5,225 research outputs found

    Wireless communication, identification and sensing technologies enabling integrated logistics: a study in the harbor environment

    Get PDF
    In the last decade, integrated logistics has become an important challenge in the development of wireless communication, identification and sensing technology, due to the growing complexity of logistics processes and the increasing demand for adapting systems to new requirements. The advancement of wireless technology provides a wide range of options for the maritime container terminals. Electronic devices employed in container terminals reduce the manual effort, facilitating timely information flow and enhancing control and quality of service and decision made. In this paper, we examine the technology that can be used to support integration in harbor's logistics. In the literature, most systems have been developed to address specific needs of particular harbors, but a systematic study is missing. The purpose is to provide an overview to the reader about which technology of integrated logistics can be implemented and what remains to be addressed in the future

    An Application of IoT in a Drone Inspection Service for Environmental Control

    Get PDF
    This paper presents an exploratory activity with a drone inspection service for environmental control. The aim of the service is to provide technical support to decision-makers in environmental risk management. The proposed service uses IoT for the interaction between a mobile application, a Smart City platform, and an Unmanned Aircraft System (UAS). The mobile application allows the users to report risky situations, such as fire ignition, spills of pollutants in water, or illegal dumping; the user has only to specify the class of the event, while the geographical coordinates are automatically taken from device-integrated GPS. The message sent from the mobile application arrives to a Smart City platform, which shows all the received alerts on a 3D satellite map, to support decision-makers in choosing where a drone inspection is required. From the Smart City platform, the message is sent to the drone service operator; a CSV file defining the itinerary of the drone is automatically built and shown through the platform; the drone starts the mission providing a video, which is used by the decision-makers to understand whether the situation calls for immediate action. An experimental activity in an open field was carried out to validate the whole chain, from the alert to the drone mission, enriched by a Smart City platform to enable a decision-maker to better manage the situation

    Adoption of vehicular ad hoc networking protocols by networked robots

    Get PDF
    This paper focuses on the utilization of wireless networking in the robotics domain. Many researchers have already equipped their robots with wireless communication capabilities, stimulated by the observation that multi-robot systems tend to have several advantages over their single-robot counterparts. Typically, this integration of wireless communication is tackled in a quite pragmatic manner, only a few authors presented novel Robotic Ad Hoc Network (RANET) protocols that were designed specifically with robotic use cases in mind. This is in sharp contrast with the domain of vehicular ad hoc networks (VANET). This observation is the starting point of this paper. If the results of previous efforts focusing on VANET protocols could be reused in the RANET domain, this could lead to rapid progress in the field of networked robots. To investigate this possibility, this paper provides a thorough overview of the related work in the domain of robotic and vehicular ad hoc networks. Based on this information, an exhaustive list of requirements is defined for both types. It is concluded that the most significant difference lies in the fact that VANET protocols are oriented towards low throughput messaging, while RANET protocols have to support high throughput media streaming as well. Although not always with equal importance, all other defined requirements are valid for both protocols. This leads to the conclusion that cross-fertilization between them is an appealing approach for future RANET research. To support such developments, this paper concludes with the definition of an appropriate working plan

