2,195 research outputs found

    An Action Semantics for ML Concurrency Primitives

    Get PDF
    This paper is about the recently-developed framework of action semantics. The pragmatic qualities of action semantic descriptions are particularly good, which encourages their use in industrial-scale applications where semantic descriptions are needed, e.g., compiler development. The paper has two main aims: to demonstrate the remarkable extensibility of action semantic descriptions, and to illustrate the action semantics treatment of concurrency. These aims are achieved simultaneously, by first giving the description of a sequential (ML-like) programming language fragment, and then extending the described language with some concurrency primitives (taken from CML). The action semantic description of the sequential part of the language does not change at all when the concurrency primitives are added, it merely gets augmented by the description of the new features

    A bibliography on formal methods for system specification, design and validation

    Get PDF
    Literature on the specification, design, verification, testing, and evaluation of avionics systems was surveyed, providing 655 citations. Journal papers, conference papers, and technical reports are included. Manual and computer-based methods were employed. Keywords used in the online search are listed

    An ocarina extension for AADL formal semantics generation

    Get PDF
    International audienceThe formal veri cation has become a recommended practice in safety-critical software engineering. The hand-written of the for- mal speci cation requires a formal expertise and may become com- plex especially with large systems. In such context, the automatic generation of the formal speci cation seems helpful and reward- ing, particularly for reused and generic mapping such as hardware representations and real-time features. In this paper, we aim to formally verify real-time systems designed by AADL language. We propose an extension AADL2LNT of the Ocarina tool suite allowing the automatic generation of an LNT speci cation to draw a gateway for the CADP formal analysis toolbox. This work is illustrated with the Pacemaker case study

    Application specific asynchronous microgengines for efficient high-level control

    Get PDF
    technical reportDespite the growing interest in asynchronous circuits, programmable asynchronous controllers based on the idea of microprogramming have not been actively pursued. Since programmable control is widely used in many commercial ASICs to allow late correction of design errors, to easily upgrade product families, to meet the time to market, and even effect run-time modifications to control in adaptive systems, we consider it crucial that self-timed techniques support efficient programmable control. This is especially true given that asynchronous (self-timed) circuits are well suited for realizing reactive and control-intensive designs. We offer a practical solution to programmable asynchronous control in the form of application-specific micro-programmed asynchronous controllers (or microengines). The features of our solution include a modular and easily extensible datapath structure, support for two main styles of handshaking (namely two-phase and four-phase), and many efficiency measures based on exploiting concurrency between operations and employing efficient circuit structures. Our results demonstrate that the proposed microengine can yield high performance?in fact performance close to that offered by automated high-level synthesis tools targeting custom hard-wired burstmode machines

    Application specific asynchronous microengines for efficient high-level control

    Get PDF
    technical reportDespite the growing interest in asynchronous circuits programmable asynchronous controllers based on the idea of microprogramming have not been actively pursued Since programmable control is widely used in many commercial ASICs to allow late correction of design errors to easily upgrade product families to meet the time to market and even efficient run time modications to control in adaptive systems we consider it crucial that self timed techniques support efficient programmable control This is especially true given that asynchronous (self-timed) circuits are well suited for realizing reactive and control intensive designs We offer a practical solution to programmable asynchronous control in the form of application-speciffic microprogrammed asynchronous controllers (or microengines). The features of our solution include a modular and easily extensible datapath structure support for two main styles of hand shaking (namely two phase and four phase), and many efficiency measures based on exploiting concurrency between operations and employing efficient circuit structures Our results demonstrate that the proposed microengine can yield high performance-in fact performance close to that offered by automated high level synthesis tools targeting custom hard wired burstmode machines

    Advanced information processing system: The Army fault tolerant architecture conceptual study. Volume 2: Army fault tolerant architecture design and analysis

    Get PDF
    Described here is the Army Fault Tolerant Architecture (AFTA) hardware architecture and components and the operating system. The architectural and operational theory of the AFTA Fault Tolerant Data Bus is discussed. The test and maintenance strategy developed for use in fielded AFTA installations is presented. An approach to be used in reducing the probability of AFTA failure due to common mode faults is described. Analytical models for AFTA performance, reliability, availability, life cycle cost, weight, power, and volume are developed. An approach is presented for using VHSIC Hardware Description Language (VHDL) to describe and design AFTA's developmental hardware. A plan is described for verifying and validating key AFTA concepts during the Dem/Val phase. Analytical models and partial mission requirements are used to generate AFTA configurations for the TF/TA/NOE and Ground Vehicle missions

    Fiacre: an Intermediate Language for Model Verification in the Topcased Environment

    Get PDF
    International audienceFiacre was designed in the framework of the TOPCASED project dealing with model-driven engineering and gathering numerous partners, from both industry and academics. Therefore, Fiacre is designed both as the target language of model transformation engines from various models such as SDL, UML, AADL, and as the source language of compilers into the targeted verification toolboxes, namely CADP and Tina in the first step. In this paper, we present the Fiacre language. Then transformations from AADL to Fiacre are illustrated on a small example

    EOS: A project to investigate the design and construction of real-time distributed embedded operating systems

    Get PDF
    The EOS project is investigating the design and construction of a family of real-time distributed embedded operating systems for reliable, distributed aerospace applications. Using the real-time programming techniques developed in co-operation with NASA in earlier research, the project staff is building a kernel for a multiple processor networked system. The first six months of the grant included a study of scheduling in an object-oriented system, the design philosophy of the kernel, and the architectural overview of the operating system. In this report, the operating system and kernel concepts are described. An environment for the experiments has been built and several of the key concepts of the system have been prototyped. The kernel and operating system is intended to support future experimental studies in multiprocessing, load-balancing, routing, software fault-tolerance, distributed data base design, and real-time processing

    Petri net based development of globally-asynchronous locally-synchronous distributed embedded systems

    Get PDF
    Dissertação para obtenção do Grau de Doutor em Engenharia Electrotécnica e de ComputadoresA model-based development approach (MBDA) for Globally-Asynchronous Locally- Synchronous (GALS) Distributed Embedded Systems (DESs) is proposed. This approach relies on the GALS-DESs specification through (low- or high-level) Petri net classes, which ensure that the created models are GALS, locally deterministic, distributable, networkindependent, and platform-independent and support their simulation, verification, and implementation (using simulation, model-checking, and code generation tools). The use of network- and platform-independent models enable the use of heterogeneous communication networks to support the distributed components interaction and enable the use of heterogeneous platforms to support the components and the communication nodes implementation. To enable the proposed MBDA, Petri nets are extended with a set of the concepts, most notably time-domains and asynchronous-channels. Algorithms to support the verification of GALS-DES models and their decomposition into implementable sub-models are also proposed. A tool chain framework (IOPT-tools) was extended with this work proposals, supporting their validation and the GALS-DESs development.Fundação para a Ciência e a Tecnologia - grant ref. SFRH/BD/62171/200
    • …
    corecore