering effect causes the GMR effect. Specifically, electrons 

experience little scattering and can pass through the vertical spin valve easily when the 

device is in parallel magnetization orientations. While for anti-parallel configuration, 

electrons experience more spin scattering when passing through the vertical spin valve. It 

makes electrons difficult to pass through the device. Thus, the conductance of parallel 

configuration is higher than that of anti-parallel configuration. 

 

Fig. 2.1 Physical structure of a vertical spin value and its two states, corresponding to low 

and high resistance state 

A Magnetic Tunnel Junction (MTJ), as shown in Fig. 2.2, consists of two nano-

magnets separated by an insulator. The band structures of parallel MTJ and anti-parallel 

MTJ are shown in Fig. 2.2a and Fig. 2.2b, respectively. In MTJ, the ferromagnetic layer 
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acts as polarizer of electron spin. The TMR effect in an MTJ can be explained by the spin 

filtering effect, where the tunneling probability of electrons across the tunnel barrier 

depends on the relative magnetization of the reference and free ferromagnetic layers [6], 

[10]-[12].  As shown in Fig. 2.2, the electrons can only tunnel into the sub-band of the 

same spin orientation in the absence of spin-flip processes. For example, in the MTJ 

parallel configuration shown in Fig. 2.2a, the sub-bands of two ferromagnetic layers (FM) 

are well matched, namely the number of filled and empty electronic states for each spin 

are well matched. On the other hand, the sub-bands of anti-parallel MTJ is not matched. 

Thus, larger number of electrons can tunnel through the parallel MTJ than anti-parallel 

MTJ, leading to a larger tunneling conductance of parallel MTJ than anti-parallel MTJ.  
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Fig. 2.2 Physical structure of MTJ and its band structure of parallel and anti-parallel 

configurations 

The MTJ tunneling conductance can be expressed as: 

1 1
( ) ( ) ( )cos

2 2
P AP P APG G G G G      

(2.1) 

where θ is the relative angle of two ferromagnetic layers, GAP and GP are the anti-

parallel (θ=180⁰) and parallel (θ=0⁰) MTJ conductance, respectively. Then the TMR ratio 

is defined as: 
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  

(2.2) 

Typically, the spin filtering effect enhances the MR ratios of MTJ, which makes it 

much higher than those of GMR based vertical spin valves. Furthermore, the MTJ 

resistance difference between P and AP configurations are much higher than that of GMR 

based vertical spin valve due to the employment of insulator as spacer.  

So far, we have discussed that the vertical spin valve can be easily used as a sensor 

to detect the magnetic state of a nano-magnet by exploiting the GMR or TMR effects. 

However, for memory and logic applications, manipulation of the magnetic state is also 

necessary. Next, we will discuss how to manipulate the magnetization of the free layer in 

the vertical spin valve using current induced spin-transfer torque as we described in the 

previous subsection. 

Since the electron spins get polarized flowing through the FM layer, they exert spin-

transfer torque on the FM layer magnetization. For the reference layer, the magnetization 

is strongly pinned so that STT is negligible. While for the free layer, the STT can switch 

the magnetization direction or drive the magnetization into a sustained oscillation based 

on the orientation of the magnetization and the spin current polarization. Thus, the spin 

current generated by the vertical spin valve can be expressed as: 

Is pI m  (2.3) 

Where Is is the spin-polarized current, I is the charge current, mp is the FM layer 

magnetization direction and η indicates the ratio of charge current magnitude to spin-

polarized current magnitude. The magnitude of η may depend on the voltage across 

vertical spin valve, m and mp [185].  Note that, MTJ is more efficient at generating spin-

polarized current than GMR based vertical spin valve due to the spin filtering effect. 

2.2. Lateral Spin Valve 

Fig. 2.3 shows the physical structure of lateral spin valve (LSV) with local and non-

local measurements [35]-[39]. LSV consists of two ferromagnetic contacts (FM) 

deposited on a non-magnetic (NM) channel. As shown in Fig. 2.3, there are two ways to 

measure the magneto-resistance effect in LSV, namely local and non-local measurements. 

For local measurement, it is similar to a vertical spin valve with a structure of 
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FM/NM/FM. Thus the magneto-resistance effect is also observed [35]. For non-local 

measurement of lateral spin valve, authors in [36][37] discovered that voltage on the FM 

detector contact can be modulated by current injection through the FM injector contact. It 

depends on the current injection and the distance between the injector and the detector. 

In the non-local measurement, though a current is injected through the FM injector 

contact, this current does not flow through the FM detector contact or the NM channel 

underlying the detector contact. The electron transport spin drift diffusion model can be 

used to explain LSV non-local effect [41]. Firstly, the FM injector spin-polarizes the 

injected electrons. As a result, the number of spins with same magnetization direction as 

FM injector is larger than that of opposite spins in the underlying non-magnetic channel. 

This imbalance of spins leads to non-equilibrium spin accumulation, thus a spin voltage 

in the NM. Note that, the spin voltage is the defined as the electrochemical potential 

(ECP) difference between the up-spin potential (µup) and down-spin potential (µdn).  Due 

to the spin voltage across the non-magnetic channel, one type of spins flow in one 

direction (Iup), while the other type of spins flow in the opposite direction (Idn).  As shown 

in Fig. 2.3, the charge current is defined as IQ=Iup+Idn and the spin current is defined as 

Is=Iup-Idn. Since Iup and Idn have the same magnitude, but opposite directions, the charge 

current in the non-magnetic channel is zero and the spin current is non-zero. 



 

 

16 

 

Fig. 2.3 Physical structure of a lateral spin valve of local and non – local measurements 

that has been made to experimentally observe magneto-resistance effect and pure spin-

current generation. 

Typically, the spin current generation efficiency in lateral spin valve is mainly 

limited by two factors: spin injection efficiency at the FM injector contact and the spin 

flip length in the NM channel. The spin injection efficiency at FM/NM interface can be 

improved by inserting a tunnel barrier between FM and NM, as shown experimentally in 

[37]. In the non-magnetic channel, the spin current decays exponentially because of the 

spin flip processes, leading to reduced magnitude of spin current to the FM detector 

contact. Several research works [35]-[38], [42][43] have investigated different NM 

channel materials with different spin flip lengths (λsf) for implementing energy efficient 
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lateral spin valves. The pure spin current generation efficiency can be improved by 

exploring LSV material combinations. In this non-local LSV experiment [44], the non-

local spin current was proven large enough to switch the magnetization of the FM 

detector. Therefore, by measuring the magnetization of FM detector contact, we can 

detect the non-local spin current in the LSV. Based on non-local LSV, “all-spin” based 

computation was proposed in [21]. 

2.3. Magnetic Domain Wall Strip 

So far, the spin current we have discussed are generated by injecting current through 

a spin valve and the exerted STT is used to manipulate another nano-magnet. Besides 

spin valve structure, it has been experimentally shown that the spin current can also be 

generated in a magnetic domain wall strip. Fig. 2.4 shows a ferromagnetic wire, called 

magnetic domain wall stripe (DWS), with a nanowire-like geometry and opposite 

magnetization at its two ends. The magnetization transition region along the DWS from 

one direction to the opposite direction is called domain wall (DW), whose structure and 

size are dependent on the DWS geometry and material properties.  

Fig. 2.4 shows several typical DW structures in a DWS [45][46], [189]-[193]. When 

the shape anisotropy dominates in materials such as Permalloy, NiFe or Py, the magnetic 

domains lie along the wire axis (in-plan magnetic anisotropy, IMA). The domain wall in 

such materials can be either transverse or vortex type. In a thin and narrow magnetic 

nano-strip, a transverse DW is typically formed. While, the vortex domain wall occurs 

when the magnetic nano-strip is relatively wider and thicker [189][190]. As shown in the 

right column of Fig. 2.4, the DWS has a strong perpendicular magnetic anisotropy (PMA, 

such as Co/Ni magnetic multilayers), where the magnetic domains are magnetized in the 

out-of-plane directions. A Neel type DW usually occurs in a narrower PMA DWS, while 

a Bloch type DW typically forms in a wider PMA DWS. Typically, the probabilities of 

left-handed and right-handed rotations of the DW are equal. However, an additional 

Dzyaloshinskii-Moriya interaction (DMI) [191][192] can favor and stabilize a particular 

DW configuration [45][46][193] in the presence of broken inversion symmetry. 
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Fig. 2.4 Typical domain wall structure (a) in-plane magnetic anisotropy transverse head-

to-head transverse DW (b) IMA vortex DW, (c) perpendicular magnetic anisotropy 

nanowire with Neel DW, and (d) PMA Bloch DW. 

An external magnetic field can be used to move domain walls in magnetic nano-wire. 

However, similar to the switching of magnetization in spin valves due to current induced 

STT, a more energy efficient way to induce domain wall motion is applying an electrical 

current along the domain wall strip [40][46], [77]-[80]. When electrons flow through a 

fixed domain in the DWS, they become spin-polarized. The spin-polarized electrons exert 

spin-transfer torque on the magnetic moments in and around the domain wall region. If 

the applied current density is above the critical current density, the exerted STT can 

overcome the pinning force, leading to steady domain wall motion (DWM). The critical 

current density is defined as the minimum current density applied along DWS to induce a 

steady DWM. Its magnitude is proportional to hard-axis anisotropy and the domain wall 

length. Earlier current induced domain wall motion experiments are based on IMA 

ferromagnetic nanowires with the critical current density in the order of ~108A/cm2. 
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Several issues, such as excessive Joule heating and reliability concerns, may accompany 

this relative high current density. In order to reduce the critical current density of DWM, 

a scaled PMA DWS is used in [126]. The hard-axis anisotropy of a PMA device reduces 

with lower device thickness and becomes much smaller than that of an IMA device. 

Moreover, the DW length in a PMA DWS is in general smaller than that in an IMA DWS. 

Therefore, a scaled PMA magnetic nano-strip can achieve much lower critical current 

density to induce steady DWM, leading to smaller power consumption. 

2.4. Spin-Orbit Torque 

In spin valve or DWS, the spin current is generated by passing charge current 

through a FM or spin polarizer. In these cases, the efficiency of generating spin current 

from charge current is limited by the polarization efficiency of the FM. Recent 

experiments show that spin current can be generated more efficiently through spin-orbit 

interaction (SOI) [50]. Later on, current induced SOI was experimentally demonstrated in 

I/FM/HM structure (I: Insulator, FM: Ferro-magnet, and HM: non-magnetic heavy metal) 

and applied in efficient magnetization switching [48]-[55], domain wall motion [45]-[47], 

[56], and spin-torque oscillations [49][57][58].  

 

Fig. 2.5 Charge current applied in non-magnetic heavy metal with strong spin-orbit 

coupling is converted to pure spin current due to spin Hall effect 
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The observed phenomenon can be explained by either Rashba effect [47][60] or Spin 

Hall Effect [61]. Rashba effect arises from the broken structural inversion symmetry in a 

material system [47][60]. This structural inversion asymmetry first produces an electrical 

potential along the asymmetry direction. When electrons travel through this electrical 

potential, they experience an effective magnetic field. This magnetic field induces spin 

polarization of electrons based on the magnetic momentum. Therefore, a pure spin 

current can be generated. The other explanation of the observed phenomenon is based on 

Spin Hall Effect (SHE) [61]. Referring to Fig. 2.5, when electrons flow through a non-

magnetic heavy metal (HM) (in ±y direction) with strong spin-orbit coupling, opposite 

electron spins accumulate on the opposite surfaces of HM. Thus, a pure spin current (Is) 

in the ±z direction is generated, which exerts a spin-transfer torque on the adjacent FM. 

The STT will switch the magnetization or drive the FM into steady oscillation. The 

relationship between the generated spin current (Is) and the applied charge current (IQ) 

can be expressed as follows: 

( )FM
SH

SH

A

A
 s QI σ I  

(2.4) 

Where AFM is the area of the adjacent FM area and ASH is the cross-sectional area of 

HM. θSH is the spin Hall angle, which is defined as the ratio of generated spin current 

density to the applied charge current density. Recently, large spin Hall angle was 

experimentally demonstrated in different heavy metal materials, such as Pt [62][63], β-Ta 

[49][64], β-W [65], and CuBi alloys [66]. σ is the electron spin polarization, which is 

transverse to both the spin current and charge current directions.   

By observing the above equation, it can be easily seen that the generated spin current 

can be larger than the applied charge current if θSHAFM /ASH is larger than 1. The reason 

comes from the scattering of electrons at the HM and FM interface, which generates 

multiple units of angular momentum. The spin current generation efficiency (η shown in 

equation-2.3) in spin valve is usually less than 1. Therefore, it is more efficient to 

generate spin current utilizing spin Hall effect.  
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2.5. Summary 

In this chapter, we briefly reviewed several fundamental spin-transfer torque devices 

and the associated underlying physical phenomena. Firstly, we discussed the GMR and 

TMR effects in vertical spin valves. Then, local and non-local measurements in lateral 

spin valve were introduced. We also presented current induced domain wall motion in 

magnetic domain wall strip and efficient spin current generation due to Spin Hall effect. 

In all of the STT devices discussed in this chapter, the magnetization of the nano-magnets 

can be manipulated to perform various Boolean and brain-inspired computing that will be 

presented in the latter chapters of this dissertation. 
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3. BOOLEAN LOGIC DESIGN: SPIN-MEMRISTOR THRESHOLD 

LOGIC 

In this chapter, we present a Spin-Memeristor Threshold Logic (SMTL) gate design, 

where memristive cross-bar array (MCA) is used to perform current mode summation of 

binary inputs and low power, current mode spintronic threshold device (STD) is 

employed to carry out the energy efficient threshold operation [133].  

3.1. Introduction 

Recently, a CMOS compatible and programmable resistive device, called memristor, 

has earned a lot of interest [67]-[69]. Such devices can be integrated into metallic cross-

bars to obtain high density memristive cross-bar arrays (MCA). The continuous 

resistance range can be obtained in memristors, leading to a possible design of multi-

level, non-volatile memory [69][70]. Application of the specific device characteristics of 

memristors in unconventional computing schemes like neural networks [71][72] and 

threshold logic (TL) [73]-[75], has been explored in recent years. 

A threshold logic gate (TLG) operation essentially constitutes of summation of 

weighted inputs, followed by a threshold operation [76]. While a memristor array can be 

employed to perform analog summation of binary voltage input signals, the thresholding 

operation requires the application of a current comparator circuit. Such a comparison 

operation can be obtained using conventional analog circuits based on current mirrors 

[73] or voltage comparators [74][75]. However such analog CMOS circuits often 

consume significant power and area, thereby eschewing the energy and density benefits 

of nano-devices. Rather than depending upon analog CMOS circuits for implementing 

current comparison, it would be desirable to explore nano-devices that can directly 

provide such a current mode thresholding characteristic. 
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Recently, high speed magnetization switching of a nano-magnet due to current 

induced spin-transfer torque (STT) have been demonstrated in experiments [77]-[80]. 

Such a phenomenon can be used to design compact and low power current mode 

spintronic switches and simultaneously provide energy efficient current-to-voltage 

conversion. Application of such spin-transfer torque switches in memory [94][182], 

digital [81][183], analog [82], and neuromorphic computing applications [83], have been 

explored earlier. Such nano-scale, spintronic devices inherently act as compact, ultra-low 

voltage and fast current comparators and hence, can be highly suitable for memristor 

based TLG design. 

In this chapter, we present a spin-memristor threshold logic (SMTL) design using 

such spin-transfer torque switches based on magnetic domain wall (DW) motion [79]. 

The magneto-metallic domain wall switch allows ultra-low voltage operation of 

memristive TLGs, leading to low energy dissipation at the gate level. We name our 

proposed domain wall switch structure as spintronic threshold device (STD). It can 

facilitate ultra-low voltage current mode interconnect for the design of fully 

programmable, large TL blocks. This helps to achieve highly reduced energy dissipation 

in programmable interconnects. Notably, in CMOS look up table (LUT) based 

conventional FPGAs, more than 90% of energy can be ascribed to programmable 

switches and interconnects [85]. Further, the STD being non-volatile magnetic switches 

inherently act as a latch and hence can facilitate fully pipelined connection of multiple 

TLG stages without the insertion of additional memory elements like flip-flops. This can 

provide high performance and integration density for complex data processing blocks. 

The aforementioned factors combined together lead to ultra-low energy consumption of 

the proposed design. 

In this chapter, we also present a comprehensive methodology for SMTL design, 

synthesis and optimization and compare its performance with conventional CMOS 

FPGAs. 

3.2. Design of TLG First Stage using Memristive Cross-bar Array 

In this subsection we review the recent progress in memristive cross-bar array 

design, programming and its application as the first stage of threshold logic computation. 
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A threshold logic operation shown in Fig. 3.1a, can be expressed as follow: 

1

( )
n

i i i

i

Y sign X W b


   
(3.1) 

where, Xi’s are multiple binary inputs to a threshold gate, Wi’s are scalar weights 

with which the corresponding inputs are multiplied (or scaled) and bi is the bias for the ith 

gate. Note that, Wi can be either positive or negative.  Hence, depending upon the input 

combination (assuming unipolar values of inputs, i.e., 1 and 0) the summation can yield 

either a positive or a negative value, result of which is determined by the sign function 

(involving a comparison operation). The first stage of the threshold logic computation is 

the scaling and summation of the inputs, which can be implemented using an MCA, as 

shown in Fig. 3.1b. The detailed design and programming of MCA will be introduced in 

this subsection. The second stage of threshold logic computing is a ‘sign’ (in equation-

3.1, or threshold) function, which will be implemented using the proposed spintronic 

threshold device described in the next subsection.  

3.2.1. Multi-level MCA 

 

Fig. 3.1 (a) A Schematic representation of a threshold logic gate (TLG), (b) memristive 

cross-bar array 
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Fig. 3.1b depicts a MCA with two sets of metal bars (horizontal bars and in-plan 

bars). In such a MCA, memristor with conductance-gij interconnects ith horizontal metal 

bar and jth in-plane metal bar. More than 8-bit write accuracy for isolated memristors 

have been proposed and demonstrated in literatures [69][70]. However, for threshold 

logic design the bit-precision requirement can be significantly less (less than 4-bit, 

explained later in this chapter). The programming voltage applied across two cross-

connected memristor, in a large-scale cross-bar array, results in sneak current paths 

through neighboring devices, which disturbs the state of unselected memristors. The 

application of access transistors and diodes can facilitate selective and disturb-free write 

operations to overcome the sneak path problem [90]. If the programming speed is not a 

major concern, the technique that can only program a single device at one time is also 

proposed in [91] without access transistors or diode. 

 

Fig. 3.2 A resistive memory array with multi-level programming periphery 



 

 

26 

A multi-bit memristor programming array-level scheme employing adjustable pulse 

width is shown in Fig. 3.2 [70][130]. In this scheme, when programming one specific 

memristor cell in the array, the corresponding set of the word line, the source-line and the 

bit line will be selected. In Fig. 3.2, only a single write unit is shared among all of the 

rows for infrequent write operations, while a dedicated programming cell can be assigned 

to each row for maximum write speed. This would allow writing of one column at a time, 

by selecting a particular world line. During the writing operation, a constant current will 

be injected into the selected cell and the voltage developed on the source line is compared 

with a comparator threshold. A digital to analog converter (DAC) is used to set the 

threshold proportional to the target resistance. As soon as the accessed memristor is 

programmed as the target value, the current source is disconnected. More precise tuning 

of memristor value can be achieved by applying a lower value of write current resulting 

in slower ramp in the resistance value. The write precision in the method described above 

is mainly limited by the random offset of the comparator, inaccuracy in the current source 

and DAC. Larger accuracy would entail higher design complexity for these blocks and 

lower write speed. The memristive devices (including Ag-Si) do exhibit a finite write 

threshold for an applied current/voltage, below which there is negligible change 

resistance [92]. Since the application of spin-based current comparator facilitates ultra-

low voltage (and hence low current) operation of the memristors for computing as will be 

described in the following sections, the state of memristor in the MCA will not be 

disturbed for reading. 

3.2.2. Threshold Logic Computing using MCA 

For a TLG, the scaling and summation operations can be implemented using a MCA, 

as shown in Fig. 3.1b. If we assume that the outward terminals of the in-plane bars are 

connected to ground, for a given set of binary voltage inputs, the total current flowing out 

of an in-plane bar is the dot product of input voltages and the memristors’ conductance 

values [69][76]. 

