145 research outputs found

    Voting Power Derives from the Poll Distribution. Shedding Light on Contentious Issues of Weighted Votes and the Constitutional Treaty

    Get PDF
    Analysis of the Constitutional Treaty of the European Union shows that there is a serious discrepancy between the voting power gradient of Member States computed by the Shapley-Shubik and Banzhaf indices. Given the lack of compelling arguments to choose between these indices on purely axiomatic grounds, we turn to a probabilistic approach as pioneered by Straffin (1977) focusing on the probability distribution of voting poll outcomes. We present a unifying model of power indices as expected decisiveness, which shows that the defining feature of each approach is a particular distribution of the voting poll. Empirical evidence drawn from voting situations, in addition to a consideration of first principles, leads us to reject one of these approaches. The unified formulation allows us to develop useful related concepts of efficiency and blocking leverage, previously used solely by a 'Banzhaf' approach, for the case of Shapley-Shubik, and a comparison of results is shown.Voting power indices, Power gradient, Coefficient of representation, Expected decisiveness, Efficiency, Blocking leverage, Constitution of the European Union

    Game-Theoretic Semantics for Alternating-Time Temporal Logic

    Get PDF
    We introduce versions of game-theoretic semantics (GTS) for Alternating-Time Temporal Logic (ATL). In GTS, truth is defined in terms of existence of a winning strategy in a semantic evaluation game, and thus the game-theoretic perspective appears in the framework of ATL on two semantic levels: on the object level in the standard semantics of the strategic operators, and on the meta-level where game-theoretic logical semantics is applied to ATL. We unify these two perspectives into semantic evaluation games specially designed for ATL. The game-theoretic perspective enables us to identify new variants of the semantics of ATL based on limiting the time resources available to the verifier and falsifier in the semantic evaluation game. We introduce and analyse an unbounded and (ordinal) bounded GTS and prove these to be equivalent to the standard (Tarski-style) compositional semantics. We show that in these both versions of GTS, truth of ATL formulae can always be determined in finite time, i.e., without constructing infinite paths. We also introduce a non-equivalent finitely bounded semantics and argue that it is natural from both logical and game-theoretic perspectives.Comment: Preprint of a paper published in ACM Transactions on Computational Logic, 19(3): 17:1-17:38, 201

    Models of multi-agent decision making

    Get PDF
    In this thesis we formalise and study computational aspects of group decision making for rational, self-interested agents. Specifically, we are interested in systems where agents reach consensus according to endogenous thresholds. Natural groups have been shown to make collective decisions according to threshold-mediated behaviours. An individual will commit to some collective endeavour only if the number of others having already committed exceeds their threshold. Consensus is reached only where all individuals express commitment. We present a family of models that describe fundamental aspects of cooperative behaviour in multi-agent systems. These include: coalition formation, participation in joint actions and the achievement of individuals’ goals over time. We associate novel solution concepts with our models and present results concerning the computational complexity of several natural decision problems arising from these. We demonstrate potential applications of our work by modelling a group decision problem common to many cohesive groups: establishing the location of the group. Using model checking tools we compute the effects of agents’ thresholds upon outcomes. We consider our results within an appropriate research context

    Analysing Regional Sustainability Through a Systemic Approach: The Lombardy Case Study

    Get PDF
    The intrinsic complexity of the sustainability concept challenges research towards more sophisticated ways to model and assess the dimensions underlying it. However, currently adopted modelling techniques and indicators frameworks are not able to give an integrated assessment through the different components of sustainability, providing incomplete visuals of the reality that they aim to catch. This paper tries to assess how the INSURE methodology can provide a contribution in the analysis of sustainability through indicator frameworks, describing its application to the Lombardy region (Italy). Developed on the course of a 6th European Framework Program – financed project to measure sustainability in the European regions, the methodology provides two distinct sustainability representations, based on a quantitative “top-down” System Dynamics model and on a qualitative “bottom-up” System Thinking approach. The models are then linked to a hierarchical indicator framework setting policy priorities. The overall objective is thus to create a set of regional indicators, adapting the models of regional sustainability to different policy agendas. The purpose of the paper is twofold: defining a new approach to sustainability appraisal, and assessing how the Region is holistically behaving towards sustainable development. Starting from a basis analysis of the main shortcomings highlighted by the use of most adopted methodologies, the paper will verify the contribution given by the INSURE methodology to research in the fields of modelling and indicators approaches, providing insights over methodological adjustments and the results obtained from the application to Lombardy. The conclusions will show how the methodology has tried to overcome identified constraints in current models, like the strong dependence on existing datasets of the obtained representations, the under-coverage of “immaterial factors” role and the scarce integration between sustainability dimensions.ustainable Development, Regional Economics, Econometric and Input Output Models, Development Planning and Policy, Regional Analyses

    Models of multi-agent decision making

    Get PDF
    In this thesis we formalise and study computational aspects of group decision making for rational, self-interested agents. Specifically, we are interested in systems where agents reach consensus according to endogenous thresholds. Natural groups have been shown to make collective decisions according to threshold-mediated behaviours. An individual will commit to some collective endeavour only if the number of others having already committed exceeds their threshold. Consensus is reached only where all individuals express commitment. We present a family of models that describe fundamental aspects of cooperative behaviour in multi-agent systems. These include: coalition formation, participation in joint actions and the achievement of individuals’ goals over time. We associate novel solution concepts with our models and present results concerning the computational complexity of several natural decision problems arising from these. We demonstrate potential applications of our work by modelling a group decision problem common to many cohesive groups: establishing the location of the group. Using model checking tools we compute the effects of agents’ thresholds upon outcomes. We consider our results within an appropriate research context

    Modelling and verifying abilities of rational agents

    Get PDF
    • 

    corecore