    Towards video streaming in IoT environments: vehicular communication perspective

    Get PDF
    Multimedia oriented Internet of Things (IoT) enables pervasive and real-time communication of video, audio and image data among devices in an immediate surroundings. Today's vehicles have the capability of supporting real time multimedia acquisition. Vehicles with high illuminating infrared cameras and customized sensors can communicate with other on-road devices using dedicated short-range communication (DSRC) and 5G enabled communication technologies. Real time incidence of both urban and highway vehicular traffic environment can be captured and transmitted using vehicle-to-vehicle and vehicle-to-infrastructure communication modes. Video streaming in vehicular IoT (VSV-IoT) environments is in growing stage with several challenges that need to be addressed ranging from limited resources in IoT devices, intermittent connection in vehicular networks, heterogeneous devices, dynamism and scalability in video encoding, bandwidth underutilization in video delivery, and attaining application-precise quality of service in video streaming. In this context, this paper presents a comprehensive review on video streaming in IoT environments focusing on vehicular communication perspective. Specifically, significance of video streaming in vehicular IoT environments is highlighted focusing on integration of vehicular communication with 5G enabled IoT technologies, and smart city oriented application areas for VSV-IoT. A taxonomy is presented for the classification of related literature on video streaming in vehicular network environments. Following the taxonomy, critical review of literature is performed focusing on major functional model, strengths and weaknesses. Metrics for video streaming in vehicular IoT environments are derived and comparatively analyzed in terms of their usage and evaluation capabilities. Open research challenges in VSV-IoT are identified as future directions of research in the area. The survey would benefit both IoT and vehicle industry practitioners and researchers, in terms of augmenting understanding of vehicular video streaming and its IoT related trends and issues

    StratoTrans : Unmanned Aerial System (UAS) 4G communication framework applied on the monitoring of road traffic and linear infrastructure

    Get PDF
    This study provides an operational solution to directly connect drones to internet by means of 4G telecommunications and exploit drone acquired data, including telemetry and imagery but focusing on video transmission. The novelty of this work is the application of 4G connection to link the drone directly to a data server where video (in this case to monitor road traffic) and imagery (in the case of linear infrastructures) are processed. However, this framework is appliable to any other monitoring purpose where the goal is to send real-time video or imagery to the headquarters where the drone data is processed, analyzed, and exploited. We describe a general framework and analyze some key points, such as the hardware to use, the data stream, and the network coverage, but also the complete resulting implementation of the applied unmanned aerial system (UAS) communication system through a Virtual Private Network (VPN) featuring a long-range telemetry high-capacity video link (up to 15 Mbps, 720 p video at 30 fps with 250 ms of latency). The application results in the real-time exploitation of the video, obtaining key information for traffic managers such as vehicle tracking, vehicle classification, speed estimation, and roundabout in-out matrices. The imagery downloads and storage is also performed thorough internet, although the Structure from Motion postprocessing is not real-time due to photogrammetric workflows. In conclusion, we describe a real-case application of drone connection to internet thorough 4G network, but it can be adapted to other applications. Although 5G will -in time- surpass 4G capacities, the described framework can enhance drone performance and facilitate paths for upgrading the connection of on-board devices to the 5G network

    Requirements for digitized aircraft spotting (Ouija) board for use on U.S. Navy aircraft carriers

    Get PDF
    This thesis will evaluate system and process elements to initiate requirements modeling necessary for the next generation Digitized Aircraft Spotting (Ouija) Board for use on U.S. Navy aircraft carriers to track and plan aircraft movement. The research will examine and evaluate the feasibility and suitability of transforming the existing two-dimensional static board to an electronic, dynamic display that will enhance situational awareness by using sensors and system information from various sources to display a comprehensive operational picture of the current flight and hangar decks aboard aircraft carriers. The authors will evaluate the current processes and make recommendations on elements the new system would display. These elements include what information is displayed, which external systems feed information to the display, and how intelligent agents could be used to transform the static display to a powerful decision support tool. Optimally, the Aircraft Handler will use this system to effectively manage the Flight and Hangar decks to support the projection of air power from U.S. aircraft carriers.http://archive.org/details/requirementsford109454447Lieutenant Commander, United States NavyLieutenant Commander, United States Navy ReserveApproved for public release; distribution is unlimited