The above principle can be exploited in realizing current mode analog scaling 

(multiplication) and summation that corresponds to the first stage operation of a TLG.  

Several authors have proposed the design of hybrid TLG hardware based on memristive 
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cross-bar arrays and analog CMOS circuits, where analog circuits are employed to 

perform the second stage operation of the TLG, namely, thresholding [73]-[75]. For 

instance, application of analog current mirrors has been proposed for implementing 

memristor based hybrid TLG’s in [73]. However such a design requires additional 

interconnect networks to realize fully programmable logic modules. Notably, energy 

consumption of interconnects dominate the total power budget of an FPGA. Authors in 

[74][75] applied CMOS voltage comparators for realizing the thresholding operation for 

memristor based TLGs. Application of analog amplifiers and comparators may lead to 

significant energy consumption. Authors in [76] recently demonstrated the use of a 

simple CMOS latch for thresholding operation. Such a scheme would need large voltage 

inputs (resulting in large current) to the memristors, so that a digital latch can directly 

sense the voltage mode output of a TLG. This would result in power hungry TLG blocks 

that may not be suitable for large-scale integration. 

Thus, although memristors can provide an efficient mapping of the first stage operation 

of a TLG (namely current-mode scaling/multiplication and summation), the second 

operation, namely, the current mode thresholding, does not have a likewise ‘matching’ 

device. The above mentioned inefficiencies could be eliminated if an alternate device 

structure could be found that can perform the current mode thresholding operation in an 

energy efficient way. Next, we will present a spintronic threshold device design that can 

be ideally suitable for this purpose. 
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3.3. TLG Second Stage Design using Spintronic Threshold Device 

 

Fig. 3.3 (a) Device structure for Spintronic Threshold Device (b) Transient micro-

magnetic simulation plots. Read color represents the ‘down spin’ corresponding to d1. 

Blue color represents the ‘up spin’ in d3. White color is the magnetic domain wall. 

In this sub-section, we present the spintronic threshold devices (STD), based on 

magnetic domain wall, suitable for the design of energy efficient Spin-Memristor 

Threshold Logic (SMTL). This STD design will serve as the second stage of threshold 

logic computing, which is a thresholding (‘sign’) function. 

The proposed spintronic threshold device structure is shown in Fig. 3.3a. It 

constitutes of two fixed magnetic domains (d1 and d3) and a free domain (d2, 20×40×3 

nm3). The magnetization of these two fixed domains are anti-parallel. Domain-1 takes the 

current input, while the domain-3 is grounded. The magnetization of domain-2 can be 

written parallel (or anti-parallel) to d1 if the total input current is injected from d3 to d1 

(or from d1 to d3) [81]-[83]. The magnetization of free domain-2 is sensed using a 
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magnetic tunnel junction (MTJ), formed between a fixed magnet (m1) and d2. When d2 

and m1 have the same magnetization, the effective resistance of the read MTJ is smaller 

and vice-versa. Thus, the proposed STD acts as a low power and compact current 

comparator that can be employed in energy efficient current mode threshold logic design.  

Table. 3.1 STD device parameters 

t L W Ms Eb 

3nm 40nm 20nm 400emu/cm3 20KBT 

α A β tox Area(m1) 

0.01 10pJ/m 0.1 1.8nm 20×20nm2 

 

The resolution of the device, i.e. the minimum current magnitude required to switch 

the free layer, is determined by the critical current density for DW motion. Several recent 

experiments have achieved sub-nanosecond domain wall motion, with a low current 

density [77][126]. Magnetic domain with perpendicular magnetic anisotropy can provide 

scaled device dimensions (thickness ~3nm and width <50nm) as well as relatively lower 

critical current density [78]-[80], [126]. More recently, application of spin-orbital 

coupling has been explored for reducing the required current for a given speed of domain 

wall motion by an order of magnitude [80]. These device optimizations can be used to 

engineer current thresholds of the order of ~2µA for 1ns switching. Fig. 3.3b shows the 

transient micro-magnetic simulation plots for the proposed STD design using Object 

Oriented Micro-Magnetic Framework (OOMMF, [95]) when supplied with a 2 µA 

current. The device parameters of STD are shown in Table 3.1. It can be seen the 

magnetic domain wall moves from the left free domain boundary to the right boundary 

within 1 ns. We will analyze the effect of STD resolution on the energy efficiency of 

SMTL later in this chapter. 
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Fig. 3.4 STD state sense circuit 

The effective resistance of the MTJ formed between m1 and d2 is smaller when they 

have the same magnetization and vice versa. The ratio of the two resistances is defined in 

terms of tunnel magneto resistance ratio (TMR). STD forms a voltage divider with a 

fixed reference MTJ, as shown in Fig. 3.4. A TMR of ~400% can provide a voltage 

swing close to Vdd/2 that can be detected using a simple CMOS inverter. Static current in 

the voltage divider can be minimized for a given operation speed by increasing the MTJ 

oxide thickness. For 500MHz clock frequency, the oxide thickness was determined to be 

~1.8nm that resulted in a total power dissipation of ~0.15µW for the sensing unit 

(including the clocking power), for a supply voltage of 0.6V.  
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Fig. 3.5 (a) read current for different d2 state (b) read current margin to critical current 

Note that in the detection circuit, the terminal d3 of the STD is connected to Vdd. 

Hence, the transient evaluation current flows from d3 to d2 as shown in Fig. 3.5a. The 

current required for the DW motion increases proportional to the switching speed. The 

magnetization of d2 is not disturbed by the read current with a short duration and low 

magnitude. The read margin can be seen in Fig. 3.5b. Apart from device scaling, the STD 

critical current can also be lowered by manipulating other device parameters, like the 

anisotropy energy (Eb) of the magnet. 

In general, the circuit in Fig. 3.4 forms the ‘sign’ function required in equation-3.1. The 

STD works as a current comparator and its input is the output current of the first stage 

MCA. If the input current to STD is larger than the critical current, the output of the 

inverter is high, and vice versa. Next, we describe circuit design for combining the MCA 

and STD to implement threshold logic array design. 
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3.4. Design of SMTL Array 

 

(b)

 

Fig. 3.6 (a) synthesized ISCAS85 benchmark C17 threshold logic network. (b) 

synthesized ISCAS85 benchmark-C432 (27-channel interrupt controller) threshold logic 

network.  
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Fig. 3.6a and 3.6b show two threshold logic networks (TLN) for an ISCAS85 

benchmark, C-17 and C-432 [73], obtained using the threshold logic synthesis (TELS) 

technique presented in [84]. In Fig. 3.6a, each circle represents one threshold logic gate. 

The connections between each TLG are the fan-ins and fan-outs. The node without fan-

ins is the input node. The node without fan-outs is the output node. The weights are 

labelled along the connections. Node-i1 to node-i5 are the input nodes. Node-n1 and 

node-n2 are internal TLGs. Node-o1 and node-o2 are the output nodes. The bias values 

are labelled inside of the TLGs. The synthesized threshold logic network in Fig. 3.6b 

consists of 15 stages, while each stage is comprised of Ni threshold logic gates. The 

maximum number of fun-ins for each TLG is 4. Comparing these two benchmarks, it can 

be easily seen that ‘C-17’ is a simple TLN, while ‘C-432’ is a much larger scale TLN. In 

order to show our design is compatible to large scale TLN mapping, we will use C432 as 

a design example in this work.  

TLN constitutes of a network of TLGs which can be divided into multiple stages. 

Each circle in the plot represents one TLG and the TLGs in the same column will be 

mapped to the same MCA stage. The connections between the TLGs are implemented by 

the MCA described in previous subsection, whereas the conductance of memristor 

corresponds to the synthesized weights. In such a multi-stage logic scheme, each MCA 

stage would comprise a number of TLGs receiving inputs from its previous stage and 

communicating their outputs to the next stage. Let us consider the design of such a stage 

using MCA and the STD device. 

TLN constitutes of a network of TLGs which can be divided into multiple stages. 

Each circle in the plot represents one TLG and the TLG in the same columns will be 

mapped to the same MCA stage. The connections between the TLGs are implemented by 

the MCA described earlier, whereas the conductance of memristor corresponds to the 

synthesized weights. In such a multi-stage logic scheme, each MCA stage would 

comprise a number of TLGs receiving inputs from its previous stage and communicating 

their outputs to the next stage. Let us consider the design of such a stage using MCA and 

the STD device. 
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Fig. 3.7 Circuit of one single threshold logic stage using MCA and STD    

Fig. 3.7 shows the circuit realization of a single MCA stage that contains N number 

of TLGs based on STD. Each stage has a maximum of M inputs (which can be set as a 

parameter during the implemented MCA mapping tool), and N STDs, forming the N 

TLGs. The ith input to the MCA may connect to the jth STD (i.e. jth TLG) with either a 

positive, negative or zero weight. This is achieved by programming either of Gij+ or Gij- 

to the corresponding weight value (The bias of each TLG can be viewed as the weight of 

an extra input whose value is always high). For zero weight (i.e. no connectivity), both 

Gij+ and Gij- are driven to high resistance off state. The input signal to MCA is received 

through PMOS transistors with source terminals connected to a potential V+∆V (for 

positive weights) and V-∆V (for negative weights), where ∆V can be less than ~50mV. 

These input transistors act as deep triode region current sources (DTCS) [82][83]. The 

STD is connected to a DC supply V. This effectively clamps the potential of all the 
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vertical metal bars in Fig. 3.7 to the same potential (due to small resistance of the 

magneto metallic STD). Thus, small static power consumption is achieved due to the fact 

that the static computing current flows across a small terminal voltage of ∆V. Moreover, 

the dynamic power dissipation on the metallic interconnects forming the programmable 

cross-bar is also largely reduced due to ultra-small voltage swing. The direction of 

current flow at the input of a STD, and hence the output of a TLG, would depend upon 

the input data and the corresponding weights (determined by the programmed memristor 

conductance). Note that, the resistance values for the memristors can be chosen large 

enough to avoid inaccuracy due to resistive voltage division between the DTCS 

transistors and the memristors in a given row.  The output of the MTJ based detection 

circuit associated with each TLG, in turn, drives a corresponding DTCS transistor that 

communicates the outputs of the TLGs to the next stage. 

 

Fig. 3.8 (a) 2-phase pipelined MCA blocks for large-scale logic design, (b) transient 

simulation plots for a single TLG. 

Due to the non-volatility of the STD, the MCA design described above can be 

extended to realize a 2-phase pipelined architecture composed of large number of such 
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hybrid arrays without inserting the CMOS latches, as shown in Fig. 3.8a. In such a 

design, consecutive MCAs operate with complementary clock phases. For instance, in 

Fig. 3.8, when the clock is high, MCA1 is driving MCA2, and MCA3 is driving MCA4. 

When the clock goes low, the driver and driven MCAs exchange roles. The exemplary 

simulation plots for a single TLG is shown in Fig. 3.8b. 

 Next we discuss optimal pipelining and partitioning scheme for the mapping of large 

logic blocks on to the SMTL array. 

3.5. Optimal Pipelining and Partitioning of SMTL Arrays for Logic Mapping 

3.5.1. Pipelining Optimization 

As mentioned earlier, each STD acts as a non-volatile latch and hence, a multi-stage 

MCA can be pipelined without insertion of additional CMOS latches. However, logic 

paths in the threshold logic network (TLN) of a generic logic block (like for C432 shown 

in Fig. 3.6b) may be unequal. Hence ‘buffer-nodes’ need to be inserted to make them 

equal and to facilitate fine grained pipelining. The number of buffers needed depends 

upon the granularity of pipelining. In case, each MCA stage is pipelined, the number of 

buffers is the maximum. Fully pipelined TLN for C432 is shown in Fig. 3.9a, where each 

circle represents one TLG and the TLGs in the same column are in the same stage. In 

such a TLN, each stage is mapped into a separate MCA stage. For a given switching 

speed of the STD, this configuration yields maximum throughput. However, the total 

energy consumption also depends upon the total number of TLG nodes. 

Combining two MCA stages to form a single pipelined stage (Fig. 3.9b) reduces 

throughput by half, however the total number of nodes for most benchmarks was found to 

reduce by a larger factor, which leads to reduced energy consumption. Note that, despite 

using multiple MCA layers per pipeline stage, the same throughput can be maintained by 

increasing the current injection, i.e., the switching speed of the STD.  
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(a)  

(b)  

Fig. 3.9 synthesized C432 pipelined threshold logic network. (a) Fully pipelined 

architecture (b) two TLG stages combined with one pipeline stage.  
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Fig. 3.10 shows the power consumption of C432 for different number of MCA levels 

(note, single MCA level for a pipelined stage implies maximum pipeline granularity) in a 

single pipelined stage. The power component due to the detection unit (‘Power_det’ due 

to MTJ voltage divider, clock and inverter) reduces with reducing pipeline granularity, 

because of reduction in total number of TLG nodes in the resulting TLN (Fig. 3.10b). 

However, to maintain the same throughput, larger currents need to be supplied by the 

DTCS transistors, which lead to increase in static power consumption in the MCA 

(‘Power_MCA’ in Fig. 3.10a).  For most ISCAS85 benchmarks a pipelined stage with 2-

MCA levels yielded optimal results.  

 

Fig. 3.10 : (a) Power consumption of different pipeline configurations (b) tradeoff 

between power and area. ‘Power_MCA_5uA’ represents the power of memristor cross-

bar array when the DTCS current is 5uA. ‘Power_det’ is the power of detection module 

including MTJ-voltage divider, clock and inverter 

3.5.2. Partition and Interconnects 

So far we assumed that each stage of the pipelined TLN is assigned to a single large 

dimension MCA. In such a design no additional interconnect network is required, as, the 

outputs of the nth MCA stage can directly connect to the inputs of the (n+1)th MCA stage 
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using the scheme shown in Fig. 3.9. Due to the absence of additional interconnect power 

dissipation, this leads to the minimum energy solution (Fig. 3.12a). However, in this case, 

the MCAs have sparse connectivity (due to having large number of inputs but each input 

connecting to only few outputs, determined by the fan-in limitation) due to which the 

overall area efficiency is significantly sacrificed, as shown in Fig. 3.12b. To reduce the 

overall area, each pipeline stage can be divided into multiple smaller dimension sub-

arrays (Ai’s shown in Fig. 3.9b and an enlarged version in Fig. 3.11a). In this case, some 

of the inter-layer connections can still be directly routed to the next stage (Fig. 3.11a). 

However, some others (between nodes that are not located on directly opposite MCAs) 

need to be routed through an additional routing network. Such a design scheme is shown 

in Fig. 3.11b.  For reducing MCA dimensions (implying the use of large number of 

smaller MCA modules in a single stage), the usage of the interconnect network increases. 

This also necessitates larger and longer interconnect array, leading to larger parasitic 

resistance drops along the current signal paths, mandating the use of larger voltage. As a 

result, energy component due to interconnect increases. Fig. 3.12 shows the tradeoff 

between area and power of SMTL with respect to the size of the sub-MCA array size. A 

design choice can be made based on priority.    
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(a)  

(b)

Sub-array

Sub-array

Sub-array

Sub-array

Sub-array

Sub-array

 

Fig. 3.11 (a) Enlarged green square part of Fig. 3.9b (b) SMTL network partition 

architecture 
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Fig. 3.12 Relationship between (a) power, (b) area and sub-array dimension, (larger 

dimension implies lower number of sub-arrays needed) 

3.6. Simulation and Synthesis Algorithm 

In this subsection, we discuss the synthesis scheme used in this chapter.  

Fig. 3.13 shows the high level overview of the SMTL synthesis and hardware 

mapping methodology employed in this work. We employed threshold logic synthesis 

(TELS) algorithm proposed in [84] to do the initial synthesis, which reads a logic 

description and generates the functionally equivalent threshold network. Some important 

parameters like the fan-in restriction of TLGs and defect tolerance in the weights can be 

preset as parameters [84]. 
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TELS

 

Fig. 3.13 Proposed design methodology 

The SMTL mapping algorithm proposed and implemented in this paper, shown in 

Fig. 3.14, reads the synthesized TLG network and maps it to SMTL hardware. The tool 

first reorders the positions of TLGs in each stage so as to minimize the use of the 

interconnect network. This is achieved by placing the TLGs in the sub-arrays such that 

the use of direct links between face-to-face MCAs (as depicted in Fig. 3.11a) is 

maximized. Next, if the number of nodes in the current stage exceeds the restriction 

(number of MCA in a given stage times MCA size), one or more nodes are moved to next 

stage. This is done in a way that minimizes the number of intermediate buffers. The 

nodes without fan-out to next one stage are selected with highest priority, following 

which, the nodes with minimum fan-in’s are shifted. 
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Fig. 3.14 SMTL network mapping algorithm 

Some of the layers in the SMTL netlist may have very small number of nodes, for 

which, the use of a separate MCA unit may be wasteful. In TELS such nodes are 

incorporated in the MCA units corresponding to the previous stage, through the provision 
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of a small numbers of programmable backward connections (from output of an MCA 

back to its input).  

The fan-out number of some nodes can be very large. Such TLGs communicate 

evenly to all the MCAs in the next level, making heavy use of the interconnect network. 

Such high loading can lead to significant voltage division between the DTCS source and 

the receiving memristors, leading to significant lowering of the input voltage and the 

current for the loads. A simple way to address this issue is to split the large fan-out nodes 

into multiple smaller nodes. 

 

Fig. 3.15 the relationship between variation tolerance, TLG fan-in restriction and number 

of TLGs 

Larger TLG fan-in generates denser SMTL network with smaller number of TLG 

nodes. This can provide larger area and energy efficiency.  However, simulations show 

that larger fan-in restriction leads to reduced variation tolerance for memristor values, as 

seen in Fig. 3.15. In this plot, variation tolerance is defined as the standard deviation () 

value for which total 105 test vector simulation gave zero errors. The variation tolerance 
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increases for lower fan-in restriction, but the use of lower fan-in TLGs results in larger 

number of nodes, leading to increase in overall area (Fig. 3.15). In this work we choose 

the fan-in restriction to be 4 (leading to a variation tolerance of ~9%). There are only 6 

different levels of memristor conductance needed for mapping the TLG weighs, therefore 

the programming bit resolution for memristor is 3 bit. Note that, in this work we have 

assumed that the memristor programming thresholds are large enough, such that passing 

small computing currents (few µA) does not significantly disturb their state [68]. 

Next we discuss the performance of SMTL and compare it with conventional CMOS 

programmable logic based on CMOS LUTs. 

3.7. Performance and Prospects 

In the conventional FPGA based TLG design, the total power consumption is 

dominated by the interconnect power. Note that more than 90% of energy can be ascribed 

to programmable switches and interconnects [85]. The reason is the fact that the FPGA 

interconnect circuit has an extremely low utilization rate (~12%) for purpose of 

programmability. The energy and delay of 4-input LUT based FPGA for ISCAS85 

benchmark using 45 nm technology is shown in Fig. 3.16. While in our proposed SMTL 

design, the energy efficiency mainly comes from four aspects. 1): The interconnect 

energy dissipation in the metallic cross-bars as well as the interconnect network is 

drastically lowered due to ultra-low voltage (~50mV), current mode signaling between 

the MCA layers, which comes from low voltage, low current operation of spin-transfer 

torque based threshold logic gates. The STD device can sense and compare the ultra-low 

current (few µA) enabling ultra-low voltage biasing of the MCA and hence, low voltage 

operation of the threshold gates. As a result the static power consumption, due to direct 

current paths, is largely reduced. Note that in the SMTL design, memristors play the dual 

role of computing elements as well as programmable interconnects. This can be 

contrasted with earlier approaches where memristors were employed only as 

programmable interconnects [87] or only as computing elements [73]. 2): In our proposed 

threshold logic network design,  the output inverters of a particular MCA layer drives 

only the DTCS transistors that in turn supply current to the next MCA stage. Since a 

small terminal voltage ∆V is applied across the MCA, the dynamic power consumption 
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(CV2f) in large number of programmable interconnects is largely reduced. Such low 

voltage operation of the MCA can also significantly reduce the disturb rate of the 

programmed memristors and can enhance the retention time of the hardware. 3): The 

STD achieves energy efficient current to voltage conversion with the help of MTJ based 

voltage divider. This eliminates the need of analog trans-impedance circuits based on 

current mirrors and amplifier, leading to high energy and area efficiency. 4): Due to the 

non-volatility of STD, the proposed SMTL design can be extended to realize a pipelined 

architecture without inserting the CMOS latches. The throughput of the design is 

determined by a single stage delay. This delay in turn, is limited by the switching speed 

of the STD device. As discussed earlier, larger current per input can be used to increase 

the STD switching speed. Domain wall velocities of more than 60m/s has been 

demonstrated in literature [126], hence, for a 40nm long free domain more than 1GHz 

processing speed may be achievable. In this work a clock frequency of 500MHz has been 

used, corresponding to STD switching time of 1ns. Recently application of Spin Hall 

effect has been explored for bringing large reduction in domain wall current thresholds 

[79][114]. Such phenomena can be exploited in improving the resolution of scaled STD 

devices. 
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Fig. 3.16 (a) Energy-delay product, (b) delay and (c) computation energy of SMTL 

compared with 4-input LUT based FPGA [73] and CTL [73] for ISCAS85 benchmarks.  

Fig. 3.16c compares the computation energy of the proposed SMTL design with that 

of 4-input lookup table (LUT) based FPGA and with capacitive threshold logic (CTL, a 

CMOS based implementation style for TLG [73]). The computing energy of proposed 

design is reduced by two orders of magnitude compared to the LUT based FPGA TLG. 

SMTL also shows much smaller delay compared with LUT and CTL, as shown in Fig. 

3.16b. Results in Fig. 3.16a show around three orders of magnitude lower energy-delay 

product as compared to both the CMOS based schemes. 
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Fig. 3.17 SMTL energy for C432 normalized with respect to 4-input LUT for the case of 

(a) increasing ∆V, (b) increasing STD threshold for a fixed ∆V of 50mV ;LUT delay is 

~10ns 

The energy efficiency of the proposed design is dependent on two critical design 

parameters. First is the minimum achievable ∆V (voltage swing across MCA) in such a 

hybrid circuit. Fig. 3.17a shows that increasing ∆V increases the static power 

consumption due to current mode computing in MCAs (strength of DTCS transistors is 

reduced to keep the current drive constant). The second important parameter is the 

resolution of the STD device. As mentioned earlier, a poor resolution would require 

larger current per-input for a TLG. Corresponding results are shown in Fig. 3.17b, 

showing almost linear increase in computation energy with reducing resolution. 

Integration of Ag-Si memristors with CMOS has been demonstrated in recent years 

[68][69]. The same is true with magnetic domain wall based memory cells [79][89][93]. 

However, integrating two novel technologies with CMOS to realize the proposed SMTL 

scheme can be significantly more challenging, especially when scaled dimensions of STD 

devices, such as used in this work, is targeted. However, the possibility of large energy 

benefits of the proposed design can be a motivating factor. 

Some critical design parameters used in this work are given in table 3.2. The device 

characteristics for STD were obtained using the simulation framework for magnetic 
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domain wall strip presented in [89]. The system functionality is simulated in SPICE 

based on statistical behavioral STD model. 

Table. 3.2 SMTL Design Parameters. 

Free-domain 

size 
3×20×40 nm3 MTJ-tox 1.8nm 

Ms 400 emu/cm3 
RMTJ 

(parallel) 
300KΩ 

Ku2V 20KBT MTJ-TMR 400% 

β 0.1 MTJ area 20×20 nm2 

α 0.01 Memristor 50K~1M Ω 

Ithreshold 2µA ΔV 50 mV 

V 0.6V CMOS tech. 45nm 

3.8. Summary 

Spintronic threshold device can be combined with CMOS compatible Ag-Si 

memristors for designing ultra-low energy Spin-Memristor Threshold Logic (SMTL). 

Such hardware can achieve more than 100× improvement in energy and 1000× 

improvement in energy-delay product, as compared to state of the art CMOS FPGA 

based TLG, due to low voltage, low current computing facilitated by a spin-transfer 

torque device. 
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4. BRAIN-INSPIRED COMPUTING: HIERARCHICAL TEMPORAL 

MEMORY BASED ON SPIN-NEURON AND RESISTIVE 

MEMORY 

In this chapter, we present hierarchical temporal memory design based on spin-

neuron and resistive memory for energy efficient brain-inspired computing [150]. 

Hierarchical temporal memory (HTM) tries to mimic the computing in cerebral 

neocortex. It identifies spatial and temporal patterns in the input for making inferences. 

This may require large number of computationally expensive tasks like, dot-product 

evaluations. Nano-devices that can provide direct mapping for such primitives are of 

great interest. In this chapter, we show that the computing blocks for HTM can be 

mapped using low power spin based neuron combined with emerging memristive cross-

bar array (MCA), and involves comprehensive design at algorithm, architecture, circuit 

and device levels. Simulation results show possibility of more than 200× lower energy as 

compared to 45nm CMOS ASIC design. 

4.1. Introduction 

The human brains are highly efficient in performing cognitive tasks which are 

thought to involve processing of patterns hidden in different sensory input stimuli, 

followed by response generation [96][97]. The biological vision system for instance, may 

incorporate processing of spatial/ temporal patterns, the results of which may be 

combined with that of the auditory system by the brain, to produce an appropriate 

physiological response. Several computing models have been explored in literatures [97]-

[99] that aim to borrow from the cerebral information processing system, in a quest to 

realize “intelligent” machines. The earliest efforts involved different mathematical 

models for artificial neural networks, with varying neuron transfer functions and 

connection topologies [97]. Deep learning networks (DLN), capable of identifying 
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patterns under large degree of spatial variations, evolved as a tool for machine learning 

applications of practical complexity [98][99]. DLNs employ a number of computing 

levels, with each level processing spatially overlapping region of the inputs, thereby, 

leading to appreciable tolerance towards spatial modifications of a set of “learned” 

patterns [98]. 

Recently, temporal processing was introduced to DLNs as an important new feature. 

The resulting brain-inspired computing model, called hierarchical temporal memory 

(HTM), offers the potential of spatial as well as temporal pattern processing, akin to the 

cerebral neocortex. HTM constitutes of multiple levels of processor arrays. Each 

processor node “pools” spatial patterns received from the nodes in the lower level of its 

“perceptive field” and simultaneously identifies the key temporal sequences among those 

spatial patterns. The pattern identification process may involve computation of 

conventional distance metrics like, Hamming Distance (HD), Gaussian distance (GD), or 

dot product (DP) between the stored and the input patterns at each node. A practical 

HTM hardware may need to store and compute with hundreds of spatial/ temporal 

patterns at every node. Implementation of such hardware, using the conventional Von-

Neumann digital architecture may incur prohibitively high energy and real estate cost 

[102]. 

Recent years have seen growing interest in emerging nano-devices that can provide 

direct and energy efficient mapping of computing primitives required for pattern 

matching tasks, as in HTM. The pattern matching computations, being inherently 

variation tolerant, can exploit the “inexact” terminal characteristics of such nano-devices 

to perform non-Boolean, analog mode operations upon inputs. More importantly, devices 

that can facilitate direct “in-memory” processing, may be highly attractive for such 

memory intensive computing. As we described in previous chapter, the memristive cross-

bar array can be employed to compute the dot product of multi-dimensional input vector 

and the stored data. Thus, it can provide a direct mapping of correlation evaluation 

required in non-Boolean pattern matching applications [72][83][107]. In MCA based 

pattern matching computation, the direct usage of nano-scale memory for computing 

leads to high parallelism and elimination of memory read. However, in pattern matching 
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applications, after the correlation evaluation between the test vectors and stored data, the 

best match is required to be detected. In previous works, this best match detection 

requires analog or digital CMOS circuits to process the outputs from MCA [106][107], 

failing to fully leverage the energy efficiency of MCA based pattern matching 

application. 

In this chapter, we present a STT device structure that can implement ultra-low 

power current summation and thresholding operation, just like an artificial hard-limiting 

neuron. Thus we call it ‘spin-neuron’ [83][113][114]. We also present a hybrid Spin-

CMOS processing element to detect the best match required in MCA based pattern 

matching application. Then we propose energy efficient HTM computing blocks based on 

MCA and the spin-neurons.    

4.2. HTM Algorithm and Architecture 

In this subsection, the basic computing algorithm and architecture for HTM are 

described. We focus on the hardware mapping of the inference computing algorithm. The 

training process is done offline (by software). 
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Fig. 4.1 (a) A three-level HTM architecture designed to work with 16×16 pixel images 

(b) HTM Training Sequence generated by zigzag scan and part of the training sequence 

of the highlighted lower left node in level 1 (c) snap-shots of a moving duck. 

4.2.1. HTM Architecture and Training 

HTM computing architecture constitutes of a tree-like network of large number of 

processing nodes, arranged across multiple levels, having pyramidal connectivity. Each 

node receives inputs from N “child nodes” in its “receptive field” in the immediate lower 

level. The first level nodes receive inputs from an input stimulus (like, an image). Both 

forward as well as backward connections between the nodes of non-adjacent levels may 

also be used, depending upon the training algorithm and the applications [99][100]. In 

this work, the specific application considered requires only feed-forward flow.  

HTM network can work in two phases: training and inference. In this work, we 

propose the hardware design only for HTM inference phase. Training phase is for the 
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HTM to learn and memorize the patterns, which mainly involves the extraction of spatial 

and temporal patterns from the time varying input data, which we assume is done offline. 

The training proceeds from bottom to top. The parent nodes are trained only after all the 

child nodes in the lower levels are trained. When the output node finishes training, it is 

called fully trained. All but the top-most (output) level are trained in unsupervised mode 

[100][103]. The following subsection describes the training process. 

4.2.1.1. Spatial Pooling 

During the training process, HTM network is exposed to time varying inputs, such as 

that produced by an object moving smoothly across the network’s visual field [101][103]. 

Fig. 4.1b shows a simple training sequence generated by the moving image of a numeric 

character, which may be shifting, rotating and scaling (by moving towards or away from 

the scanner) across the visual field. Training with such time-varying snap-shots of an 

object can help recognize it with different perspectives using a fully trained network. A 

more realistic example can be given as that of a moving object, like a duck (taken from 

COIL-20 data-set [118]), as shown in Fig. 4.1c. 

The level-1 nodes (L1-nodes) receive M×M pixels (M=4 in this work) of the input 

image, which can be viewed as a 1-D spatial pattern (of length M×M). The L1-nodes 

detect and store the frequently recurring patterns in their receptive fields. During the 

training process, each spatial pattern or “coincidence”-ci is compared with the present set 

of patterns for similarity. It is added to the “spatial pool” as a new pattern, if it is found to 

be sufficiently distinct from the existing set. The distinctiveness of a new pattern, with 

respect to the present set can be determined by placing a threshold on a distance metric, 

like dot product (DP). This threshold can have a significant impact on the number of 

spatial/ temporal patterns and the overall training accuracy (will be described later). The 

probability of occurrence P(ci) of each spatial pattern is also stored in the form of its 

count of appearance during the training process. 

4.2.1.2. Temporal Pooling 

Computation of the temporal patterns for a particular node involves identifying the 

group spatial patterns ci’s that are likely to occur close in time. A ‘temporal group’, gi, is 
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a subset of coincidences that possibly originate from simple variations of the same ‘class’ 

of input that is smoothly moving throughout receptive field of the network [101]. 

Different algorithms can be used to partition the spatial patterns into a set of disjoint 

temporal groups G= {g1, g2, .., gn} [101][103]. In this work, we employ an ad-hoc greedy 

algorithm for the sake of simplicity [101]. It employs a temporal activation matrix (TAC), 

where TAC(i, j) denotes the number of times the coincidence ci was followed by cj during 

the training. To start, we pick the element TAC(i, j) in the matrix with the highest value of 

P(ci)×TAC(i, j). This implies selecting ci as the first element of the first temporal group. 

The largest non-zero value of TAC(i, j) implies that the coincidence cj has highest temporal 

connection with ci. Hence, cj is added as the next element to current temporal group gi. 

The next element to be added is ck, where TAC(j, k) has the highest value among the 

elements in the row TAC(j, :) (jth row). The elements already included in a temporal group 

gi are marked as ‘assigned’ and are not assigned to any other group. This recursive 

process terminates when the length of one temporal group exceeds the predetermined 

maximum group size. Thereafter, a new coincidence is selected as the beginner of a new 

temporal group. 

4.2.1.3. Computation of the matrix PCG: 

The final step for training a node is the creation of PCG matrix, which essentially 

relates the spatial coincidence ci’s of a node to its temporal groups-gi’s. The element 

PCG(i, j)=P(ci│gj) represents the conditional probability of ci given gj. The elements of 

the PCG matrix are defined as in equation-4.1 [101]. 

i j( ) if c g
( , )  ,   1... , 1...

0     otherwise

iP c
PCG i j for each i nc j ng


  


 
(4.1) 

where, nc and ng are the maximum number of spatial patterns (coincidences) and 

temporal groups respectively. During the inference mode, the PCG matrix of a node is 

used to evaluate the probability distribution over the stored temporal groups, gi’s, in that 

node, based on its current spatial inputs. Hence, it can be termed as the ‘inference matrix’ 

of a node.  The index of the temporal group with the highest probability value constitutes 

the output information of the node. During the training of a parent node (nodes not 

connected directly to the input image), all its child nodes (which are already trained), 
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operate in the inference mode. Their outputs, (which are the indices of the winning 

temporal groups of the respective nodes, obtained based on current input image) form an 

effective spatial pattern for the parent node. 

4.2.1.4. Training of the output node 

As mentioned earlier, the training steps of the output node (the node at the top of the 

HTM tree) is supervised. The computation of spatial pool (with elements ci’s) is identical 

to the other levels. The inference matrix, however, is constructed through supervised 

learning, under a set of specified “desirable” output classes wi’s. The inference matrix of 

the output node is called PCW matrix. The elements of the PCW matrix are updated 

based on the a priori knowledge of the current image class. For example, if the current 

input image belongs to class wj, and current coincidence to the output node is identified 

to be ci (using DP with all ci’s in the output node), the value of PCW(i,j) is incremented 

by 1. 



 

 

57 

4.2.2. HTM Inference 

 

Fig. 4.2 HTM-node structure and the associated inference-steps 

Fig. 4.2 shows the node structure and mathematical formulations of the inference 

steps used in this work [101][103][150].  Inference steps for a node can be divided into 

the following steps: 

4.2.2.1. Composition of spatial input 

The spatial input to a node in=[in1,in2,…,inN] is the juxtaposition of the output 

messages from its N child nodes. As described earlier, for the L1 nodes, the spatial inputs 

are received directly from the input image (being tested). For the higher level nodes 

however, the spatial inputs are constituted by the winner indices of the temporal groups 

of their child nodes. 
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4.2.2.2. Probability densities over spatial coincidences (spatial pooling) 

The vector Ps shown in Fig. 4.2 constitutes of the conditional probability distribution 

of the input spatial pattern (expressed as ‘in’ in the equations) over the stored 

coincidences: Ps(i)=P(in|ci), i=1…nc. It encodes the spatial similarity between the input 

pattern (in) and the stored spatial coincidences (ci’s). It can be computed as the dot 

product (DP) between the input and the stored patterns as follows: 

1...

( ) ( ) ( )s i

k N

P i c k in k


   (4.2) 

Note that, for the output (L3) node, a winner take all (WTA) circuit is needed for this 

step to detect the “winner” and set the winner output to be 1, while the others to be zero.  

4.2.2.3. Probability densities over temporal groups (temporal pooling) 

 Note that, Ps(i) computed in step-2, denotes the probability distribution of the current 

input vector over the pooled set of spatial coincidences (ci’s). The vector PCG(:, j) (jth 

column of PCG matrix) on the other hand, denotes the probability of ci’s, “in context” of 

the particular temporal group, gj. Hence, the conditional probability of the input given jth 

temporal group can be computed as follows:  

1...

1...

( | ) ( | , ) ( | )

( ) ( , )

j i j i j

k nc

s

k nc

P in g P in c g P c g

P i PCG i j





 

 





 (4.3) 

 We assume that P(in|ci,gj)=P(in|ci), since gj and ci are irrelevant. 

4.2.2.4. Computation of output message 

The output message of a node is the index of the “winner” temporal group, which is 

the group with the highest value of P(in|gj), computed in step-3. 

The inference computation of the output node is similar to the other nodes, except for 

the use of PCW matrix, in place of PCG matrix. 

From the above discussion, we note that the core computing function for the 

inference mode operation of HTM is the dot product computation. At each node, this 

function is evaluated twice. At the first step, the operands are the analog vectors 

corresponding to the input spatial patterns (in) and the spatial coincidences stored in the 
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node. The result, Ps(i), depicts the input dependent probability distribution over the 

pooled spatial patterns. For the second stage of computation, the input to the dot product 

function are Ps(i), and, the columns of the PCG matrix, corresponding to each of the 

temporal groups associated with the node. The last step involves determining the index of 

the “winner” temporal group, which is ‘j’ if the second dot product computing (temporal 

pooling) yields the highest value for DP(Ps(i), PCG(:,j)). 

Before we move to hardware mapping of the aforementioned HTM computing 

scheme, we briefly discuss the choice of design specifications for HTM hardware in the 

following subsection. 

4.2.3. HTM Design Specification 

In the previous subsections, we introduced the algorithm for training and inferring 

patterns using HTM, where the main computing process involves DP-evaluation. The 

algorithm was applied to MNIST [117] data-set for handwritten digits recognition (Fig. 

4.3a) and COIL-20 data-set for object recognition [118]. For training, each image was 

scaled to 16×16 pixels and scanned to generate a sequence of training images, 

incorporating a sequence of shifts, rotation and scaling of the original image. The 

character images were taken as binary, whereas, 4-bit resolution was chosen for the grey 

level COIL-20 images. In this paper, we focus on the HTM inference hardware 

implementation, whereas the training of HTM is done offline, or in other words, the 

training is done by software. During software training process, an important parameter is 

the “matching threshold” that determines the addition of a new spatial pattern to a node’s 

memory. The relationship between the numbers of spatial patterns, the numbers of 

temporal groups in each node and matching threshold are shown in figure 4.3b-c. These 

plots show that larger threshold and hence, larger number of spatial and temporal patterns 

ensures higher accuracy. However, this requires increased number of DP-evaluations and 

hence higher computation cost. In this work, the matching threshold was chosen close to 

the value for which the computation accuracy saturated to the maximum value of ~95% 

(corresponding to 0.7). The bit resolution required for the input and the spatial/ temporal 

memory elements was determined by the maximum variation tolerance for which 

matching accuracy close to the ideal case (with non-truncated grey scale values for 
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memory and input) was retained (Fig. 4.3e). During the training phase, appropriate noise 

models were added to the memory data and the computing function in order to account 

for the approximate nature of the devices-circuits characteristics used in this work. 

 

Fig. 4.3 (a) 20 image samples in MNIST benchmark and the shift, rotation and scale 

variations. (b) Numbers of spatial patterns in each node vs. matching threshold. (c) 

Numbers of temporal groups in each node vs. matching threshold. (d) HTM inference 

accuracy vs. matching threshold. (e) HTM inference accuracy vs. percentage-variation in 

the elements of spatial-temporal memory. 
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4.3. Computing with memristive cross-bar array 

Fig. 4.4 depicts a MCA with two sets of metal bars (horizontal bars and in-plan 

bars). In such a MCA, memristor with conductance-gij interconnects ith horizontal metal 

bar and jth in-plane metal bar. More than 8-bit write accuracy for isolated memristors 

have been proposed and demonstrated in literatures [69][70]. In a cross-bar array, 

consisting of large number of memristors, write voltage applied across two cross 

connected bars for programming the interconnecting memristor also results in sneak 

current paths through neighboring devices. This disturbs the state of unselected 

memristors. To overcome the sneak path problem, application of access transistors and 

diodes have been proposed in literature [90] that facilitate selective and disturb free write 

operations. Methods for programming memristors without access transistors have also 

been suggested, but using such techniques, only a single device in an array can be 

programmed at a time [89][91]. Such schemes can be applicable only if programming 

speed is not a major concern. 