    Airborne Internet : market & opportunity

    Get PDF
    Thesis (S.M.)--Massachusetts Institute of Technology, System Design and Management Program, 2007.Includes bibliographical references (p. 70-72).The purpose of this thesis to evaluate the opportunity for service provider entry and of the airborne internet, to analyze the disruptive impact technology used by AirCell and AeroSat has had on the development of an airborne internet, and to identify various stake holders and their value propitiation. The airborne internet has the potential to change the way we fly and spend time when sitting in the plane. In the last fifty years, there has not been much technological advancement in the air traffic control system. Airplane operation still depends on current ground control and radar systems that are very expensive and very difficult to scale. These technologies are also heavily dependant on humans. There have been many technological advancements out side of the aviation industry. Establishing an airborne internet is a tremendous opportunity for everyone. With the help of an airborne Internet, each plane can transmit its identity, location, and also direct video footage that will help Homeland security fight against terrorism. The airborne internet has the ability to connect airplanes not just via a computer on the ground (or via satellite) but directly with each other, relaying information from other planes in an Internet-like fashion. The airborne internet is strongly supported by the Pentagon, FAA and NASA. The U.S. Air Force and FAA are working on defining the architecture of an airborne network and hope to begin actively developing and testing the network itself between 2008 and 2012. According to the FAA, in 2005 there were 10 million flights carrying a total of 660 million passengers in the United States. For the FAA there are a number of merits to working with an airborne internet service provider to continue tests and validate the technical and economic feasibility of an airborne internet.(cont.) First, there appears to be a substantial market -- in the range of $1b -- for services that require internet connectivity on the air for the commercial airline, air cargo, business jet, and general aviation sector. Second, current alternatives such as satellite solutions and existing air-to-ground solutions fail to meet all the needs of the mass market. Satellite solutions provided by companies such as Inmarsat, Iridium, and Globalstar are priced at a premium and carry an expensive cost structure from the maintenance and investment in orbiting satellites. Airborne Internet service can be offered through three different technologies first, a satellite solution offered by Boeing; second, air-to-ground systems provided by companies such as AirCell; and third, a network of airplane ground -to - air system like AeroSat, all of which are compatible with the planned FAA architecture. Boeing's model is prohibitively expensive; a business model for an airborne internet solution based on a South West Airlines type low cost approach may make an airbome internet more feasible The model would rely on low service fees to promote greater consumer usage, high capacity utilization of ground stations to promote margins, low aircraft equipment costs to help cash flows, and risk/reward sharing with airlines to promote aircraft operator adoption. Assuming that a service provider relied on revenue from non-FAA related services, it could still generate ample margins to support other general FAA applications behind the scenes. The FAA can demonstrate overall support for an airborne internet vision, help attract key players to the ecosystem needed to implement the system, promote usage, and drive required airline ROI. The FAA could also drive the implementation of industry standards required to eventually ensure globally consistent services.(cont.) However, even with these clear benefits, there are a few key risks that need to be considered and further evaluated. First, this analysis evaluated the economic feasibility of an airborne internet. It does not take into consideration testing or validating the potential network performance from AeroSat's innovative mesh approach in an actual pilot test. Second, more extensive demonstrations will be required to further validate performance and the related cost for the supporting infrastructure. Some key economics like the number of antennae required on aircraft as the network grows should be explored in greater detail after initial simulations. Finally, uncertainty over potential developments of spectrum-free solutions, evolutes of ultra-wideband with potentially disruptive cost structures, could slow the market from adopting a spectrum-based solution. Although this is unlikely given the FAA's current stance on the use of UWB, the issue is worth further research and conversations with the FAA. Accordingly, continued testing, development, and analysis to test feasibility and clarify the key unknowns is recommended. There are a few areas that deserve special attention. First, the target customer composition required to drive the business model should be finalized. The reliability and performance of the mesh-approach is partly dependent on the density of airtraffic in relation to the location of installed ground stations. Second, spectrum requirement issues, including the cost of acquisition and regulatory compliance, need clarification as they strongly impact the business model. Third, the potential magnitude and variability of assumed revenue sources, as well as the timing of cash collections across key customer segments, should be explored.(cont.) Both of these impact the assumed free-cash-flows generated by the potential business model. Finally the potential terms of airline risk/reward sharing contracts required to equip aircraft with different quantities and types of antennae, need further exploration. Air carriers seem to be moving away from models where they absorb all of the equipment/certification costs - the economic feasiblity of a potential service provider depend on the service provider's ability to offer airlines this service at a reasonably good rate.by Anand Bhadouria.S.M
    corecore