 

Fig. 4.4 Correlation evaluation between input vector and stored vectors using a 

memristive cross-bar array 
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In MCA based pattern matching applications, the input vector can be represented as 

input voltages applied across the horizontal metal bars as shown in Fig. 4.4, assuming the 

in-plane metal bars are grounded. jth stored template is mapped to the conductance of 

memristors connected to jth in-plan bar. During computing, the current flowing through 

the memristor with conductance- gij is Vi•gij and the total current flowing out of jth in-plan 

metal bar is ΣiVi•gij. Therefore, this MCA structure can be used to compute the degree of 

match between one analog vector and the stored templates. The best match of test vector 

to the templates would be the one corresponding to the highest MCA output current. In 

order to detect the best match, a winner take all (WTA) circuit is required. In general, the 

WTA circuits can be categorized as binary tree WTA [111][112] and current conveyor 

WTA [112]. However, both of these CMOS based WTA design consumes large static 

power and may be several times larger than the MCA power consumption in the pattern 

matching applications. Thus, they may fail to fully leverage the energy efficiency of 

nano-scale resistive memory based computing.  

In next subsection, we will describe an ultra-low power STT device structure that 

can be employed in a spin based WTA circuit design, resulting in energy efficient MCA 

based computing hardware design. 

4.4. Spin-Neuron with Heavy Metal Layer 

In this subsection, the spin-neuron with heavy metal layer (will be called spin-neuron 

for simplicity in this chapter) device structure and operation is described [83][114][150]. 

We also present the interface circuit design of the spin-neuron to implement an ultra-low 

power current comparator. 
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Fig. 4.5 (a) Spin-neuron with heavy metal layer, (b) micro-magnetic simulation of 

domain wall motion with applied current along spin hall metal layer [114] 

Fig. 4.5a shows a three terminal spin-neuron based on magnetic domain wall strip 

[86]. It has a free magnetic domain d2 which forms an MTJ with a fixed magnet m1 at its 

top. The magnetization of d2 can be written parallel or anti-parallel to the two fixed spin-

domain d1 and d3, depending upon the direction of current flow between d1 and d3. 

Thus, this device can detect the direction or polarity (positive if going in and negative if 

going out of its input domain d1) of current flow across its free domain. Hence this 

device can be used for current-mode thresholding operation [82]. The minimum 

magnitude of current flow required to flip the state of the free domain d2 depends upon 

the critical current density for domain wall motion across the free magnetic domain d2. 

Since the critical current density of domain wall motion is non-zero, a hysteresis in the 

spin-neuron switching characteristics can be observed as shown in Fig 4.7a. This 
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hysteresis effect can be reduced by lowering the domain wall motion critical current 

density to make the switching function closer to a step function. 

 

Fig. 4.6 (a) spin orbit torque induces higher domain wall velocity, (b) domain wall 

velocity vs. applied current density with and without SHE 

In order to sense the magnetization of free domain-d2, a fixed magnet-m1 and an 

MgO layer are placed on top of d2 to form a MTJ. The MTJ resistance is larger when the 

magnetizations of m1 and d2 are anti-parallel. On the contrary, if the magnetizations of 

m1 and d2 are parallel, the MTJ resistance is smaller. The dynamic CMOS latch shown 

in Fig. 4.7b is used to sense the MTJ resistance state. 

In the detection latch, the terminal d3 of the spin-neuron is connected to Vdd. The 

current required for the DW motion increases proportional to the switching speed. Since 

the transient read current flows only for a short duration, it does not disturb the state of 
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d2. Note that, the transistor mismatch may introduce wrong output of the dynamic latch. 

The possible solutions can be: 1) Increasing the transistor size. This is a tradeoff between 

power and device matching. 2) Adding inverter buffer at the latch output terminal. This 

technique can both isolate load capacitance and minimize the offset errors.  

 

Fig. 4.7 (a) transfer characteristics of the spin-neuron with spin hall metal layer 

(Eb=20KT), (b) dynamic CMOS latch to sense spin-neuron state 

Robustness to read disturb can be further enhanced by the appropriate design choice 

of m1. Notably, the branch with effective lower resistance draws comparatively higher 

read current. By setting the polarity of m1 parallel to d1, it can be ensured that for the 

parallel configuration of the spin-neuron MTJ (and hence, lower resistance) the free layer 

(d2) is already parallel to d1 and hence a larger transient current does not disturb d2. This 

technique facilitates lowering of spin-neuron threshold to physical limits of scalability 

without the concern of read disturb. Apart from device scaling, the spin-neuron threshold 

can also be lowered by manipulating other device parameters, like the anisotropy energy 

(Eb) of the magnet [82]. 

Recently, application of spin-orbital (SO) coupling in the form of Spin Hall Effect 

(SHE) has been proposed for low-current, high-speed domain-wall motion 

[47][80][114][116]. For Neel-type DW, SHE induced from an adjacent metal layer 
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results in an effective magnetic field (HSHE) [80], that can be expressed as, 

HSHE=K(σ×m). Here, m denotes the unit magnetization of magnetic domains, σ is a 

current dependent vector defined as σ = j×z, where, j is the current vector (which can be 

positive or negative depending upon direction of current flow) and z is the direction 

perpendicular to the magnetization plane (along easy axis). As shown in Fig. 4.6a, σ can 

be in-plan or out of plane of the figure, depending upon the direction of the current flow 

[114]. K is a quantity dependent upon material parameters of the magnet and is 

proportional to the effective Spin Hall angle, θH [80]. Notably, θH determines the 

effectiveness of the Spin Hall interaction, larger θH implies larger effective torque due to 

Spin Hall effect. 

For a Neel-type domain wall shown in Fig. 4.6a, the magnetization in the region of 

the domain wall lies along the length of the magnetic nano-strip [80]. For this 

configuration, the effective HSHE acting on the domain wall region can be visualized to be 

perpendicular to the plane of the magnet. The HSHE assists the non-adiabatic spin-transfer 

torque (which results from the current flow) acting on the domain wall region.  For a θH 

of 0.2, micro-magnetic simulations showed an increase of ~5× in the domain wall 

velocity for a given current density, due to the HSHE term (Fig. 4.6b) [114]. This effect 

can be used to achieve higher switching speed for a given current, or, to reduce the 

required switching current for a given switching time for the free domain in the spin-

neuron. 

In this work switching current threshold of ~2µA for 1 ns switching speed has been 

chosen for a neuron with SHE-assisted free domain size of 20×2×60nm3, which 

corresponds to the current density of 4MA/cm2. The state of the free domain can be 

sensed by injecting a small current across the high resistance MTJ formed between fixed 

magnet-m1 and free domain-d2. 

4.5. Design of HTM Computing Block using Spin-Neuron and MCA 

In this subsection, we will present the HTM computing block design composed of 

spatial pooler, temporal pooler and winner take all (WTA) circuits. Based on equation-

4.2 and 4.3, the fundamental operation of spatial pooling and temporal pooling is the dot 

product between inputs and stored matrixes (spatial/ temporal patterns), where the energy 
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efficient dot product operation is implemented using the combination of MCA and spin-

neuron. The spin-CMOS hybrid processing element based on spin-neuron that achieves 

analog to digital converter (ADC) and WTA functionality at ultra-low energy will also be 

introduced.  

4.5.1. Spatial and Temporal Pooler Design 

Each HTM block consists of two ‘pattern matching’ networks using dot product, 

corresponding to the spatial pooling (density over coincidences) and temporal pooling 

(density over temporal groups). The node data structure and mathematical equations can 

be seen in Fig. 4.2. The dot product functionality can be implemented by MCA described 

in previous section and the spin-CMOS hybrid process element (spin-neuron based SAR-

ADC) is used to detect the output. 

4.5.1.1. Dot product operation circuit 

As described in previous subsection, the dimension of each MCA based dot product 

computing block is (n_child×nc, nc×ng), where n_child is the number of child nodes, nc 

is the number of spatial patterns stored in current node and ng is the number of temporal 

groups. The input vectors to first MCA (spatial pooling) are respectively the real image 

pixels for level-1 nodes and the child node temporal group winner indices for the other 

level nodes. The input vectors to the second MCA (temporal pooling) are the outputs of 

the first MCA. As shown in Fig. 4.3e, ~4% parameter variation can be tolerated based on 

our choice of matching threshold during training. Thus, the bit-length of the PCG matrix 

(and of spatial pooler) was chosen to be 5.  
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Fig. 4.8 (a) DTCS DAC provides inputs to MCA, while spin-CMOS hybrid PE takes the 

MCA outputs (heavy metal layer is not shown for simplicity) (b) DTCS DAC non-

linearity with different GTS [83] 

Fig. 4.8a shows the architecture of dot product computing block required in HTM 

spatial and temporal pooling operations. It consists of deep triode current source (DTCS) 

based digital to analog converter (DAC), MCA and the spin-CMOS hybrid PE. Since the 

test vectors from the image or the HTM child node are digital values, a DAC is required 

to convert digital test vector to analog voltage or current. In this design, we employ a 

DTCS based DAC design as shown in Fig. 4.8a. The binary weighted PMOS transistors 

are working in deep triode region by applying a voltage of V+ΔV to the source terminal 

and a voltage of V to the spin-neuron. ΔV can be ~50mV to ensure the transistors 

working in deep triode region. As shown in Fig. 4.9a, the DTCS transistor shows near 

linear drain current to gate voltage.  

An alternative low power DAC for the input digital data can be a compact switched 

MOS capacitor DAC (Fig. 4.9b). This analog voltage can be used to drive the DTCS 

transistors that supply current to the MCA for computation. Analog mode driving can 

achieve lower data bus width, thereby reducing the power consumption due to dynamic 

switching of the data bus. As described in previous subsection, the output current of each 

column is the dot product of the input voltages (currents) and the programmed 
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conductance of the memristors. The analog output currents will be converted into digital 

values using the proposed spin neuron based SAR-ADC (will be described later). 

 

Fig. 4.9 (a) Near-linear drain-current (Ids) vs. gate voltage (Vg) with different Vdd and ΔV 

(b) compact switched capacitor DAC scheme [83] 

Assuming the parasitic resistance of the metal bars can be ignored, the ith DTCS-

DAC current output can be expressed as follows: 

 ( ) ( ) )/ (DACD TS DACA TSC G GI i V i iG G     (4.4) 

where GDAC(i) is the conductance of ith DTCS-DAC depending on the digital input, 

GTS is the total conductance of memristors connecting to the same horizontal bar. Note 

that, dummy memristors are added such that GTS is equal for all horizontal bars. Then the 

current flowing through memristor connecting ith horizontal bar and jth in-plan bar can be 

written as: 

   
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(4.5) 

where gij is the memristor conductance connecting ith horizontal bar and jth in-plan 

bar. If GTS >>GDAC(i), the above equation can be approximately written as: 
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( ( /, ) )DAC ij TSI i j G g GiV     (4.6) 

It can be seen that the current flowing through each memristor is proportional to the 

product of GDAC(i) and gij. Therefore, the current flowing out of jth MCA in-plan bar is the 

dot product of input vector and the stored template, which can be expressed as: 

1

( ) ( )
N

DAC ij

TS

M A

i

CI j i
V

G g
G 




   
(4.7) 

where, N is the dimension of test vector and stored templates. Note that, lower value 

of GTS reduces the linearity of the DTCS-DAC characteristics as shown in Fig. 4.8b, so 

does the HTM accuracy. We add normal distributed device variation to the simulation of 

HTM node (including process variations on DTCS-DAC based on the model in [110] and 

memristors model [70]). DAC Integral Non-Linearity (INL) and Differential Non-

Linearity (DNL) will degrade with the consideration of process variation, thereby 

reducing the detection margin (difference between the best match and second best match, 

shown in Fig 4.10) of MCA outputs (i.e. HTM accuracy). The HTM accuracy vs the 

percentage variations on DTCS-DAC and memristor can be seen in Fig. 4.3e. Moreover, 

in case access transistors are employed for improved writablity, the minimum 

conductance is determined by the ‘ON’ resistance of the transistors (which is ~1K Ω for a 

minimum sized 45nm device).  

4.5.1.2. Spin-Neuron based SAR ADC Design 

The second step of spatial and temporal pooler is the detection of MCA outputs (dot 

product) and converting them to digital values. Fig.4.10 shows the normalized MCA 

outputs (ADC inputs) of one HTM level-2 node, for 20 different image samples. It shows 

the worst case difference between the best and second best matches to be ~4%, at the 

moment of comparison, which indicates at least a 5 bit resolution ADC circuit is needed 

to detect the best match. 
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Fig. 4.10 the normalized MCA column outputs (WTA inputs) for different image 

samples, showing isolation between the best and second best match. 

The standard algorithm of successive approximation register (SAR) ADC can be 

described as follows. Initially, the digital value stored in the approximate register is set in 

mid-scale. For example, in a 5-bit SAR-ADC, the initial state of approximate register is 

‘10000’. Then a DAC is used to convert the digital value stored in the approximate 

register to analog value, comparing to the analog input. If the analog input is higher, the 

MSB of approximate register remains high. If the analog input is lower, the MSB of 

approximate register changes to low and the next lower bit should be changed to high. 

The same process is repeated until all of the bits are compared. In the end, the digital 

value stored in the approximate register is the digitized value of the analog input. 

The spin-neuron we described in the previous subsection is used as the ultra-low 

power current comparator in the SAR-ADC design as shown in Fig. 4.11 [83][130]. At 

each conversion cycle, the DTCS-DAC converts the digital value stored in the 

approximation register to an analog current, comparing to the MCA output current by the 

spin-neuron. The output state of the spin-neuron determines the SAR logic as we 

described in the SAR-ADC algorithm. Note that, the drain terminal voltage of the DTCS-

DAC is V-∆V and the other node of spin-neuron is powered at voltage-V.  



 

 

72 

 

Fig. 4.11 Spin-neuron based SAR ADC circuit diagram [83] 

The digital outputs of SAR-ADC are the outputs of the spatial pooler and temporal 

pooler, which indicate the input densities over spatial patterns and temporal groups 

(shown in Fig. 4.2). Spatial pooler’s outputs are sent to temporal pooler, and temporal 

pooler’s outputs are sent to winner take all circuits described in next subsection.  

4.5.1.3. Winner take all circuit design 

As described in previous subsection, the output of each node in HTM is the winner 

index of the temporal group for the non-output node or the winner index of the class for 

the output node. A WTA circuit is required in each HTM node as shown in Fig. 4.2. The 

spin-WTA circuits employed in this chapter are shown in Fig. 4.12 [83].  
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Fig. 4.12 WTA circuit diagram [83] 

The WTA algorithm operates in parallel with the ADC operation. It can be explained 

with the help of the corresponding circuit diagram shown in Fig. 4.12. Results of the first 

ADC conversion step obtained from the SAR are directly transferred to the tracking 

registers (TR) shown in the figure through the pass-gate multiplexing switch (PGS). 

Thus, at this stage, all the TR’s with a high output correspond to the ADC results with 

MSB = ‘1’. Let us now, consider the second cycle operation. The detection line (DL) is 

first pre-charged to Vdd and the set of discharge registers (DR) driving it are cleared to 

low output. Next, if for at least one of the SAR’s with high MSB, the second MSB also 

evaluates to ‘1’, the corresponding DR is driven high by the associated AND gate. Thus, 

DL is discharged to ground and the write of all the TR’s is enabled. All the TR’s for 

which both, first and second MSB’s evaluated to ‘1’, stay high, but the rest are set to low. 

In simple terms, if at least one of the SAR’s (5-bit) evaluated to ‘11000’ in the second 
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conversion cycle, the DL is discharged and all the TR’s with SAR value ‘11000’ stay 

high, while those with SAR value ‘10000’ are set to low. In case all SAR’s evaluated to 

‘10000’ in the second cycle, no change is made to the TR values. Thus, at the end of 

conversion cycle, if only one of the TR’s remains high, it is identified as the winner and 

the corresponding SAR value is effectively the density over temporal group.  

The winner tracking circuitry described above is fully digital. Moreover, owing to 

the global digital control, it is easily scalable with number of input as well as required bit 

precision. 

4.5.2. HTM Hardware Mapping Using Spin-MCA Based Pattern Matching Network 

Architecture 

We introduced the design of MCA based dot product computing network, spin-

neuron based SAR-ADC and WTA in the previous subsections. The architecture of 

proposed HTM system is shown in Fig. 4.13. The level-1 nodes take the corresponding 

image patch as the inputs, the first MCA computes the density over spatial patterns 

(spatial pooling), the spin-ADC converts the current outputs into digital values and sends 

to the second MCA that computes the density over the temporal groups (temporal 

pooling). The WTA circuit detects the winner and sends the winner index to its parent 

node. 
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Fig. 4.13 HTM hardware mapping using spin-MCA based pattern matching network 

architecture 

4.6. Performance of Proposed HTM Hardware 

As we described earlier, the HTM computing blocks are mainly based on dot product 

of test vectors and stored templates, which can be implemented using digital CMOS 

adders and multipliers. As a comparison to our proposed HTM hardware design, we 

simulated the CMOS digital adders and multipliers based HTM node in IBM 45nm 

technology. The energy consumption of CMOS and spin based HTM level-2 node are 

shown in Fig. 4.15. It can be seen that the spin based HTM node design results in a much 

lower energy consumption (~200× lower) compared with CMOS based design. Such 

huge energy saving mainly comes from two reasons: 1) In our spin based HTM node 

design, the voltage across the MCA is drastically reduced to ΔV (~50mV) due to the low 

voltage, low current requirement of our spin-neuron based processing element (i.e. ADC 
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and WTA). 2) The fully digital WTA used in this work is a compact and ultra-low power 

design, compared with relative high power consumption mixed-signal CMOS WTA.  

 

Fig. 4.14 Energy consumption of a single HTM node (level 2) for different values of 

spin-neuron threshold and ΔV 

As shown in Fig 4.3, for appreciable matching accuracy, the average number of 

spatial (ci’s) as well as temporal (gi’s) groups in the HTM nodes can be more than 

hundred (for the given application and tree structure). As an example, for most second 

level nodes, the size of the PCG matrix was found to be ~270×64. This would imply DP 

evaluation between 64 pairs of analog vectors, each of length 270. Here, 270 denotes the 

length of Ps(i) and that of the PCG columns (PCG(:, j), each corresponding to a particular 

temporal group gj). The bit-length of the PCG matrix (and of spatial pooler) was chosen 

to be 5 (based on the analysis presented in Fig. 4.3). This calls for more than ~10kB of 

memory read per cycle of a node’s computation. (If a fully parallel design is chosen for 

the node, it would require, storing of the same amount of data in dedicated registers). 

CACTI simulations [119] predict more than ~1nJ of energy dissipation, even if zero 
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leakage digital spin-memory is used. The digital data corresponding to the PCG elements 

needs to be converted into analog voltage (current) levels, before it is subtracted from the 

analog mode results for Ps(i). This energy was estimated to be ~70pJ for approximate 

switch capacitor based DACs [83]. 

 

Fig. 4.15 Distribution of energy dissipation for a single HTM node design (level 2 node) 

(a) fully digital CMOS design, (b) Spin-MCA based design with 2 µA spin-neuron 

threshold, (c) Spin-MCA based design with 1 µA spin-neuron threshold (‘WTA’ in the 

pie chart includes both the ADC and WTA circuit ) 

Let us now consider the energy dissipation of the proposed computing core of HTM. 

Based on our simulation, the energy dissipation for the spin-neuron is the dominant part 

due to the negligible digital WTA static power. The energy dissipation for the spin-

neuron has two components. The first is switching energy due to the static current flow 

between the input voltages and the neuron. This component equals to the product of the 

total input current flowing across the MCA output columns, the input voltage levels, and 

the neuron switching time. For an average of 50µA of current flow across input voltage 

levels of 50mV for 1 ns switching time, this component evaluates to 2.5fJ. The noise 

considerations in the state of the art on-chip supply distribution schemes may limit the 

minimum input voltage levels that can be used. Even for 100mV of input levels, the first 

energy component is limited to 5 fJ. The second component of energy dissipation in the 

spin-neuron can be ascribed to the spin-neuron read operation. For a supply voltage of 
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0.8V, this would evaluate to 0.48 fJ. Thus, the total energy-dissipation in a spin-neuron 

for 1 ns switching speed can be around 3fJ.  

Fig. 4.14 shows the energy consumption of a single HTM level-2 node design. It can 

be seen that the static power consumption mainly depends on the spin-neuron switching 

threshold and the ΔV across the MCA. However, the dynamic power (Flip-Flops and 

DAC) is almost constant for different spin-neuron threshold currents and ΔV. With the 

reducing of the spin-neuron threshold current, the dynamic power starts to dominate. In 

this work, the spin-neuron threshold current is 2 µA. Lower value of ΔV would imply 

more energy savings. We have assumed that regulated precision DC levels with ~1mV 

accuracy are available [120]. The minimum usable ΔV is limited by the precision 

regulation of DC supply achievable. For the given application, the required bit-precision 

for the spatial/temporal memory was found to be 5 bit. Hence, even a 1mV noise would 

mandate a minimum ΔV of ~30mV. We choose ΔV as 50mV in this work to obtain better 

variation tolerance. With current spin-neuron threshold and ΔV configurations, Fig. 4.15 

shows the energy dissipation of the proposed design is around 48pJ for a single HTM 

level-2 node design. It implies an energy benefit of more than 200× over a digital CMOS 

design. As mentioned earlier, IBM 45nm technology was used to evaluate the CMOS 

design energy consumption. 



 

 

79 

Device 
variations

Thermal 
fluctuations

Micro-magnetic simulation 
model for spin-neuron

Spin-neuron behavioral model

MCA Spice 
model

Spice circuit 
simulation

 

Fig. 4.16 simulation framework used in this work 

The simulation framework used in this chapter is shown in Fig. 4.16. The device 

variation and thermal fluctuations are included in modeling the spin-neuron by a self-

consistent simulation framework presented in [89]. The spin-neuron was calibrated with 

experimental data on domain wall magnets. The addition of device variation and thermal 

fluctuations in the spin-neuron model creates a variation on spin-neuron threshold 

current, which will degrade the accuracy of spin-neuron based SAR-ADC. According to 

our simulation, the effect of spin-neuron variations can be neglectable compared with 

memristor conductance variations in a 5-bit spin-neuron based SAR-ADC. The HTM 

node is simulated in SPICE based on a statistical behavioral spin-neuron model. Some 

important design parameters used are listed in table 4.1. 
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Table. 4.1 HTM Design Parameters. 

WTA resolution 5 bit Magnet material NiFe 

Input date rate 100 MHz Free layer size 20×2×60nm3 

Cross-bar parasitic 1Ω/µm 0.4fF/µm Ms 800 emu/cm3 

Cross-bar material Cu Ku2V 20KT 

Memristor material Ag-Si Ic 2µA 

4.7. Summary 

The low voltage, magneto metallic ‘spin-neurons’ combined with MCA are explored 

in the dot product based pattern matching, which is the core computing block in the 

design of HTM hardware. Such a direct mapping of the core-computing primitive of the 

cortical computing system can be very attractive for large-scale and energy-efficient 

design. The simulated spin based HTM computing block results in ~200× lower energy 

consumption compared to the CMOS based HTM node design. 

In this chapter, we focused on the HTM inference hardware implementation, whereas 

the training of HTM is done offline, or in other words, the training is done by software. In 

the future, online training of HTM can be explored. We employed dot product based 

pattern matching as the core computing primitive of HTM. As another extension of this 

work, other pattern matching scheme, such as Hamming distance or Gaussian distance, 

can also be implemented using the spin-transfer torque devices. 
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5. SPIN-TRANSFER TORQUE BASED SOFT-LIMITING NON-

LINEAR NEURON 

In the previous chapter, we discussed a spin-neuron design which can implement 

energy efficient current mode thresholding operation. In this chapter, we present a spin-

transfer torque (STT) device based on Domain Wall Motion (DWM) magnetic strip that 

can efficiently implement a Soft-limiting Non-linear Neuron (SNN) operating at ultra-

low supply voltage and current [131]. In contrast to previous spin-neurons that can only 

realize hard-limiting transfer functions (thresholding function), the proposed STT-SNN 

displays a continuous resistance change with varying input current, and can therefore be 

employed to implement a soft-limiting neuron transfer function. Soft-limiting neurons are 

greatly preferred to hard-limiting ones due to their much improved modeling capacity, 

which leads to higher network accuracy and lower network complexity. We also present 

an ANN hardware design employing the proposed STT-SNNs and Memristive Cross-bar 

Arrays (MCA) as synapses. The ultra-low voltage operation of the magneto metallic 

STT-SNN enables the programmable MCA-synapses, computing analog domain 

weighted summation of input voltages, to also operate at ultra-low voltage. We modeled 

the STT-SNN using micro-magnetic simulation and evaluated them using an ANN for 

character recognition. Comparisons with analog and digital CMOS neurons show that 

STT-SNNs can achieve more than two orders of magnitude lower energy consumption. 

5.1. Introduction 

Neural network based computing models have been explored in recent years for 

realizing hardware that can perform “human-like” cognitive computing [97]-[100], [121]-

[123].  The fundamental computing units of such systems are the neurons that connect to 

each other and to external stimuli through programmable connections called synapses 

[97][121]. The basic operation performed by an artificial neuron is computing a weighted 
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sum of the N inputs and passing the result through a non-linear transfer function, 

expressed as follows: 

 ( ) i iY W IN     (5.1) 

where, Y is the neuron output or activation level, INi denotes the ith input, Wi is the 

corresponding synapse weight, θ is the neuron threshold or bias and φ is the neuron 

transfer (activation) function. Fig. 5.1b shows four representative neuron transfer 

functions. The step function is called hard-limiting transfer function because of the 

binary output states. The saturated linear, logistic sigmoid and hyperbolic tangent 

functions are soft-limiting transfer functions because of the continuous neuron output 

states [97][121]. Large numbers of neurons can be connected in different network 

topologies to realize different neural network architectures [98][100][122][123]. For 

instance, cellular neural networks employ near neighbor connectivity [122], whereas, 

fully connected feed-forward networks employ all-to-all connections between neurons in 

consecutive network layers or stages [123]. Several other network paradigms like 

Convolutional Neural Networks (CNN) [98], and Hierarchical Temporal Memory (HTM) 

[100][150] provides structured approaches to design large-scale networks. Irrespective of 

the network topology, neurons connect to each other in effect to communicate their 

probabilities (neuron activation levels) of being part of the final output [121]. The binary 

neuron output levels seriously hamper the possibility of neuron-to-neuron communication 

[121]. Soft-limiting neuron transfer functions are therefore preferred and greatly improve 

the neural network modeling capability while reducing network complexity. The reason 

behind this can be intuitively understood as follows. With hard-limiting functions, each 

neuron is required to decide whether it will be turned completely “on” or completely 

“off”, which requires a step-like function. On the other hand, with soft-limiting functions, 

each neuron can be in any of a continuous range of activation levels between ‘0’ and ‘1’, 

allowing much more information to be communicated across neurons. Various functions 

that meet these requirements have been explored as artificial neuron transfer functions 

[97][121][142]. The optimal neuron transfer function is highly dependent on the dataset 

and network topology. In this work, we do not attempt to implement the optimal neuron 

transfer function, but rather propose an energy efficient spin-transfer torque based device 
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that can implement a continuous non-linear function. This function can be used as a soft-

limiting artificial neuron transfer function. 

 

Fig. 5.1 (a) artificial neuron: it takes weighted sum of n inputs and passes the result 

through an transfer/activation function (b) four representative transfer (activation) 

functions 

The energy efficiency, performance, and integration density of ANN hardware is 

governed by the design of the fundamental computing units that realize neurons and 

synapses. In previous works [124][125], the artificial neurons and synapses are 

implemented using CMOS circuits, which in general requires large numbers of transistors 

and high power consumption. Therefore, it is of great interest to use post-CMOS devices 

to realize the ANN algorithmic models into powerful cognitive computing hardware in an 

energy efficient manner. Recent experiments [77][109][126][128] have shown that nano-

magnets can be switched at reasonable speed with small current density using a 

mechanism called spin-transfer torque (STT). Such STT based magneto-metallic devices 

can be used to implement current mode summation and non-linear operation, mimicking 

an artificial neuron in an energy efficient manner. We previously proposed the 

application of spin-neurons based on domain wall motion (DWM) magnet for designing 

ultra-low power neural networks [114][129][130]. However, all of the previously 

proposed spin-neurons implement the hard-limiting step-function, which leads to larger 
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network size, and simply cannot provide adequate modeling accuracy for complex 

classification problems. 

In this chapter, we present a Spin-Transfer Torque based Soft-limiting Non-linear 

Neuron (STT-SNN) having an output which is a rational function of the total incoming 

synapse currents, leading to compact network size and ultra-low power consumption. 

Instead of binary output states, our proposed STT-SNN can have continuous output 

voltages. We also present an ANN hardware design employing deep-triode current source 

(DTCS) transistors as interfacing circuits and memristor cross-bar arrays (MCA) as 

synapses. The fact that STT-SNNs operate at ultra-low voltages enables the 

programmable MCA synapses, computing analog domain weighted summation of input 

voltages, to also operate at ultra-low voltage for low overall energy consumption. 

Compared with state of the art digital and analog CMOS neurons, the proposed STT-

SNN can achieve around two orders of magnitude lower energy. 

5.2. Proposed Spin-Transfer Torque based Soft-limiting Non-linear Neuron 

In this subsection, we describe the device structure and operation of the proposed 

soft-limiting neuron. The CMOS circuits employed to interface to the neuron are also 

discussed. 

The proposed Spin-Transfer Torque based Soft-limiting Non-linear Neuron (STT-

SNN) is based on a composite device structure consisting of a DWM magnetic strip and a 

magnetic tunnel junction (MTJ) as shown in Fig. 5.2a. The MTJ consists of two 

ferromagnetic layers with an MgO barrier sandwiched between them. The “free” 

ferromagnetic layer (d4) connects laterally to two anti-parallel fixed domains - d1 and d2 

[128][139]. The larger thickness at the edges of the free layer is used to stabilize the DW 

at an intermediate position within the free layer [128].  In general, the application of 

current induced domain wall motion faces the problem of stable control of domain walls. 

It comes from many reasons, such as DW structural change, bidirectional displacements, 

thermal effect of Joule heating, stochastic nature of DWM and the local pinning effect 

[145]-[149]. The reduction of critical current density to de-pin DW from a pinning site 

can largely solve those problems. A small DWM critical current density in the range of 

1011A/m2 was demonstrated experimentally in a scaled magnetic nano-strip with 



 

 

85 

Perpendicular Magnetic Anisotropy (PMA) [126]. The reason why PMA device has a 

smaller DWM critical current density compared with In-plane Magnetic Anisotropy 

(IMA) device can be explained as follows. In the magnetic nano-strip, when the current is 

injected through a fixed domain, it becomes spin-polarized and exerts a torque on the 

DW. This torque induces the rotation of magnetization to the hard-axis direction, 

resulting in the pinning force. If the current density is above a certain threshold, the spin-

transfer torque can overcome this pinning force, leading to steady domain wall motion. 

Thus, the critical current density can be lowered by increasing the STT (narrower domain 

wall) or decreasing the pinning force (lower hard-axis anisotropy). In summary, the 

critical current density-jth Kh.a.LDW , where Kh.a. is hard-axis anisotropy and LDW is the 

domain wall length [145]-[149]. The hard-axis anisotropy of a PMA device reduces with 

lower device thickness and becomes much smaller than that of IMA device. Moreover, 

the DW length in a PMA device is in general smaller than that in an IMA device. 

Therefore, a scaled PMA magnetic nano-strip is used in our work to achieve lower 

critical current density to induce steady DWM. The free layer dimensions are 

2×20×100nm3 as shown in Fig. 5.2a.  A Neel type DW is formed because of the small 

strip width (20nm) [126]. The DW length LDW=π√(Aex/Ku)= ~17nm based on our device 

parameters listed in table-5.1. 
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Fig. 5.2 (a) The proposed STT-SNN device structure, (b) the micro-magnetic simulation 

of free layer DW motion when the injected lateral current density is 6.5×1011 A/m2 and 

(c) 8×1011 A/m2 , (d) simulated DW motion velocity vs. current density, showing a good 

match with experimental data reported in [126] 

The proposed STT-SNN device can be treated as a four terminal device with lateral 

and vertical current paths. For the lateral path (d1 to d2,  x direction), d1 forms the 

input programming port, assuming d2 is supplied with a constant voltage. The domain 

wall can be moved along the free layer depending on the lateral current pulse magnitude, 
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direction and duration [77][109][126], leading to a continuous resistance change of the 

MTJ in the vertical direction. The transient micro-magnetic simulation plot of the free 

layer using mumax3 [135] is shown in Fig. 5.2b&c, where a 0.5ns current pulse with 

magnitude of 6.5×1011A/m2 and 8×1011A/m2 are applied from d1 to d2. It can be seen that 

the domain wall moves to the left (along the direction of electron flow) with a different 

speed. The device parameters used in the simulation are listed in table-5.1. We 

benchmarked the micro-magnetic simulation with the experimental data in [126] (the 

same nano-strip width of 20nm is fabricated in the reference) and it shows a good match 

as shown in Fig. 5.2d. A relatively high Ku (i.e. high energy barrier) is preferred in the 

memory application for the sake of good thermal stability [126]. In the computing 

applications, a lower energy barrier can be used to reduce the critical current density to de-

pin the DW, which leads to lower energy consumption. 

Table. 5.1 STT-SNN Device Parameters used in Simulation 

Symbol Quantity Values 

α damping coefficient 0.02 

Ku uniaxial anisotropy constant 3.5×105 J/m3
 

Ms saturation magnetization 6.8×105 A/m 

Aex exchange stiffness 1.1×10-11 J/m 

P polarization 0.6 

 

The vertical path (from d3 to d4,  z direction) is used for sensing the position of 

DW in terms of MTJ vertical resistance. MTJ resistance is a function of voltage, 

tunneling oxide thickness (tox) and the angle between free layer and pinned layer 

magnetizations. The atomistic level simulation framework based on Non-Equilibrium 

Green’s Function (NEGF) formalism [137] can be used to evaluate the MTJ resistance, 

which includes the device variation and thermal fluctuation. The system functionality in 

this work is simulated in SPICE using a statistical behavioral model. In this model, the 
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STT-SNN is simulated as three parallel MTJs with variable resistance depending on DW 

positions (Fig. 5.4a): 

  / 0.5L AP DWR RA W L x L     (5.2) 

  / 0.5  R P DWR RA W x L    (5.3) 

 /  DW DW DWR RA W L   (5.4) 

where, RL, RDW and RR are respectively the vertical resistance of left anti-parallel, 

domain wall and right parallel equivalent MTJ resistances; x is DW position (middle 

point), L is the length of free layer (100nm), W is the width of free layer, RAAP, RADW and 

RAP are respectively MTJ resistance-area product for anti-parallel, DW and parallel 

configurations. The resistance of the STT-SNN can then be computed as:  

/ / / /neuron L DW R

A
R R R R

Bx C
 


 

(5.5) 
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  

  
 

(5.8) 

where, Rneuron is the vertical resistance of STT-SNN. A, B and C are constants 

depending on the MTJ resistance area product and device dimensions as shown in 

equation-5.6-equation-5.8. Note, this model is used for SPICE simulation in sensing the 

neuron state. DW position (x) is a function of total input currents, modeled using micro-

magnetic simulation as described earlier. 

The interface circuit of STT-SNN is shown in Fig. 5.3a. It works in three phases – 

programming, sensing and reset phase. In the programming phase, the lateral 

programming current (total synapse current) programs DW position along the free layer. 

Then, for the sensing phase, a voltage divider circuit is used to sense the STT-SNN state. 

The reference MTJ voltage is treated as neuron output voltage which will be transmitted 

through ‘axon’ to its fan-out neurons (axon circuit will be explained in next subsection). 

For maximum power efficiency and the isolation of two paths, different phases should be 

separately powered. The clocked power supplies called pClocks can be used (as shown in 
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Fig. 5.3b). When in the programming and the reset phases, PclkB+ and PclkB- are in 

floating state, while PclkA provides a constant voltage V to d2, enabling the lateral 

programming path. When it is in the sensing phase, PclkA and the input terminal (d1) are 

in the floating state. Meanwhile, PclkB+ and PclkB- supply 50mV and -50mV, 

respectively (choice of sensing voltage will be explained later). The clocked power supply 

is implemented using widely used power gating technique [138]. Finally, a reset current 

pulse (-50µA, 1ns) is applied to the STT-SNN free layer to set the DW location in the 

rightmost corner, ready for the next computation cycle. 

 

Fig. 5.3 (a) The programming and sensing circuit of the proposed STT-SNN, (b) the 

clocked power supply waveforms, (c) the micro-magnetic simulation of STT-SNN free 

layer with different vertical sense currents. 

The authors in [128] have experimentally shown that the vertical current may also 

shift DW when the current density is above a critical value because of the out-of-plane 

(i.e. field-like) torque. DW position displacement is what we want to avoid in sensing the 
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STT-SNN resistance. Note, the DW position essentially indicates the state of the neuron. 

Based on the micro-magnetic simulation for vertical current injection, the vertical critical 

current density to de-pin the DW was found to be ~5×1010A/m2 [128], corresponding to a 

critical current of ~100µA. Thus, based on our simulation, the largest allowed voltage 

difference between PclkB+ and PclkB- is ~350mV. In order to keep a good amount of 

sensing margin, PclkB+ and PclkB- are set to be 50mV and -50mV, respectively, which 

corresponds to a maximum of 30µA vertical sensing current. From the micro-magnetic 

simulation shown in Fig. 5.3c, DW position is stable when the vertical sensing current is 

30µA. 

Based on the compact STT-SNN model, the output voltage in Fig. 5.3a) can be 

computed as: 

0 (1 )
ref

s s

ref neuron ref ref

R A
V V V

R R R Bx R C A
  

    

(5.9) 

where, Vs is the voltage difference between PclkB+ and PclkB- (100mV), Rref is the 

reference MTJ resistance, x is the domain wall location, A, B, C are the constants 

expressed as equations-5.6, equations-5.6 and equation-5.8. It can be observed that the 

output voltage is a rational function of DW positions (0<x<100nm). Note, rational 

function is defined as the ratio of two polynomials (two linear functions with the same 

slope in our case). ‘x’ is a function of the total lateral programming current as described 

earlier. Fig. 5.4b shows the STT-SNN resistance vs. DW position. It can be seen that the 

STT-SNN resistance can be adjusted in a continuous range of values based on the DW 

position, enabling continuous output voltages as shown in Fig. 5.4c. Based on the micro-

magnetic simulation of DW motion velocity dependence on the injected current density 

shown in Fig. 5.2d, the neuron output voltage vs. programming current (assuming 1ns 

clock cycle) is plotted in Fig. 5.4d. The positive current direction is defined as from ‘d1’ 

to ‘d2’ as shown in Fig. 5.3a. Note that, the programming current here is the total synapse 

current (weighted sum of inputs in ANN model). If the programming current is smaller 

than the DW depinning critical current (th1), DW is stable at the initial position and the 

output voltage is minimum. When the programming current is larger than ‘th2’, DW will 
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be pushed to the other end and the output voltage saturates to the maximum. ‘th2’ can be 

defined as the minimum current to push the domain wall from one end to the other end 

using 1ns clock cycle. This two threshold currents (th1 and th2) can be tuned by proper 

device dimensions and material parameters to adapt different ANN designs. 

 

Fig. 5.4 (a) Behavioral STT-SNN SPICE model, (b) STT-SNN resistance vs. DW 

positions, (c) output voltage vs. DW positions, (d) output voltage vs. programming 

current. Note, the positive current direction is defined from d1 to d2. Clock cycle is 1ns. 

From the above discussions it is clear that the proposed device can be used to 

implement the low current, soft-limiting non-linear function of an artificial neuron. Next, 

we will show that the weighted summation of inputs can be efficiently implemented by 

MCA-synapse. 
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5.3. Memristive Cross-bar Array Synapses 

The two-terminal synapse bears striking resemblance to memristor whose 

conductance can be precisely modulated by charge or flux through it [140]. In the ANN 

model shown in Fig. 5.1a, the inputs go through the associated synapses (multiplied by 

weights) and are summed up as input to the neuron transfer function. This operation can 

be implemented efficiently using a memristive cross-bar array (MCA) shown in Fig. 5.5 

[67][83]. In an MCA, the memristor (e.g. Ag-Si) with conductivity gij interconnects the ith 

horizontal metal bar and jth in-plane metal bar. If the outward ends of in-plan bars are 

grounded and input voltages Vi are applied to horizontal bars, the current going through 

the interconnected memristor is Vi•gij. Thus, the total current coming out of the jth in-plan 

metal bar equals to the dot product of the inputs Vi and the associated memristor 

conductance gij, namely ΣiVi•gij. In ANN, the memristors can be employed to store the 

synapse weights in terms of conductance and the MCA can be used to evaluate the 

weighted summation of the inputs. 

 

Fig. 5.5 (a) Memristor crossbar array used for evaluating the weighted sum of inputs for 

ANN 
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More than 8-bit write accuracy for isolated memristors was proposed and 

demonstrated in [104]. In our work, 5 bit accuracy was used for demonstrating system 

functionality. Note that, lower synapse weight resolution can be used by increasing the 

number of neurons. It is a trade-off between the resolution of the weights and the number 

of neurons. Even binary weight configuration can be used, however, it would require 

much more number of neurons. In a cross-bar array consisting of large number of 

memristors, write voltage applied across two cross-connected bars for programming the 

interconnecting memristor can result in sneak current paths through neighboring devices 

[90]. This disturbs the state of unselected memristors. To overcome the sneak path 

problem, application of access transistors and diodes have been proposed in literature 

[90], which facilitates selective and disturb free write operations. A multi-bit memristor 

array-level programming scheme employing adjustable pulse width is described in 

previous chapter and shown in Fig. 3.2 [130]. In this scheme, when programming one 

specific memristor cell in the array, the corresponding set of the word line, source line 

and bit line will be selected. During the writing operation, a constant current will be 

injected into the selected cell and the voltage developed on the source line is compared 

with a comparator threshold. A digital to analog converter (DAC) is used to set the 

threshold proportional to the target resistance. As soon as the accessed memristor is 

programmed to the target value, the current source is disconnected [130]. More precise 

tuning of memristor value can be achieved by applying a lower value of write current 

resulting in slower ramp in the resistance value. The memristive devices (including Ag-

Si) do exhibit a finite write threshold for an applied current/voltage, below which there is 

negligible change in resistance [92]. Since the application of spin based neuron facilitates 

ultra-low voltage (and hence low current) operation of the memristors for computing, the 

state of memristor in the MCA will not be disturbed during read operations. 

5.4. ANN Hardware Using STT-SNN and MCA 

In this subsection, we describe our proposed ultra-low power ANN hardware design 

combing MCA synapses and STT-SNN, showing one to one similarity to biological 

neural network. 
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In a biological neural network, ‘axons’ are used to transmit electrical-chemical signal 

between neurons [97][121]. In our proposed ANN hardware (Fig. 5.6), a deep triode 

current source (DTCS) transistor is used to act as an ‘axon’ interconnecting the previous 

stage neuron output (voltage) with MCA synapses. As shown in Fig. 5.7a, the drain to 

source voltage of DTCS transistor is of the order of few tens of millivolts and it operates 

in the ‘deep-triode’ region where the drain current Ids is linearly proportional to Vdd-VT-

Vg, where VT is the threshold voltage and Vg is the gate voltage. Moreover, the maximum 

Ids can be tuned by the width of the transistor and Vds as shown in Fig. 5.7a. Therefore, 

DTCS transistor can be used to transmit the neuron output voltage into synapse current 

similar to axon [129]. Fig. 5.6 shows the spin-CMOS hybrid ANN (one layer) hardware 

design using DTCS-axon, MCA-synapses and STT-SNN, which shows one to one 

similarity to biological neural network. The ith input to the MCA synapses may connect to 

the jth STT-SNN with either positive, negative or zero weight. This is achieved by 

programming either gij+ or gij- to the corresponding weight. For zero weight (i.e. no 

connectivity), both gij+ and gij- are driven to high resistance “off” state. The input signal to 

MCA synapses is received through DTCS transistors with source terminals connected to a 

potential V+∆V (for positive weights) and to V-∆V (for negative weights), where ∆V can 

be ~50mV. Ignoring the parasitic resistance of metal cross-bar (for small scale network 

size), the current going through one synapse can thus be written as Iin(i)•gij/gTR, where 

Iin(i) is the current supplied by the ith DTCS transistor, gij is the synapse weight dependent 

conductance of the ith input to the jth neuron and gTR is the total conductance of all the 

memristors connected to the same horizontal bar. Note that, dummy memristors are added 

such that gTR is equal for all horizontal bars. Thus, the current coming out of each MCA in-

plane bar is the total current going into the connected STT-SNN, and can be expressed as 

ƩIin(i)•(gij+ - gij-)/gTR, where Iin(i) is linearly proportional to the input voltage. The total 

synapse current determines the STT-SNN output voltage according to the soft-limiting 

non-linear transfer function shown in Fig. 5.4d. 
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Fig. 5.6 The proposed ANN hardware design using DTCS-axon, MCA-synapse, and 

STT-SNN 

The linearity and source-to-drain current range of DTCS transistor is affected by the 

fluctuation in drain voltage. As shown in Fig. 5.7b, the non-linearity of DTCS currents 

can be reduced by using lower range of values for the memristor resistances, hence 

higher gTR. The other design parameters like the synapse weight resolution, neuron 

transfer function thresholds etc., are determined by the MCA model [92] and neural 

network training to ensure the implemented ANN accuracy. The required output current 

range of DTCS transistor is determined based on the network size, weight resolution of 

synapses, gTR and neuron threshold. As shown in Fig. 5.7a, the combination of Vds (∆V) 

and transistor sizing can tune the DTCS output current range. For a required amount of 
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DTCS current, the power consumption of MCA is proportional to the voltage across the 

crossbar (∆V). Thus, it is desirable to reduce ∆V as much as possible. The minimum ∆V is 

determined mainly by the non-linearity of DTCS that degrades the output neuron detection 

margin (difference between the highest output to the second highest output) and hence, the 

matching accuracy. For the benchmark we will describe in the next section, ∆V of 50mV 

(with regulated DC supply of 1mV prevision [144]) is the minimum voltage to maintain 

the same matching accuracy as ideal case. Therefore, the MCA-synapses are biased across 

a small terminal voltage ∆V (between V+∆V and V), leading to ultra-low power 

consumption of weighted summation of inputs. 

 

Fig. 5.7 (a) DTCS Ids vs. Vg for different width and Vds (b) non-linearity characteristics of 

DTCS transistor due to drain terminal memristor load 

5.5. Application & Performance Results 

In this section, we apply the proposed hybrid Spin-CMOS ANN hardware in a 

benchmark application (character recognition). We also discuss the performance and its 

comparison with other CMOS and spin based neuron designs. 

In the hybrid Spin-CMOS ANN hardware design, the CMOS peripheral circuits are 

simulated using IBM 45nm SOI technology. In the character recognition application, the 

overall process can be divided into two steps - edge extraction and pattern matching. 

Note that, the edge extraction and ANN training are performed offline. Each alphabet 
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feature vector is composed of 64 components extracted from four directions: horizontal, 

vertical and  450 [129] (Fig. 5.8). Each 64-component feature vector is one test vector 

to a pre-trained feed-forward ANN composed of hidden layer and output layer as shown 

in Fig. 5.8. Table-5.2 shows the MATLAB neural network training results using four 

different neuron transfer functions for the same benchmark and recognition accuracy. It 

can be seen that the hard-limiting step-function requires much more hidden neurons than 

the other soft-limiting neurons. It is mainly because the soft-limiting neuron, with a 

continuous output, has a much larger modeling capacity. Thus, as a soft-limiting neuron 

model, our proposed STT-SNN can achieve a more compact network size compared to 

hard-limiting neurons. The mapped hidden layer area can be seen in Fig. 5.10b. For all 

cases, the number of output neurons is the same, since each output neuron corresponds to 

one alphabet. 

 

Fig. 5.8 Alphabet feature vectors and two-layer feed-forward ANN architecture. Note, the 

hardware implementation of each layer can be seen in Fig. 5.6 
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Table. 5.2 Number of Neurons for Different Neuron Transfer Functions 

Transfer functions 

Hard-limiting Soft-limiting 

Step 
Saturated 

linear 
Sigmoid STT-SNN 

# of hidden neuron 24 9 4 5 

# of output neuron 26 26 26 26 

 

In the ANN architecture as shown in Fig. 5.8, DTCS-axons in the first (hidden) layer 

take the analog voltage inputs proportional to input feature vectors and convert them to 

current going through the MCA-synapses. In all, 64×2 DTCS-axons (positive and 

negative weights) are required and the MCA (synapse matrix) size is 128×6 (5 hidden 

neurons and one dummy column). The output layer contains 5×2 DTCS-axons and the 

MCA size is 10×27 (26 output neurons and one dummy column). Note that, a Gaussian 

distributed random noise (σ=5%) was added to each memristor conductance value in our 

simulations to model variations. The simulation results are shown in Fig. 5.9a. The figure 

shows the normalized output neuron voltages for 26 test alphabets. Pixel (i, j) indicates 

the ith output neuron voltage when the input is the jth alphabet. 

During the supervised training of the ANN, the 26 output neurons (O1 to O26) are 

assigned to indicate 26 alphabets (‘A’ to ‘Z’) respectively. Thus, for each test alphabet 

(each row in Fig. 5.9a), the diagonal value-(i, i) should be the maximum to indicate a 

correct match. The first (‘A’) and last row (‘Z’) voltage values are separately plotted in 

Fig. 5.9b. It can be seen that, when the input pattern is ‘A’, output neuron-‘O1’ is the 

winner. In the case that ‘Z’ is the input pattern, output neuron-‘O26’ is the winner. For 

the output winner detection, a simple Winner Take All (WTA) circuit described in [143] 

can be employed. Based on SPICE simulation for this simple alphabet benchmark, we 

found the voltage difference between the winner and other output neurons is sufficiently 

large (Fig. 5.9a). Thus, we attached an inverter to each output neuron to sense the output. 

Only the winner output bit is ‘0’, while the others are ‘1s’. 
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Fig. 5.9 (a) Normalized 26 output neurons’ voltages for 26 test input patterns. Note that, 

pixel (i, j) indicates ith output neuron voltage for jth input pattern. (b) The 26 output 

neurons’ voltages when the input patterns are ‘A’ and ‘Z’ 

The energy consumption of a single STT-SNN has three components: programming, 

sensing and reset energy. For an average of ~40µA of lateral current flowing across the 

STT-SNN free layer (the total current out of one MCA column/ row), the programming 

energy is simulated as ~0.5fJ for 1ns clock cycle time. The second component (sensing 

energy) can be ascribed to the MTJ-based read operation. A read current of ~25 µA 

(~20% of DW depinning vertical critical current) would lead to ~2.5fJ energy 

consumption for 1ns read speed. Note that, the sensing current and sensing energy can be 

reduced by increasing the MTJ MgO thickness (hence, the resistance-area product of 

MTJ [137]). For the reset operation, a 50µA-1ns current pulse is used in our simulation, 
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leading to ~0.75fJ reset energy. Thus, the total energy dissipation of one single STT-SNN 

is ~3.75fJ. Note that, each phase delay is set to be the same (1ns) to make it easy for 

pipelining the design. We compare the proposed STT-SNN energy with other recent 

artificial neuron implementations in Fig. 5.10a. Compared with CMOS analog and digital 

neurons in [114][141], STT-SNN leads to the possibility of more than two orders of 

magnitude lower energy dissipation. The LSV-based spin-neuron (step function) is 

around one order of magnitude larger than STT-SNN because of the large hard-axis 

preset energy [129]. The reasons why the energy consumption of DWM spin-neuron 

(step function) [114] is smaller than that of STT-SNN is mainly due to 1) spin-orbital 

coupling is employed to increase the DW velocity; 2) a smaller sense current is used; 3) it 

implements a step function with hysteresis and no reset operation is required. 

 

Fig. 5.10 (a) Energy for different single neuron implementations, (b) hidden layer area 

based on different neuron transfer functions 
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Apart from the ultra-low energy consumption, the soft-limiting functionality of STT-

SNN also leads to reduced number of hidden neurons, and hence smaller hidden layer 

area for the same benchmark [97][121][142]. The hidden layer areas using four different 

neuron transfer functions are compared in Fig. 5.10b. It can be seen that the hidden layers 

using soft-limiting neurons consume much smaller area because of less number of 

synapses and neurons. STT-SNN leads to ~2.5× lower hidden layer area compared to the 

hard-limiting step function neuron based ANN. The system level SPICE simulation of 

our proposed ANN hardware shows the total energy consumption for one alphabet 

recognition is ~650fJ (Fig. 5.11a), which is ~6.8× lower than that of the LSV neuron 

(step function) based ANN and more than two orders magnitude lower than the digital/ 

analog ANN implementation for the same benchmark [129]. Note that, ANN training is 

performed offline and the programming of MCA-synapses is a one-time operation. Hence, 

the memristor programming energy is not included in our analysis. 

 

Fig. 5.11 (a) Energy analysis of the proposed ANN hardware for character recognition 

benchmark, (b) simulation framework 

Fig. 5.11b depicts the simulation framework used in this chapter. We employed 

micro-magnetic simulation for the proposed STT-SNN and it was calibrated with 
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experimental data from [126]. The MTJ is modeled using NEGF-LLG solution for spin to 

charge interface [137]. A compact behavioral model of STT-SNN was used in SPICE 

simulation. The ANN was trained offline using MATLAB Neural Network toolbox 

[136], which generates the synapse weight matrix for the hidden and output layers from 

the given training data. The memristor conductance (1kΩ to 32kΩ, [130]) was 

programmed based on the synapse weight matrix in SPICE. In the system simulation, a 

Gaussian distributed random noise (σ=5%) was added to each memristor conductance 

value to account for variations.  

5.6. Summary 

In this chapter, we presented a domain wall motion based spin-transfer torque device 

that can efficiently implement a neuron with a soft-limiting non-linear transfer function, 

operating at ultra-low supply voltage and current. The spin based neuron device allows 

the peripheral circuits and memristor crossbar array synapses to also operate at very low 

voltages, thereby leading to ultra-low power consumption for the whole system. The 

proposed neurons are used to design artificial neural networks that show more than two 

orders of magnitude lower energy dissipation compared to analog and digital CMOS 

ANN implementations in 45nm CMOS technology and ~2.5× lower hidden layer area 

compared with hard-limiting neuron based ANNs. We believe that the proposed spin-

transfer torque based soft-limiting non-linear neurons along with MCA-synapses can be 

used to build energy efficient neuromorphic computing hardware for cognitive computing 

applications. 
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6. BRAIN-INSPIRED COMPUTING USING COUPLED SPIN 

TORQUE OSCILLATORS ARRAY 

Spin Torque Oscillator (STO) is based on magnetic spin valves that constitute of a 

fixed and a free magnetic layer. The magnetization of free layer can be set into sustained 

oscillations by injecting charge current through the device, under appropriate bias 

conditions and device configurations. STOs are compact, frequency tunable and CMOS 

compatible microwave oscillators. They can generate high oscillatory signals using low 

DC bias current. Moreover, multiple STOs can be frequency/ phase locked through 

magnetic interaction between free layers, electrical connectivity or external oscillating 

current/ magnetic field injection. The dynamics of coupled STOs array can be exploited as 

a robust primitive computational operator for associative computing, image and video 

analysis, etc. In this chapter, we first discuss the numerical device simulation framework 

for STOs and different coupling mechanisms, including magnetic coupling, electrical 

coupling and injection locking. Then, we present an application of injection locked spin 

Hall induced oscillators in associative computing as a case study. We also discuss CMOS 

interface circuitries for the design of spin hall induced oscillators based associative 

module. 

6.1. Introduction 

The brain-inspired computing models proposed in literatures 

[83][96][97][107][130][150], constitute of associative pattern matching as the core data 

processing task. Such associative computing may involve evaluation of conventional 

distance metrics like, Hamming distance, Gaussian distance or dot product between the 

template and input patterns. Practical associative computing architectures, like those 

based on pattern clustering [83][96][97][130][150], may require matching of input 

patterns with a large number of template patterns, stored in a tree-like hierarchy. 
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Implementation of such hardware, using the conventional von Neumann digital 

architecture may incur prohibitively high energy and real estate cost for computing as 

well as memory. 

Recent years have seen growing interest in emerging nano-devices that can provide 

direct and energy efficient mapping of computing primitives required for such pattern 

matching tasks, involved in associative computing [83][107][130][150][151]. The pattern 

matching computations, being inherently variation tolerant, can exploit the “inexact” 

terminal characteristics of such nano-devices to perform non-Boolean, analog mode 

operations upon inputs [83][130][150]. 

Spin Torque Oscillators (STO) are based on magnetic spin valves that constitute of a 

fixed and a free magnetic layer [151]. The magnetization of the free layer can be set into 

sustained oscillations by injecting charge current through the device, under appropriate 

bias conditions and device configurations [48], [164]-[169].  An input dependent shift in 

the bias state of a set of phase synchronized STOs can be employed for pattern matching 

applications [143], [151]-[154]. However, the choice of device configuration, 

synchronization technique and interface circuits can heavily impact the design feasibility 

and the overall benefits of STO based computing modules. 

Recently proposed 3-terminal Spin Hall Effect (SHE) based STO (SHE-STO) offers 

separate control of frequency and output microwave amplitude, which provides a simple 

method to tune the output voltage swing without disturbing the frequency. It minimizes 

the interface circuit overhead for sensing the oscillations [48].  

6.2. Spin-Torque Oscillators  

In this subsection, we first describe the standard 2-terminal STO (2T-STO) and the 

basic design conflicts associated with its application to low power computing. Following 

this, SHE-STO is presented as an alternative device that can overcome the limitations of 

2T-STO. The STO numerical simulation model based on Landau-Lifshitz-Gilbert (LLG) 

equation is also presented. 
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6.2.1. 2 Terminal STO 

 

Fig. 6.1 (a) 2-terminal STO device structure, (b) different torque terms acting in the free 

layer 

A standard 2T-STO [164]-[169], shown in Fig. 6.1a, has two ferromagnetic layers 

separated by either a thin non-magnetic metal (Giant Magneto Resistance -- GMR 

device) or a thin insulating oxide (Tunneling Magneto Resistance – TMR device). The 

ferromagnetic layers have two stable magnetization states, depending upon the magnetic 

anisotropy [168]. One of the magnetic layers has the fixed magnetization, while the 

magnetization of the other (free layer) one can be influenced by a charge current passing 

through the device and/or by an applied magnetic field. The fixed magnetic layer spin-

polarizes the electrons, which in turn exert spin-transfer torque (STT) in the free layer. 

The magnetization dynamics of STO free layer can be modeled by Landau-Lifshitz-

Gilbert equation with a Slonczewski’s term (LLGS equation) [1][185][186] as shown in 

the followings: 

  'd d

dt dt
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where, m is the free layer magnetization, which is a unit vector pointing to the 

magnetization direction. γ is the Gilbert gyromagnetic ratio, α is the damping constant, ħ 

is the Plank’s constant, e is the electron charge, J is current density, t is the free layer 

thickness, Ms is the saturation magnetization of the magnet, P is the polarization 

constant, mp is the direction of spin polarization of spin current, Ʌ is the spin torque 

asymmetry parameter, έ is the secondary spin transfer term. It includes a precession term 

induced by effective field Heff (equation-6.4). Here, Hext is the external magnetic field, 

Hani corresponds to the free layer anisotropy field, HM represents the magneto-static field 

which is proportional to the component of the free layer magnetization along its easy 

axis, and Hnoise denotes the noise term that models the thermal fluctuations 

[19][127][166]. As shown in equation-6.1, the first term is the ‘precession term’ resulting 

from magnetic field. The second term denotes the ‘damping term’. The last two terms 

represent current induced torques that take Slonczewski term and field-like term, 

respectively. When current is injected through the device shown in Fig. 6.1a (metal 

spacer or tunneling barrier), it becomes spin-polarized. This flow of spin-polarized 

current generates spin-transfer torque acting on the magnetic moments. The magnitude of 

the last two torques is dependent on material and device structures. Note that, for GMR 

devices, the field like term m×mp is typically negligible as transverse spins dephase 

rapidly [1][184]. While for TMR devices, besides the in-plan torque predicted by 

Slonczewski [1][185][186], this field-like (output of plane) torque is proven significant in 

modeling the dynamics of magnet [185][187]. For a given static magnetic field, the free 

layer magnetization can achieve sustained oscillation when the STT and damping torque 

balance out each other. (Fig. 6.1b) [164]-[169]. The conductance of STO can be 

expressed as a function of relative angle (θ) between the magnetizations of the two 

ferromagnetic layers as: 
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where, GP and GAP denote the conductance when the two layers are parallel (θ = 0º) 

and antiparallel (θ = 180º). The absolute resistance of a GMR device is much smaller 

than that of a TMR device (notably, the resistance area product for GMR device can be 

two orders of magnitude lower than a TMR device [164][165][167][169]). A GMR-STO, 

being fully metallic, can be operated with very low voltage. However, the sensed signal 

amplitude is very low, which requires complex sensing circuitry to amplify the signal, 

leading to high power consumption [164][165] (listed in table-6.2). On the other hand, 

though the TMR based STO can provide large amplitude output signals, due to the high 

resistance tunnel junction, it requires a larger bias voltage, leading to energy inefficiency 

at the device level [167][169] (listed in table-6.2). The standard 2-terminal STO shares 

the biasing and sensing path, leading to disturbance in tuning frequency and output 

voltage swing. The recently proposed SHE-STO [48] can overcome the aforementioned 

bottlenecks.  

6.2.2. Spin Hall Effect STO 

 

Fig. 6.2 SHE-STO device structure. Spin accumulation at the top and bottom surface of 

SHM due to SHE. Hext is the applied external magnetic field. 
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Recently it was experimentally demonstrated that the spin hall effect (SHE) in a thin 

film with strong spin-orbit coupling can excite magnetic precession in an adjacent 

ferromagnetic film [48][49][170]. Such a device structure is shown in Fig. 6.2 where a 

magnetic tunnel junction (MTJ) is milled on the spin hall metal (SHM, β-Ta[49], β-

W[65], Pt[63], doped Cu[170]) nano-strip. When a charge current is injected along the 

SHM strip, the opposite spins accumulate at the top and bottom surface of the SHM strip. 

Thus, a spin current is generated perpendicular to the SHM strip and is injected to the 

adjacent MTJ free layer [171]. The spin current generated due to SHE then exerts a spin-

transfer torque in the MTJ free layer, leading to a sustained magnetization oscillation of 

the MTJ free layer. The spin current corresponding to the charge current (Ic) can be 

modeled [171] by: 

( )s she cI P I 
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where   is the spin direction, Pshe denotes the spin hall injection efficiency. The 

magnitude of Pshe equals to the ratio of the spin current (Is-z, z) to lateral charge current 

(Ic-y, y). AMTJ is the area of the MTJ, and ASHM is the cross section area of SHM strip 

perpendicular to the charge current direction. t is the thickness of SHM, λsf is the spin flip 

length, θSHE is the spin hall angle for the SHM to MTJ free layer interface. In 2T-STO 

devices we described in previous subsection, spin current is generated by passing charge 

current through a ferromagnetic layer. Thus, the efficiency of spin current generation is 

inherently limited by the polarization efficiency of the ferromagnetic layer, less than 1. In 

SHE-STO, the spin hall injection efficiency can be easily larger than 1. The spin current 

due to SHE exerts a spin-transfer torque in the adjacent MTJ free layer, which reduces 

the effective magnetic damping torque. If the STT and magnetic damping torque balance 

out each other, the MTJ free layer magnetization can achieve sustained oscillation. This 

dynamics of free layer spins can then be modeled as follows [172]:  
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(6.8) 

Where Ns=MsV/µB is the number of spins comprising the magnet, µB is Bohr 

magneton, V is the volume of the magnet. The H acting on the magnet contains 

anisotropy field (2Ku/Ms), demagnetization field (4πMs) and thermal noise field [127]. 
sI  

is the spin current induced by SHE that is modeled as in equation-6.6. The device 

parameters used in simulation are listed in table-6.1. The transient simulation of free 

layer magnetization with Ibias=Ic=320µA corresponding to output frequency of ~6.6GHz 

is shown in Fig. 6.3b. SHE-STO output frequency can be tuned by varying the DC bias 

current as shown in Fig 6.3a. 

 

Fig. 6.3 (a) SHE-STO output frequency vs. Ibias, (b) transient simulation of SHE-STO free 

layer oscillation when Ibias=320µA. 
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The biasing and sensing circuit of SHE-STO can be seen in Fig. 6.4. The oscillation 

dynamics of the free layer can be sensed by injecting a small read current (IMTJ) into the 

MTJ formed between the free layer and fixed layer (Fig. 6.4), converting the oscillations 

of the MTJ resistance into an oscillating voltage. The resistance of SHM equals to ρL/(wt) 

= ~1kΩ, where ρ is the resistivity of SHM (ρ=~200µΩ•cm [63][65]), L is the SHM length 

(150nm), t is the SHM thickness (3nm). One terminal of the SHM is used as DC biasing 

and the other one is grounded. Thus, for the sensing of SHE-STO, IMTJ goes through the 

MTJ and SHM layer to the ground [48]. 

 

Fig. 6.4 SHE-STO biasing and sensing circuit 

 Fig. 6.5 shows the peak-to-peak SHE-STO output voltage swing vs. different TMR 

of the MTJ. Higher TMR may provide higher output voltage swing and hence better 

robustness. High oxide thickness (tox) for MTJ provides higher absolute resistance for the 

voltage divider circuit, minimizing the read current and hence, the static power associated 

with the sensing operation is reduced. However, a too high MTJ resistance diminishes the 

output swing for high frequency operation, due to low pass filtering effect. In this work, 
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we use a TMR of ~200%, supply voltage V=0.5V, reference MTJ resistance of 5.2KΩ, 

which yields a voltage swing of ~0.12V. 

 

Fig. 6.5 peak-to-peak output voltage swing vs. different TMR 

Table. 6.1 SHE-STO Device parameters used in simulation 

Symbol Quantity Values 

W SHM width 70nm 

T SHM thickness 3nm 

θSHE Spin hall angle 0.3 

λsf spin flip length 1.5nm 

Ea Energy barrier 60kT 

α Damping factor 0.03 

µ0Ms Saturation magnetization 1T 

Hext External magnetic field 750Oe 

ρSHM SHM resistivity ~200µΩ•cm 

 

SHE-STO offers separate control of frequency and output microwave amplitude, 

which provides a simple method to tune the output voltage swing without disturbing the 
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frequency. It minimizes the interface circuit overhead for sensing the oscillations [48]. 

Table-6.2 compares the power consumption of SHE-STO with two terminal STOs based 

on GMR and TMR devices. It shows that, for 2T-GMR STO, the output voltage swing is 

around 1mV [164][165]. An amplifier is implemented to amplify the output voltage 

swing to be around 100mV, leading to power consumption of 1.4mW based on our 

simulation using IBM 45nm CMOS technology. On the other hand, for 2T-TMR STO, 

the biasing power is larger than that of SHE-STO because of higher biasing resistance as 

shown in table-6.2. The total STO power consumption of SHE-STO circuit shown in Fig. 

6.5 is the lowest compared with TMR or GMR based 2-terminal STO. Furthermore, the 

3-terminal SHE-STO device geometry enables independent control of output amplitude 

and frequency because of the separation of biasing and sensing paths [48].  

Table. 6.2 Comparison of power consumption for 2T-STO and SHE-STO 

STO type 2T-GMR[165] 2T-TMR[169] SHE-STO 

Device resistance 
Ravg=10Ω 

ΔR=100mΩ 

Rp=310Ω 

Rap=620Ω 
RSHM=~1kΩ 

Device area π×35nm×35nm π×35nm×80nm π×30nm×50nm  

Bias current ~10mA ~1mA ~320µA 

Bias power 1mW 465µW 103 µW 

Sensing voltage - - 0.5V 

Sensing power 1.4mW (Amplifier)  - 26µW 

Output peak-to-

peak voltage swing 

100mV 

(Amplified from 1mV) 
310mV 120mV 

Total power 2.4mW 465µW 129µW 

External magnetic 

field 
2.5KOe 11KOe 750Oe 

Field line current/ 

power 
62.5mA/ 11.7mW 

275mA/ 

226.9mW 

18.8mA/ 

1.1mW 
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Comments: Ravg is the average resistance, ΔR is the resistance change of oscillator, Rp is 

the parallel MTJ resistance, Rap is the anti-parallel MTJ resistance, RSHM is the spin hall 

metal resistance. The sensing amplifier of GMR-STO is implemented in IBM 45nm 

CMOS technology 

 

The external magnetic field requirement and field line power consumption of each 

STO is also listed at the end of table-6.2. Note that the required external magnetic field 

can be generated by applying a current flowing through a field line (assuming the 

distance between the field line to the magnet is 50nm), where the magnitude of current 

required is computed using Biot-Savart law [188]. The field line power consumption is 

computed under the assumption that a copper wire (length= 150nm, area= 40×40nm2) is 

used. It can be easily seen that the power consumption of field line is much higher than 

STO power (biasing and sensing) for both 2T-STO and SHE-STO. For large scale 

computing applications, the external magnetic field can be potentially removed by either 

tilting the ellipse of MTJ in SHE-STO or employing an MTJ structure with a 

perpendicular magnetic anisotropy (PMA) free layer [59]. For a practical associative 

pattern matching hardware, integration of a large number of STOs might be essential 

[143][153][154][158]. SHE-STO can facilitate such large scale integration, due to the 

simplified CMOS interface and low power operation it offers. 

6.3. STO Coupling Mechanisms 

Multiple STOs can be frequency and phase synchronized through magnetic coupling 

[155]-[157], [177][178], electrical coupling [158] or injection locking mechanisms 

[159][160][161]. In this subsection, we discuss various STO coupling mechanisms, 

namely magnetic coupling, electrical coupling and injection locking mechanisms. The 

two terminal IMA STO benchmarked with the experimental data in [169] is used in this 

subsection.  

6.3.1. Magnetic coupling 

Two or more STOs can interact with each other via magnetic coupling and can lock 

to a common frequency if they are located close to each other. Experimentally frequency 
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locking phenomenon has been demonstrated for two STOs [177][178]. The effect of 

magnetic coupling is simulated using a coupling field (Hcouple) term in the effective field 

(Heff) of LLGS equation [179]. For the case of two STOs (STO1 and STO2), the coupling 

field acting on STO1 is given by 

_ 1 2

1 _ 1 2

_ 1 2

couple x x

couple couple y y

couple z z

H m

H H Cc m

H m

   
   

    
  
  

 

(6.9) 

where, Cc is the coupling coefficient given by 
2

S SM A
Cc

d
  [172], MS is the saturation 

magnetization of the magnet, AS is the coupling area and d is the distance between STOs. 

The total effective field acting on the magnetization of free layer of first STO is given by 

_ 1 1 1eff new eff coupleH H H   (6.10) 

Similarly the second STO experiences a coupling field which depends on the 

magnetization of the first STO. 

Experimentally, as demonstrated in [155], the spin wave propagation rather than 

field based coupling is shown to be the dominant factor leading to frequency locking 

when the distance between two STOs is larger than 200nm. However in our work, the 

distance between two STOs as calculated based on coupling coefficient is less than 

100nm. At this distances we show that the field based coupling can be sufficiently strong 

to lock the STOs. Also the STOs are assumed to be isolated so that there is no spin wave 

propagation. 
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Fig. 6.6 STO frequency vs. DC bias currents in magnetic coupling (a) without thermal 

noise, (b) with thermal noise at 300K 

Fig. 6.6 shows the schematic diagram of two IMA STOs interacting with each other 

through magnetic coupling. Fig. 6.6a shows the locking range of two IMA STOs without 

thermal noise. The current (Ibias1) through STO1 is kept constant (2.5mA for IMA STO), 

while the current (Ibias2) through the STO2 is increased (from 1.5mA to 3.5mA for IMA 

STO). When the frequency of STO2 comes close to that of STO1, both STOs get lock to 

a common frequency. The locking range can be defined as the range of DC input for 

which the frequencies remain locked. In order to analyze the effect of thermal noise, we 

modeled thermal effects using a Gaussian random magnetic field Hnoise=(Hnoise-x, Hnoise-y, 

Hnoise-z,). The mean of the Gaussian distribution is zero, while the standard deviation is 

 [127], where α is Gilbert damping factor, KB is Boltzmann’s constant, γ 

is the gyromagnetic ratio, Ms is the saturation magnetization, V is the volume of free layer 

and Δt is the time step used in solving LLG equation. Fig. 6.6b shows the locking range 

of IMA STOs with thermal noise included in simulations. Note that, frequency vs current 
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plot is not smooth due to thermal noise in these plots. It can be seen that the locking 

range is reduced with the thermal noise at room temperature (300K). 

6.3.2. Electrical Coupling 

Multiple STOs can also be coupled through electrical connectivity as shown in Fig. 

6.7 [158]. Each STO has an independent current bias (Ibias1 and Ibias2), leading to 

independent oscillations. The oscillation of the STO is sensed via tunneling magneto-

resistance (TMR) and combined into a broadcast signal: 

1

1 N

broadcast i i

is

I C M
M N 

   
(6.11) 

 

where, N is the total number of STOs, Ci is the coupling constant that can be set by 

the coupling circuit, MS is the saturation magnetization, Mi is the ith STO free layer 

magnetization. This broadcast current is fed back to the network and is superposed with 

the bias current of each STO. The combined current is then used to drive STO. 
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Fig. 6.7 STO frequency vs. DC bias currents in electrical coupling (a) without thermal 

noise, (b) with thermal noise 

For a given non-zero coupling constant, the two STOs are frequency locked when 

their independent frequencies generated by the DC bias are located in a certain locking 

range. Fig. 6.7 shows the two electrical coupled IMA STOs, where C1=C2=0.3mA, Ibias1 

is kept constant at 2.5mA and Ibias2 is swept from 1.5mA to 3.5mA. It can be seen that the 

frequencies of the two STOs get locked when the two DC biases (hence, frequencies) are 

close to each other (within the locking range). Fig. 6.7a shows the plot without thermal 

noise and Fig. 6.7b shows the plot with thermal noise for IMA STO respectively. The 

locking range can be improved by increasing the coupling constant, mainly because of 

the larger broadcast current amplitude, hence stronger feedback. Compared with 

magnetic coupling, a large number of STOs can be coupled through such electrical 

connectivity [158]. 
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6.3.3. Injection Locking 

Synchronization of STOs to an external Radio Frequency (RF) oscillating signal 

(injection locking) was experimentally studied as a function of STO intrinsic parameters 

[160][161][180][181]. If the frequency of the injected signal is close to the STO free-

running frequency, the STO gets frequency locked to this injected reference signal. The 

injected signal can be either oscillating current (current based injection locking) or 

oscillating magnetic field (field based injection locking), discussed in detail in following 

subsections. 

6.3.3.1. Current Injection Locking 

 

Fig. 6.8 STO frequency vs. DC bias currents in current injection locking mechanism (a) 

without thermal noise, (b) with thermal noise 
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In current injection locking, an oscillating current (Iac) is injected into STO along 

with the bias current (Idc) as shown in Fig. 6.8. In the presence of AC injected current 

(Iac), the β term (equation-6.2) in LLGS contains both DC and AC currents as shown 

below. 

0

ac dc

s

J J

e tM





  

(6.12) 

where,
0 cos(2 )ac acJ J f t is the AC current density. Here J0 is the injected current 

density amplitude and fac is the frequency of injected current. Fig. 6.8a shows the 

simulation results of the IMA STO output frequencies, with varying injected AC current 

amplitude. It can be observed that both STO outputs lock to the injected signal when the 

DC bias is in the locking range. Fig. 6.8a depicts the IMA STO locking behavior when 

the DC bias is swept from 1.5mA to 3.5mA along with a constant injected current signal 

of frequency 5.4GHz. IMA STO remains locked to the injected current oscillating signal 

for the locking range [2.3mA-2.7mA] when the injected current amplitude is 100 µA. 

This locking range can be increased by increasing the strength of injected signal, which 

also conforms to the experiments on injection locked STO [161][160][180][181]. If the 

injected current amplitude is increased to 200µA, the locking range is extended to 

[2.2mA-2.8mA] correspondingly. Fig. 6.8a shows the plots without thermal noise, and 

Fig. 6.8b is the plot with thermal noise for IMA STOs. It can be seen that the thermal 

noise can degrade the locking range. 
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6.3.3.2. Field Injection Locking 

 

Fig. 6.9 STO frequency vs. DC bias currents in field injection locking mechanism (a) 

without thermal noise, (b) with thermal noise 

In this method, an oscillating field (Hac) is used as an injected reference signal to 

which the STO is locked. The oscillating field can be generated by a wire carrying 

oscillating current. The effective field in the presence of Hac is given by 

_eff new eff acH H H   (6.13) 

where, 
0 cos(2 )ac acH H f t . Here H0 is the amplitude and fac is the frequency of 

reference field respectively. Heff is the effective field. Fig. 6.9a shows the output 

frequencies of IMA STO with varying reference oscillating field amplitude. It can be 

seen that STO frequencies lock to that of reference field when the DC bias is in the 

locking range. Fig. 6.9a shows the IMA STO locking behavior when the DC bias is swept 
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from 1.5mA to 3.5mA with a reference magnetic field of frequency 5.4GHz. IMA STO 

remains locked to the reference oscillating field signal within the locking range [2.1mA-

2.8mA] when the reference field amplitude is 125Oe. This locking range can be extended 

by increasing the strength of injection. If the injected field amplitude is increased to 

150Oe, the locking range is extended to [2mA-3mA] correspondingly. Fig. 6.9a shows 

the plots without thermal noise and Fig. 6.9b shows the same plot with thermal noise for 

IMA STO, respectively. 

Magnetic coupling involves spin wave interaction through a shared magnetic 

substrate or dipolar field exchange of physically isolated STOs lying in close proximity 

[155]-[157]. Thus, the number of STOs can be synchronized through magnetic coupling 

is strongly dependent upon geometrical constraints of a physical design. The maximum 

number of STOs in a magnetically coupled cluster may, therefore, be limited. For 

electrical coupling [158], complex interface circuits are required to generate feedback 

current for each STO, which may dominate the power consumption of STO coupling 

cluster [158]. Thus, in the next few subsections, we employ injection locking as a robust 

and energy efficient locking scheme in the STO based associative module design, which 

essentially provides several advantages over other locking schemes: 1) large number of 

STOs can be locked in one cluster; 2) immunity to thermal noise and parameters 

variations; 3) simpler interface circuits design. 
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6.4. Injection Locked SHE-STO Cluster 

 

Fig. 6.10 (a) SHE-STO locked to an external microwave current, (b) SHE-STO frequency 

vs. different RF current amplitude, showing SHE-STO locks to external RF signal and 

DC locking range increases with higher RF amplitude 

In this subsection, we simulate the injection locked SHE-STO array. In Fig. 6.10, the 

bias current of SHE-STO is the superposition of an external RF and DC currents. In order 
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to simulate SHE-STO injection locking phenomena, we add the external RF component 

into our numerical SHE-STO model: 

( ) (t)c DC RFI t I I   (6.14) 

where, Ic(t) is the superposition of DC bias and external RF current at time ‘t’. We 

substitute this new Ic(t) to equation-6.6. Fig. 6.10 shows the simulation results of the 

SHE-STO output frequencies, varying the DC bias and the RF amplitude. It can be seen 

that the SHE-STO output lock to the external RF signal when the DC bias is in the DC 

locking range. Fig. 6.10b depicts the SHE-STO behavior when the DC bias is swept from 

240µA to 390µA along with a constant RF signal of frequency 6.6GHz. SHE-STO 

remains lock to the injected RF signal for the DC locking range of [290µA-350 µA] 

when the external RF amplitude is 25 µA. This locking range can be improved by 

increasing the strength of RF injection (Fig. 6.10b), which conforms to the experiments 

on injection locked STO [159][160][161]. 
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Fig. 6.11 N-number of SHE-STOs can be locked to a common external RF signal 

A cluster containing multiple SHE-STOs can be locked to a common RF signal as 

shown in Fig. 6.11. If the external RF frequency is close to that of the free running 

frequency of the SHE-STOs (determined by the DC bias), the SHE-STOs can get phase 

locked to the injected RF current signal. If the DC bias of each SHE-STO is close enough 

(within the DC locking range), all of the SHE-STOs are found to be locked to the 

common external RF signal as shown in Fig. 6.12a, where RF amplitude-|IRF| = 25µA, RF 

frequency-fRF=6.6GHz, and the DC bias of each SHE-STO is [IDC-1, IDC-2, …, IDC-8] = 

[324, 330, 326, 328, 332, 328, 324, 326]µA. If some of the DC biases are distinct enough 

(out of DC locking range), they are found unlocked to the common external RF signal as 

shown in Fig. 6.12b (|IRF| = 25µA, fRF=6.6GHz, [IDC-1, IDC-2, …, IDC-8] = [330, 346, 354, 

372, 355, 341, 335, 368]µA). Thus, injection locking can be effective for mutual 

synchronization and phase locking among SHE-STOs. 
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Fig. 6.12 transient waveforms and FFT of 8 SHE-STOs when they are (a) locked or (b) 

unlocked with different SHE-STO DC biases 

We analyze the impact of parameter variations by introducing Gaussian spread 

(σ=5%) in the critical STO device parameters like the saturation magnetization (Ms) and 

the Gilbert damping constant (α). These parameters can have significant spread across 

multiple device samples [162][163], and hence it is important to evaluate the impact of 

the spread in these parameters upon the dynamics of coupled STOs. Thermal effects are 

modeled using a stochastic Gaussian magnetic field, Hnoise=( Hnoise-x, Hnoise-y, Hnoise-z,). The 

mean of the Gaussian distribution is zero, while the standard deviation is  

[127], where α is Gilbert damping factor, KB is Boltzmann’s constant, γ is the 

gyromagnetic ratio, Ms is the saturation magnetization, V is the volume of free layer and 

Δt is the time step used in solving LLG equation. Fig. 6.13a shows the output signals for 

8 injection locked SHE-STOs respectively biased with [IDC-1, IDC-2, …, IDC-8] = [324, 330, 

326, 328, 332, 328, 324, 326]µA and fRF=6.6GHz, where all of the SHE-STOs get phase 

locked without considering the parameter variations and thermal noise.  
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Fig. 6.13 transient plots for 8 injection locked SHE-STOs (a) without parameter 

variations and thermal noise, (b) with parameter variations and thermal noise when RF 

amplitude is 12.5µA, (c) 25µA, (d) 37.5µA. Note: the DC inputs of each SHE-STO are 

[330, 346, 354, 372, 355, 341, 335, 368]µA, external RF frequency is 6.6GHz 

When the parameter variations and thermal noise are included, they introduce some 

jitters and phase noises as shown in Fig. 6.13b, which reduces the degree of 

synchronization. This side effects of parameter variations and thermal noise can be 

suppressed by applying stronger RF bias to the injection locked SHE-STOs as shown in 

Fig. 6.13b-d. The plots show reduction in the jitter and the phase noise with increase in 

the amplitude of RF signal, thereby leading to stronger phase synchronization [159]-

[161]. It can be explained that the stronger injected IRF results in stronger locking strength 

and this global RF signal is not affected by the noise of individual magnet. However, 

higher RF amplitude may also cause higher reactive power. In this work, RF amplitude of 

37.5µA is used in the associative module design.  
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6.5. Associative Computing Using Injection Locked SHE-STO Cluster 

 

Fig. 6.14 (a) The architecture of associative computing for pattern matching, (b) the 

architecture of individual associative module design   

The architecture of associative computing for pattern recognition is shown in Fig. 

6.14a [143][176], [151]-[154]. An image data set consisting of k images are stored in the 

memory, and k parallel associative modules (AM) compute the degree of match (DOM) 

between the test image and each stored template image. The winner take all (WTA) 

circuit identifies the maximum DOM and outputs the winner index. The architecture of 

individual AM is shown in Fig. 6.14b, where the test and template images are partitioned 

into m fragments. Each STO based associative cluster takes the corresponding image 

fragments as inputs and computes the DOM between these two image fragments. The 
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outputs of individual STO associative clusters are combined through an analog merger to 

generate the overall DOM for the entire image. 

 

Fig. 6.15 (a) Circuit blocks of STO based associative cluster (b) transient simulation 

waveform of (1) STO outputs (2) capacitive addition outputs (3) integrator outputs 

Fig. 6.15a shows the circuit blocks of STO based associative cluster using frequency 

shift keying [143], [151]-[154]. All the STOs are initially biased with the same DC and 

RF currents (DC+RF), which enforces phase locked oscillation of all the STOs in the 

cluster. To compute the associative matching between two vectors of n elements 

([t1,…,tn] and [x1,…,xn], (ti and xi are digital values), a digital subtractor (SUB) computes 

the difference and a digital to analog converter (DAC) converts this difference into 
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analog DC current that can shift the frequency of STO. Thus, each STO frequency (ωi) is 

shifted by the difference between the test (ti) and template (xi) vector elements 

0 i i(t x )i      (6.15) 

 

Fig. 6.16 (a) COIL-20 image data set [118] used in simulation: pixel values 

corresponding to the individual images were stored as 1-D analog templates, (b) merger 

outputs for a particular test (duck) image compared with all the other template images. 

If the two vectors closely match each other, the inputs to the STOs are too small to 

bring them out of the locking state. The STOs, therefore, retain phase and frequency 

locking (Fig. 6.15b-(1) left). On the other hand, if the two vectors are significantly 

different, the inputs to the STOs are large in magnitude resulting in loss of locking (Fig. 

6.15b-(1) right). The STO cluster circuit shown in Fig. 6.15a performs a capacitive 

summation of the individual STO waveforms and applies the sum to an integrator [143]. 

In the case of phase locked waveform, the summation results in a regular sinusoidal 

waveform which leads to fast charging of the integrator output (Fig. 6.15b-(2) & (3)). On 

the other hand, in the case of unlocked STO cluster, the summation is an irregular and 

low amplitude waveform, which leads to lower or negligible charging of the output (Fig. 
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6.15b-(2) & (3)). Thus, for a constant integration time, the DOM between a test vector 

and a template vector can be identified by comparing the integrator output voltage. 

We apply the above mentioned architecture to pattern recognition application using 

COIL-20 image data set [118] (image compressed into 16×16 pixels, 5-bit grayscale). DC 

currents that are proportional to the elemental difference between the test and the 

template images are injected into the SHE-STOs (each cluster contains 8 injection locked 

SHE-STOs, totally 256/8 = 32 clusters). The integrator outputs (partial DOMs) of the 

SHE-STO clusters are summed and the result is the overall DOM. Higher value of the 

integrator (merger) output implies closer match and vice-versa. The merger output shown 

in Fig. 6.16b is for the case of a ‘duck’ image as input, which results in the template 

image for the ‘duck’ to be identified as the best match. The merger outputs of all other 

template images are significantly lower than the best matching template, as shown in the 

plot. Note that, the effects of parameter variations and thermal noise are not included in 

this plot. These effects are analyzed in the next subsection. 

6.6. CMOS Interface Circuits and System Performance 

In this section, we will present the design of CMOS interface circuitry for SHE-STO 

based AM and the energy analysis. The Monte-Carlo simulation of the implemented 

SHE-STO based AM design will also be discussed. 

6.6.1. CMOS Interface Circuits Design 

Fig. 6.15a shows the circuit block diagram for associative computing module with 

the coupled STO’s as distance measuring block. The key CMOS circuit blocks consist of 

digital subtractor, DAC, integrator, analog merger and winner take all circuits. We will 

explain each circuit block and the SPICE simulation in the following subsections. Note 

that, all of the circuits are implemented and simulated in IBM 45nm technology.  

6.6.1.1. Absolute Digital Subtractor 

The test and template images are stored in memory as digital values. A digital 

subtractor is required to compute the elemental difference. We implemented a 5-bit 
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absolute digital subtractor consisting of a comparator and transmission gate logic based 

Brunt-Kung adder [174]. The simulation results are given in table-6.3.  

6.6.1.2. Digital to Analog Converter (DAC) 

 

Fig. 6.17 Proposed DAC circuit for SHE-STO 

Following digital subtraction, a DAC is used to convert the digital difference 

between the test and template images into analog current that acts as a DC input for 

generating a frequency shift in the STOs. In order to fully leverage the benefits of ultra-

low power SHE-STO based AM, we propose a new DAC design as shown in Fig. 6.17. 

In our proposed DAC, two sets of binary weighted transistors are stacked, where the top 

transistors (S_N-1, …, S_0) operate in saturation region to provide a constant current and 

the bottom transistors (D_N-1, …, D_0) operate in the Deep Triode (DT) region. These 

DT transistors can be controlled by the binary inputs. In the stack, saturated transistor 

provides constant current flow and large channel length is used for accurate matching. 

The DT transistors control the speed of conversion and a small channel length is 
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preferred. Note that, voltage fluctuation at the drain terminals of DT transistors does not 

impact the DAC linearity because constant current is maintained by the saturated 

transistor (table-6.3). The total SHE-STO bias current can be expressed as: 

total bias RF DACI I I I    (6.16) 

where Itotal is the total bias current for SHE-STO, IDAC is the DAC output current 

corresponding to the elemental difference between the test and template image pixels. 

The proposed DAC performance is shown in table-6.3. Compared with conventional 

current steering DAC [175], our proposed DAC consumes ~25× lower energy as shown 

in table-6.3. 

6.6.1.3. Integrator 

 

Fig. 6.18 Integrator circuit design and the transient waveforms. Note, regular signal 

corresponds to locked case. Irregular signal corresponds to unlocked case 

Fig. 6.18 shows our circuit design of integrator and the transient simulated 

waveforms. This circuit performs a capacitive averaging of the individual STO 

waveforms. In the case of a good match between test and template images, the STO 
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cluster is locked and the “Averager” results in a regular (Fig. 6.18-(1)&(2)) sinusoidal 

waveform which leads to fast charging of the integrator output. On the other hand, if two 

images do not match, the STO cluster is unlocked and the “Averager” output is an 

irregular (Fig. 6.18-(1)&(2)) and low amplitude waveform which leads to lower or 

negligible charging of the output. In Fig. 6.18, a low-gain high-BW amplifier is used to 

amplify the oscillation signals to higher amplitude (~300mV in our simulation). Then, a 

voltage comparator generates pulsed signals with different on/off ratio based on the input 

waveform, as shown in Fig. 6.18-(3). The last circuit component of the integrator consists 

of a PMOS transistor and a charging capacitor. The “low” output voltage of previous 

stage turns on the PMOS transistor and charges the capacitor. Therefore, the regular 

oscillation signal charges the capacitor faster than the irregular oscillation waveform. 

Equivalently, for a constant integration time, the higher integrator output voltage 

corresponds to a higher DOM between the test and template images. 
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6.6.1.4. Analog Merger 

 

Fig. 6.19 (a) Analog merger circuit, (b) Simulation results 

As we described in the previous section, an analog merger is required to combine the 

partial DOMs of individual STO clusters into an overall DOM for the entire image. Fig. 

6.19a shows our circuit design of an analog merger based on a non-inverting summer 

with operational amplifier. For example, if 4 inputs (for simplicity) are assumed, the 

output voltage can be calculated as follows: 
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(6.17) 

In our design, R1=R2=R3=R4=10kΩ, R5=20kΩ, R6=100kΩ and RF=2kΩ. Therefore, 

Vo=0.23(V1+V2+V3+V4). The SPICE simulation of the proposed analog merger with 4 

inputs is shown in Fig. 6.19b. It can be seen that the merger output matches well with the 

theoretical outputs (Vo=0.23ΣVi). The performance of each of the interface circuit blocks 

are tabulated in table-6.3. 

6.6.1.5. Winner Take All Circuit 

A simple winner-take-all (WTA) circuit based on NOR gate described in [143] is 

employed in our work. As described in the previous subsection, the regular oscillation 

yields faster voltage rise, while irregular oscillation yields slower voltage rise. In the 

WTA circuit, all of the integrator outputs are connected with a NOR gate through buffers. 

When one of the integrator (merger) output voltage reaches the threshold voltage of the 

inverter in the buffer, it upsets the NOR circuit and stops the capacitor from charging 

further. The first upsetting inverter in the WTA circuit is identified as the winner. 
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Table. 6.3 CMOS interface circuit simulation results 

SUB 

(5 bit) 

Power speed Critical path 

13.22µW 400MHz 185ps 

Current 

steering DAC 

Power speed DNL INL FOM 

251µW 100MHz 
0.24 

LSB 

0.49 

LSB 

2.51 

pJ/conv 

Proposed DAC 98 µW 1GSPS 
0.14 

LSB 

0.27 

LSB 

98 

fJ/conv 

Integrator 

Power Integrate time C_c C_o W_P 

400.8µW 5ns 50fF 150fF 654nm 

Analog 

merger 

Power DC gain f3dB Phase margin 

191µW 31dB 
322 

MHz 
51⁰ 

Comments: All circuits are simulated in IBM 45 nm technology; voltage supply=1V; 

Both DACs are 5 bit. DNL: differential non-linearity; INL: integral non-linearity; FOM: 

figure of merit; C_c: coupling capacitor; C_o: charging capacitor; W_P: PMOS width; 

 

6.6.2. System Performance and Variation Analysis of SHE-STO based AM 

Based on the simulation of each circuit block shown in table-6.3, the total energy 

consumption of one single injection locked SHE-STO based AM is 259pJ as listed in 

table-6.4. It can be seen that the total energy consumption of AM based on proposed 

DAC can achieve more than 3× lower than that of AM based on conventional current 

steering DAC. 
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Table. 6.4 Energy analysis of associative module 

Element Energy for one 

Number of units 

in each AM 
Energy per AM 

subtractor 33.05fJ 256 8.46pJ 

CS-DAC1 2.5pJ 256 640pJ 

P-DAC2 98fJ 256 25.09pJ 

SHE-STO 627fJ 256 160.5pJ 

integrator 2pJ 32 64pJ 

merger 1pJ 1 1pJ 

Total-13 874pJ Total-24 259pJ 

 

Comments: image size is 16×16 pixels, 5-bit grayscale, each STO cluster contains 8 

STOs. WTA circuit is shared by all of the AMs, it is not included here. Integration time is 

5ns 

1: CS-DAC is 5-bit current steering DAC 

2: P-DAC is our proposed 5-bit DAC 

3: total-1 is the total energy consumption of AM based on current steering DAC 

4: total-2 is the total energy consumption of AM based on proposed DAC 

 

Fig. 6.20a shows the normalized outputs of SHE-STO based AM for all 20 patterns 

shown in Fig. 6.16a. Pixel-(i, j) indicates the SHE-STO AM output when jth pattern 

compared with ith pattern. It can be seen that the value of pixel-(i, i) is the maximum in ith 

row (i.e. ith pattern compares with itself, i=1,2,..,20), which indicates a correct match. In 

this work, we define the detection margin as (DOM(1st)-DOM(2nd))/DOM(1st), where 

DOM(1st) is the best DOM and DOM(2nd) is the second best DOM. A larger detection 

margin is required to maintain a high recognition accuracy under device parameter 

variations, thermal noise and interface circuit variations. Fig. 6.20b depicts the detection 

margin for all 20 patterns. It can be seen that most of the detection margin (except pattern 

#3, 6 and 19) are above ~10%, which can be easily detected by WTA circuit. The 
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detection margins of pattern #3, 6 and 19 are relatively small (~5%) due to the fact that 

these three patterns are very close to each other as shown in Fig. 6.20b. 

 

Fig. 6.20 (a) Normalized outputs of SHE-STO based AM for all 20 patterns shown in Fig. 

6.16a. Note that, pixel (i, j) indicates the SHE-STO AM output when ith pattern 

compared with jth pattern (b) detection margin for all 20 patterns. Pattern #3, 6 and 19 

are shown in the right. Note that detection margin=(DOM(1st)-DOM(2nd))/DOM(1st) 

In order to analyze the effects of device variations, thermal noise and interface 

circuit variations on the detection margin, we have carried out Monte-Carlo simulation 

(100 simulation runs). During Monte-Carlo simulation, the Gaussian distributed (σ=5%) 

variations are added on STO physical parameters (damping factor, saturation 
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magnetization) and the thermal effects (room temperature, 300K) are modeled using a 

randomly fluctuating field drawn from a Gaussian distribution of zero mean and standard 

deviation of   [127]. The interface circuit variations (including transistor 

size, capacitance, etc.) are also included in the Monte-Carlo simulation. Fig. 6.21 shows 

the comparison of the AM outputs without and with variations. The test image is the 

‘duck’ image, which compares with the 20 template images shown in Fig. 6.16a. For 

simplicity, we only show the best match (blue line) and second best match (red line) 

cases. It can be seen that the detection margin is reduced from ~20% (without variations) 

to ~16% (with variations, worst case). The reduction of detecion margin is also observed 

in the simulations using other patterns as test images. 17 out of 20 patterns (except 

pattern #3, 6 and 19) can be correctly identified in Monte-Carlo simulations (100 

simultaion runs). Our results indicate the injection locked SHE-STO based AM is 

relatively immune to interface circuitry variations, device parameter variations and 

thermal noise. 
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Fig. 6.21 transient AM output (a) without variation, (b) Monte-Carlo simulation on 

interface circuits, device parameters and thermal noise. Note that, only the best match and 

second best match outputs are shown for simplicity. Blue line is the best match, and red 

line is the second best match. 

6.7. Summary 

We proposed a variation tolerant injection locked Spin Hall induced oscillator array 

for associative computing. The numerical simulation framework for injection locked 

SHE-STO cluster was described and the results show robust oscillations under parameter 

variations and thermal noise. Our results show that the proposed system architecture with 

coupled SHE-STOs along with associated CMOS interface circuitries can be suitable for 

robust and energy efficient associative computing and pattern matching. 
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7. SUMMARY 

Spin-transfer torque devices are unlikely to be drop-in replacements for CMOS. 

They may be integrated with CMOS and other charge based devices to model energy 

efficient computing systems. In this dissertation, we have explored new Boolean and 

brain-inspired computing models that are inherently suited to the characteristics of STT 

devices, thereby attaining performance that CMOS cannot achieve. 

First, we show that non-volatile STT devices can be combined with CMOS 

compatible memristors for designing energy efficient configurable Boolean threshold 

logic gate. In such a design, the memristive cross-bar array is used to implement current 

mode summation of binary inputs, and the second step of threshold logic - thresholding 

operation is performed by the ultra-low power spintronic threshold device. The proposed 

field programmable spin-memristor threshold logic gate arrays can work at a small 

terminal voltage of ~50mV, leading to ultra-low power dissipation in both gates and 

programmable interconnect networks. Such hardware can achieve more than 100× 

improvement in energy and 1000× improvement in energy-delay product, as compared to 

state of the art CMOS FPGA based TLG.  

Next, for brain-inspired computing, we have exploited different spin-transfer torque 

device structures that can implement the hard-limiting and soft-limiting artificial neuron 

transfer functions respectively. As cases studies, we apply these STT based neurons 

(‘spin-neuron’) in various neural network architectures, such as hierarchical temporal 

memory and feed-forward neural network, for performing “human-like” cognitive 

computing. In hierarchical temporal memory design, the low power, current mode spin-

neurons combined with MCA are explored in the dot product based pattern matching, 

which is the core computing block in the design of HTM hardware. Such a direct 

mapping of the core-computing primitive of the cortical computing system can be very 
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attractive for large-scale and energy efficient design. The simulated spin based HTM 

computing block results in ~200× lower energy consumption compared to the CMOS 

based HTM node design. 

However, in brain-inspired computing, soft-limiting neurons are greatly preferred to 

hard-limiting neurons due to their much improved modeling capacity, which leads to 

higher network accuracy and lower network complexity. Thus, we propose a domain wall 

motion based STT device that can efficiently implement a neuron with a soft-limiting 

non-linear transfer function, operating at ultra-low supply voltage and current. The spin 

based neuron device allows the peripheral circuits and memristive cross-bar array 

synapses to also operate at very low voltages, thereby leading to ultra-low power 

consumption for the whole system. This proposed soft-limiting spin-neuron is used to 

design artificial neural networks that show more than two orders of magnitude lower 

energy dissipation compared with analog and digital CMOS ANN implementations in 

45nm CMOS technology and ~2.5× lower hidden layer area compared with hard-limiting 

neuron based ANNs. Moreover, the proposed spin-transfer torque based soft-limiting 

non-linear neurons along with MCA-synapses can be used to build large scale energy 

efficient neuromorphic computing hardware for cognitive computing applications. 

In the final part of the dissertation, we discuss the numerical device simulation 

framework for spin-torque oscillators and different coupling mechanisms for an STO 

array, including magnetic coupling, electrical coupling and injection locking. We show the 

dynamics of coupled spin-torque oscillators array can be exploited to estimate multi-

dimensional distance metric for associative computing, image and video analysis, etc. We 

also presented an application of injection locked spin hall induced oscillators for 

associative computing as a case study. Our results show that the proposed system 

architecture with coupled SHE-STOs and the associated CMOS interface circuitries can 

be suitable for robust and energy efficient associative computing/ pattern matching. 
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